]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/tests/decl.ma
more work on matitaprover (no more XML and buris are created).
[helm.git] / helm / software / matita / tests / decl.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 set "baseuri" "cic:/matita/test/decl".
16
17 include "nat/times.ma".
18 include "nat/orders.ma".
19
20 theorem easy: ∀n,m. n * m = O → n = O ∨ m = O.
21  assume n: nat.
22  assume m: nat.
23  (* base case *)
24  by (refl_eq ? O) we proved (O = O) (trivial).
25  by (or_introl ? ? trivial) we proved (O = O ∨ m = O) (trivial2).
26  by (λ_.trivial2) we proved (O*m=O → O=O ∨ m=O) (base_case).
27  (* inductive case *)
28  we need to prove
29   (∀n1. (n1 * m = O → n1 = O ∨ m = O) → (S n1) * m = O → (S n1) = O ∨ m = O)
30   (inductive_case).
31    assume n1: nat.
32    suppose (n1 * m = O → n1 = O ∨ m = O) (inductive_hyp).
33    (* base case *)
34    by (or_intror ? ? trivial) we proved (S n1 = O ∨ O = O) (pre_base_case2).
35    by (λ_.pre_base_case2) we proved (S n1*O = O → S n1 = O ∨ O = O) (base_case2).
36    (* inductive case *)
37    we need to prove
38     (∀m1. (S n1 * m1 = O → S n1 = O ∨ m1 = O) →
39       (S n1 * S m1 = O → S n1 = O ∨ S m1 = O)) (inductive_hyp2).
40      assume m1: nat.
41      suppose (S n1 * m1 = O → S n1 = O ∨ m1 = O) (useless).
42      suppose (S n1 * S m1 = O) (absurd_hyp).
43      simplify in absurd_hyp.
44      by (sym_eq ? ? ? absurd_hyp) we proved (O = S (m1+n1*S m1)) (absurd_hyp').
45      by (not_eq_O_S ? absurd_hyp') we proved False (the_absurd).
46      by (False_ind ? the_absurd)
47    done.
48    (* the induction *)
49    by (nat_ind (λm.S n1 * m = O → S n1 = O ∨ m = O) base_case2 inductive_hyp2 m)
50  done.
51  (* the induction *)
52  by (nat_ind (λn.n*m=O → n=O ∨ m=O) base_case inductive_case n)
53 done.
54 qed.
55  
56 theorem easy2: ∀n,m. n * m = O → n = O ∨ m = O.
57  intros 2.
58  elim n 0
59   [ intro;
60     left;
61     reflexivity
62   | intro;
63     elim m 0
64     [ intros;
65       right;
66       reflexivity
67     | intros;
68       simplify in H2;
69       lapply (sym_eq ? ? ? H2);
70       elim (not_eq_O_S ? Hletin)
71     ]
72   ]
73 qed.
74