1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/demodulation/".
17 include "../legacy/coq.ma".
19 alias num = "natural number".
20 alias symbol "times" = "Coq's natural times".
21 alias symbol "plus" = "Coq's natural plus".
22 alias symbol "eq" = "Coq's leibnitz's equality".
23 alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
24 alias id "S" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/2)".
25 alias id "O" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/1)".
27 theorem p0 : \forall m:nat. m+O = m.
28 intro. demodulate.reflexivity.
31 theorem p: \forall m.1*m = m.
32 intros.demodulate.reflexivity.
35 theorem p2: \forall x,y:nat.(S x)*y = (y+x*y).
36 intros.demodulate.reflexivity.
39 theorem p1: \forall x,y:nat.(S ((S x)*y+x))=(S x)+(y*x+y).
40 intros.demodulate.reflexivity.
43 theorem p3: \forall x,y:nat. (x+y)*(x+y) = x*x + 2*(x*y) + (y*y).
44 intros.demodulate.reflexivity.
47 theorem p4: \forall x:nat. (x+1)*(x-1)=x*x - 1.
51 |intro.demodulate.reflexivity]