1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/tests/elim".
16 include "../legacy/coq.ma".
18 inductive stupidtype: Set \def
20 | Next : stupidtype \to stupidtype
21 | Pair : stupidtype \to stupidtype \to stupidtype.
23 alias symbol "eq" (instance 0) = "Coq's leibnitz's equality".
24 alias symbol "exists" (instance 0) = "Coq's exists".
25 alias symbol "or" (instance 0) = "Coq's logical or".
26 alias num (instance 0) = "natural number".
27 alias id "True" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1)".
28 alias id "refl_equal" = "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1/1)".
34 (\exists b:stupidtype.a = Next b)
36 (\exists c,d:stupidtype.a = Pair c d).
41 clear H.clear a.left.right.
42 exists.exact s.reflexivity.
43 clear H.clear H1.clear a.right.
44 exists.exact s.exists.exact s1.reflexivity.
47 theorem t: 0=0 \to stupidtype.
48 intros; constructor 1.
51 (* In this test "elim t" should open a new goal 0=0 and put it in the *)
52 (* goallist so that the THEN tactical closes it using reflexivity. *)
53 theorem foo: let ax \def refl_equal ? 0 in t ax = t ax.
57 (* This test shows a bug where elim opens a new unus{ed,eful} goal *)
59 alias symbol "eq" (instance 0) = "Coq's leibnitz's equality".
60 alias id "O" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/1)".
62 inductive sum (n:nat) : nat \to nat \to Set \def
63 k: \forall x,y. n = x + y \to sum n x y.
65 theorem t': \forall x,y. \forall H: sum x y O.
66 match H with [ (k a b p) \Rightarrow a ] = x.
68 cut (y = y \to O = O \to match H with [ (k a b p) \Rightarrow a] = x).
69 apply Hcut; reflexivity.
72 (\lambda a,b,K. y=a \to O=b \to
73 match K with [ (k a b p) \Rightarrow a ] = x)
76 generalize in match H1.
77 rewrite < H2; rewrite < H3.intro.
78 rewrite > H4.auto new library.