1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/tests/fguidi/".
16 include "../legacy/coq.ma".
18 alias id "O" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/1)".
19 alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
20 alias id "S" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/2)".
21 alias id "le" = "cic:/matita/fguidi/le.ind#xpointer(1/1)".
22 alias id "False_ind" = "cic:/Coq/Init/Logic/False_ind.con".
23 alias id "I" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1/1)".
24 alias id "ex_intro" = "cic:/Coq/Init/Logic/ex.ind#xpointer(1/1/1)".
25 alias id "False" = "cic:/Coq/Init/Logic/False.ind#xpointer(1/1)".
26 alias id "True" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1)".
28 alias symbol "and" (instance 0) = "Coq's logical and".
29 alias symbol "eq" (instance 0) = "Coq's leibnitz's equality".
30 alias symbol "exists" (instance 0) = "Coq's exists".
32 definition is_S: nat \to Prop \def
33 \lambda n. match n with
35 | (S n) \Rightarrow True
38 definition pred: nat \to nat \def
39 \lambda n. match n with
44 theorem eq_gen_S_O: \forall x. (S x = O) \to \forall P:Prop. P.
45 intros. apply False_ind. cut (is_S O). elim Hcut. rewrite < H. apply I.
48 theorem eq_gen_S_O_cc: (\forall P:Prop. P) \to \forall x. (S x = O).
52 theorem eq_gen_S_S: \forall m,n. (S m) = (S n) \to m = n.
53 intros. cut ((pred (S m)) = (pred (S n))).
54 assumption. elim H. auto paramodulation.
57 theorem eq_gen_S_S_cc: \forall m,n. m = n \to (S m) = (S n).
58 intros. elim H. auto paramodulation.
61 inductive le: nat \to nat \to Prop \def
62 le_zero: \forall n. (le O n)
63 | le_succ: \forall m, n. (le m n) \to (le (S m) (S n)).
65 theorem le_refl: \forall x. (le x x).
66 intros. elim x; auto new.
69 theorem le_gen_x_O_aux: \forall x, y. (le x y) \to (y =O) \to
71 intros 3. elim H. auto paramodulation. apply eq_gen_S_O. exact n1. auto paramodulation.
74 theorem le_gen_x_O: \forall x. (le x O) \to (x = O).
75 intros. apply le_gen_x_O_aux. exact O. auto paramodulation. auto paramodulation.
78 theorem le_gen_x_O_cc: \forall x. (x = O) \to (le x O).
79 intros. elim H. auto new.
82 theorem le_gen_S_x_aux: \forall m,x,y. (le y x) \to (y = S m) \to
83 (\exists n. x = (S n) \land (le m n)).
84 intros 4. elim H; clear H x y.
85 apply eq_gen_S_O. exact m. elim H1. auto paramodulation.
86 clear H2. cut (n = m).
87 elim Hcut. apply ex_intro. exact n1. split; autobatch.
88 apply eq_gen_S_S. autobatch.
91 theorem le_gen_S_x: \forall m,x. (le (S m) x) \to
92 (\exists n. x = (S n) \land (le m n)).
93 intros. apply le_gen_S_x_aux. exact (S m). auto paramodulation. auto paramodulation.
96 theorem le_gen_S_x_cc: \forall m,x. (\exists n. x = (S n) \land (le m n)) \to
98 intros. elim H. elim H1. cut ((S x1) = x). elim Hcut. auto new.
99 elim H2. auto paramodulation.
102 theorem le_gen_S_S: \forall m,n. (le (S m) (S n)) \to (le m n).
104 lapply le_gen_S_x to H as H0. elim H0. elim H1.
105 lapply eq_gen_S_S to H2 as H4. rewrite > H4. assumption.
108 theorem le_gen_S_S_cc: \forall m,n. (le m n) \to (le (S m) (S n)).
113 theorem le_trans: \forall x,y. (le x y) \to \forall z. (le y z) \to (le x z).
114 intros 1. elim x; clear H. clear x.
116 fwd H1 [H]. decompose.