1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/tests/metasenv_ordering".
17 include "../legacy/coq.ma".
19 alias num (instance 0) = "natural number".
20 alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
26 \forall H:(\forall G1: Set. \forall G2:Prop. \forall G3 : Type. 1 = 0).
27 1 = 1 \land 1 = 0 \land 2 = 2.
31 [ reflexivity | exact nat | exact (0=0) | exact Type ]
37 \forall H:(\forall G1: Set. \forall G2:Prop. \forall G3 : Type. 1 = 0).
38 1 = 1 \land 1 = 0 \land 3 = 3.
41 rewrite > (H ?); [reflexivity | exact nat | exact (0=0) | exact Type].
49 \forall H:(\forall G1: Set. \forall G2:Prop. \forall G3 : Type. 1 = 0).
50 1 = 1 \land 1 = 0 \land 4 = 4.
53 rewrite > (H ? ?); [reflexivity | exact nat | exact (0=0) | exact Type].
61 \forall H:(\forall G1: Set. \forall G2:Prop. \forall G3 : Type. 1 = 0).
62 1 = 1 \land 1 = 0 \land 5 = 5.
65 rewrite > (H ? ? ?); [reflexivity | exact nat | exact (0=0) | exact Type].
75 \forall H:(\forall G1: Set. \forall G2:Prop. \forall G3 : Type. 1 = 0).
76 1 = 1 \land 1 = 0 \land 6 = 6.
79 apply H; [exact nat | exact (0=0) | exact Type].
87 \forall H:(\forall G1: Set. \forall G2:Prop. \forall G3 : Type. 1 = 0).
88 1 = 1 \land 1 = 0 \land 7 = 7.
91 apply (H ?); [exact nat | exact (0=0) | exact Type].
99 \forall H:(\forall G1: Set. \forall G2:Prop. \forall G3 : Type. 1 = 0).
100 1 = 1 \land 1 = 0 \land 8 = 8.
101 intros. split. split.
103 apply (H ? ?); [exact nat | exact (0=0) | exact Type].
111 \forall H:(\forall G1: Set. \forall G2:Prop. \forall G3 : Type. 1 = 0).
112 1 = 1 \land 1 = 0 \land 9 = 9.
113 intros. split. split.
115 apply (H ? ? ?); [exact nat | exact (0=0) | exact Type].
124 \forall P,Q,R,S : Prop. R \to S \to \forall E:(R \to S \to P \land Q). P \land Q.
125 intros (P Q R S r s H).
126 elim (H ? ?); [split; assumption | exact r | exact s].
130 \forall P,Q,R,S : Prop. R \to S \to \forall E:(R \to S \to P \land Q). P \land Q.
131 intros (P Q R S r s H).
132 elim (H ?); [split; assumption | exact r | exact s].
136 \forall P,Q,R,S : Prop. R \to S \to \forall E:(R \to S \to P \land Q). P \land Q.
137 intros (P Q R S r s H).
138 elim H; [split; assumption | exact r | exact s].