
A

The Formal System λδ Revised -
Stage A: Extending the Applicability Condition

FERRUCCIO GUIDI, Department of Computer Science and Engineering, University of Bologna, Italy

The formal system λδ is a typed λ-calculus derived from Λ∞, aiming to support the foundations of
Mathematics that require an underlying theory of expressions (for example the Minimal Type Theory).

The system is developed in the context of the Hypertextual Electronic Library of Mathematics as a
machine-checked digital specification, that is not the formal counterpart of previous informal material. The
first version of the calculus appeared in 2006 and proved unsatisfactory for some reasons.

In this article we present a revised version of the system and we prove three relevant desired properties:
the confluence of reduction, the strong normalization of an extended form of reduction, known as the “big
tree” theorem, and the preservation of validity by reduction. To our knowledge, we are presenting here the
first fully machine-checked proof of the “big tree” theorem for a calculus that includes Λ∞.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Lambda calculus and related systems

General Terms: Theory

Additional Key Words and Phrases: Explicit substitutions, extended applicability condition, extended tran-
sition system, infinite degrees of terms, preservation of validity, strong normalization, terms as types

ACM Reference Format:

Ferruccio Guidi. 2014. The Formal System λδ Revised - Stage A: Extending the Applicability Condition.

ACM Trans. Comput. Logic V, N, Article A (January YYYY), 34 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The formal system λδ is a typed λ-calculus aiming to support the foundations of Math-
ematics that require an underlying theory of expressions (for example mTT of Maietti
[2009] and its predecessors). The system is developed in the context of the HELM
project of Asperti et al. [2003] as a machine-checked digital specification, that is not
the formal counterpart of some previous informal material. The first version of the
calculus [Guidi 2006], formalized in the proof management system (p.m.s.) Coq [Coq
development team 2002] and published by Guidi [2009], proved unsatisfactory for some
reasons. So a revision of the calculus is ongoing since April 2011 and includes a brand
new formalization [Guidi 2014] in the p.m.s. Matita of Asperti et al. [2011].
Firstly, the revision aims at this problem: the calculus of Guidi [2009] comes from

Λ∞ [van Benthem Jutting 1994b], a language of the Automath family [Nederpelt et al.
1994], and yet it cannot type every term typed by Λ∞ since it lacks the “pure” type in-
ference rule for function application [de Bruijn 1991]. If Γ ⊢M ∶ N is a type assignment
judgment and Γ ⊢M !, is the corresponding validity judgment, this rule states:

Γ ⊢ f ∶ F Γ ⊢ F (t) !,

Γ ⊢ f(t) ∶ F (t)
@−pure (1)

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 F. Guidi

This rule is redundant when the terms have three degrees (objects, classes, and sorts)
as in Pure Type Systems (PTS’s) [Barendregt 1993] and their derivatives. On the con-
trary it becomes effective when more degrees are available, as in the Aut−4 family
[de Bruijn 1994b] or in Λ∞, since Γ ⊢ f ∶ F and Γ ⊢ F ∶ F do not imply that F is a sort.
In this case f can be a function, F a function space, and F a family of function spaces.
If we take t in the domain of f , we might want Γ ⊢ f(t) !, even when f and F are given
abstractly as variables declared in Γ. Rule (1) is designed to realize this situation.
In the mathematical language we express a large variety of concepts, each with its

own requirements. When we translate this language to typed λ-calculus, a widely ac-
cepted policy suggests that expressions denoting concepts with different requirements
should correspond to λ-terms with different degrees. Consider typical concepts of in-
terest: sets, elements, propositions and proofs. While well-established similarities be-
tween elements and proofs support their representation with terms of the same degree,
significant differences arise as well, playing in favor of representing them differently.
Mainly, identifying two proofs of a proposition (also known as “proof irrilevance”) is

sensible, while identifying two elements of a set generally is not. de Bruijn [1994b]
approaches this problem by advocating a calculus in which two terms inhabiting the
same type of degree 3 are definitionally equal. This is to say that terms of degree 4 are
provided for representing irrelevant proofs. Similarly, subtle differences can be found
in the requirements for sets and propositions. So it seams that a calculus with many
degrees for its terms, may allow flexible interpretations of the mathematical language.
We note that λδ has a disadvantage in this sense because of its “isotropy”, by which

we mean that the features of its terms do not depend on their degree.
Secondly, the revised λδ aims at other improvements some of which were advo-

cated already by Guidi [2009]. Simpler “arities” make the arity assignment judgment
decidable for all values of the sort hierarchy parameter. The reaxiomatized step of
environment-dependent parallel reduction allows to remove the substitution opera-
tor and provides for the long-awaited Rule (2). Tait-style reducibility candidates [Tait
1975] in place of Girard-style ones [Girard et al. 1989] simplify the strong normaliza-
tion theorem. Simpler environments allow to remove some ancillary operators.

Γ ⊢ f1 ⇉ f2 Γ ⊢ t1 ⇉ t2

Γ ⊢ f1(t1) ⇉ f2(t2)
appl (2)

The main contributions of this article are the so-called “big tree” theorem [de Vrijer
1994] for λδ, which yields the subject reduction theorem for its stratified validity.
The “big tree” theorem states that valid terms are strongly normalizing with respect

to a relation comprising reduction steps, type steps, subtraction steps, and more. It
generalizes ordinary strong normalization and gives a very powerful induction prin-
ciple for proving properties on valid terms. We are confident that this tool may prove
useful in systems other than λδ as well.
Stratified validity (i.e., validity up to a specified degree) replaces type assignment as

a primitive notion in the revised λδ. This choice is motivated by the subject reduction
theorem, which, in presence of Rule (1), is proved more easily for validity (the prop-
erty of having an unspecified type) than for type assignment (the property of having a
specified type) since types in λδ, as well as in other systems, are not specified uniquely
but up to conversion. The same situation arises for Λ∞ [van Daalen 1994].
At this stage the revised λδ does not include a type judgment and the exclusion

binder χ of Guidi [2009], however our notion of validity should imply Rule (1).
The revised λδ is defined in Section 2 and its properties are presented in Section 3.

Our conclusions are in Section 4. Appendix A gives a summary of the notation we
introduce, while Appendix B gives the pointers to the digital version of our results.
We agree that the symbol ▲ terminates our definitions and our proofs in the text.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:3

natural number i, j, k starting at 0
term T,U,V,W ∶∶= ⋆k ∣#i ∣ δV.T ∣ λW.T ∣ @V.T ∣ ©W.T
environment K,L ∶∶= ⋆ ∣ L.δV ∣ L.λW

Fig. 1. Terms and environments.

@○.T = T @(V ; V).T = @V.(@V .T)

Fig. 2. Multiple application.

2. DEFINITION OF λδ

In this section we define the revised λδ from scratch presenting its language (Sec-
tion 2.1), its reduction rules (Section 2.3), and its validity rules (Section 2.6). These
rules depend on some ancillary notions: relocation (Section 2.2), static type assign-
ment (Section 2.4), and degree assignment (Section 2.5). Other notions are introduced
to state or prove the main theorems of this article: closures (Section 2.7), extended
reduction (Section 2.8), atomic arity assignment (Section 2.9), reducibility candidates
(Section 2.10), lazy equivalence (Section 2.11), and an extension of “big trees” termed
here “very big trees” (Section 2.12).
We shall use some logical constants: ∀ (universal quantification), ∃ (existential quan-

tification),⇒ (implication), N (conjunction), and natural numbers with standard oper-
ators: ≤, <, +, and −. We shall need lists for the normalization theorem. Metavariables
for lists will be overlined, like c. The empty list will be ○, and the infix semicolon will
denote concatenation, like c ; c.
Contrary to Guidi [2009], in this presentation we want to follow the digital specifi-

cation of the calculus strictly, especially in the treatment of variables, and we make
some notational changes with respect to that article. The reader will find a summary
of the revised notation in Appendix A.

2.1. Language

The grammar of λδ features two syntactic categories: terms and environments, and
uses natural numbers. Terms are presented in the “item notation” of Kamareddine
and Nederpelt [1996b], and include sorts, variable occurrences, abbreviations, typed
abstractions, applications, and type annotations. Contrary to Guidi [2009], environ-
ments contain just (nonrecursive) definitions, and typed declarations.

Definition 2.1 (terms and environments). Terms and environments are defined in
Figure 1. ⋆k is the sort of index k, #i is the reference to the variable introduced
at depth i [de Bruijn 1994a] (so i is a “de Bruijn index”), δV.T is the abbreviation
“let #0 = V in T ”, λW.T is the function “(#0 ∶W) ↦ T ”, @V.T is the application “T (V)”,
and ©W.T is the type annotation “(T ∶W)”. ⋆ is the empty environment, L.δV is L with
the definition “let #0 = V ”, and L.λW is L with the declaration “(#0 ∶W)”. ▲

Convention: the symbol δ/λ means: “either δ, or λ”. If the symbol occurs many times
in a statement, it means: “either δ in every occurrence, or λ in every occurrence”. The
same convention holds for similar symbols we will use, like ⋆/# and ©/@.
The application can be extended to take a list V of arguments.

Definition 2.2 (multiple application). @V .T defined in Figure 2, denotes the appli-
cation of T the arguments in the list V starting from the rightmost term in V . ▲

Environments are lists so some standard operators can be defined on them.

Definition 2.3 (length). Figure 3 defines the length ∣L∣ of an environment L. ▲

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 F. Guidi

∣⋆∣ = 0 ∣L.δ/λW ∣ = ∣L∣

Fig. 3. Length of an environment.

K.⋆ =K K.(L.δ/λW) = (K.L).δ/λW

Fig. 4. Concatenation of two environments.

S(⋆/#i) S(©/@V.T)

Fig. 5. Simple (or neutral) terms.

Definition 2.4 (concatenation). Figure 4 defines the concatenation K.L of L before
K. In particular we write δ/λW.L for (⋆.δ/λW).L. ▲

Normalization requires two predicates: see Definition 2.33 and Theorem 3.5(7).

Definition 2.5 (neutrality). S(T) states that the term T is simple (or neutral) as
defined in Figure 5. Specifically, T is neither an abbreviation, nor an abstraction. ▲

Definition 2.6 (top structure). T1 ≂ T2 states that the terms T1 and T2 have the
same top structure as defined in Figure 6. Specifically, T1 and T2 are the same atomic
term or start with the same constructor. ▲

2.2. Relocation

Managing variables referred by depth requires a well-known function ↑⟨l,m⟩ T con-
nected to the function τm(T) of de Bruijn [1994a]. In particular, when the term T

enters the scope of m binders, ↑⟨0,m⟩ T relocates the indexes of its free variables. The
composition of such functions is of interest as well.

Definition 2.7 (relocation). The relation ↑⟨l,m⟩ T1 = T2 defined in Figure 7, states
that T2 is the relocation of T1 at level l with depth (or “height”) m.
We term the pair ⟨l,m⟩ a “relocation pair”. ▲

Definition 2.8 (vector relocation). The relation ↑⟨l,m⟩ T 1 = T 2 defined in Figure 8,
applies ⟨l,m⟩ to the components of the list T 1 preserving their order in the list T 2. ▲

Definition 2.9 (multiple relocation). The relation ↑c T1 = T2 defined in Figure 9, ap-
plies the list c of relocation pairs to T1 starting from the leftmost pair in c. ▲

If ↑⟨l,m⟩ T1 = T2, notably, T2 does not refer to the variables introduced at depth i with
l ≤ i < l +m. So a relation ↓⟨l,m⟩L1 = L2 is provided for removing the i-th entries of L1

such that l ≤ i < l +m, while relocating the i-th entries such that i < l. The relation is
defined only when this relocation is possible, that is when an i-th entry with i < l does
not refer to an i-th entry with l ≤ i < l +m. The 0 − th entry of L1 is the head of L1. We
term this relation “drop” as opposed to relocation, which is sometimes termed “lift”.
Notice that if ↓⟨0,i⟩L1 = L2, then the head of L2 contains the i-th entry of L1.

Definition 2.10 (drop). The relation ↓⟨l,m⟩L1 = L2 defined in Figure 10, states that
L2 is L1 without the i-th entries such that l ≤ i < l +m, and with the i-th entries such
that i < l relocated accordingly. ▲

Figure 10(atom) generalizes “drop” of Guidi [2006] allowing ↓⟨l,0⟩L = L when ∣L∣ ≤ l.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:5

⋆/#i ≂ ⋆/#i δ/λ/©/@V1.T1 ≂ δ/λ/©/@V2.T2

Fig. 6. Terms with the same top structure.

natural number l,m starting at 0
relocation pair c ∶∶= ⟨l,m⟩

↑⟨l,m⟩ ⋆k = ⋆k
sort

i < l

↑⟨l,m⟩#i =#i
lref lt

l ≤ i

↑⟨l,m⟩#i =#(i +m)
lref ge

↑⟨l,m⟩W1 =W2 ↑⟨l+1,m⟩ T1 = T2

↑⟨l,m⟩ δ/λW1.T1 = δ/λW2.T2

bind
↑⟨l,m⟩ V1 = V2 ↑⟨l,m⟩ T1 = T2

↑⟨l,m⟩©/@V1.T1 = ©/@V2.T2

flat

Fig. 7. Relocation.

↑⟨l,m⟩ ○ = ○
empty

↑⟨l,m⟩ T1 = T2 ↑⟨l,m⟩ T 1 = T 2

↑⟨l,m⟩(T1 ; T 1) = T2 ; T 2

cons

Fig. 8. Vector relocation.

Definition 2.11 (multiple drop). The relation ↓cL1 = L2 defined in Figure 11, ap-
plies the list c of relocation pairs to L1 starting from the leftmost pair in c. ▲

The next equivalence relation appears in Theorem 3.9(3).

Definition 2.12 (ranged equivalence). The relation L1 ≂
∼
⟨l,m⟩ L2 defined in Fig-

ure 12, states that L1 and L2 have the same length and the same i-th entries for
l ≤ i < l +m. ▲

2.3. Reduction

λδ features a transition system with five schemes of reducible expressions (redexes).
Care is taken to design a deterministic and confluent system with disjoint redex
schemes, in which the call-by-value β-reduction is broken into its basic components.

Definition 2.13 (transitions). Figure 13 defines the redexes and their transitions
β, δ, ǫ, ζ, and θ, which depend on an environment L. The β-reduction is delayed (call-
by-name style), the δ-expansion expands a definition in L, the ǫ-contraction removes
a type annotation, the ζ-contraction removes an unreferenced abbreviation, and the
θ-reduction [Curien and Herbelin 2000] swaps an application and an abbreviation. ▲

Notice that the β-redex contains a type annotation W that, contrary to Guidi [2009],
remains in the β-reductum. This choice is connected with the revised form of the nor-
malization theorem. Also notice that δ-expansion, contrary to Guidi [2009], does not
mention substitution. In the light of next Definition 2.14, delayed parallel substitution
is seen as a special case of reduction.
Following Guidi [2009], we present parallel reduction to ease the proof of the conflu-

ence theorem, but here we take environment-dependent reduction as primitive.

Definition 2.14 (parallel reduction for terms). The relation L ⊢ T1 ⇉ T2 defined in
Figure 14, indicates one step of parallel reduction from T1 to T2 in L. ▲

We compute a call-by-value β-reduction in two steps, as we illustrate by computing
the term ∆(∆). In particular we set ∆T = λT.@#0.#0 and we agree that ↑⟨0,1⟩ T = U .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 F. Guidi

↑○ T = T
empty

↑c T1 = T ↑c T = T2

↑c;c T1 = T2

cons

Fig. 9. Multiple relocation.

↓⟨l,0⟩ ⋆ = ⋆
atom

↓⟨0,0⟩L1 = L2

↓⟨0,0⟩L1.δ/λW = L2.δ/λW
pair

↓⟨0,m⟩L1 = L2

↓⟨0,m+1⟩L1.δ/λW = L2

drop
↓⟨l,m⟩L1 = L2 ↑⟨l,m⟩W2 =W1

↓⟨l+1,m⟩L1.δ/λW1 = L2.δ/λW2

skip

Fig. 10. Drop.

↓○ L = L
empty

↓cL1 = L ↓cL = L2

↓c;cL1 = L2

cons

Fig. 11. Multiple Drop.

β L ⊢ @∆T .∆T ⇉ δ(©T.∆T).@#0.#0
ǫ, δ, ζ L ⊢ δ(©T.∆T).@#0.#0⇉ @∆T .∆T

by L.δ(©T.∆T) ⊢ #0⇉∆U and L ⊢ ©T.∆T ⇉∆T

The advantage of environment-dependent parallel reduction over the approach of
Guidi [2009] lies in the increased parallelism of δ-expansions, which we need for the
“big tree” theorem. Suppose that [m←V]T replaces with V some references in T to the
variable introduced at depth m, and compare Figure 14(bind) and Figure 14(δ) with
Rule (3) (i.e., their environment-free counterpart). When we replace many variable
instances in one step with this rule, each instance receives the same reduct V2 of V1.
Whereas, by Figure 14(δ) each instance may receive a different reduct of V1.

V1 ⇉ V2 T1 ⇉ T [0←V2]T = T2

δV1.T1 ⇉ δV2.T2

δ−free (3)

Notice that the subsystem of rules: Figure 14(bind), Figure 14(flat), Figure 14(atom),
and Figure 14(δ) axiomatizes environment-dependent parallel substitution.
We derive several notions from parallel reduction: an extension for environments

needed in the confluence theorem, and some transitive closures. In this setting we
agree that a “computation” is a reduction sequence consisting of zero or more steps.

Definition 2.15 (parallel reduction for environments). The relation L1 ⊢⇉ L2 de-
fined in Figure 15 indicates one step of parallel reduction from L1 to L2. ▲

Definition 2.16 (parallel computation and conversion). The relation L ⊢ T1 ⇉
∗ T2

(computation) is the transitive closure of L ⊢ T1 ⇉ T2, while L ⊢ T1 ↔
↔∗ T2 (conversion)

is the symmetric and transitive closure of L ⊢ T1 ⇉ T2. Moreover L1 ⊢⇉
∗ L2 (computa-

tion) is the transitive closure of L1 ⊢⇉ L2. Figure 16 defines L ⊢ T1 ⇉
∗ T2 for reference.

The other notions are defined in the same manner. ▲

The transitive closures we just defined are reflexive, because so is L ⊢ T1 ⇉ T2. There-
fore the symbol ∗ in their notation is justified as a Kleene star meaning “zero or more”.
A characteristic feature of λδ is the use of reflexive relations for environments

termed here “refinements”, invoked when proving that reduction preserves some prop-
erty. Specifically, they are invoked in the case of Figure 14(β) given that a backward
application of Figure 14(bind) moves part of the β-redex and part of the β-reductum

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:7

⋆ ≂
∼
⟨l,m⟩ ⋆

atom
L1 ≂
∼
⟨0,m⟩ L2

L1.δ/λW ≂
∼
⟨0,m+1⟩ L2.δ/λW

pair

L1 ≂
∼
⟨0,0⟩ L2

L1.δ1/λ1W1 ≂
∼
⟨0,0⟩ L2.δ2/λ2W2

zero
L1 ≂
∼
⟨l,m⟩ L2

L1.δ1/λ1W1 ≂
∼
⟨l+1,m⟩ L2.δ2/λ2W2

succ

Fig. 12. Ranged equivalence.

L ⊢ @V.λW.T → δ(©W.V).T
β
↓⟨0,i⟩L =K.δV1 ↑

⟨0,i+1⟩ V1 = V2

L ⊢#i→ V2

δ

L ⊢ ©U.T → T
ǫ

↑
⟨0,1⟩ T2 = T1

L ⊢ δV.T1 → T2

ζ
↑
⟨0,1⟩ V1 = V2

L ⊢ @V1.δW.T → δW.@V2.T
θ

Fig. 13. Transitions.

L ⊢W1 ⇉W2 L.δ/λW1 ⊢ T1 ⇉ T2

L ⊢ δ/λW1.T1 ⇉ δ/λW2.T2

bind
L ⊢ V1 ⇉ V2 L ⊢ T1 ⇉ T2

L ⊢ ©/@V1.T1 ⇉ ©/@V2.T2

flat

L ⊢ ⋆/#i⇉ ⋆/#i
atom

↓⟨0,i⟩L =K.δV1 K ⊢ V1 ⇉ V2 ↑
⟨0,i+1⟩ V2 =W2

L ⊢ #i⇉W2

δ

L ⊢ V1 ⇉ V2 L ⊢W1 ⇉W2 L.λW1 ⊢ T1 ⇉ T2

L ⊢ @V1.λW1.T1 ⇉ δ(©W2.V2).T2

β
L.δV ⊢ U1 ⇉ U2 ↑

⟨0,1⟩ T2 = U2

L ⊢ δV.U1 ⇉ T2

ζ

L ⊢ T1 ⇉ T2

L ⊢ ©U.T1 ⇉ T2

ǫ
L ⊢ V1 ⇉ V2 ↑

⟨0,1⟩ V2 =W2 L ⊢ U1 ⇉ U2 L.δU1 ⊢ T1 ⇉ T2

L ⊢ @V1.δU1.T1 ⇉ δU2.@W2.T2

θ

Fig. 14. Parallel reduction for terms (single step).

in the environment. The basic refinement is given next and occurs in the proof of the
confluence theorem. The other refinements imply this one. See Definition 2.20, Defini-
tion 2.23, Definition 2.31, Definition 2.36.

Definition 2.17 (refinement for preservation of reduction). Figure 17 defines the re-
lation L1 ⊆̇ L2 stating that L1 refines L2 for preservation of reduction. ▲

The main results on reduction, conversion, and refinement are in Section 3.1.

2.4. Iterated Static Type Assignment

The “static” type assignment defined in this section is our counterpart of the so-called
“de Bruijn” type assignment of the Automath tradition [van Daalen 1994]. As such, it
plays a central role in our definition of validity. Its name recalls that we can compute
it without the help of βζθ-reductions.
Intuitively, the term T has a static type U in the environment L iff the head variable

occurrence of T is hereditarily closed in L. In that case, U is just a candidate type for T .
However, when T is valid, its static type serves as the “canonical” type [Kamareddine
and Nederpelt 1996a], or as the “inferred” type [Coscoy 1996].
The “static type iterated n times” is related to the notion of validity implied by

Rule (1) and It will be convenient to define it as a primitive notion (denoted by
L ⊢ T ●∗(n) U), that will not be the reflexive and transitive closure of the “static type
iterated one time”. In fact we are not interested in full reflexivity (i.e., L ⊢ T ●∗(0) T

for each T). On the contrary, we wish to ensure that L ⊢ T ●∗(n) U holds iff the head

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 F. Guidi

⋆ ⊢⇉ ⋆
atom

L1 ⊢⇉ L2 L1 ⊢W1 ⇉W2

L1.δ/λW1 ⊢⇉ L2.δ/λW2

pair

Fig. 15. Parallel reduction for environments (single step).

L ⊢ T1 ⇉ T2

L ⊢ T1 ⇉
∗ T2

inj
L ⊢ T1 ⇉

∗ T L ⊢ T ⇉ T2

L ⊢ T1 ⇉
∗ T2

step

Fig. 16. Parallel computation for terms (multi-step).

L ⊆̇ ⋆
atom

L1 ⊆̇ L2

L1.δ/λW ⊆̇ L2.δ/λW
pair

L1 ⊆̇ L2

L1.δ(©W.V) ⊆̇ L2.λW
beta

Fig. 17. Refinement for preservation of reduction.

variable occurrence of T is hereditarily closed in L regardless of n, hence even for n = 0.
As a matter of fact, differentiating the case n = 0 for the sake of reflexivity, yields a less
elegant definition of L ⊢ T ●∗(n) U .
According to our type policy, the sort of index k is typed by the sort of index h(k)

where h is function chosen at will as long as a monotonicity condition is satisfied.

Definition 2.18 (iterated static type assignment). A “sort hierarchy parameter” is
any function h satisfying the strict monotonicity condition: k < h(k). Moreover hn will

denote h composed n times. For a natural number n, the relation L ⊢ T ●
∗(n)
h

U defined
in Figure 18, indicates that U is the n-iterated “static” type of T in L according to h. ▲

This definition allows to say that U is the static type of T in L when L ⊢ T ●
∗(1)
h

U ,
which differs in Figure 18(cast) from the notion L ⊢ T ●h U defined by [Guidi 2009]
with the name st. For example we have L.λ(©⋆k1.⋆k2) ⊢ #0 ●h (©⋆k1.⋆k2) but

L.λ(©⋆k1.⋆k2) ⊢ #0 ●
∗(1)
h
⋆k2. Although L ⊢ T ●

∗(0)
h

T does not hold in general, we

can prove that L ⊢ T1 ●
∗(0)
h

T2 implies L ⊢ T1 ⇉ T2 by δ-expansion and ǫ-contraction. We
remark that the rules of Figure 18 are syntax-oriented, so the n-iterated static type of
T in L, if it exists, is unique for any given h and n. See Theorem 3.4(1).

2.5. Degree Assignment

The “degree” of a term T is a number d indicating the position of T in a type hierarchy.
A well-established definition assigns degree 1 to the first sort (for instance τ in Λ∞ or ⋆
in the λ-Cube [Barendregt 1993]) and degree d+ 1 to T such that Γ ⊢ T ∶ U when U has
degree d. In λδ, as in ECC [Luo 1990], there is no top sort and the degree is an integer.
So this definition prevents from reasoning by induction on the degree.
According to our policy, the degree of a sort is a natural number given by a function

g that can be chosen at will as long as a compatibility condition is satisfied.
Once sorts are assigned a degree, the assignment extends to terms accordingly.

Definition 2.19 (degree assignment). Given a sort hierarchy parameter h, a “sort
degree parameter” is any function gh satisfying the compatibility condition: if gh(k) = d
then gh(h(k)) = d − 1. The relation L ⊢ T ◾h,g d defined in Figure 19, indicates that T
has degree d in L according to h and gh. ▲

As we see, the term T has a degree in L iff the head variable occurrence of T is
hereditarily closed in L. So having a degree, is equivalent to having a static type.
The refinement given next occurs in the proof of the preservation theorem and is

needed to prove that the reduction of valid terms preserves their degree.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:9

natural number n starting at 0

L ⊢ ⋆k ●
∗(n)
h
⋆(hn(k))

sort
↓⟨0,i⟩L =K.λW K ⊢W ●

∗(0)
h

V

L ⊢#i ●
∗(0)
h

#i
zero

L.δ/λW ⊢ T ●
∗(n)
h

U

L ⊢ δ/λW.T ●
∗(n)
h

δ/λW.U
bind

↓⟨0,i⟩L =K.λW1 K ⊢W1 ●
∗(n)
h V1 ↑

⟨0,i+1⟩ V1 = V2

L ⊢ #i ●
∗(n+1)
h

V2

succ
L ⊢ T ●

∗(n)
h

U

L ⊢ @V.T ●
∗(n)
h

@V.U
appl

↓⟨0,i⟩L =K.δV K ⊢ V ●
∗(n)
h

W1 ↑
⟨0,i+1⟩W1 =W2

L ⊢#i ●
∗(n)
h

W2

ldef
L ⊢ T ●

∗(n)
h

U

L ⊢ ©W.T ●
∗(n)
h

U
cast

Fig. 18. Iterated tatic type assignment.

natural number d starting at 0

gh(k) = d

L ⊢ ⋆k ◾h,g d
sort

↓⟨0,i⟩L =K.δV K ⊢ V ◾h,g d

L ⊢#i ◾h,g d
ldef

↓⟨0,i⟩L =K.λW K ⊢W ◾h,g d

L ⊢#i ◾h,g d + 1
ldec

L.δ/λW ⊢ T ◾h,g d

L ⊢ δ/λW.T ◾h,g d
bind

L ⊢ T ◾h,g d

L ⊢ ©/@V.T ◾h,g d
flat

Fig. 19. Degree assignment.

⋆ ⊆̇◾h,g ⋆
atom

L1 ⊆̇◾h,g L2

L1.δ/λW ⊆̇◾h,g L2.δ/λW
pair

L1 ⊆̇◾h,g L2 L1 ⊢ V ◾h,g d + 1 L2 ⊢W ◾h,g d

L1.δ(©W.V) ⊆̇◾h,g L2.λW
beta

Fig. 20. Refinement for preservation of degree.

Definition 2.20 (refinement for preservation of degree). Figure 20 defines the rela-
tion L1 ⊆̇◾h,g L2 stating that L1 refines L2 for preservation of degree. ▲

The main results on degree assignment and on its refinement are in Section 3.2.

2.6. Stratified Validity

Our validity rules for a term X in an environment L, are designed to ensure that:

(1) every variable occurrence in X is closed in X or in L; the expected type of every
declared variable occurrence in X is valid in its environment; the expansion of
every defined variable occurrence in X is valid in its environment;

(2) every subterm of X is valid in its environment;
(3) for every type annotation ©W.V in X , the inferred type of V converts to W in L;
(4) for every application @V.T in X , the inferred type of T iterated enough times con-

verts to the form λW.U , and the inferred type of V converts to W in L.

Clause (4) is our extension of the “applicability condition”, which in a PTS is:

— for every application @V.T in X , the inferred type of T iterated one time converts to
the form ΠW.U , and the inferred type of V converts to W in L.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 F. Guidi

n ≤ d L ⊢ T1 ◾h,g d L ⊢ T1 ●
∗(n)
h

T L ⊢ T ⇉∗ T2

L ⊢ T1 ●
∗⇉
∗(n)
h,g

T2

scpds

L ⊢ T1 ●
∗⇉
∗(n1)
h,g

T L ⊢ T2 ●
∗⇉
∗(n2)
h,g

T

L ⊢ T1 ●
∗
↔
↔∗(n1,n2)

h,g
T2

scpes

Fig. 21. Stratified decomposed computation and conversion.

L ⊢ ⋆k !h,g
sort

↓⟨0,i⟩L =K.δ/λW K ⊢W !h,g

L ⊢#i !h,g
lref

L ⊢W !h,g L.δ/λW ⊢ T !h,g

L ⊢ δ/λW.T !h,g
bind

L ⊢ U !h,g L ⊢ T !h,g L ⊢ U ●∗⇉
∗(0)
h,g U0 L ⊢ T ●∗⇉

∗(1)
h,g U0

L ⊢ ©U.T !h,g
cast

L ⊢ V !h,g L ⊢ T !h,g L ⊢ V ●∗⇉
∗(1)
h,g

W0 L ⊢ T ●∗⇉
∗(n)
h,g

λW0.U0

L ⊢ @V.T !h,g
appl

Fig. 22. Stratified validity.

In [Guidi 2009] we took by mistake the latter condition replacing Π with λ, rather
than Clause (4). The idea of Clause (3) and Clause (4) is that a valid term is typable and
its types are the valid terms that convert to its inferred type. Notice that this property
holds for the calculus of Guidi [2009]. As for Λ∞ [van Daalen 1994], the preservation
theorem for λδ (stating that validity is preserved by reduction) requires an induction
on the degree motivated by its extended applicability condition.
So we define a “stratified” validity depending on a degree assignment in that we

require a positive degree for V in Clause (3) and Clause (4), and in that the inferred
type of T is not iterated more times than the degree of T in Clause (4). Intuitively,
this is validity up to a degree. The next ancillary relations are needed in the formal
statement of Clause (3) and Clause (4).

Definition 2.21 (decomposed computation and conversion). Figure 21 defines the

relation L ⊢ T1 ●
∗⇉
∗(n)
h,g

T2, concatenating a degree-guarded iterated static type assign-

ment and a computation, and the corresponding conversion L ⊢ T1 ●
∗
↔
↔∗(n1,n2)

h,g
T2. ▲

Definition 2.22 (stratified validity). The relation L ⊢ T !h,g defined in Figure 22
states that the term T is valid in L with respect to the parameters h and gh. ▲

The refinement given next is needed to prove the preservation Theorem 3.15.

Definition 2.23 (refinement for preservation of validity). Figure 23 defines the re-
lation L1 ⊆̇!h,g L2 stating that L1 refines L2 for preservation of stratified validity. ▲

The main results on stratified validity and on its refinement are in Section 3.8.

2.7. Closures

Most properties of λδ are proved by structural induction, but this proof method fails for
some important results like the confluence theorem. In most cases a proof by induction
on the “proper subclosures” provides for a good alternative. The main exception is the
preservation theorem. Hereafter, a “closure” is an ordered pair ⟨L,T ⟩where T is a term

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:11

L ⊢ U !h,g L ⊢ T !h,g ∀n. n ≤ d⇒ L ⊢ U ●∗↔↔
∗(n,n+1)
h,g

T

L ⊢ ©U.T !
(d)
h,g

hcast

⋆ ⊆̇!h,g ⋆
atom

L1 ⊆̇!h,g L2

L1.δ/λW ⊆̇!h,g L2.δ/λW
pair

L1 ⊆̇!h,g L2 L1 ⊢ ©W.V !
(d)
h,g

L2 ⊢W !h,g L1 ⊢ V ◾h,g d + 1 L2 ⊢W ◾h,g d

L1.δ(©W.V) ⊆̇!h,g L2.λW
beta

Fig. 23. Refinement for preservation of stratified validity.

⟨L, δ/λ/©/@V.T ⟩ ⊐ ⟨L,V ⟩
pair

⟨L,©/@V.T ⟩ ⊐ ⟨L,T ⟩
flat

⟨L, δ/λW.T ⟩ ⊐ ⟨L.δ/λW,T ⟩
bind

⟨K.δ/λW,#0⟩ ⊐ ⟨K,W ⟩
lref

↓⟨0,m+1⟩L =K ↑
⟨0,m+1⟩ T = U

⟨L,U⟩ ⊐ ⟨K,T ⟩
drop

Fig. 24. Direct subclosure.

⟨L1, T1⟩ ⊐
? ⟨L2, T2⟩

⟨L1, T1⟩ ⊐
∗ ⟨L2, T2⟩

inj
⟨L1, T1⟩ ⊐

∗ ⟨L,T ⟩ ⟨L,T ⟩ ⊐? ⟨L2, T2⟩

⟨L1, T1⟩ ⊐
∗ ⟨L2, T2⟩

step

Fig. 25. Subclosure.

closed in an environment L. Intuitively, a subclosure of ⟨L,T ⟩ contains a subterm of T
and a subenvironment of L.
The “direct” and “transitive” subclosures of ⟨L,T ⟩ are defined next.

Definition 2.24 (direct subclosure). The relation ⟨L1, T1⟩ ⊐ ⟨L2, T2⟩ defined in Fig-
ure 24, states that ⟨L2, T2⟩ is a “direct subclosure” of ⟨L1, T1⟩.
The relation ⟨L1, T1⟩ ⊐

? ⟨L2, T2⟩ is its reflexive closure. ▲

The symbol ? in ⟨L1, T1⟩ ⊐
? ⟨L2, T2⟩ means “one or none” as for regular expressions.

Definition 2.25 (subclosure and proper subclosure). Figure 25 defines the relation
⟨L1, T1⟩ ⊐

∗ ⟨L2, T2⟩ (subclosure) as the (reflexive and) transitive closure of ⟨L1, T1⟩ ⊐
?

⟨L2, T2⟩. While the proper subclosure is the transitive closure of ⟨L1, T1⟩ ⊐ ⟨L2, T2⟩. ▲

We want to remark that generalizing the constant 0 in Figure 24(drop), invalidates
the commutation property between the direct subclosure and the parallel reduction,
which is crucial for the preservation theorem. Moreover the proper subclosure is well
founded, as we see by observing that each step of direct subclosure decreases the sum
of the term constructors in the closure.

2.8. Extended Reduction

Having introduced subclosures, we can take a glance at the strong normalization of
“rst-reduction” [de Vrijer 1994], informally known as the “big tree” theorem.
Ideally, given a closure ⟨L1, T1⟩ we define a step →r along the axis of reducts, a step
→s along the axis of subclosures, and a step →t along the axis of iterated static types:

L1 ⊢ T1 ⇉ T2 T1 ≠ T2

⟨L1, T1⟩→r ⟨L1, T2⟩

⟨L1, T1⟩ ⊐ ⟨L2, T2⟩

⟨L1, T1⟩→s ⟨L2, T2⟩

L1 ⊢ T1 ●
∗(1)
h

T2 L1 ⊢ T1 ◾h,g d + 1

⟨L1, T1⟩→t ⟨L1, T2⟩
(4)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 F. Guidi

gh(k) = d + 1

L ⊢ ⋆k →h,g ⋆(h(k))
s
↓⟨0,i⟩L =K.λW1 ↑

⟨0,i+1⟩W1 =W2

L ⊢#i→h,g W2

l
L ⊢ ©U.T →h,g U

e

Fig. 26. Extended transitions.

and we are interested in proving that any sequence of such steps staring from ⟨L,T ⟩,
is finite when L ⊢ T !h,g. This is the strong normalization of a relation →rst comprising
the steps in (4). We remark that the interest in this result lies on the very powerful
induction principle it provides for proving properties of valid terms. We shall need this
power for the preservation theorem. Notice the side condition T1 ≠ T2 ensuring that →r

is not reflexive (we can prove that Definition 2.14 forbids single-step reduction cycles),
and the side condition L1 ⊢ T1 ◾h,g d+1 ensuring that →t cannot be applied indefinitely
(otherwise, ⟨L,⋆k⟩→t ⟨L,⋆(h(k))⟩ is always possible).
As to the proof of the “big tree” theorem, we take a sequence of steps starting from

a valid closure and we would like to commute adjacent steps until the steps of the
same kind are clustered. At that point, an infinite sequence would lead to an infinite
cluster, contradicting either strong normalization of reduction (steps of kind →r), or
well-foundedness of subclosures (steps of kind →s), or else finiteness of degree in the
given system of reference gh (steps of kind →t).
Unfortunately, it is a matter of fact that a step →r and a step →t may not com-

mute. Consider the β-redex T1 = @V.λW1.#0 and its β-reductum T2 = δ(©W1.V).#0.

Then the static type of T1 is U1 = @V.λW1.(↑
⟨0,1⟩W1), and its β-reductum is U0 =

δ(©W1.V).(↑
⟨0,1⟩W1). Moreover, let W2 be the static type of V , then the static type

of T2 is U2 = δ(©W1.V).(↑
⟨0,1⟩W2). Now compare U0 and U2, that is: W1 and W2 (respec-

tively, the “expected” and the “inferred” type of V). Even assuming that T1 is valid,
these terms are the same one just up to conversion. It is an even simpler matter of fact
that a step →s and a step →t may not commute. Consider the term T1 and its static
type U1, take V as a subterm of T1 and its static type W2. Yet W2 is not a subterm of
U1 and may just be related to W1 by conversion when T1 is valid.
Anyway, a step →r and a step →s commute with the help of reduction for environ-

ments. In fact, we can prove the “pentagon” (i.e., a proposition on five closures con-
nected by five relations) of Rule (5), in which the reduction for environments emerges
in the case L1 =K.λV1 and T1 =#0.

⟨L1, T1⟩ ⊐ ⟨K,V1⟩ K ⊢ V1 ⇉ V2

∃L2, T2. L1 ⊢⇉ L2 N L2 ⊢ T1 ⇉ T2 N ⟨L2, T2⟩ ⊐ ⟨K,V2⟩
(5)

These considerations lead us to define the “extended reduction” such that:

(1) it extends ordinary reduction (i.e., a →r step) by supporting a →t step;
(2) it preserves strong normalization “smoothly” in that little effort is expected in up-

dating the proof that works for ordinary reduction [Guidi 2009];
(3) it preserves the commutation with subclosures in the form of Rule (5).

Extended reduction is our counterpart of “rt-reduction” [de Vrijer 1994]. It comprises
the transitions of Definition 2.13 and the ones listed next.

Definition 2.26 (extended transitions). Figure 26 defines the extended redexes and
their associated transitions t, l, and e, which depend on a sort degree parameter gh and
on an environment L. The transitions t, l and e respectively replace a sort, a declared
variable, and a type annotation with their expected type. ▲

The transitions t and l provide the support for the t-step of (4), while the transition
e allows the “smooth” update of the strong normalization proof advocated by Clause

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:13

L ⊢W1 ⇉h,g W2 L.δ/λW1 ⊢ T1 ⇉h,g T2

L ⊢ δ/λW1.T1 ⇉h,g δ/λW2.T2

bind
L ⊢ V1 ⇉h,g V2 L ⊢ T1 ⇉h,g T2

L ⊢ ©/@V1.T1 ⇉h,g ©/@V2.T2

flat

L ⊢ ⋆/#i⇉h,g ⋆/#i
atom

↓⟨0,i⟩L =K.δ/λW1 K ⊢W1 ⇉h,g W2 ↑
⟨0,i+1⟩W2 = V2

L ⊢#i⇉h,g V2

δ

L ⊢ V1 ⇉h,g V2 L ⊢W1 ⇉h,g W2 L.λW1 ⊢ T1 ⇉h,g T2

L ⊢ @V1.λW1.T1 ⇉h,g δ(©W2.V2).T2

β
gh(k) = d + 1

L ⊢ ⋆k ⇉h,g ⋆(h(k))
s

L ⊢ V1 ⇉h,g V2 ↑
⟨0,1⟩ V2 =W2 L ⊢ U1 ⇉h,g U2 L.δU1 ⊢ T1 ⇉h,g T2

L ⊢ @V1.δU1.T1 ⇉h,g δU2.@W2.T2

θ

L.δV ⊢ U1 ⇉h,g U2 ↑
⟨0,1⟩ T2 = U2

L ⊢ δV.U1 ⇉h,g T2

ζ
L ⊢ T1 ⇉h,g T2

L ⊢ ©U.T1 ⇉h,g T2

ǫ
L ⊢ U1 ⇉h,g U2

L ⊢ ©U1.T ⇉h,g U2

e

Fig. 27. Extended parallel reduction for terms (single step).

⋆ ⊢⇉h,g ⋆
atom

L1 ⊢⇉h,g L2 L1 ⊢W1 ⇉h,g W2

L1.δ/λW1 ⊢⇉h,g L2.δ/λW2

pair

Fig. 28. Extended parallel reduction for environments (single step).

L ⊢ T1 ⇉ T2

L ⊢ T1 ⇉
∗
h,g T2

inj

L ⊢ T1 ⇉
∗
h,g T L ⊢ T ⇉h,g T2

L ⊢ T1 ⇉
∗
h,g T2

step

Fig. 29. Extended parallel computation for terms (multi-step).

(2), as we shall see. We present extended reduction in its parallel form to extend Def-
inition 2.14, with respect to which we add the rules for the transitions t and e. Rule δ
is modified as well to include the support for transition l. Definition 2.15 and Defini-
tion 2.16 are extended accordingly. The point of extended reduction compared to static
type assignment, is that its context rules allow to compute the static type in every
subterm and not just along the “spine”.

Definition 2.27 (extended parallel reduction for terms). The relation L ⊢ T1 ⇉h,g T2

of Figure 27 indicates one step of extended parallel reduction from T1 to T2 in L. ▲

Definition 2.28 (extended parallel reduction for environments). Figure 28 defines
L1 ⊢⇉h,g L2 indicating one step of extended parallel reduction from L1 to L2. ▲

Definition 2.29 (extended parallel computation). The relation L ⊢ T1 ⇉
∗
h,g T2 is the

transitive closure of L ⊢ T1 ⇉h,g T2, while L1 ⊢⇉
∗
h,g L2 is the transitive closure of

L1 ⊢⇉h,g L2. Figure 29 defines L ⊢ T1 ⇉
∗
h,g T2 for reference. L1 ⊢⇉

∗
h,g L2 is defined

in the same manner. ▲

The main results on extended reduction are in Section 3.3.

2.9. Atomic Arity Assignment

Atomic arities are simple types representing the abstract syntax of our reducibility
candidates, introduced in the next Section 2.10, and replace in this role the more com-
plex “binary arities” used by Guidi [2009]. Such arities are assigned to terms according
to well-established rules. The term “atomic” indicates that the base constructor of these
arities is not structured.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 F. Guidi

atomic arity A,B ∶∶= ⋆ ∣ B ⊃A

L ⊢ ⋆i ⋮ ⋆
sort

↓⟨0,i⟩L =K.δ/λW K ⊢W ⋮ B

L ⊢#i ⋮ B
lref

L ⊢ V ⋮ B L.δV ⊢ T ⋮ A

L ⊢ δV.T ⋮ A
abbr

L ⊢W ⋮ B L.λW ⊢ T ⋮ A

L ⊢ λW.T ⋮ B ⊃A
abst

L ⊢ V ⋮ B L ⊢ T ⋮ B ⊃A

L ⊢ @V.T ⋮ A
appl

L ⊢ U ⋮ A L ⊢ T ⋮ A

L ⊢ ©U.T ⋮ A
cast

Fig. 30. Atomic arities and their assignment.

⋆ ⊆̇⋮ ⋆
atom

L1 ⊆̇⋮ L2

L1.δ/λW ⊆̇⋮ L2.δ/λW
pair

L1 ⊆̇⋮ L2 L1 ⊢ ©W.V ⋮ B L2 ⊢W ⋮ B

L1.δ(©W.V) ⊆̇⋮ L2.λW
beta

Fig. 31. Refinement for preservation of atomic arity.

∀T2. (L ⊢ T1 ⇉h,g T2)⇒ (T1 = T2)

L ⊢⇉h,g N(T1)
cnx

∀T2. (L ⊢ T1 ⇉h,g T2)⇒ (T1 ≠ T2)⇒ (L ⊢�
∗
h,g T2)

L ⊢�
∗
h,g T1

csx

Fig. 32. Normal terms and strongly normalizing terms for extended reduction.

Definition 2.30 (atomic arities and their assignment). Atomic arities are the sim-
ple types defined in Figure 30. ⋆ is the base type, and B⊃A is the arrow type. Moreover
the relation L ⊢ T ⋮ A, defined in Figure 30 as well, assigns the arity A to T in L. ▲

As a type assignment, L ⊢ T ⋮ A has two interpretations: either A is the simple
type of the object T , or A is the simple type associated to the type T . In this respect,
consider the map T ↦ T ∗ that turns a term of λδ into a term of λ→ by operating the
necessary δǫζ-reductions on T and by replacing every abstraction in T , say λW in the
environment K, with the abstraction λB such that K ⊢ W ⋮ B. Moreover, extend this
map to environment entries. Then the rules of Figure 30 clearly show that L ⊢ T ⋮ A
implies L∗ ⊢ T ∗ ∶ A in λ→ (we did not prove this fact formally yet).
We need the next refinement in order to prove the preservation of atomic arity.

Definition 2.31 (refinement for preservation of atomic arity). Figure 31 defines the
relation L1 ⊆̇⋮ L2 stating that L1 refines L2 for preservation of atomic arity. ▲

Our results on atomic arity assignment and on its refinement are in Section 3.4.

2.10. Reducibility Candidates

The “reducibility candidates” are subsets of λ-terms satisfying certain “saturation”
conditions used to establish properties of some typed λ-calculi. In this article we use
subsets of closures, closed under the next seven conditions, to prove that every term
having an atomic arity in an environment, is strongly normalizing with respect to ex-
tended reduction. We start by defining the normal terms and the strongly normalizing
terms. These definitions take into account the fact that extended reduction is reflexive
and forbids single-step cycles.

Definition 2.32 (normal terms and strongly normalizing terms). Figure 32 defines
L ⊢⇉h,g N(T) and L ⊢�

∗
h,g T , stating respectively that T in L is normal, and that T in

L is strongly normalizing, for extended reduction with respect to h and gh. ▲

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:15

⟨L,@⋆k.T ⟩ ∈ R

⟨L,T ⟩ ∈R
S
↓⟨l,m⟩L =K ⟨K,T ⟩ ∈ R ↑

⟨l,m⟩ T = U

⟨L,U⟩ ∈R
S0

⟨L,T ⟩ ∈ C

⟨L,T ⟩ ∈ R
S1
⟨L,V ⟩ ∈R S(T) L ⊢⇉h,g N(T)

⟨L,@V .T ⟩ ∈ C
S2

⟨L,V ⟩ ∈R

⟨L,@V .⋆k⟩ ∈ C
S4

⟨L,@V .δ(©W.V).T ⟩ ∈ C

⟨L,@V .@V.λW.T ⟩ ∈ C
S3
↓⟨0,i⟩L =K.δ/λW1 ↑

⟨0,i+1⟩W1 =W2 ⟨L,@V .W2⟩ ∈ C

⟨L,@V .#i⟩ ∈ C
S5

⟨L,V ⟩ ∈R ↑
⟨0,1⟩ V1 = V2 ⟨L.δV,@V2.T ⟩ ∈ C

⟨L,@V1.δV.T ⟩ ∈ C
S6
⟨L,@V .U⟩ ∈ C ⟨L,@V .T ⟩ ∈ C

⟨L,@V .©U.T ⟩ ∈ C
S7

Fig. 33. Reducibility candidate.

∀L,W,U, c. ↓cL =K ⇒ ↑
c T = U ⇒ ⟨L,W ⟩ ∈ C1 ⇒ ⟨L,@W.U⟩ ∈ C2
⟨K,T ⟩ ∈ C1 ⊃ C2

cfun

Fig. 34. Function subset.

J⋆KR =R JB ⊃AKR = JBKR ⊃ JAKR

Fig. 35. Interpretation of an atomic arity as a subset of closures.

Notice that L ⊢�
∗
h,g T1 is inductively defined with base case L ⊢⇉h,g N(T1). In fact,

L ⊢⇉h,g N(T1) implies L ⊢�
∗
h,g T1 since L ⊢�

∗
h,g T2 holds by “ex falso quodlibet”.

Given a propertyR on closures, a reducibility candidate C forR is a subset of closures
satisfying R, that we describe constructively as a relation. So we may write C(T,L)
for ⟨L,T ⟩ ∈ C. Our reducibility theorem states that if R is a reducibility candidate,
then every closure with an atomic arity belongs to some C and therefore, satisfies R.
In formal words we can prove that L ⊢ T ⋮ A implies R(T,L). Strong normalization
follows from choosing L ⊢�

∗
h,g T as R(T,L).

We are going to present Tait-style reducibility candidates [Tait 1975], which differ
from the Girard-style reducibility candidates [Girard et al. 1989] used by Guidi [2009],
in that condition “CR2” is not required (i.e., ⟨L,T1⟩ ∈ C and L ⊢ T1 ⇉h,g T2 imply ⟨L,T2⟩ ∈
C), and notably, in that closures without an arity are allowed in C. This simplification
gives us more freedom for constructing elements of C.

Definition 2.33 (reducibility candidate). Given a subset R of closures satisfying
Rule (S) and Rule (S0) of Figure 33, a reducibility candidate C for R is a subset of
closures satisfying Rule (S1) to Rule (S7) of Figure 33. The notation “⟨L,V ⟩ ∈R” means
“⟨L,V ⟩ ∈R for each component V of V ”. ▲

Compound reducibility candidated are built through well-established constructions.
For now we are interested just in the “functional” construction introduced next.

Definition 2.34 (function subset). If C1 and C2 are subsets of closures, then the sub-
set C1 ⊃ C2 is defined in Figure 34. ▲

Notice that the environment L of W possibly extends the environment K of T . as is
required to prove Figure 33(S6), in which L and L.δV have diffrent length.

Definition 2.35 (interpretation of an atomic arity). For a subset of closures R, the
subset of closures JAKR associated to the atomic arity A, is defined in Figure 35. ▲

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 F. Guidi

⋆ ⊆̇R ⋆
atom

L1 ⊆̇R L2

L1.δ/λW ⊆̇R L2.δ/λW
pair

L1 ⊆̇R L2 ⟨L1,W ⟩ ∈ JBKR ⟨L1, V ⟩ ∈ JBKR L2 ⊢W ⋮ B

L1.δ(©W.V) ⊆̇R L2.λW
beta

Fig. 36. Refinement for reducibility.

∣L1∣ = ∣L2∣

L1 ≡
⋆k
l L2

sort
∣L1∣ = ∣L2∣ i < l

L1 ≡
#i
l L2

skip
∣L1∣ = ∣L2∣ ∣L1∣ ≤ i ∣L2∣ ≤ i

L1 ≡
#i
l L2

free

l ≤ i ↓⟨0,i⟩L1 =K1.δ/λW ↓⟨0,i⟩L2 =K2.δ/λW K1 ≡
W
0 K2

L1 ≡
#i
l L2

lref

L1 ≡
W
l L2 L1.δ/λW ≡

T
l+1 L2.δ/λW

L1 ≡
δ/λW.T

l
L2

bind
L1 ≡

V
l L2 L1 ≡

T
l L2

L1 ≡
©/@V.T

l
L2

flat

Fig. 37. Lazy equivalence for environments.

The refinement given next is needed to state the general form of the reducibility
theorem. In particular it expresses in λδ a simultaneus substitution like the one occur-
ring in the reducibility theorem for System F, which is stated using the “parametric”
reducibility of Girard et al. [1989].

Definition 2.36 (refinement for reducibility). The relation L1 ⊆̇R L2 defined in Fig-
ure 36, states that L1 refines L2 for reducibility. ▲

The main results on candidates and on their refinement are in Section 3.5.

2.11. Lazy Equivalence

In Section 2.10 we defined the normalization of a term T in the environment L that, by
Theorem 3.7(5), is implied by L ⊢ T ⋮ A. Now we would like to define the normalization
of an environment L in such a way that L ⊢ T ⋮ A implies it as well. However we
notice from Figure 30(lref) that L ⊢ T ⋮ A constrains just the entries of L hereditarily
referred by T . Thus, following the paradigm of Figure 32(csx), we need to replace T1 ≠

T2 with the negated equivalence L1 ≢
T L2 stating that L1 and L2 differ in one entry

hereditarily referred by T . The corresponding equivalence is defined next. Working
under the assumption that every entry of L has an arity, simplifies the development
significantly, but we aim at showing that this assumption is redundant.

Definition 2.37 (lazy equivalence for environments). The relation L1 ≡
T
l L2 defined

in Figure 37, states that the environments L1 and L2 are equal in the entries heredi-
tarily referred by the term T at level l. ▲

This relation is an equivalence that we term “lazy” since we check for equality just
the entries of L1 and L2 hereditarily referred by T . Its nonrecursive definition (8) uses
“hereditarily free” variables. We say that a variable is “hereditarily free” in ⟨L,T ⟩when
it is free in T or in an entry of L hereditarily referred by T . This idea is expressed for-
mally by the next definition. Alternatively, we can say that a variable is hereditarily
free in ⟨L,T ⟩ when it is free in a δl-reduct of T in L (see Definition 2.13 and Defini-
tion 2.26 for δ-reducts and l-reducts respectively).

Definition 2.38 (hereditarily free variables). Figure 38 defines i ∈ F∗l ⟨L,T ⟩, stating
that the variable introduced at depth i is hereditarily free at level l in ⟨L,T ⟩. ▲

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:17

∀T. ↑⟨i,1⟩ T ≠ U

i ∈ F∗l ⟨L,U⟩
eq

l ≤ j j < i (∀T. ↑⟨j,1⟩ T ≠ U) ↓⟨0,j⟩L =K.δ/λW i − j − 1 ∈ F∗0⟨K,W ⟩

i ∈ F∗l ⟨L,U⟩
be

Fig. 38. Hereditarily free variables.

⋆ ⋓U
l ⋆ = ⋆

atom

L1 ⋓
U
l L2 = L ∣L1∣ ∉ F

∗
l ⟨δ1/λ1W1.L1, U⟩

δ1/λ1W1.L1 ⋓
U
l δ2/λ2W2.L2 = δ1/λ1W1.L

sn

L1 ⋓
U
l L2 = L l ≤ ∣L1∣ ∣L1∣ ∈ F

∗
l ⟨δ1/λ1W1.L1, U⟩

δ1/λ1W1.L1 ⋓
U
l δ2/λ2W2.L2 = δ2/λ2W2.L

dx

Fig. 39. Pointwise union of environments.

∀L2. (L1 ⊢⇉h,g L2)⇒ (L1 ≢
T
l L2)⇒ (�

∗ T
h,g,l L2)

�
∗ T
h,g,l L1

lsx

Fig. 40. Strongly normalizing environments for extended reduction.

We need the level l to reason about hereditarily free variables in the scope of binders.
For example we can prove that i + 1 ∈ F∗l+1⟨L.δ/λW,U⟩ implies i ∈ F∗l ⟨L, δ/λW.U⟩.
An ancillary operation that we term “pointwise union” at level l of L1 and L2 with

respect to T (notation: L1 ⋓
T
l L2), leads to important properties connecting lazy equiv-

alence and parallel reduction for environments such as Theorem 3.9(6). The environ-
ment L1 ⋓

T
l L2 is defined when ∣L1∣ = ∣L2∣ and its i-th entry is taken from L2 if l ≤ i and

i ∈ F∗l ⟨L1, T ⟩, or else it is taken from L1.

Definition 2.39 (pointwise union). The partial operation L1 ⋓
T
l L2 defined in Fig-

ure 39, constructs the “pointwise union” at level l of L1 and L2 with respect to T . ▲

Lazy equivalence yields environments L normalizing with respect to T (notation

�
∗ T
h,g,l L) such that L ⊢�∗h,g T implies�∗ T

h,g,l L for every level l. See Theorem 3.10(3).

Definition 2.40 (strongly normalizing environments). Figure 40 defines the rela-

tion �
∗ T
h,g,l L, stating that L is strongly normalizing at level l for extended reduction

with respect to the parameters h and gh, and with respect to T . ▲

Notice the common structure of Figure 40(lsx) and Figure 32(csx).
An ancillary predicate on environments ∼�∗h,g,l L is needed in Theorem 3.10(1). It

serves�∗ T
h,g,l L as, for instance, L1 ⊢⇉ L2 serves L ⊢ T1 ⇉ T2 in Theorem 3.1(3).

Definition 2.41 (strongly co-normalizing environments). The predicate ∼�
∗
h,g,l L

defined in Figure 41, states that the L is “co-normalizing” at level l with respect to
h and gh. This means that every i-th entry of L such that i < l, is strongly normalizing
according to Definition 2.40. “Co-normalizing” refers to “i < l” as opposed to “l ≤ i”. ▲

The main results on lazy equivalence, pointwise union, and strongly normalizing
environments are in Section 3.6. Comparing Section 2.2 with Section 2.11, the reader

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 F. Guidi

∼�
∗
h,g,l ⋆

atom

∼�
∗
h,g,0L

∼�
∗
h,g,0(L.δ/λW)

skip

∼�
∗
h,g,lL �

∗ W
h,g,lL

∼�
∗
h,g,l+1(L.δ/λW)

pair

Fig. 41. Strongly co-normalizing environments for extended reduction.

L ⊢ T1 ⇉h,g T2

⟨L,T1⟩ ⪰h,g ⟨L,T2⟩
cpx

L1 ⊢⇉h,g L2

⟨L1, T ⟩ ⪰h,g ⟨L2, T ⟩
lpx

⟨L1, T1⟩ ⊐
? ⟨L2, T2⟩

⟨L1, T1⟩ ⪰h,g ⟨L2, T2⟩
fquq

L1 ≡
T
0 L2

⟨L1, T ⟩ ⪰h,g ⟨L2, T ⟩
lleq

⟨L1, T1⟩ ⪰h,g ⟨L2, T2⟩

⟨L1, T1⟩ ≥h,g ⟨L2, T2⟩
inj

⟨L1, T1⟩ ≥h,g ⟨L,T ⟩ ⟨L,T ⟩ ⪰h,g ⟨L2, T2⟩

⟨L1, T1⟩ ≥h,g ⟨L2, T2⟩
step

Fig. 42. qrst-reduction and qrst-computation.

should notice that the notions defined here depend just on the component l of the
relocation pair ⟨l,m⟩. In this perspective, the given definitions are the general ones
instantiated for m =∞. We present them in this form because the parameter m turns
out to be unnecessary for now.

2.12. Very Big Trees

With the help of lazy equivalence, we can finally define our counterpart of “rst-
reduction” [de Vrijer 1994], which we informally introduced in Section 2.8. This coun-
terpart is actually an extension that operates on closures. We term it “qrst-reduction”
because we add a “q-step” of lazy equivalence.

Definition 2.42 (qrst-reduction and qrst-computation). The relation ⟨L1, T1⟩ ⪰h,g
⟨L2, T2⟩ defined in Figure 42, denotes one step of qrst-reduction from the closure
⟨L1, T1⟩ to the closure ⟨L2, T2⟩ with respect to the parameters h and gh. The relation
⟨L1, T1⟩ ≥h,g ⟨L2, T2⟩ (qrst-computation), defined in Figure 42 as well, is the is the (re-
flexive and) transitive closure of ⟨L1, T1⟩ ⪰h,g ⟨L2, T2⟩. ▲

Figure 42(fquq) is the “s-step”, Figure 42(cpx) is the “rt-step” for terms, Figure 42(lpx)
is the “rt-step” for environments, and Figure 42(lleq) is our new “q-step”. Because of it,
our “big” trees are actually “very big” with respect to de Vrijer [1994]. Formally, the
“very big” tree rooted at ⟨L,T ⟩ comprises the qrst-computations starting at ⟨L,T ⟩. Our
“very big tree” theorem states that if T has an atomic arity in L (Section 2.9), then the
nonreflexive rst-steps in this tree are finite.
In order to state the theorem, the next definition highlights the proper (i.e., nonre-

flexive) rst-steps and the qrst-computations containing them.

Definition 2.43 (proper rst-reduction and proper qrst-computation). Figure 43 de-
fines the relation ⟨L1, T1⟩ ≻h,g ⟨L2, T2⟩, denoting one step of proper rst-reduction
from ⟨L1, T1⟩ to ⟨L2, T2⟩ with respect to the parameters h and gh, and the relation
⟨L1, T1⟩ >≡h,g ⟨L2, T2⟩, denoting a proper qrst-computation. ▲

Theorem 3.11(2) shows that a step of proper rst-reduction is never reflexive, but
a proper qrst-computation may be. Consider the term @∆k,T .∆k,T where ∆k,T =

λT.@⋆k.@#0.#0. Following the example of @∆T .∆T in Section 2.3, we can prove
L ⊢ @∆k,T .∆k,T ⇉ @⋆k.@∆k,T .∆k,T (proper r-step), and then ⟨L,@⋆k.@∆k,T .∆k,T ⟩ ⊐
⟨L,@∆k,T .∆k,T ⟩ (s-step) by Figure 24(flat). Moreover by Theorem 3.11(4), starting a
proper qrst-computation with a proper step, is not restrictive.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:19

⟨L1, T1⟩ ⊐ ⟨L2, T2⟩

⟨L1, T1⟩ ≻h,g ⟨L2, T2⟩
fqu

L ⊢ T1 ⇉h,g T2 T1 ≠ T2

⟨L,T1⟩ ≻h,g ⟨L,T2⟩
cpx

L1 ⊢⇉h,g L2 L1 ≢
T
0 L2

⟨L1, T ⟩ ≻h,g ⟨L2, T ⟩
lpx

⟨L1, T1⟩ ≻h,g ⟨L,T ⟩ ⟨L,T ⟩ ≥h,g ⟨L2, T2⟩

⟨L1, T1⟩ >≡h,g ⟨L2, T2⟩
fpbg

Fig. 43. Proper rst-reduction and proper qrst-computation.

L1 ≡
T
l L2

⟨L1, T ⟩ ≡l ⟨L2, T ⟩
fleq

∀L2, T2. ⟨L1, T1⟩ ≻h,g ⟨L2, T2⟩⇒ ⊵h,g ⟨L2, T2⟩

⊵h,g ⟨L1, T1⟩
fsb

Fig. 44. q-equivalence and strongly rst-normalizing closures.

Now we can define the closures whose “very big” tree contains a finite number of
nonreflexive rst-steps. This is achieved by standard means with the next definition.

Definition 2.44 (q-equivalence and strongly rst-normalizing closures). Figure 43
defines the relation ⟨L1, T1⟩ ≡l ⟨L2, T2⟩ (q-equivalence) that extends lazy equivalence
to closures, and the predicate ⊵h,g ⟨L,T ⟩ stating that ⟨L,T ⟩ is strongly normalizing for
qrst-reduction with respect to the parameters h and gh. ▲

Theorem 3.11(2) and Theorem 3.11(3) show that ⟨L1, T1⟩ ≻h,g ⟨L2, T2⟩ is equivalent to
⟨L1, T1⟩ ⪰h,g ⟨L2, T2⟩ N ⟨L1, T1⟩ ≢0 ⟨L2, T2⟩, so we can rephrase Figure 44(fsb) following
the pattern of Figure 32(csx) and Figure 40(lsx). Moreover ⊵h,g ⟨L,T ⟩ can be generated
by Rule (11), which is Figure 44(fsb) with ⟨L1, T1⟩ >≡h,g ⟨L2, T2⟩ in place of ⟨L1, T1⟩ ≻h,g
⟨L2, T2⟩. So ⟨L,T ⟩ is strongly rst-normalizing iff it is strongly qrst-normalizing.
Our results on qrst-computations and qrst-normalization are in Section 3.7.

3. PROPOSITIONS ON λδ

In this section we present the main properties of reduction (Section 3.1), of degree as-
signment (Section 3.2), of rt-reduction (Section 3.3), of atomic arity assignment (Sec-
tion 3.4), of reducibility candidates (Section 3.5), of lazy equivalence (Section 3.6), of
qrst-reduction (Section 3.7), and finally of stratified validity (Section 3.8) respecting
the dependences between these properties.
We aim at reaching our versions of the “three problems” [Nederpelt et al. 1994]: The-

orem 3.2(1) (confluence of computation), Theorem 3.12(2) (strong qrst-normalization of
valid terms), and Theorem 3.15(6) (subject reduction of stratified validity).
The detailed theory of λδ (1416 proofs) exists only in the digital form of Guidi [2014].

In this article we just outline the proofs of the presented statements by reporting on
the proof strategy and on the main dependences of each proof. Most proofs are by
induction on the height of a derivation or by cases on the last step of a derivation. Very
often both techniques are applied together.
Appendix B lists the pointers to the digital proofs outlined in the article.

3.1. Results on Reduction

The relevant properties of reduction, conversion, and their refinement are listed next.

THEOREM 3.1 (REDUCTION AND ITS REFINEMENT).

(1) (transitivity of refinement)
If L1 ⊆̇ L and L ⊆̇ L2 then L1 ⊆̇ L2.

(2) (transitivity of reduction for terms through refinement)
If L1 ⊆̇ L2 and L2 ⊢ T1 ⇉ T2 then L1 ⊢ T1 ⇉ T2.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 F. Guidi

(3) (confluence of reduction for terms with itself, diamond property, general form)
If L0 ⊢ T0 ⇉ T1 and L0 ⊢ T0 ⇉ T2 and L0 ⊢⇉ L1 and L0 ⊢⇉ L2 then there exists T
such that L1 ⊢ T1 ⇉ T and L2 ⊢ T2 ⇉ T .

(4) (confluence of reduction for environments with itself, diamond property)
If L0 ⊢⇉ L1 and L0 ⊢⇉ L2 then there exists L such that L1 ⊢⇉ L and L2 ⊢⇉ L.

PROOF. Clause (1) is proved by induction on its first premise and by cases on its
second premise. Clause (2) is proved by induction on its second premise. Clause (3) is
proved by induction on the proper subclosures of ⟨L0, T0⟩ (Section 2.7) and by cases on
its four premises. Reduction for environments emerges when considering Figure 14(δ)
and when a binder in the “spine” of T0 is pushed into L0 in the cases of Figure 14(bind),
Figure 14(β), and Figure 14(θ). Moreover, Clause (2) and Figure 17(beta) are invoked
when Figure 14(β) is considered. Clause (4) is proved by induction on ∣L0∣ and by cases
on its two premises with the help of Clause (3). ▲

THEOREM 3.2 (COMPUTATION AND CONVERSION).

(1) (confluence of computation for terms with itself, Church-Rosser property)
If L ⊢ T0 ⇉

∗ T1 and L ⊢ T0 ⇉
∗ T2 then there exists T

such that L ⊢ T1 ⇉
∗ T and L ⊢ T2 ⇉

∗ T .
(2) (confluence of computation for environments with itself, Church-Rosser property)

If L0 ⊢⇉
∗ L1 and L0 ⊢⇉

∗ L2 then there exists L such that L1 ⊢⇉
∗ L and L2 ⊢⇉

∗ L.
(3) (formulation of conversion as a pair of confluent computations)

If L ⊢ T1↔
↔∗ T2 then there exists T such that L ⊢ T1 ⇉

∗ T and L ⊢ T2 ⇉
∗ T .

PROOF. Clause (1) and Clause (2) are proved by induction on their first premise
by invoking the corresponding “strip” lemmas [Barendregt 1993] from Theorem 3.1(3)
and Theorem 3.1(4) respectively. Clause (3) is proved by induction on its premise with
the help of the “strip” lemma from Theorem 3.1(3). ▲

The main result on reduction is Church-Rosser property, also known as the con-
fluence theorem and one of the so-called “three problems” in the Automath tradi-
tion. The main result on conversion is its formulation as a pair of confluent compu-
tations: one direction is Theorem 3.2(3), the reverse is straightforward. Using this
formulation, Theorem 3.1(3) and Theorem 3.2(1), give the generation lemma on ab-
straction, a desired property mentioned by van Daalen [1994]. This lemma states that
L ⊢ λW1.T1 ↔

↔∗ λW2.T2 implies L ⊢W1 ↔
↔∗ W2 and L.λW1 ⊢ T1↔

↔∗ T2.

3.2. Results on Degree Assignment

The relevant properties of degree assignment and of its refinement are listed next.

THEOREM 3.3 (DEGREE ASSIGNMENT AND ITS REFINEMENT).

(1) (equivalence of degree assignment and iterated static type assignment, left to right)
If L ⊢ T ◾h,g d then for each n there exists U

such that L ⊢ T ●
∗(n)
h

U and L ⊢ U ◾h,g d − n.
(2) (equivalence of degree assignment and iterated static type assignment, right to left)

If L ⊢ T ●
∗(n)
h

U then for each gh there exists d
such that L ⊢ T ◾h,g d then L ⊢ U ◾h,g d − n.

(3) (equivalence of degree assignment and iterated static type assignment, variant)

If L ⊢ T ●
∗(n)
h

U then for every n0 there exist gh and d ≥ n0

such that L ⊢ T ◾h,g d and L ⊢ U ◾h,g d − n.
(4) (inclusion of refinement)

If L1 ⊆̇◾h,g L2 then L1 ⊆̇ L2.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:21

(5) (transitivity of degree assignment through refinement)
If L1 ⊆̇◾h,g L2 and L2 ⊢ T ◾h,g d then L1 ⊢ T ◾h,g d.

(6) (confluence of refinement and degree assignment)
If L1 ⊆̇◾h,g L2 and L1 ⊢ T ◾h,g d then L2 ⊢ T ◾h,g d.

(7) (transitivity of refinement)
If L1 ⊆̇◾h,g L and L ⊆̇◾h,g L2 then L1 ⊆̇◾h,g L2.

PROOF. Clause (1), Clause (2), Clause (3), and Clause (4) are proved by induction on
the premise. Clause (5) and Clause (6) are proved by induction on the second premise
and by cases on the first premise. Clause (7) is proved by induction on its first premise
and by cases on its second premise by invoking Clause (5) and Clause (6). ▲

Theorem 3.3(1) and Theorem 3.3(3) are the main properties of degree assignment,
from which we derive the next Theorem 3.4(2) (notice that in [Guidi 2009] we were
able to prove it just for n = 0).

THEOREM 3.4 (ITERATED STATIC TYPE ASSIGNMENT).

(1) (uniqueness of iterated static type assignment)

If L ⊢ T ●
∗(n)
h

U1 and L ⊢ T ●
∗(n)
h

U2 then U1 = U2.
(2) (irreflexivity of static type assignment iterated at least once)

L ⊢ T ●
∗(n+1)
h

T is contradictory.

PROOF. Clause (1) is proved by induction on its first premise and by cases on its
second premise. Clause (2) is proved directly with the help of Theorem 3.3(3). ▲

3.3. Results on Extended Reduction

The relevant properties of extended reduction are listed next.

THEOREM 3.5 (EXTENDED REDUCTION).

(1) (transitivity of extended reduction for terms through refinement)
If L1 ⊆̇ L2 and L2 ⊢ T1 ⇉h,g T2 then L1 ⊢ T1 ⇉h,g T2.

(2) (inclusion of reduction, “r-step”)
If L ⊢ T1 ⇉ T2 then L ⊢ T1 ⇉h,g T2.

(3) (inclusion of static type assignment, “t-step”)

If L ⊢ T1 ●
∗(1)
h

T2 and L ⊢ T1 ◾h,g d + 1 then L ⊢ T1 ⇉h,g T2.
(4) (commutation of direct subclosure with extended reduction for terms)

If ⟨L,T1⟩ ⊐ ⟨K,V1⟩ and K ⊢ V1 ⇉h,g V2 then there exists T2

such that L ⊢ T1 ⇉h,g T2 and ⟨L,T2⟩ ⊐ ⟨K,V2⟩.
(5) (commutation of extended reduction for environments with direct subclosure)

If L1 ⊢⇉h,g L2 and ⟨L2, T2⟩ ⊐ ⟨K2, V ⟩ then there exist K1 and T
such that L1 ⊢ T2 ⇉h,g T and ⟨L1, T ⟩ ⊐ ⟨K1, V ⟩ and K1 ⊢⇉h,g K2.

(6) (absorption of extended reduction for environments)
If L1 ⊢⇉h,g L2 and L2 ⊢ T1 ⇉h,g T2 then L1 ⊢ T1 ⇉

∗
h,g T2.

(7) (extended computation from a β-redex)
If L ⊢ @V.λW.T1 ⇉

∗
h,g T2 then either @V.λW.T1 ≂ T2 or L ⊢ δ(©W.V).T1 ⇉

∗
h,g T2.

PROOF. Clause (1) is proved by induction on its second premise and by cases on
its first premise. For the reference to a declaration, Figure 27(δ), we have T1 = #i,
and ↓⟨0,i⟩L2 =K2.λW1, and K2 ⊢W1 ⇉h,g W2, and ↑

⟨0,i+1⟩W2 = T2. It may be the case,
not occurring with ordinary reduction, that ↓⟨0,i⟩L1 =K1.δ(©W1.V1) and K1 ⊆̇ K2 for
some K1 and V1 by Figure 17(beta). In that event the induction hypothesis yields
K1 ⊢W1 ⇉h,g W2 and Figure 27(e) givesK1 ⊢ ©W1.V1 ⇉h,g W2 so Figure 27(δ) concludes

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 F. Guidi

L1 ⊢#i ⇉h,g T2. Here we see the purpose of e-reduction and of the expected type W1 in
the β-reduced item δ(©W1.V1). The untyped β-reduced item δV1 of Guidi [2009] shows
here its weakness causing Clause (7) to fail. Clause (2) is proved by induction on its
premise. Clause (3) is proved by induction on its first premise and by cases on its sec-

ond premise after replacing L ⊢ T1 ●
∗(1)
h

T2 with L ⊢ T1 ●
∗(n)
h

T2 and n = 1. Clause (4) is
proved by cases on its first premise. Clause (5) is proved by cases on its second premise
and then by cases on its first premise. Clause (6) is proved by induction on its second
premise and by cases on its first premise. Clause (7) is proved directly with the help of
Clause (1) and Figure 17(beta). ▲

The “transitivity through refinement”, Theorem 3.1(2) and Theorem 3.5(1), is the
crucial property that holds for ordinary reduction and that extended reduction must
preserve in order to guarantee the “smooth” update of the strong normalization
proof advocated in Section 2.8. In particular, extended reduction preserves Theo-
rem 3.5(7), and thus preserves the saturation condition of Figure 33(S3) for the subset
of strongly normalizing closures. Another interesting property of extended reduction
is the “square” of Theorem 3.5(4), which improves the “pentagon” of Rule (5). Notice
that a transition l makes the fifth “side” disappear.
Unfortunately, the “pentagon” remains in Theorem 3.5(5), where the extended re-

duction for terms is needed in the case L2 =K2.δ/λV and T2 =#0.
Theorem 3.5(6) shows that extended computation for environments is generated by

the next rules that resemble Figure 28. The same holds for ordinary computation.

⋆ ⊢⇉∗h,g ⋆
atom

L1 ⊢⇉
∗
h,g L2 L1 ⊢W1 ⇉

∗
h,g W2

L1.δ/λW1 ⊢⇉
∗
h,g L2.δ/λW2

pair (6)

3.4. Results on Atomic Arity Assignment

The properties of atomic arity assignment and of its refinement are listed next.

THEOREM 3.6 (ARITY ASSIGNMENT AND ITS REFINEMENT).

(1) (inclusion of refinement)
If L1 ⊆̇⋮ L2 then L1 ⊆̇ L2.

(2) (transitivity of assignment through refinement)
If L1 ⊆̇⋮ L2 and L2 ⊢ T ⋮ A then L1 ⊢ T ⋮ A.

(3) (confluence of refinement and assignment)
If L1 ⊆̇⋮ L2 and L1 ⊢ T ⋮ A then L2 ⊢ T ⋮ A.

(4) (transitivity of refinement)
If L1 ⊆̇⋮ L and L ⊆̇⋮ L2 then L1 ⊆̇⋮ L2.

(5) (uniqueness of atomic arities)
If L ⊢ T ⋮ A1 and L ⊢ T ⋮ A2 then A1 = A2.

(6) (inclusion of assignment)
If L ⊢ T ⋮ A then for each h and n then there exists U

such that L ⊢ T ●
∗(n)
h

U and L ⊢ U ⋮ A.
(7) (preservation of atomic arity through extended reduction, general form)

If L1 ⊢ T1 ⋮ A and L1 ⊢ T1 ⇉h,g T2 and L1 ⊢⇉h,g L2 then L2 ⊢ T2 ⋮ A.

PROOF. Clause (1) and Clause (6) are proved by induction on their premise. Clause
(2) and Clause (3) are proved by induction on their second premise and by cases on
their first premise. Clause (4) is proved by induction on its first premise and by cases
on its second premise with the help of Clause (2) and Clause (3). Clause (5) is proved by
induction on its first premise and by cases on its second premise. Clause (7) is proved
by induction on its first premise by cases on its second premise and then by cases on

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:23

its third premise. As for Theorem 3.1(3), reduction for environments emerges when
considering Figure 27(δ) and when a binder in the “spine” of T1 is pushed into L1 in
the cases of Figure 27(bind), Figure 27(β), and Figure 27(θ). Moreover, Clause (2) and
Figure 31(beta) are invoked when Figure 27(β) is considered. ▲

Theorem 3.6(7) (proposition 500 of Guidi [2014]) states the “subject reduction” prop-
erty of the arity assignment, a prerequisite for the preservation Theorem 3.15.

3.5. Results on Reducibility Candidates

The properties of reducibility candidates and of their refinement are listed next.

THEOREM 3.7 (REDUCIBILITY CANDIDATES AND THEIR REFINEMENT).

(1) (the candidate of strongly normalizing closures for extended reduction)
For any h and gh, the subset {⟨L,T ⟩ ∣ L ⊢�

∗
h,g T}

is a reducibility candidate for itself.
(2) (the candidate associated to an atomic arity)

If R is a reducibility candidate for itself
then JAKR is a reducibility candidate for R.

(3) (reducibility theorem for extended reduction, general form)
If R is a reducibility candidate for itself then

L1 ⊆̇R L2 and ↓cL2 =K2 and K2 ⊢ T ⋮ A and ↑c T = U imply ⟨L1, U⟩ ∈ JAKR.
(4) (reducibility theorem for extended reduction)

If R is a reducibility candidate for itself then L ⊢ T ⋮ A implies ⟨L,T ⟩ ∈ R.
(5) (strong normalization theorem for extended reduction)

If L ⊢ T ⋮ A then L ⊢�
∗
h,g T .

(6) (inclusion of refinement)
If L1 ⊆̇R L2 then L1 ⊆̇ L2.

(7) (inverse inclusion of refinement)
If R is a reducibility candidate for itself then L1 ⊆̇⋮ L2 implies L1 ⊆̇R L2.

PROOF. Clause (1) is proved directly by invoking Theorem 3.5(7) and similar propo-
sitions (one for each extended redex). Clause (2) is proved by induction on A. Clause
(3) is proved by induction on K2 ⊢ T ⋮ A and by cases on the other premises by invok-
ing Clause (2). Multiple relocation emerges from Figure 34(cfun), while the refinement
emerges since Figure 36(beta) is needed when T is a λ-abstraction. Theorem 3.6(5) is
invoked when T is a reference to a declaration in the case of Figure 36(beta). Clause (4)
is a corollary of Clause (3) and of Figure 33(S1). Clause (5) is a corollary of Clause (4)
and of Clause (1). Clause (6) is proved by induction on its premise. Clause (7) is proved
by induction on its premise with the help of Clause (3). ▲

Theorem 3.7(1) is the most relevant property of strongly normalizing terms. More-
over the relation L ⊢�

∗
h,g T is generated by the next rule resembling Figure 32(csx).

∀T2. (L ⊢ T1 ⇉
∗
h,g T2)⇒ (T1 ≠ T2)⇒ (L ⊢�

∗
h,g T2)

L ⊢�
∗
h,g T1

csx (7)

3.6. Results on Lazy Equivalence

The relevant properties of pointwise union and lazy equivalence are listed next.
We give alternative definitions of lazy equivalence. The nonrecursive definition (8) is

more appropriate for the proofs we shall present. A nonrecursive definition of pointwise

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 F. Guidi

union in the style of (8) is available as well. It is not easy to read, though.

∣L1∣ = ∣L2∣

⎛
⎜
⎝

∀K1,K2,W1,W2, i.
l ≤ i⇒ i ∈ F∗l ⟨L1, T ⟩ ⇒ ↓⟨0,i⟩L1 =K1.δ1/λ1W1 ⇒ ↓⟨0,i⟩L2 =K2.δ2/λ2W2 ⇒
δ1/λ1 = δ2/λ2 N W1 =W2

⎞
⎟
⎠

L1 ≡Tl L2

lleq (8)

∣L1∣ = ∣L2∣

⎛
⎜
⎝

∀K1,K2,W1,W2, i.

l ≤ i⇒ (∀U. ↑⟨i,1⟩U ≠ T)⇒ ↓⟨0,i⟩L1 =K1.δ1/λ1W1 ⇒ ↓⟨0,i⟩L2 =K2.δ2/λ2W2 ⇒

δ1/λ1 = δ2/λ2 N W1 =W2 N K1 ≡W1

0 K2

⎞
⎟
⎠

L1 ≡Tl L2

lleq

(9)

THEOREM 3.8 (POINTWISE UNION).

(1) (construction lemma for tail binder, positive case)
If ∣L1∣ ∈ F

∗
l ⟨δ1/λ1W1.L1, U⟩ and l ≤ ∣L1∣ then

L1 ⋓
U
l L2 = L implies (δ1/λ1W1.L1) ⋓

U
l (δ2/λ2W2.L2) = δ2/λ2W2.L.

(2) (construction lemma for tail binder, negative case)
If ∣L1∣ ∉ F

∗
l ⟨δ1/λ1W1.L1, U⟩ then

L1 ⋓
U
l L2 = L implies (δ1/λ1W1.L1) ⋓

U
l (δ2/λ2W2.L2) = δ1/λ1W1.L.

(3) (existence lemma)
If ∣L1∣ = ∣L2∣ then for each T and l then there exists L such that L1 ⋓

T
l L2 = L.

PROOF. Clause (1) and Clause (2) are proved by cases on their last premise. Clause
(3) is proved by induction on ∣L1∣ with the help of Clause (1) and Clause (2). ▲

Theorem 3.8(3) (proposition 1400 of Guidi [2014]) needs tail binders (Definition 2.4).

THEOREM 3.9 (LAZY EQUIVALENCE).

(1) (left operand lemma)
If L1 ≡

T
l L2 and L2 ⊢⇉h,g K2 and L1 ⋓

T
l K2 =K1 then L1 ⊢⇉h,g K1.

(2) (right operand lemma)
If L1 ≡

T
l L2 and L2 ⊢⇉h,g K2 and L1 ⋓

T
l K2 =K1 then K2 ≡

T
l K1.

(3) (transitivity with ranged equivalence)
If L1 ≡

T
l L and (∀m. L ≂

∼
⟨l,m⟩ L2) then L1 ≡

T
l L2.

(4) (transitivity with direct subclosure)
If L1 ≡

T
0 L2 and ⟨L2, T ⟩ ⊐ ⟨K2, U⟩ then there exists K1

such that ⟨L1, T ⟩ ⊐ ⟨K1, U⟩ and K1 ≡
U
0 K2.

(5) (transitivity with extended reduction for terms)

If L1 ≡
T1

0 L2 and L2 ⊢ T1 ⇉h,g T2 then L1 ⊢ T1 ⇉h,g T2.
(6) (transitivity with extended reduction for environments)

If L1 ≡
T
l L2 and L2 ⊢⇉h,g K2 then there exists K1

such that L1 ⊢⇉h,g K1 and K1 ≡
T
l K2.

(7) (confluence with extended reduction for terms)

If L1 ⊢ T1 ⇉h,g T2 then L1 ≡
T1

0 L2 implies L1 ≡
T2

0 L2.

PROOF. Clause (1) and Clause (2) are proved directly by accessing to lazy equiva-
lence through Rule (8). Clause (3) is proved by induction on its first premise. Clause
(4) and Clause (5) are proved by induction on their second premise and by cases
on their first premise. Clause (6) follows from Clause (1) and Clause (2) by taking
K1 = L1 ⋓

T
l K2, which results from Theorem 3.8(3). Here we see the purpose of point-

wise union. Clause (7) is proved by induction on its first premise and by cases on its

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:25

second premise with the help of Clause (3) when Figure 27(bind), Figure 27(β), and
Figure 27(θ) are considered. Here we see the purpose of ranged equivalence. ▲

The shape of the second premise in Theorem 3.9(3) is due the implicit instantiation
of m with ∞ in Definition 2.37 (lazy equivalence) as noted at the end of Section 2.11.
Theorem 3.9(6) and Theorem 3.9(7) (proposition 1000 of Guidi [2014]) are the most
interesting properties of lazy equivalence with respect to extended reduction. Their
proofs were the most demanding of this set.

THEOREM 3.10 (STRONGLY NORMALIZING ENVIRONMENTS).

(1) (transitivity of strong normalization for environments through extended reduction)

If ∼�
∗
h,g,lL and L ⊢ T1 ⇉h,g T2, then�

∗ T1

g,g,l L implies�
∗ T2

g,g,l L.

(2) (construction lemma for variable reference, general form)
If l ≤ i and K1 ⊢�

∗
h,g W and K1 ⊢⇉

∗
h,g K2,

then ↓⟨0,i⟩L2 =K2.δ/λW and�
∗ W
h,g,0K2 imply�

∗ #i
h,g,l L2.

(3) (strong normalization for terms implies strong normalization for environments)

If L ⊢�
∗
h,g T then�

∗ T
h,g,l L for every l.

PROOF. Clause (1) is proved by induction on its second premise and by cases on its
third premise. Strongly co-normalizing environments (Definition 2.41) emerge when
T1 = #i with i < l and Figure 27(δ) is considered. Every construction lemma is needed
except for Clause (2), which is proved by induction on K1 ⊢�

∗
h,g W using Rule (7)

and then by induction on�
∗ W
h,g,0K2 with the help of Clause (1) and of Theorem 3.5(6).

Clause (3) is proved by induction on the proper subclosures of ⟨L,T ⟩ with the help of
every construction lemma including Clause (2). ▲

Theorem 3.10(3) is the most relevant property of strongly normalizing environments.

Notice that�
∗ T
h,g,lL is generated by the next rule resembling Figure 40(lsx).

∀L2. (L1 ⊢⇉
∗
h,g L2)⇒ (L1 ≢

T
l L2)⇒ (�

∗ T
h,g,l L2)

�
∗ T
h,g,l L1

lsx (10)

3.7. Results on Very Big Trees

The properties of qrst-computations and strong qrst-normalization are listed next.

THEOREM 3.11 (qrst-COMPUTATIONS).

(1) (decomposition property for qrst-computation)
If ⟨L1, T1⟩ ≥h,g ⟨L2, T2⟩ then there exist L0, L, and T such that

L1 ⊢ T1 ⇉
∗
h,g T and ⟨L1, T ⟩ ⊐

∗ ⟨L0, T2⟩ and L0 ⊢⇉
∗
h,g L and L ≡T2

0 L2.

(2) (formulation of proper rst-reduction with q-equivalence, left to right)
If ⟨L1, T1⟩ ≻h,g ⟨L2, T2⟩ then ⟨L1, T1⟩ ⪰h,g ⟨L2, T2⟩ and ⟨L1, T1⟩ ≢0 ⟨L2, T2⟩.

(3) (formulation of proper rst-reduction with q-equivalence, right to left)
If ⟨L1, T1⟩ ⪰h,g ⟨L2, T2⟩ and ⟨L1, T1⟩ ≢0 ⟨L2, T2⟩ then ⟨L1, T1⟩ ≻h,g ⟨L2, T2⟩.

(4) (transitivity of proper rst-reduction through lazy equivalence)
If K1 ≡

T
0 K2 and ⟨K2, T ⟩ ≻h,g ⟨L2, U⟩ then

there exists L1 such that ⟨K1, T ⟩ ≻h,g ⟨L1, U⟩ and L1 ≡
U
0 L2.

(5) (transitivity of proper qrst-computation through qrst-reduction, left case)
If ⟨L1, T1⟩ ⪰h,g ⟨L,T ⟩ and ⟨L,T ⟩ >≡h,g ⟨L2, T2⟩ then ⟨L1, T1⟩ >≡h,g ⟨L2, T2⟩.

(6) (transitivity of proper qrst-computation through qrst-computation, left case)
If ⟨L1, T1⟩ ≥h,g ⟨L,T ⟩ and ⟨L,T ⟩ >≡h,g ⟨L2, T2⟩ then ⟨L1, T1⟩ >≡h,g ⟨L2, T2⟩.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 F. Guidi

PROOF. Clause (1) is proved by induction on its premise rearranging the qrst-steps
with Theorem 3.5(4), Theorem 3.5(5), Theorem 3.5(6), Theorem 3.9(4), Theorem 3.9(5),
and Theorem 3.9(6). Clause (2) is proved by cases on its premise. Clause (3) is proved
by cases on its first premise. Clause (4) is proved cases on its second premise with the
help of Theorem 3.9(4), Theorem 3.9(5), Theorem 3.9(6), and Theorem 3.9(7). Clause
(5) is a corollary of Clause (3) and Clause (4). Clause (6) is proved by induction on its
first premise with the help of Clause (5). ▲

Notice that the reverse of Theorem 3.11(1) is straightforward. Also notice that Theo-
rem 3.11(6) implies the transitivity of proper qrst-computation. The “right case” of the
transitivity, that is: ⟨L1, T1⟩ >≡h,g ⟨L,T ⟩ N ⟨L,T ⟩ ≥h,g ⟨L2, T2⟩ ⇒ ⟨L1, T1⟩ >≡h,g ⟨L2, T2⟩,
comes immediately from the transitivity of qrst-computation (defined as a transitive
closure in Section 2.12). Another important corollary of Theorem 3.11(6) is that the
relation ⊵h,g ⟨L,T ⟩ is generated by the next rule:

∀L2, T2. ⟨L1, T1⟩ >≡h,g ⟨L2, T2⟩⇒ ⊵h,g ⟨L2, T2⟩

⊵h,g ⟨L1, T1⟩
fsb (11)

The induction principle for ⊵h,g ⟨L,T ⟩ derived from this rule, gives a very strong in-
duction hypothesis that takes advantage of the generality of proper qrst-computation
(Definition 2.43). We need such a strength to prove the preservation Theorem 3.15.

THEOREM 3.12 (STRONGLY qrst-NORMALIZING CLOSURES).

(1) (strong normalization implies strong qrst-normalization, general form)
If L1 ⊢�

∗
h,g T1 and ⟨L1, T1⟩ ≥h,g ⟨L2, T2⟩ then ⊵h,g ⟨L2, T2⟩.

(2) (very big tree theorem)
If L ⊢ T ⋮ A then ⊵h,g ⟨L,T ⟩ for each h and gh.

PROOF. Clause (1) is proved by induction on its first premise and then by induction
on the proper subclosures of ⟨L2, T2⟩ by invoking Theorem 3.10(3) and the the reverse
of Theorem 3.11(1). Clause (2) is a corollary of Clause (1) and Theorem 3.7(5). ▲

3.8. Results on Stratified Validity

The relevant properties of stratified validity and of its refinement are listed next.

THEOREM 3.13 (STRATIFIED VALIDITY AND ITS REFINEMENT).

(1) (inclusion of validity)
If L ⊢ T !h,g then there exists A such that L ⊢ T ⋮ A.

(2) (validity implies strong qrst-normalization)
If L ⊢ T !h,g then ⊵h,g ⟨L,T ⟩.

(3) (first inclusion of refinement)
If L1 ⊆̇!h,g L2 then L1 ⊆̇◾h,g L2.

(4) (second inclusion of refinement)
If L1 ⊆̇!h,g L2 then L1 ⊆̇⋮ L2.

(5) (transitivity of degree-guarded iterated static type assignment through refinement)

If n ≤ d and L2 ⊢ T ◾h,g d then L1 ⊆̇!h,g L2 and L2 ⊢ T ●
∗(n)
h

U2

imply L1 ⊢ T ●
∗(n)
h

U1 and L1 ⊢ U1 ↔
↔∗ U2 for some U1.

(6) (transitivity of stratified decomposed computation through refinement)

If L1 ⊆̇!h,g L2 and L2 ⊢ T1 ●
∗⇉
∗(n)
h,g

T2

then L1 ⊢ T1 ●
∗⇉
∗(n)
h,g

T and L1 ⊢ T2 ⇉
∗ T for some T .

(7) (transitivity of validity through refinement)
If L1 ⊆̇!h,g L2 and L2 ⊢ T !h,g then L1 ⊢ T !h,g.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:27

PDh,g ⟨L1, T1⟩ is (L1 ⊢ T1 !h,g) N∀L2, T2, d.
(L1 ⊢ T1 ◾h,g d)N (L1 ⊢ T1 ⇉ T2) N (L1 ⊢⇉ L2)⇒ (L1 ⊢ T1 ◾h,g d)

PVRh,g ⟨L1, T1⟩ is (L1 ⊢ T1 !h,g) N∀L2, T2.
(L1 ⊢ T1 ⇉ T2) N (L1 ⊢⇉ L2)⇒ (L2 ⊢ T2 !h,g)

PVTh,g ⟨L1, T1⟩ is (L1 ⊢ T1 !h,g) N∀U1, d,n.

n ≤ d N (L1 ⊢ T1 ◾h,g d) N L1 ⊢ T1 ●∗(n)h
U1 ⇒ (L1 ⊢ U1 !h,g)

PTh,g ⟨L1, T1⟩ is (L1 ⊢ T1 !h,g) N∀L2, T2,U1, d,n.

n ≤ d N (L1 ⊢ T1 ◾h,g d) N L1 ⊢ T1 ●∗(n)h
U1 N (L1 ⊢ T1 ⇉ T2) N

(L1 ⊢⇉ L2)⇒∃U2. L2 ⊢ T2 ●∗(n)h
U2 N L2 ⊢ U1 ↔

↔∗ U2

Fig. 45. Preservation properties.

PROOF. Clause (1) is proved by induction on its premise by invoking Theorem 3.6(5)
and Theorem 3.6(7). Here we see that preservation of validity requires preservation of
atomic arity. Clause (2) is a corollary of Clause (1) and of Theorem 3.12(2). Clause (3)
is proved by induction on its premise. Clause (4) is proved by induction on its premise
by invoking Clause (1), Theorem 3.6(3), Theorem 3.6(5), and Theorem 3.6(7) when
Figure 23(beta) is considered. Clause (5) is proved by induction on last premise, by
cases on its second premise, and then by cases on its third premise. Theorem 3.3(1) is
invoked among other propositions when Figure 18(zero) and Figure 18(succ) are con-
sidered in the case of Figure 23(beta). Clause (6) is a corollary of Clause (3), Clause (5),
Theorem 3.1(2), Theorem 3.2(3), and Theorem 3.3(5). Clause (7) is proved by induction
on its second premise and by cases on its first premise, by invoking Clause (6) and
Theorem 3.2(1) when Figure 22(appl) and Figure 22(cast) are considered. ▲

We introduce some abbreviations in the style of van Daalen [1994] to state the
preservation theorem. With respect to van Daalen [1994], our PVR is connected to
his CL, and our PT is connected to his P∗T.

Definition 3.14 (preservation properties). Figure 45 defines four properties of the
closure ⟨L1, T1⟩ with respect to h and gh. They are: preservation of degree by reduction
(PD), preservation of validity by reduction (PVR), preservation of validity by static
type (PVT), and preservation of static type by reduction (PT). ▲

THEOREM 3.15 (PRESERVATION PROPERTIES).

(1) (conditional preservation of degree by reduction)
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PDh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PVRh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PVTh,g ⟨L1, T1⟩) imply PDh,g ⟨L,T ⟩.

(2) (conditional preservation of validity by reduction)
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PDh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PVRh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PVTh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PTh,g ⟨L1, T1⟩) imply PVRh,g ⟨L,T ⟩.

(3) (conditional preservation of validity by static type)
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PDh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PVRh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PVTh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PTh,g ⟨L1, T1⟩) imply PVTh,g ⟨L,T ⟩.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 F. Guidi

(4) (conditional preservation of static type by reduction)
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PDh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PVRh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PVTh,g ⟨L1, T1⟩) and
(∀L1, T1. ⟨L,T ⟩ >≡h,g ⟨L1, T1⟩⇒ PTh,g ⟨L1, T1⟩) imply PTh,g ⟨L,T ⟩.

(5) (preservation theorem, general form)
If L ⊢ T !h,g then PDh,g ⟨L,T ⟩ and PVRh,g ⟨L,T ⟩ and PVTh,g ⟨L,T ⟩ and PTh,g ⟨L,T ⟩.

(6) (preservation of validity by computation)
If L ⊢ T1 ⇉

∗ T2 then L ⊢ T1 !h,g implies L ⊢ T2 !h,g.
(7) (preservation of conversion by static type)

If L ⊢ T1 !h,g and L ⊢ T2 !h,g and n ≤ d1 and n ≤ d2 and L ⊢ T1 ◾h,g d1 and L ⊢ T2 ◾h,g

d2 and L ⊢ T1 ●
∗(n)
h

U1 and L ⊢ T2 ●
∗(n)
h

U2 then L ⊢ T1↔
↔∗ T2 implies L ⊢ U1 ↔

↔∗ U2.

PROOF. Clause (1), Clause (2), Clause (3), and Clause (4) are proved by cases on
T , and then by cases on the other premises. When Figure 14(β) is considered, Clause
(1) invokes Theorem 3.3(5) and Figure 20(beta), Clause (2) invokes Theorem 3.13(7)
and Figure 23(beta), while Clause (4) invokes Theorem 3.13(5) and Figure 23(beta).
Moreover Clause (2) needs Theorem 3.2(1) in the cases of Figure 14(flat) (already noted
by van Daalen [1994]) and of Figure 14(θ), while Clause (4) needs Theorem 3.3(1) in
the case of Figure 14(δ). Clause (5) is proved by induction on the proper rst-reducts of
⟨L,T ⟩ by invoking Clause (1), Clause (2), Clause (3), and Clause (4). The induction is
assured by Theorem 3.13(2) and by Rule (11). Clause (6) is proved by induction on its
first premise by invoking PVR from Clause (5). Clause (7) is a corollary of Clause (6),
Theorem 3.2(3), and Theorem 3.4(1), given PVT and PD from Clause (5). ▲

Theorem 3.15(5) sums up the most significant propositions discussed in this article.

4. CONCLUSION AND FUTURE WORK

We presented in Section 2 a revised version of the formal system λδ to be termed “λδ
version 2A”, and we proved in Section 3 that this calculus enjoys three relevant desired
properties: confluence of reduction (Theorem 3.2), strong normalization along qrst-
computations (Theorem 3.7), and preservation of validity by reduction (Theorem 3.15).
Notably, the matter of this article was entirely developed by the author with the un-

avoidable help of the proof management system Matita of Asperti et al. [2011], which
mechanically validated the resulting formalization of Guidi [2014] in full. The devel-
opment took 42 months, producing 143 definitions and 1416 propositions. More data is
available at λδ Web site <http://lambdadelta.info/>.
We wish to stress that, to our knowledge, we are presenting as Theorem 3.12(2) the

first fully machine-checked proof of the so-called “big tree” theorem [de Vrijer 1994]
for a calculus that includes Λ∞. It is also important to point out that the proof of this
theorem is harder in λδ than in Λ∞ since the latter system does not have environments.
The long time we needed to take λδ to this stage, played in favor presenting the

development as is, while the revision of the calculus is far from being complete. In
particular the present treatment lacks the type assignment judgment L ⊢ T ∶h U and
its desired properties found in Guidi [2009]. Anyway, it is a design feature of λδ, the
fact that a term is typed iff it is valid, so the preservation theorem presented here is
the crux of the “subject reduction” property of this judgment.
Moreover, we are interested in relating the present notion of validity, based on an

extended (i.e., Λ∞-like) applicability condition, with the one implied by Guidi [2009],
which is based on a restricted (i.e., PTS-like) applicability condition (see Section 2.6).
It might happen that every valid closure in the extended sense has an η-equivalent
formulation that is valid in the restricted sense. We support this conjecture by noting

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:29

that a typical case in which we need extended validity, is the next:

L.λz⋆k.λy(λ⋆k.⋆k).λxy ⊢ @z.x !h,g (12)

where named variables improve the readability. If we η-expand y (i.e., the expected
type of x) to λw⋆k.@w.y, restricted validity suffices.
It is important to stress that the above transformation looks like an η-expansion

because of the notation, but it might have a different logical meaning. We see such a
case considering Landau’s “Grundlagen der Analysis” (GdA) formalized in the system
Aut−QE [van Benthem Jutting 1994a], where Automath’s unified binder [x:W] stands
either for λxW , or for ΠxW . The GdA validates just in the extended sense because a
situation like (∗) occurs in the definition of the constant ande2"l-r", but four formal
η-expansions assure its validity in the restricted sense as well. Each one takes an ex-
pected type b, that is the y of (12), and turns it into [x:a]<x>b (<x> is our applicator
@x). We must note that the expected type of b is [x:a]’prop’, whereas the expected
type of [x:a]<x>b is ’prop’. So this expansion is not type-preserving, especially if we
accept the statement of Brown [2011] on the GdA that every unified binder of degree
one stands for a Π. This means that the expansion is indeed a Π-introduction. Inter-
estingly, Brown [2011] states that formal η-expansions, whose logical meaning should
be investigated, solve all incompatibilities preventing the GdA to validate in a PTS.
Theorem 3.13(1) shows that a valid closure can by typed by a simple type. Using

λδ as a logical framework is not a priority, but if we wish to do so (say, for validating
the GdA), we need the additional expressive power given by universes (say, ⋆ in the
λ-Cube, or ’type’ and ’prop’ in the GdA). However, adding universes to λδ while
preserving its properties is challenging because the naive extension of Λ∞ with “type
inclusion” (the device with which universes are built in the Automath tradition) is not
conservative, since either confluence or uniqueness of types is lost.
Other additions to λδ we shall consider, include: “global” variables referred by level

(while the current variables referred by depth would be “local”), term-like environ-
ments with projections as we advocated in [Guidi 2009], and metavariables. Further-
more, we are interested in improving multiple relocation (Definition 2.9), which we
introduced since the set of the functions ↑⟨l,m⟩ is not closed for composition, by con-
sidering the functions ↑c as primitive, and by representing a multiple relocation more
conveniently than with a list of pairs. As the reader can see, our long-term aim is to
make λδ a fully fledged and elegant type system suitable for many purposes.

ACKNOWLEDGMENTS

I am grateful to A. Asperti, C. Sacerdoti Coen, and S. Solmi for their constant support and for their valuable
advices on the contents of this text. I wish to dedicate this work to A.D. Bonanno and R. Prazzoli for the
joyful moments we shared in these years during the development of λδ.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 F. Guidi

REFERENCES

A. Asperti, L. Padovani, C. Sacerdoti Coen, F. Guidi, and I. Schena. 2003. Mathematical Knowledge Man-
agement in HELM. Annals of Mathematics and Artificial Intelligence 38, 1 (May 2003), 27–46.

A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. 2011. The Matita Interactive Theorem Prover.
In Proceedings of the 23rd International Conference on Automated Deduction (CADE-2011) (Lecture
Notes in Computer Science), N. Bjørner and V. Sofronie-Stokkermans (Eds.), Vol. 6803. Springer, Berlin,
Germany, 64–69.

H.P. Barendregt. 1993. Lambda Calculi with Types. Osborne Handbooks of Logic in Computer Science 2
(1993), 117–309.

C.E. Brown. 2011. Faithful Reproductions of the Automath Landau Formalization. Typescript note. (2011).

Coq development team. 2002. The Coq Proof Assistant Reference Manual: release 7.3.1. INRIA, Orsay,
France.

Y. Coscoy. 1996. A Natural Language Explanation for Formal Proofs. In Int. Conf. on Logical Aspects of
Computational Linguistics (LACL) (Lecture Notes in Artificial Intelligence), C. Retoré (Ed.), Vol. 1328.
Springer, Berlin, Germany, 149–167.

P.L. Curien and H. Herbelin. 2000. The duality of computation. In 5th ACM SIGPLAN int. conf. on Func-
tional programming (ICFP ‘00) (revised (sept 2005) ed.) (ACM SIGPLAN Notices), Vol. 35/9. ACM Press,
New York, USA, 233–243.

N.G. de Bruijn. 1991. A plea for weaker frameworks. In Logical Frameworks. Cambridge University Press,
Cambridge, UK, 40–67.

N.G. de Bruijn. 1994a. Lambda calculus notation with nameless dummies, a tool for automatic formula ma-
nipulation, with application to the Church-Rosser theorem. In Selected Papers on Automath [Nederpelt
et al. 1994]. North-Holland Pub. Co., Amsterdam, The Netherlands, 375–388.

N.G. de Bruijn. 1994b. Some extensions of AUTOMATH: the AUT-4 family. In Selected Papers on Automath
[Nederpelt et al. 1994]. North-Holland Pub. Co., Amsterdam, The Netherlands, 283–288.

R.C. de Vrijer. 1994. Big trees in a λ-calculus with λ-expressions as types. In Selected Papers on Automath
[Nederpelt et al. 1994]. North-Holland Pub. Co., Amsterdam, The Netherlands, 469–492.

J.-Y. Girard, P. Taylor, and Y. Lafont. 1989. Proofs and types. Cambridge Tracts in Theoretical Computer
Science, Vol. 7. Cambridge University Press, Cambridge, UK.

F. Guidi. 2006. lambdadelta 1. Formal specification for the proof assistant Coq 7.3.1. (November 2006).
Available at the λδ Web site: <http://lambdadelta.info/>.

F. Guidi. 2009. The Formal System λδ. Transactions on Computational Logic 11, 1 (November 2009), 5:1–
5:37.

F. Guidi. 2014. lambdadelta 2. Formal specification for the proof assistant Matita 0.99.2. (October 2014).
Available at the λδ Web site: <http://lambdadelta.info/>.

F. Kamareddine and R.P. Nederpelt. 1996a. Canonical Typing and π-conversion in the Barendregt Cube. J.
Funct. Program. 6, 2 (1996), 245–267.

F. Kamareddine and R.P. Nederpelt. 1996b. A useful λ-notation. Theoretical Computer Science 155, 1 (1996),
85–109.

Z. Luo. 1990. An Extended Calculus of Constructions. Ph.D. Dissertation. University of Edinburgh.

M.E. Maietti. 2009. A minimalist two-level foundation for constructive mathematics. Annals of Pure and
Applied Logic 160, 3 (2009), 319–354.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer (Eds.). 1994. Selected Papers on Automath. Studies in Logic
and the Foundations of Mathematics, Vol. 133. North-Holland Pub. Co., Amsterdam, The Netherlands.

W. W. Tait. 1975. A realizability interpretation of the theory of species. In Logic Colloquium, Symposium
on Logic Held at Boston, 1972-73 (Lecture Notes in Mathematics), R. Parikh (Ed.), Vol. 453. Springer,
Berlin, Germany, 240–251.

L.S. van Benthem Jutting. 1994a. Checking Landau’s Grundlagen in the Automath System. In Selected
Papers on Automath [Nederpelt et al. 1994]. North-Holland Pub. Co., Amsterdam, The Netherlands,
299–301,701–720,721–732,763–799,805–808.

L.S. van Benthem Jutting. 1994b. The language theory of Λ∞, a typed λ-calculus where terms are types. In
Selected Papers on Automath [Nederpelt et al. 1994]. North-Holland Pub. Co., Amsterdam, The Nether-
lands, 655–683.

D.T. van Daalen. 1994. The language theory of Automath. In Selected Papers on Automath [Nederpelt et al.
1994]. North-Holland Pub. Co., Amsterdam, The Netherlands, 163–200 and 303–312 and 493–653.

Received ; revised ; accepted

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:31

A. SUMMARY OF NOTATION

The ongoing revision of λδ includes an update of the notational conventions of Guidi
[2009]. This Appendix summarizes the revised notation we introduced in Section 2.

A,B atomic arity (Definition 2.30)
C reducibility candidate (Definition 2.33)
K,L environment (Definition 2.1)
R generic property on closures (Definition 2.33)
T,U,V,W term (Definition 2.1)
V list of arguments (Definition 2.2)
c relocation pair (Definition 2.7)
c list of relocation pairs (Definition 2.9)
d degree (Definition 2.19)
g sort degree parameter (Definition 2.19)
h sort hierarchy parameter (Definition 2.18)
i, j variable reference depth (Definition 2.1)
k sort index (Definition 2.1)
l relocation level (Definition 2.7)
m relocation depth (Definition 2.7)
n number of iterations (Definition 2.18)
B ⊃A functional atomic arity (Definition 2.30)
C1 ⊃ C2 function subset (Definition 2.34)
K.L concatenation (Definition 2.4)
L.δV definition (Definition 2.1)
L.λW declaration (Definition 2.1)
L1 ≂
∼
⟨l,m⟩ L2 ranged equivalence (Definition 2.12)

L1 ⊢⇉ L2 parallel reduction for environments (Definition 2.15)
L1 ⊢⇉h,g L2 extended parallel reduction for env.’s (Definition 2.28)
L ⊢⇉h,g N(T) normal term for extended reduction (Definition 2.32)
L1 ⊢⇉

∗ L2 parallel computation for environments (Definition 2.16)
L1 ⊢⇉

∗
h,g L2 extended parallel computation for env.’s (Definition 2.29)

L ⊢�
∗
h,g T strongly norm. term for ext. reduction (Definition 2.32)

L ⊢ T !h,g stratified validity (Definition 2.22)

L ⊢ T !
(d)
h,g

stratified higher validity (Definition 2.23)
L ⊢ T ⋮ A atomic arity assignment (Definition 2.30)
L ⊢ T1 → T2 sequential reduction (Definition 2.13)
L ⊢ T1 →h,g T2 extended sequential reduction (Definition 2.26)
L ⊢ T1 ⇉ T2 parallel reduction for terms (Definition 2.14)
L ⊢ T1 ⇉h,g T2 extended parallel reduction for terms (Definition 2.27)
L ⊢ T1 ⇉

∗ T2 parallel computation for terms (Definition 2.16)
L ⊢ T1 ⇉

∗
h,g T2 extended parallel computation for terms (Definition 2.29)

L ⊢ T1↔
↔∗ T2 parallel conversion for terms (Definition 2.16)

L ⊢ T ●
∗(n)
h

U iterated static type assignment (Definition 2.18)

L ⊢ T1 ●
∗⇉
∗(n)
h,g T2 stratified decomposed computation (Definition 2.21)

L ⊢ T1 ●
∗
↔
↔∗(n1,n2)

h,g
T2 stratified decomposed conversion (Definition 2.21)

L ⊢ T ◾h,g d degree assignment (Definition 2.19)
L1 ⊆̇ L2 refinement for preservation of reduction (Definition 2.17)
L1 ⊆̇R L2 refinement for reducibility (Definition 2.36)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 F. Guidi

L1 ⊆̇⋮ L2 refinement for preserv. of atomic arity (Definition 2.31)
L1 ⊆̇◾h,g L2 refinement for preservation of degree (Definition 2.20)
L1 ⊆̇!h,g L2 refinement for preserv. of strat. validity (Definition 2.23)
L1 ≡

T
l L2 lazy equivalence for environments (Definition 2.37)

L1 ⋓
T
l L2 = L pointwise union (Definition 2.39)

T1 ≂ T2 same top structure (Definition 2.6)
hn iterated composition (Definition 2.18)
i ∈ F∗l ⟨L,U⟩ hereditarily free variable (Definition 2.38)
○ empty list (Section 2)
⋆ empty environment (Definition 2.1)
⋆ base atomic arity (Definition 2.30)
⋆k sort (Definition 2.1)
#i variable reference (Definition 2.1)
∣L∣ length (Definition 2.3)
δV.L tail definition (Definition 2.4)
δV.T abbreviation (Definition 2.1)
λW.L tail declaration (Definition 2.4)
λW.T abstraction (Definition 2.1)
@V.T application (Definition 2.1)
@V .T multiple application (Definition 2.2)
©W.T type annotation (Definition 2.1)
↑
c T1 = T2 multiple relocation (Definition 2.9)

↑
⟨l,m⟩ T1 = T2 relocation (Definition 2.7)

↑
⟨l,m⟩ T 1 = T 2 vector relocation (Definition 2.8)
↓cL1 = L2 multiple drop (Definition 2.11)
↓⟨l,m⟩L1 = L2 drop (Definition 2.10)

�
∗ T
h,g,l L strongly norm. env. for ext. reduction (Definition 2.40)

∼�
∗
h,g,l L strongly co-norm. env. for ext. reduction (Definition 2.41)

⊵h,g ⟨L,T ⟩ strongly norm. closure for rst-reduction (Definition 2.44)
⟨L,T ⟩ closure (Section 2.7)
⟨L,V ⟩ ∈ R multiple habitation (Definition 2.33)
⟨L1, T1⟩ ≡l ⟨L2, T2⟩ lazy equivalence for closures (Definition 2.44)
⟨L1, T1⟩ ⊐ ⟨L2, T2⟩ direct subclosure (Definition 2.24)
⟨L1, T1⟩ ⊐

? ⟨L2, T2⟩ reflexive direct subclosure (Definition 2.24)
⟨L1, T1⟩ ⊐

∗ ⟨L2, T2⟩ subclosure (Definition 2.25)
⟨L1, T1⟩ ≻h,g ⟨L2, T2⟩ proper rst-reduction (Definition 2.43)
⟨L1, T1⟩ ⪰h,g ⟨L2, T2⟩ qrst-reduction (Definition 2.42)
⟨L1, T1⟩ >≡h,g ⟨L2, T2⟩ proper qrst-computation (Definition 2.43)
⟨L1, T1⟩ ≥h,g ⟨L2, T2⟩ qrst-computation (Definition 2.42)
⟨l,m⟩ relocation pair (Definition 2.7)
JAKR interpretation of the atomic arity (Definition 2.35)
S(T) simple (or neutral) term (Definition 2.5)
PDh,g ⟨L1, T1⟩ preservation of degree by reduction (Definition 3.14)
PTh,g ⟨L1, T1⟩ preservation of static type by reduction (Definition 3.14)
PVRh,g ⟨L1, T1⟩ preservation of validity by reduction (Definition 3.14)
PVTh,g ⟨L1, T1⟩ preservation of validity by static type (Definition 3.14)
; list concatenation (Section 2)
∀,∃,⇒,N metalinguistic logical constants (Section 2)
/ shared notation (Definition 2.1)
▲ end of definition, end of proof (Section 1)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The Formal System λδ Revised - Stage A: Extending the Applicability Condition A:33

B. POINTERS TO THE CERTIFIED PROOFS

At the the moment of writing this article, the certified specification of the revised λδ
is available just as a bundle of script files for the latest version of the proof man-
agement system Matita. The bundle, lambdadelta_2.tgz, is available at the Web site
<http://lambdadelta.info/>. For each proposition stated in the article, we give a pointer
consisting of a path with three components: a directory inside the directory basic_2 of
the bundle, a file name inside this directory, and a proved statement inside this file.
Notice that the notation in the files may differ from Appendix A because of incompati-
bilities between the characters available for LATEX and for Matita.
Moreover, the given pointers might be modified in the forthcoming revisions of λδ.

(1) Path for Theorem 3.1(1): static/lsubr lsubr/lsubr trans
(2) Path for Theorem 3.1(2): reduction/cpr/lsubr cpr trans
(3) Path for Theorem 3.1(3): reduction/lpr lpr/cpr conf lpr
(4) Path for Theorem 3.1(4): reduction/lpr lpr/lpr conf
(5) Path for Theorem 3.2(1): computation/cprs cprs/cprs conf
(6) Path for Theorem 3.2(2): computation/lprs lprs/lprs conf
(7) Path for Theorem 3.2(3): equivalence/cpcs cpcs/cpcs inv cprs
(8) Path for Theorem 3.3(1): unfold/lstas da/da lstas
(9) Path for Theorem 3.3(2): unfold/lstas da/lstas inv da

(10) Path for Theorem 3.3(3): unfold/lstas da/lstas inv da ge
(11) Path for Theorem 3.3(4): static/lsubd/lsubd fwd lsubr
(12) Path for Theorem 3.3(5): static/lsubd da/lsubd da trans
(13) Path for Theorem 3.3(6): static/lsubd da/lsubd da conf
(14) Path for Theorem 3.3(7): static/lsubd lsubd/lsubd trans
(15) Path for Theorem 3.4(1): unfold/lstas lstas/lstas mono
(16) Path for Theorem 3.4(2): unfold/lstas da/lstas inv refl pos
(17) Path for Theorem 3.5(1): reduction/cpx/lsubr cpx trans
(18) Path for Theorem 3.5(2): reduction/cpx/cpr cpx
(19) Path for Theorem 3.5(3): reduction/cpx lift/sta cpx
(20) Path for Theorem 3.5(4): reduction/cpx lift/fqu cpx trans
(21) Path for Theorem 3.5(5): reduction/lpx drop/lpx fqu trans
(22) Path for Theorem 3.5(6): computation/lpxs lpxs/lpx cpx trans
(23) Path for Theorem 3.5(7): computation/cpxs tsts/cpxs fwd beta
(24) Path for Theorem 3.6(1): static/lsuba/lsuba fwd lsubr
(25) Path for Theorem 3.6(2): static/lsuba aaa/lsuba aaa trans
(26) Path for Theorem 3.6(3): static/lsuba aaa/lsuba aaa conf
(27) Path for Theorem 3.6(4): static/lsuba lsuba/lsuba trans
(28) Path for Theorem 3.6(5): static/aaa aaa/aaa mono
(29) Path for Theorem 3.6(6): unfold/lstas aaa/aaa lstas
(30) Path for Theorem 3.6(7): reduction/lpx aaa/cpx lpx aaa conf
(31) Path for Theorem 3.7(1): computation/csx tsts vector/csx gcr
(32) Path for Theorem 3.7(2): computation/gcp cr/acr gcr
(33) Path for Theorem 3.7(3): computation/gcp aaa/acr aaa csubc lifts
(34) Path for Theorem 3.7(4): computation/gcp aaa/gcr aaa
(35) Path for Theorem 3.7(5): computation/csx aaa/aaa csx
(36) Path for Theorem 3.7(6): computation/lsubc/lsubc fwd lsubr
(37) Path for Theorem 3.7(7): computation/lsubc lsuba/lsuba lsubc
(38) Path for Theorem 3.8(1): multiple/llor alt/llor tail frees
(39) Path for Theorem 3.8(2): multiple/llor alt/llor tail cofrees
(40) Path for Theorem 3.8(3): multiple/llor drop/llor total
(41) Path for Theorem 3.9(1): multiple/llpx sn llor/llpx sn llor fwd sn

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 F. Guidi

(42) Path for Theorem 3.9(2): multiple/lleq llor/llpx sn llor dx
(43) Path for Theorem 3.9(3): multiple/lleq lreq/lleq lreq trans
(44) Path for Theorem 3.9(4): multiple/lleq fqus/lleq fqu trans
(45) Path for Theorem 3.9(5): reduction/cpx lleq/lleq cpx trans
(46) Path for Theorem 3.9(6): reduction/lpx lleq/lleq lpx trans
(47) Path for Theorem 3.9(7): reduction/cpx lleq/cpx lleq conf sn
(48) Path for Theorem 3.10(1): computation/lcosx cpx/lsx cpx trans lcosx
(49) Path for Theorem 3.10(2): computation/lsx csx/lsx lref be lpxs
(50) Path for Theorem 3.10(3): computation/lsx csx/csx lsx
(51) Path for Theorem 3.11(1): computation/fpbs alt/fpbs inv alt
(52) Path for Theorem 3.11(2): reduction/fpbq alt/fpb fpbq alt
(53) Path for Theorem 3.11(3): reduction/fpbq alt/fpbq inv fpb alt
(54) Path for Theorem 3.11(4): reduction/fpb lleq/lleq fpb trans
(55) Path for Theorem 3.11(5): computation/fpbg fpbs/fpbq fpbg trans
(56) Path for Theorem 3.11(6): computation/fpbg fpbs/fpbs fpbg trans
(57) Path for Theorem 3.12(1): computation/fsb csx/csx fsb fpbs
(58) Path for Theorem 3.12(2): computation/fsb aaa/aaa fsb
(59) Path for Theorem 3.13(1): dynamic/snv aaa/snv fwd aaa
(60) Path for Theorem 3.13(2): dynamic/snv fsb/snv fwd fsb
(61) Path for Theorem 3.13(3): dynamic/lsubsv lsubd/lsubsv fwd lsubd
(62) Path for Theorem 3.13(4): dynamic/lsubsv lsuba/lsubsv fwd lsuba
(63) Path for Theorem 3.13(5): dynamic/lsubsv lstas/lsubsv lstas trans
(64) Path for Theorem 3.13(6): dynamic/lsubsv scpds/lsubsv scpds trans
(65) Path for Theorem 3.13(7): dynamic/lsubsv/lsubsv snv trans
(66) Path for Theorem 3.15(1): dynamic/snv da lpr/da cpr lpr aux
(67) Path for Theorem 3.15(2): dynamic/snv lpr/snv cpr lpr aux
(68) Path for Theorem 3.15(3): dynamic/snv lstas/snv lstas aux
(69) Path for Theorem 3.15(4): dynamic/snv lstas lpr/lstas cpr lpr aux
(70) Path for Theorem 3.15(5): dynamic/snv preserve/snv preserve
(71) Path for Theorem 3.15(6): dynamic/snv preserve/snv cprs lpr
(72) Path for Theorem 3.15(7): dynamic/snv preserve/lstas cpcs lpr

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

