Adding Schematic Abstraction to AP

Ferruccio Guidi

HELM team, DISI, University of Bologna, Italy

ferruccio.guidi@unibo.it

February 28, 2018

1. Propositions as objects vs. propositions as types

e The encoding of logic into typed A-calculus follows two paradigms:

the so-called “propositions as objects” and “proposition as types”.

Level Propositions as objects Propositions as types
Kind | universe (0 =)

Type |universe (o) assertion (A true) |proposition (A = A true)
Object | proposition (A) | derivation () derivation ()

e Systems pursuing “propositions as objects”: A—, AUT-68, LF, AP.

Notice that true is a primitive function symbol of type: o — .

e Systems pursuing “propositions as types”: AUT-QE, System F, CC.

Easier: we build propositions with the framework’s type constructors.

e Nevertheless “propositions as types’ requires stronger frameworks,

1.e., conjunction and disjunction have type x — x — % not in AP.

1 Adding Schematic Abstraction to AP Ferruccio Guidi

2. Predicative frameworks allowing propositions as types

e With “propositions as types” we need h.o. quantification of class

(00, %) to represent logical rules with schematic propositional variables.

o A B+ AA B becomes land i: (VA :%)(VB:x)(A— B — AADB)

and the quantification on B is of class ([, %) in A-Cube terminology.

1. PTS-style impredicative solution: AC.
Add triples ({J, 00, 0J) and ([, %, %) to AP.

2. PTS-style predicative solution: henceforth \T (very powerful).
Add triples (d, 0,) and (O, %,) to AP.

3. PTS-style predicative solution: AQE =~ AUT-QE (less powerful).
add triples (0,00, A), (O, %, A), (O, A, D), (%, N, A\) to AP.

4. Refined PTS-style predicative solution: refined A\QE ~ AUT-QE.
Add parameter pairs ((J,0), (L, %), (%,), (x,x) to AP.

2 Adding Schematic Abstraction to AP Ferruccio Guidi

3. Discussion on the predicative frameworks

e System AT (solution 2) allows to write powerful constructions, i.e.,

logical rules with schematic variables for connectives. Is this useful?

e The quantification (%,],) of AT can be seen both as internal and

as schematic. Thus the former can precede the latter in constructions.

e Is it always the case that internal quantifications preceding schematic

ones in constructions (rejected in AQE) can be thought as schematic?

e In AT and AQE instantiated assertions live in x while assertions with

h.o. schematic variables live in L] or A\, i.e., at a different level.

e Reasonably, de Bruijn’s unified binder |z : o] emerges as a device to

accommodate schematic abstraction in Automath-related languages.

e The refined A-Cube (solution 4) pursues the syntactic distinction

between internal abstraction (II; A\) and schematic abstraction (€, §).

3 Adding Schematic Abstraction to AP Ferruccio Guidi

4. Introducing the system ATP: a step towards Ay, & AP

e HHere we are proposing to develop a framework in which Ay provides

for the schematic abstraction while AP provides for the internal one.

e In the perspective of the refined \-Cube we are proposing mainly to

unify 9 and § in (T : «), inspired by |x : o (differing from IT and \).
e In the ideal Ao @ AP the two subsystems are independent (contrary

to AQE), so schematic and internal abstractions can be mixed in terms.

e By meeting the requirement of independence, we conjecture that our

system can have a simple structure and uniform validity rules like AT.

e The ideal A\oo ® AP supports constructions like schematic variables
for connectives without the hybrid quantification (%, [J,[J) of AT.

e To start with, we are proposing here the system ATP that extends
AP with the h.o. schematic abstraction provided by the T quantifier.

4 Adding Schematic Abstraction to AP Ferruccio Guidi

5. Syntax and conversion in \TP

e Our system has the syntax of simplified LE with three levels of terms

(kinds K, families T" and objects M) and one category for contexts L.
H K =% |({In:U).K| (Tu: H).K
T.U =u|{In:0)T | (M:U)T | (N)T| (Yu: H).T| (U).T
M, N:=n| (M :U.M| (N).M| (Yu: H).M| (U).M
L =o | L(n:U) | L(u:H)

e We add a h.o abstraction (Yu : H) for objects, families and kinds.
We add the corresponding application (U) for objects and families.

e To the refined A-Cube (Tu: H).T is a § and a § at the same time.

e Moreover we pose that (U).(Tu : H) is a f-redex giving rise to:
LE (U).(Tu: H).M =3 [U/u].M L+ (U).(Tu: H).T =4 [U/u].T

5 Adding Schematic Abstraction to AP Ferruccio Guidi

6. Validity in ATP

e The judgments (LF): = L! (Lisvalid), L+ K! (K isvalid in L),
LET:K (T belongs to K in L), L+ M :T (M belongs to T in L).

e Here we omit the validity rules concerning the LF fragment of ATP.

LEH! LuwHFK! LbH! L@ HFT K LFH! L{u:H)FM:T
LFE(Tu:H).K! LF(Yu:H)T:(Tu:H).K Lt (Yu:H)M: (Yu:H).T

L-U:HLFT:(Yu:H).K LrU:HLFM:(Yu:H).T
Lt (O).T: [U/.K Lt (U).M: [U/.T

LE-M:Ty LET =375 LI—TQ:(TU:H).KG LU :x L(n:U)FT:Tu:H).K
LEM:T, LEn:U)T:(Tu: H).K

e Rules 6 an 7 show that in a PTS for ATP there is a sort for each
(Yu: H).K. Moreover (Tu: H).T is a (Ilu: H).T with II-reduction.

7

e In the perspective of AQE, we break the sort A in a system of sorts
A g i -0, that are as many as the simple types from one base type.

6 Adding Schematic Abstraction to AP Ferruccio Guidi

7. Validity in ATP continued
e Note: LT : Ay g gives more information on 7" than L =T : A.

e The “start” rules come from LF hence L = n : T implies L =T : %,
Therefore n cannot take (Yw : H).M , which is is not a first-class object.

e The ideal Ao ® AP must have a “start” rule to remove this limitation.

e Instead L u: H implies L = H ! therefore u can take (Yu: H).T'.

e Interesting properties to prove for ATP include strong normalization

of valid terms. Confluence and safety of reduction should be PTS-like.

e Strong normalization should be reducible to the one of A\o-2, i.e..

A—-like, like strong normalization of AC is reducible to the one of Aw.

o The ideal Ao ® AP must also include the f.o. schematic abstraction

(YTn : U) with which we enable the quantification (%, A, A) of AQE.
e [t is quite likely that we need to consider the kind (Yn : U).K a sort.

7 Adding Schematic Abstraction to AP Ferruccio Guidi

8. Testing ATP on the “Grundlagen”

e Statement: any logical framework claiming to support “propositions

as types” must accept a translation of the “Grundlagen der Analysis” .

e Among the realistic fragments of math formalized with “propositions

as types”’, the “Grundlagen” does not need very expressive frameworks.

e We took the AProlog version of the “Grundlagen” for CC. We turned
f.o. quantification to (IIn : U) and h.o. quantification to (Tu : H).

e Notice that by so doing, (IIn : U) precedes (Tu : H) in some cases.
e We implemented an efficient validator for ATP in AProlog, which

operates in the Ei fragment and never unwinds its reduction machine.

e Typical runs of three validators on the ELPI engine (same hardware):

lyp [ATP] (9.4s), Helena [~ A\d-3| (35.7s), ALT-0/PTS [CC] (43.7s).
e The interactions of T and II in ATP should clarity the design of \o-3.

8 Adding Schematic Abstraction to AP Ferruccio Guidi

References

1] C. Dunchev, F. Guidi, C. Sacerdoti Coen, and E. Tassi. ELPT: fast,
Embeddable, AProlog Interpreter. In M. Davis, A. Fehnker,
A. Mclver, and A. Voronkov, editors, Proceedings of 20th
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-20), volume 9450 of Lecture
Notes in Computer Science, pages 460-468, Berlin, Germany,
December 2015. Springer.

2] F. Guidi. Verified Representations of Landau’s “Grundlagen” in the

Ao Family and in the Calculus of Constructions. Journal of
Formalized Reasoning, 8(1):93-116, December 2015.

3] F. Guidi. The Formal System ATP. Technical Report AMS Acta
5754, University of Bologna, Bologna, Italy, January 2018.

9 Adding Schematic Abstraction to AP Ferruccio Guidi

Thank you

10 Adding Schematic Abstraction to AP Ferruccio Guidi

