
A Validator for the Formal System λδ

Ferruccio Guidi

University of Bologna, Italy

fguidi@cs.unibo.it

February 8, 2010

1

Overview

• The formal system λδ is a typed λ-calculus under development in

the context of the HELM project at the University of Bologna.

•As an expected feature, λδ should serve as a modular framework

flexible enough to encode Mathematics in a realistic manner.

• To verify this feature, we encoded a non-trivial mathematical

theory into λδ by implementing a computer-assisted translation.

• Given that the resulting λ-terms must be valid against λδ’s type

system, we were naturally led to implement a validator as well.

•An XML representation of the λ-terms can be generated following

HELM approach to long-term storage of mathematical contents.

•Our validator is implemented in the Caml programming language

for a better integration with the rest of the HELM software.
2

In this talk

•We present the variant of λδ recognized by the validator.

• We discuss the implementation of the validation procedure.

•We present the translation of the theory we encoded into λδ.

λδ “brg” (“basic, relative, global”)

• λδ is an evolving framework, whose development process will

eventually give rise to a family of languages.

• λδ “brg” is very close to the official variant in print on ToCL.

•No applications, type casts and level indicators in environments.

• The environment is split and has a component accessed by name.

• We added the “pure” type assignment rule for applications.

3

The abstract syntax of λδ “brg”

Natural number: i,l,x (corresponding data-type: N)

Term: T,U,V,W ::= ∗l | #i | $x | 〈U〉.T | (V).T | λW.T | δV.T | χ.T

Local environment: E ::= ∗ | E.λW | E.δV | E.χ

Global environment: G ::= ∗ | G.λxW | G.δxV

The reduction steps of λδ “brg”

G, E ` (V).λW.T →β δV.T G, E ` 〈U〉.T →τ T

G, E1.δV.E2 ` #i →δ ↑i+1V if i = |E2| G1.δxV.G2, E ` $x →δ V if x /∈ G2

G, E ` δV.↑1T →ζ T G, E ` χ.↑1T →ζ T

G, E ` (V1).δV2.T →υ δV2.(↑1V1).T G, E ` (V1).χ.T →υ χ.(↑1V1).T

↑i is the “relocation function”. |E2| is the number of binders in E2.

x /∈ G2 means that there is no global binder named x in G2.

4

The fundamental judgements of λδ “brg”

• h : N→ N is any function satisfying h(l) > l for each l.

• Conversion: G, E ` U1↔∗ U2 (U1 and U2 are convertible).

• Type assignment: G, E `h T : U (T has type U).

• Correctness: wfh(G) (G is well formed).

The type assignment rules of λδ “brg”

G1, ∗ `h V : W x /∈ G2

G1.δxV.G2, E `h $x : W

g−def
G1.∗ `h W : V x /∈ G2

G1.λxW.E2, E `h $x : W

g−decl

G, E1 `h V : W i = |E2|

G, E1.δV.E2 `h #i : ↑i+1W

l−def
G, E1 `h W : V i = |E2|

G, E1.λW.E2 `h #i : ↑i+1W

l−decl

5

The type assignment rules of λδ “brg”(continued)

G, E `h ∗l : ∗h(l)

sort
G, E `h T : U G, E `h U : V

G, E `h 〈U〉.T : 〈V 〉.U
cast

G, E.χ `h T : U

G, E `h χ.T : χ.U

void

G, E `h V : W G, E.δV `h T : U

G, E `h δV.T : δV.U

abbr
G, E `h W : V G, E.λW `h T : U

G, E `h λW.T : λW.U

abst

G, E `h V : W G, E `h T : λW.U

G, E `h (V).T : (V).λW.U

appl
G, E `h T : U G, E `h (V).U : W

G, E `h (V).T : (V).U

pure

G, E `h U2 : V G, E `h T : U1 G, E ` U1 ↔∗ U2

G, E `h T : U2

conv

The correctness rules of λδ “brg”

wfh(∗)
sort

wfh(G) G, ∗ `h W : V

wfh(G.λW)

abst
wfh(G) G, ∗ `h V : W

wfh(G.δV)

abbr

6

Highlights of our validation procedure

•Our validation procedure follows the general pattern implemented

in many λ-calculus-based proof assistants, like Coq and Matita.

•We have a type checker, a convertibility checker and a domain

retrieval function (in other systems this computes a w.h.n.f.).

1. The data-types for terms and environments allow to annotate each

term and each environment entry with non-logical information.

2. The reduction apparatus is based on Krivine machines (KAMs),

and the type checker uses them in place of local environments.

3. The application of some type inference rules (namely, purity and

sort inclusion) is delegated to the reduction apparatus.

4. The reduction apparatus works without relocations (the functions

lift, delift), in particular we do not need the unwind function.
7

Non-logical information

type id = string

type attr = Mark of int (* node marker *)

| Name of id (* name *)

| Apix of int (* abs./alt. position index *)

type attrs = attr list (* attributes *)

• Mark: persistent numeric information (line numbers, pointers). This

attribute is not used now, but we plan to use it in the future.

• Name: persistent literal information (variables names, sort names)

used for presentational purposes. NB Names are non-logical in λδ.

• Apix: transient numeric information used by the reduction

apparatus to avoid δ-expansions and remarkably ζ-contractions.

• The persistent information is included in the long-term persistence

format of the validated data (to be explained in the following).
8

Terms and local environments

type uri = NUri.uri

type bind = Void

| Abst of term (* domain *)

| Abbr of term (* body *)

and term = Sort of attrs * int (* hierarchy index *)

| LRef of attrs * int (* position index *)

| GRef of attrs * uri (* reference *)

| Cast of attrs * term * term (* type, member *)

| Appl of attrs * term * term (* argument, function *)

| Bind of attrs * bind * term (* binder, scope *)

type lenv = Null (* bottom *)

| Cons of lenv * lenv * attrs * bind

•Our URI scheme is ld and we use the HELM URI module.

• A local environment entry (Cons) has a secondary closure used by

the reduction apparatus (set to Null when not needed).
9

Global environment

type ’term bind = Abst of ’term (* declaration: domain *)

| Abbr of ’term (* definition: body *)

type ’term entity = attrs * uri * ’term bind

val set entity: term entity -> term entity

val get entity: uri -> term entity

• The global environment entry (entity) is parametric over term to

reuse it with different languages of the λδ family (we have two now).

• The global environment is a table of entities hashed on their URIs,

but is not a cache now. This limitation will be eventually solved.

• The environment must contain valid entities and the incoming

entities receive an “apix” consisting of their ordinal entry number.

• This information, termed the age, is used like Matita’s height to

prevent useless global δ-expansions during the convertibility checks.
10

Pseudo-reductions

Local reference typing: G, E1.λW.E2 ` #i → ↑i+1W if i = |E2|

Global reference typing: G1.λxW.G2, E ` $x → W if x /∈ G2

Sort inclusion: G, E ` λW.∗l → ∗l

• The reduction apparatus implements these steps just as part of the

type-checking algorithm. These reductions break λδ’s meta-theory.

•Reference typing is enabled in the domain retrieval function to

implement the “pure” type inference rule, as we will explain.

• Sort inclusion raises λδ’s expressive power from λ→ to λP and is

needed to process the examples on which the validator was tested.

• Its implementation follows the Vera system: when the convertibility

of two types is checked, sort inclusion is applied to the inferred type

when no other step applies to it (some restrictions are needed).
11

The reduction apparatus

type status = {
delta: bool; (* global delta-expansion *)

rt: bool; (* reference typing *)

si: bool (* sort inclusion *)

}

• status is an aggregate of flags passed to all functions concerned to

reduction. These flags enable or disable some reduction steps.

•Only the si flag can be set by the user (via a command line

option), the other flags are controlled by the reduction functions.

• Both the domain retrieval and the convertibility check require to

apply a chain of reduction steps to some given terms. The literature

suggests that w.h.n.f.’s are good break points for these chains.

• The main task of the reduction apparatus is to compute w.h.n.f.’s.
12

Computing the w.h.n.f.

type kam = {
e: lenv; (* environment *)

s: (lenv * term) list; (* stack *)

d: int (* depth *)

}
val empty: kam (* initial value *)

val get: kam -> int -> bind (* read entry by index *)

val push: kam -> attrs -> bind -> kam (* add entry on top *)

• The w.h.n.f. of a term is computed by a KAM extended to cope

with λδ. The term is not stored in a KAM register, but it could.

• We provide access to the KAM environment (get, push) because

we want to use it as a reduction and type inference environment.

In particular we want our KAM to compute deep w.h.n.f.’s.

• The environment can be accessed only if the stack (s) is empty.
13

Computing the w.h.n.f. (continued)

• We count the incoming abstraction entries in the d register and

each incoming abstraction entry receives an “apix” with its depth.

• The KAM computes the βδυτ -w.h.n.f. of a given term, but it can

stop on global δ-redexes by disabling the delta flag.

• The KAM stops on references to abstractions (both local and

global) only if reference typing is disabled via the rt flag.

•When the KAM stops on a reference (both local and global), the

“apix” of the referred binder is returned (it always exists).

•An error is produced if a reference to a χ binder is encountered,

even if the w.h.n.f. exists anyway, but this is not a limitation.

•Our KAM is not parametric over the evaluation strategy and the

call-by-need optimization is not implemented at the moment.
14

Domain retrieval

val xwhd: status -> kam -> term -> kam * term

• (V).T is typable in G and E if (V) matches a λW1 retrieved in T ,

E or G. Moreover W1 and the type W2 of V must be convertible.

• λW1 must start the w.h.n.f. of the type U of T , or else, if the

“pure” rule is in effect, the iterated types of U must be considered.

• This search eventually comes to an end since it involves just a finite

number of iterated types of T , which are strongly normalizable.

• The w.h.n.f. of the first iterated type of T that may contain λW1,

is given by our KAM run on U with delta and rt enabled.

• Formally, reference typing is similar to δ-expansion so the KAM

does not need to perform any relocation when computing it.

15

The convertibility check

val are convertible: status -> kam -> term -> kam -> term -> bool

(* arguments: expected type, inferred type *)

• We can process two terms closed in two environments, given the

invariant that they contain the same number of abstractions.

• The check applies to types and is not symmetric if sort inclusion is

in effect. The arguments are an expected type and an inferred type.

• The terms are reduced in parallel and compared each time a (deep)

w.h.n.f. is reached. The KAMs are run with delta and rt disabled.

• The α-convertibility check is not attempted before the full

convertibility check as in Matita. Moreover the terms must be valid.

• Two sorts are compared by level but the KAM stacks are not

compared because a sort after an application is always invalid.

16

The convertibility check (continued)

• Two local references are compared by “apix” (instead of by index)

so they need not to be relocated (delifted) before the comparison.

• Two global references to abstractions are compared by “apix”

(age). This is the same as comparing them by name.

• Two global references to abbreviations are compared by “apix”. If

they differ, the abbreviation with the greatest age is expanded.

• Two abstractions are matched by comparing their domains and then

their scopes, after pushing the domains in the respective KAMs.

•Depending on the si flag, sort inclusion is attempted as a last

resort before asserting that the compared terms are not convertible.

• si is disabled when matching the KAM stacks and the domains of

abstractions, otherwise some non-normalizing terms (Ω) are valid.
17

Sort hierarchy management

type graph = string * (int -> int) (* sort hierarchy *)

val graph of string: string -> graph (* graph constructor *)

val string of graph: graph -> string (* graph name *)

val apply: graph -> int -> int (* graph look up *)

val set sorts: string list -> int -> int (* sort registration *)

val get sort: int -> string (* sort look up *)

•The sort hierarchy parameter (h) has predefined values, denoted by

strings, that ensure its strict monotonicity (graph of string).

• The recognized values are “Zn” with n > 0, meaning h(l) ≡ l + n.

• This parameter is set from the command line and defaults to “Z2”.

• The parameter is applied using the function apply.

•We can assign names to sorts for presentational purposes

(set sorts, get sort), which are stored in a hash table.
18

Computing the canonical type

val type of: (term -> ’a) -> status -> graph -> kam -> term -> ’a

• This function is better implemented using the CPS paradigm.

• The local environment (the KAM) contains just valid items.

• Every δV is annotated with the inferred type of V before entering

the environment, becoming δ〈W 〉.V , so V is typed only once.

(* m: kam, u: type of the function, w: type of the argument *)

let assert applicability st m u w = match xwhd st m u with

| , Sort -> error ...

| mu, Bind (, Abst u,) ->

if are convertible st mu u m w then () else error ...

| -> assert false

• mu and u go from xwhd to are convertible as they are.

• Passing two KAMs to are convertible is crucial here.
19

Validation

val validate: si:bool -> graph -> entity -> entity

Testing the validator

• We can translate Jutting’s formal specification of Landau’s

“Grundlagen der Analysis” from Aut− QE into λδ “brg” and

we can validate it enabling sort inclusion (maybe not necessary).

• Two steps: we build an intermediate representation where the

syntactic shorthand is removed, and we encode this into λδ “brg”.

• The validator implements both steps of the translation as well.

• The intermediate language is a version λδ still under design.

• The validator has a “multi-kernel” architecture and will be able to

validate this version of λδ (and hopefully others) in the future.

20

Long-term persistence of the global environment

• We can produce an XML representation of each entity.
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ENTITY SYSTEM "http://helm.cs.unibo.it/lambda-delta/xml/ld.dtd">

<ENTITY hierarchy="Z2" options="si">

<ABBR uri="ld:/brg/grundlagen/l/not.ld" name="not" mark="6">

<Cast>

<Abst name="a">

<Sort position="1" name="Prop"/>

</Abst>

<Sort position="1" name="Prop"/>

</Cast>

<Abst name="a">

<Sort position="1" name="Prop"/>

</Abst>

<Appl>

<GRef uri="ld:/brg/grundlagen/l/con.ld" name="con"/>

</Appl>

<Appl>

<LRef position="0" name="a"/>

</Appl>

<GRef uri="ld:/brg/grundlagen/l/imp.ld" name="imp"/>

</ABBR>

</ENTITY>
21

Some statistical data

Size of the “Grundlagen”

Language Int. complexity

Aut− QE 319706

intermediate 754578

λδ “brg” 998232

Performance of the validator

Phase Run time fraction Run time

parsing 10% 0.7s

translation 23% 1.7s

validation 67% 4.9s

Relocated data

terms 295202

int. complexity 1252256

the relocations are due

to the “l-decl” type rule

Reductions

β 1034626 τ 17166

local δ 494271 global r.t. 0

global δ 17166 local r.t. 1

υ 2040476 s.i. 904

• The “intrinsic complexity” approximates the number of nodes.

The validator was run on a 2×AMD Athlon MP 1800+, 1.53 GHz.

The ζ-contractions, avoided by the validator, would be: 3694769.
22

Thank you

23

