
An Efficient Validation Procedure

for the Formal System λδ

Ferruccio Guidi

University of Bologna, Italy

fguidi@cs.unibo.it

June 25, 2010

1

Overview

• The system λδ “brg”is a typed λ-calculus inspired by the system Λ∞.

• λδ “brg”terms have sorts: ∗l, variables, typed abstractions: λW.T ,

abbreviations: δV.T , applications: (V).T , and type annotations: 〈U〉.T .

• Conversion and typing occur in a context made of declarations and

definitions. Both can be local (ref. by index) or global (ref. by name).

• Reductions include: call-by-name β-contraction, local and global δ-

expansion, ζ-contraction, and type annotation removal (τ -contraction).

• The typing policy is “compatible”: every construct that is not a

variable, is typed by a construct of the same kind (implies λ-typing).

• We allow the PTS-style conversion rule and the pure application rule:

G, E ⊢h T : U G, E ⊢h (V).U : W

G, E ⊢h (V).T : (V).U

pure (N.G. de Bruijn, 1991)

2

Overview (continued)

• We are also interested in this reduction, which is not part of λδ “brg”:

sort inclusion: λW.∗l → ∗l (I. Zandleven, 1973).

It gives λδ the expressive power of λP, but it can not be applied freely.

• A global context is valid if all terms it contains are typable, and we

are proposing an efficient algorithmic procedure to verify this property.

• λδ resembles a PTS enough to address the problem of efficient type

inference by means of a suitable extension of the Constructive Engine.

1. Our convertibility checker operates on two closures of possibly

different length, rather than on two terms closed in a common context.

2. We use full reduction engines in place of normal closures throughout

the type synthesizer and throughout the convertibility checker.

• We assert the applicability cond. without extracting the w.h.n.f. of

the type of the function from the reduction machine that computed it.
3

The Reduction and Typing Machine

• The RTM is a KN machine that does not evaluate the stack contents,

but that can compute the w.h.n.f. of the iterated type of a term.

• The RTM state (a,G, E ,S, T) includes a level indicator, a global

context, a local context of closures, a stack of closures, and the code.

• The local context contains “normal” entries as well as “special”

entries λa (corresponding to the V (a + 1) entries of the KN machine).

1. In the convertibility mode, the RTM stops on sorts, references to

the global context, references to local declarations and on abstractions.

2. In the applicability mode, the RTM stops on sorts and abstractions

because the following transitions are enabled (“reference typing”):

(a,G, E.λb(F ,W),S,#0) →local r.t. (a,G,F ,S,W)

(a,G1.λxW.G2, E ,S, $x) →global r.t. (a,G1.λxW.G2, E ,S,W)

4

The convertibility test

• The test operates on two types closed in the respective contexts,

given the invariant that they contain the same number of abstractions.

• The types are reduced in parallel by two RTMs running in the

convertibility mode, and are compared each time a w.h.n.f. is reached.

• Two local references are compared by level (i.e., the a of the λa they

refer to) so they do not need to be relocated before the comparison.

• A heuristic to avoid some useless global δ-expansions is implemented.

Note that the test is not symmetric when sort inclusion is in effect.

• When sort inclusion is in effect, it must be tested as a last resort

before asserting that the compared types are not convertible.

• S.i. is disabled when matching the RTMs stacks and the domains of

the abstractions, otherwise some non-normalizing terms (Ω) are valid.

5

Type synthesis

• We improve the efficiency of the standard algorithm by testing the

applicability cond. as shown by the following fragment of Caml code.

(* m: rtm, u: type of the function, w: type of the argument *)

let assert applicability st m u w = match xwhd st m u with

| , Sort -> error ... (* sort case *)

| mu, Bind (, Abst u,) -> (* abstraction case*)

if are convertible st mu u m w then () else error ...

| -> assert false (* impossible case *)

• mu and u go from xwhd to are convertible as they are.

• Passing two RTMs to are convertible is crucial here.

• xwhd computes the w.h.n.f. of the type of the function running the

RTM in the applicability mode to take the pure type rule into account.

• are convertible performs the convertibility test.

• st contains a user-set flag that activates sort inclusion on request.
6

Type synthesis (continued)

• The type U of a variable x is always inferred in the context where x

is introduced, which may differ from the contexts in which x is invoked.

• Therefore, we need to relocate the de Bruijn indexes of U during type

synthesis. It should be possible to avoid this time-consuming operation.

Testing the validation procedure

• We implemented our procedure as part of the HELM software.

• Enabling sort inclusion, we validated a two-steps naive mechanical

translation of Jutting’s “Grundlagen der Analysis” into λδ “brg”.

• In the first step we build an intermediate representation where the

syntactic shorthand is removed, then we encode this into λδ “brg”.

• Unfortunately, the only competing validator for the “Grundlagen” is

written in C rather than in Caml, so a comparison would not be fare.
7

Some statistical data

Size of the “Grundlagen”

Language Int. complexity

Aut− QE 319706

intermediate 754578

λδ “brg” 998232

Performance of the validator

Phase Run time fraction Run time

parsing 10% 0.7s

translation 25% 1.7s

validation 65% 4.4s

Relocated data

terms 295202

int. complexity 1252256

a relocation occurs when the type

of a local reference is computed

Reductions

β 1034626 τ 17166

local δ 494271 local r.t. 1

global δ 17166 global r.t. 0

ζ 0 s.i. 904

•The “intrinsic complexity” approximates the number of nodes.

The validator was run on a 2×AMD Athlon MP 1800+, 1.53 GHz.

The ζ-contractions, avoided by the validator, would be: 3694769.
8

Thank you

9

The abstract syntax of λδ “brg”

Natural number: i,l,x (corresponding data-type: N)
Term: T,U,V,W ::= ∗l | #i | $x | 〈U〉.T | (V).T | λW.T | δV.T

Local environment: E ::= ∗ | E.λW | E.δV

Global environment: G ::= ∗ | G.λxW | G.δxV

The reduction steps of λδ “brg”

G, E ⊢ (V).λW.T →β δV.T G, E ⊢ 〈U〉.T →τ T

G, E1.δV.E2 ⊢ #i →δ ↑i+1V if i = |E2| G1.δxV.G2, E ⊢ $x →δ V if x /∈ G2

G, E ⊢ δV.↑1T →ζ T G, E ⊢ (V1).δV2.T →υ δV2.(↑
1V1).T

↑i is the “relocation function”. |E2| is the number of binders in E2.

x /∈ G2 means that there is no global binder named x in G2.

10

The fundamental judgements of λδ “brg”

• h : N→ N is any function satisfying h(l) > l for each l.

•Conversion: G, E ⊢ U1 ↔
∗ U2 (U1 and U2 are convertible).

•Type assignment: G, E ⊢h T : U (T has type U).

•Correctness: wfh(G) (G is well formed).

The type assignment rules of λδ “brg”

G1, ∗ ⊢h V : W x /∈ G2

G1.δxV.G2, E ⊢h $x : W

g−def
G1.∗ ⊢h W : V x /∈ G2

G1.λxW.E2, E ⊢h $x : W

g−decl

G, E1 ⊢h V : W i = |E2|

G, E1.δV.E2 ⊢h #i : ↑i+1W

l−def
G, E1 ⊢h W : V i = |E2|

G, E1.λW.E2 ⊢h #i : ↑i+1W

l−decl

11

The type assignment rules of λδ “brg”(continued)

G, E ⊢h ∗l : ∗h(l)

sort
G, E ⊢h T : U G, E ⊢h U : V

G, E ⊢h 〈U〉.T : 〈V 〉.U

cast

G, E ⊢h V : W G, E.δV ⊢h T : U

G, E ⊢h δV.T : δV.U

abbr
G, E ⊢h W : V G, E.λW ⊢h T : U

G, E ⊢h λW.T : λW.U

abst

G, E ⊢h V : W G, E ⊢h T : λW.U

G, E ⊢h (V).T : (V).λW.U

appl
G, E ⊢h T : U G, E ⊢h (V).U : W

G, E ⊢h (V).T : (V).U

pure

G, E ⊢h U2 : V G, E ⊢h T : U1 G, E ⊢ U1 ↔
∗ U2

G, E ⊢h T : U2

conv

The correctness rules of λδ “brg”

wfh(∗)

sort
wfh(G) G, ∗ ⊢h V : W

wfh(G.δV)

abbr
wfh(G) G, ∗ ⊢h W : V

wfh(G.λW)

abst

12

The Reduction and Typing Machine (supplement)

• The RTM state (a,G, E ,S, T) has the following detailed structure:

a ∈ N; E ::= ∗ | E .λaC | E .δC; S ::= ∗ | S.C; C ::= (E , T)

• The RTM initial state is: I(G, T) ≡ (0,G, ∗, ∗, T).

• We provide for a read/push access to the RTM context because we

want to use it as a reduction and type synthesis context as well.

• The RTM controllers force this reduction to cross a λ-abstraction:

(a,G, E , ∗, λW.T) →push (a + 1,G, E .λa(E ,W), ∗, T)

• The RTM context (E) accepts pushing only if the stack (S) is empty.

• Formally, “reference typing” follows the pattern of δ-expansion, so

the RTM does not need to perform any relocation when computing it.

• We implement “sort inclusion” and “reference typing” as reduction

steps just for the type-synthesis algorithm. They break λδ’s theory.
13

How the RTM applies the “pure” type rule

• The term (V).T is typable in G and E if (V) matches a λW1 found

in T , E or G. Moreover W1 and the type W2 of V must be convertible.

• The item λW1 must start the w.h.n.f. of the type U of T , or else, if

the “pure” rule is in effect, the iterated types of U must be considered.

• This search eventually comes to an end since it involves just a finite

number of iterated types of T , which are strongly normalizable.

• If T ≡ X.#i is typed (where X denotes a term segment) and if #i

refers to a λ-abstraction of type W , then U ≡ X.↑i+1W is a type for T .

• When the RTM is started on T and has scanned the segment X , so

that #i is in the code register, then it must compute a w.h.n.f. of U .

• As the segment X was scanned already, we just apply “reference

typing” to continue the computation with W in the code register.

14

