The Formal System $\lambda \delta$ and the "Three Problems"

Ferruccio Guidi
 University of Bologna, Italy

ferruccio.guidi@unibo.it
June 19, 2014

1. Overview

- $\lambda \delta$ is a typed λ-calculus inspired by Λ_{∞} (van Benthem Jutting, 1984).
- $\lambda \delta$ is intended to underlie foundations of Mathematics requiring a theory of expressions, e.g. MTT (Maietti, 2009) and its predecessors.
- $\lambda \delta$ is developed as a machine-checked digital specification, that isn't the formal counterpart of some previously published informal material.
- $\lambda \delta$ comes in two versions so far: (1) formalized in Coq 7, published in 2008; (2) formalized in Matita (current version), under development.
- Following Automath, the "three problems" are: confluence (ChurchRosser), strong normalization, and preservation (subject reduction).
- The "problems" are solved for $\lambda \delta$ version 1 ; our aim is to discuss these "problems" for $\lambda \delta$ version 2 , where more terms are typable.
- The "problems" are solved for Λ_{∞} as well, but $\lambda \delta$ is more complex!

2. Terms and redexes

- Terms: $\star i$ (sort), $\# i$ (reference), $\lambda W \cdot T$ (typed abstraction), $\delta W \cdot T$ (abbreviation), @V.T (application), and © $V . T$ (type annotation).
- By @V.T we mean " $(T \quad V)$ " and by © $C . T$ we mean " $(T: V)$ ". By $\delta W . T$ we mean "let $\# 0$ be W in T " (explicit/delaied substitution).
- Sorts are numbered from 0 , References are by index (starting at 0),
- $d{ }^{\uparrow}{ }^{e}$ is the term relocating function (lift of depth d and height e).
- Envs: \star (empty), L. λW (typed declaration), and $L . \delta W$ (definition).
- ${ }_{d}{ }^{e}$ is the env slicing function (drop of depth d and height e).
${ }_{d} \downarrow^{e} L$ removes e entries after the fist d entries of L, relocating them.
- Redexes: $@ V . \lambda W \cdot T \xrightarrow{\beta} \delta(© W . V) . T \bullet \delta_{0} \wedge^{1} V \cdot T \xrightarrow{\zeta} T \bullet$ © $V . T \xrightarrow{\epsilon} T$
$@ V . \delta W . T \xrightarrow{\theta} \delta W . @\left({ }_{0} \uparrow^{1} V\right) . T \bullet L \vdash \# i \xrightarrow{\delta}\left({ }_{0} \uparrow^{i+1} W\right)$ if ${ }_{0} \downarrow^{i} L=K . \delta W$
- In $\lambda \delta$ version 1 , the β-reductum is simpler: $@ V . \lambda W . T \xrightarrow{\beta} \delta V . T$.

3. Context Sensitive Reduction

- As opposed to $\lambda \delta$ version 1 , we start from $L \vdash T_{1} \Rightarrow T_{2}$ meaning that T_{1} produces T_{2} by one step of parallel reduction in the env L.

$$
\frac{L \vdash W_{1} \Rightarrow W_{2} \quad L \cdot \delta / \lambda W_{1} \vdash T_{1} \Rightarrow T_{2}}{L \vdash \delta / \lambda W_{1} \cdot T_{1} \Rightarrow \delta / \lambda W_{2} \cdot T_{2}} \quad \frac{{ }^{2} \downarrow^{i} L=K . \delta W_{1} \quad K \vdash W_{1} \Rightarrow W_{2}}{L \vdash \# i \Rightarrow{ }_{0} \uparrow^{i+1} W_{2}} \delta
$$

- The env allows full parallelism in δ since each $\# i$ can be expanded with a different reduct of W_{1}. Compare with the "envless" version:

$$
\frac{W_{1} \Rightarrow W_{2} T_{1} \Rightarrow T_{2}}{\delta W_{1} \cdot T_{1} \Rightarrow \delta W_{2} \cdot\left[W_{2} / \# 0\right] T_{2}} \delta \text { with substitution (} \lambda \delta \text { version } 1 \text {) }
$$

- With this approach, reduction correctly commutes with subclosure.

$$
\begin{aligned}
& \overline{L \vdash \star / \# i \Rightarrow \star / \# i} \frac{L \vdash V_{1} \Rightarrow V_{2} \quad L \vdash T_{1} \Rightarrow T_{2}}{L \vdash \Subset / @ V_{1} \cdot T_{1} \Rightarrow \text { © } / @ V_{2} \cdot T_{2}} \frac{L \vdash T_{1} \Rightarrow T_{2}}{L \vdash \delta W \cdot \uparrow^{1} T_{1} \Rightarrow T_{2}} \zeta \frac{L \vdash T_{1} \Rightarrow T_{2}}{L \vdash \Subset V \cdot T_{1} \Rightarrow T_{2}} \epsilon \\
& \frac{L \vdash V_{1} / W_{1} \Rightarrow V_{2} / W_{2} \quad L \cdot \lambda W_{1} \vdash T_{1} \Rightarrow T_{2}}{L \vdash @ V_{1} \cdot \lambda W_{1} \cdot T_{1} \Rightarrow \delta\left(\odot W_{2} \cdot V_{2}\right) \cdot T_{2}} \beta \quad \frac{L \vdash V_{1} / W_{1} \Rightarrow V_{2} / W_{2} \quad L \cdot \delta W_{1} \vdash T_{1} \Rightarrow T_{2}}{L \vdash @ V_{1} \cdot \delta W_{1} \cdot T_{1} \Rightarrow \delta W_{2} \cdot @\left(0_{0} \uparrow^{1} V_{2}\right) \cdot T_{2}} \theta
\end{aligned}
$$

4. Pointwise Reduction, Confluence, Refinement

- Reduction on terms induces a reduction on envs by which entries are reduced in parallel. One step is denoted by: $L_{1} \Rightarrow L_{2}$

$$
\overline{\star \Rightarrow \star} \quad \frac{K_{1} \Rightarrow K_{2} \quad K_{1} \vdash W_{1} \Rightarrow W_{2}}{K_{1} \cdot \delta / \lambda W_{1} \Rightarrow K_{2} \cdot \delta / \lambda W_{2}}
$$

- Confluence of reduction is easily achieved via "strip" lemma and "diamond" property. This must be proved in the general form:

$$
\frac{L_{0} \vdash T_{0} \Rightarrow T_{1} \quad L_{0} \vdash T_{0} \Rightarrow T_{2} \quad L_{0} \Rightarrow L_{1} \quad L_{0} \Rightarrow L_{2}}{\exists T . \quad L_{1} \vdash T_{1} \Rightarrow T \quad L_{2} \vdash T_{2} \Rightarrow T} \text { diamond }
$$

- The proof is by induction on the subclosures of $\left\langle L_{0}, T_{0}\right\rangle$ (next slide).
- In the β-cases, we must know that reduction is respected by the "refinement": $L_{1} \subseteq L_{2}$ and $L_{2} \vdash T_{1} \Rightarrow T_{2}$ yields $L_{1} \vdash T_{1} \Rightarrow T_{2}$.

$$
\overline{L \dot{\subseteq} \star} \quad \frac{K_{1} \dot{\varrho} K_{2}}{K_{1} \cdot \delta / \lambda W \doteq K_{2} \cdot \delta / \lambda W} \quad \frac{K_{1} \dot{\doteq} K_{2}}{K_{1} \cdot \delta(\odot W . V) \doteq K_{2} \cdot \lambda W}
$$

5. The Order on Subclosures

- When proof by structural induction fails, proof by induction on the relation "being a subterm" provides for a good alternative in general.
- In $\lambda \delta$ version 2 we need the stronger relation of "being a subclosure". One step of this relation is denoted by $\left\langle L_{1}, T_{1}\right\rangle \sqsupset\left\langle L_{2}, T_{2}\right\rangle$:

1. $\langle L, \delta / \lambda / @ / @ V \cdot T\rangle \sqsupset\langle L, V\rangle \bullet\langle L, @ / @ V \cdot T\rangle \sqsupset\langle L, T\rangle \bullet\langle L, \delta / \lambda W . T\rangle \sqsupset\langle L . \delta / \lambda W, T\rangle$
$2\langle K . \delta / \lambda W, \# 0\rangle \sqsupset\langle K, W\rangle \bullet\left\langle L,{ }_{0} \uparrow^{e+1} T\right\rangle \sqsupset\left\langle{ }_{0} \downarrow^{e+1} L, T\right\rangle$ (depth 0 is crucial here)

- Reduction and the order on subclosures commute as follows.

The pointwise reduction is needed when $L_{1}=K . \lambda V_{1}$ and $T_{1}=\# 0$.

$$
\frac{\left\langle L_{1}, T_{1}\right\rangle \sqsupset\left\langle K, V_{1}\right\rangle \quad K \vdash V_{1} \Rightarrow V_{2}}{\exists L_{2}, T_{2} .} \quad L_{1} \Rightarrow L_{2} \quad L_{1} / L_{2} \vdash T_{1} \Rightarrow T_{2}\left\langle L_{2}, T_{2}\right\rangle \sqsupset\left\langle K, V_{2}\right\rangle
$$

- Pointwise reduction and the order on subclosures commute as follows.

$$
\frac{\left\langle L_{1}, T_{1}\right\rangle \sqsupset\left\langle K_{1}, V\right\rangle \quad K_{1} \Rightarrow K_{2}}{\exists L_{2}, T_{2} .} \quad L_{1} \Rightarrow L_{2} \quad L_{1} \vdash T_{1} \Rightarrow T_{2} \quad\left\langle L_{2}, T_{2}\right\rangle \sqsupset\left\langle K_{2}, V\right\rangle
$$

6. Typing

- In $\lambda \delta$ version 1 , we start from $L \vdash T:_{h} U$ meaning that U is a type of T in the env L for the "sort hierarchy" h : a parameter of the calculus.
- $h: \mathrm{N} \rightarrow \mathrm{N}$ satisfies the "strict monotonicity" condition: $i<h(i)$.
- The rules for the type judgment are: (note the generic term V in place of a sort in 2 and 3, note the λ-typing in 3)

$$
\begin{gathered}
\overline{K \vdash \star i:_{h} \star h(i)} 1 \frac{0 \downarrow^{i} L=K \cdot \delta / \lambda W \quad K \vdash W:_{h} V}{L \vdash \# i:_{h} \hat{0}^{i+1}(V / W)} 2 \quad \frac{K \vdash W:_{h} V \quad K \cdot \delta / \lambda W \vdash T:_{h} U}{K \vdash \delta / \lambda W \cdot T:_{h} \delta / \lambda W \cdot U} 3 \\
\frac{L \vdash T:_{h} U}{L \vdash\left(C U . T:_{h} U\right.} 4 \frac{L \vdash T:_{h} U_{1} \quad L \vdash U_{1} \Leftrightarrow^{*} U_{2} \quad L \vdash U_{2}:_{h} T_{2}}{L \vdash T:_{h} U_{2}} 5
\end{gathered}
$$

- The rule for application is too week, in $\lambda \delta$ version 2 we want 6 and 7 :

$$
\begin{gathered}
\frac{L \vdash V:_{h} W \quad L \vdash T::_{h} \lambda W \cdot U}{L \vdash @ V \cdot T: h} \text { @V. } \text { PTS-style }(\lambda \delta \text { version 1) } \\
\frac{L \vdash V:_{h} W \quad L \vdash \lambda W \cdot T: h \lambda W \cdot U}{L \vdash @ V \cdot \lambda W \cdot T::_{h} @ V \cdot \lambda W \cdot U} 6 \quad \frac{L \vdash T:_{h} U L \vdash @ V \cdot U:_{h} W}{L \vdash @ V \cdot T: h} 7
\end{gathered}
$$

7. Meaning of λ-Typing and @-Typing

- Let $L \vdash T:_{h} U:_{h} S$ be $L \vdash T:_{h} U$ and $L \vdash U:_{h} S$. By λ-typing (3) $L . \lambda W \vdash T:_{h} U:_{h} S$ implies $L \vdash \lambda W \cdot T:_{h} \lambda W . U:_{h} \lambda W . S$.
- $\lambda W \cdot T$ is a function, $\lambda W . U$ is function space, $\lambda W . S$ is a collection of function spaces with common domain W and codomains in S.
- The implicit function is legal: $L \vdash \# i:_{h} \lambda W \cdot U:_{h} \lambda W \cdot S$ since by the "start" rule (2), the kind (i.e. type of type) of \#i may differ from a sort.
- The function (implicit or not) may receive an argument (even by the PTS-style "application" rule): $L \vdash @ V \cdot \# i:_{h} @ V \cdot \lambda W \cdot U:{ }_{h} @ V \cdot \lambda W \cdot S$.
- The implicit space is legal: $L \vdash \# i:_{h} \# j:_{h} \lambda W \cdot S$ and the function may be applied by @-typing (7):Lト@V.\#i:h@V.\#j :h @V.入W.S.
- If we reject @-typing, we can still η-expand the function space $\# j$: $L \vdash \# i:{ }_{h} \lambda W . @(\# 0) . \#(j+1):{ }_{h} \lambda W \cdot S$ (PTS: η-conversion with Π).

8. Preservation Analyzed

- The "preservation of type" (subject reduction) is stated as follows: $L \vdash T_{1}:_{h} U$ and $L \vdash T_{1} \Rightarrow T_{2}$ yield $L \vdash T_{2}{ }_{h} U$.
- Usual proof: by induction on $L \vdash T_{1} \Rightarrow T_{2}$ inverting $L \vdash T_{1}:_{h} U$. The inversion lemma for @ involves the "iterated type" judgment:

$$
\begin{array}{ccc}
& L \vdash @ V \cdot T: \hbar X \\
\exists W, Y, U . & L \vdash V: \hbar W & L \vdash T: \hbar Y: \hbar \\
\end{array}
$$

- Type is modulo conversion: a conversion (e.g. a multistep reduction) is allowed at each step of the type chain $L \vdash Y:_{h} \ldots:_{h} \lambda W . U$.
- So a mutual recursion emerges between single step preservation and multiple step preservation at a higher level in the type hierarchy.
- Unfortunately this recursion involves other participants as well.
- We also need simultaneous induction on four axes: subclosures, computation's length (terms/envs), degree (level in the type hierarchy).

9. Preservation Analyzed Farther

- Proving preservation splits in two: (1) which are the participants to the mutual recursion? (2) is the simultaneous induction well founded?
- (1) was solved in 5 months. (2) was solved two days ago after 15 months. In the literature (2) is the "big tree" theorem (solved for Λ_{∞}).
- The "big tree" of a closure $\left\langle L_{1}, T_{1}\right\rangle$ comprises the closures $\left\langle L_{2}, T_{2}\right\rangle$ reachable from $\left\langle L_{1}, T_{1}\right\rangle$ following the four axes in any way.
- Subclosures are finite, as well as finite-length computations on terms. However, we can avoid the use of length by observing the following:
- $\left\langle L_{1}, T_{1}\right\rangle$ is typed so the computations from T_{1} are finite (strong normalization holds). Therefore we use the axis of reducts instead.
- Contrary to CIC and MTT, the pointwise computations from L_{1} (n.a. in Λ_{∞}) are finite only for the entries of L_{1} referred by T_{1}. See Rule (2).

10. Static Type Assignment

- Important: if $L \vdash T:{ }_{h} U$ then there exists U_{0} such that $L \vdash T:{ }_{h} U_{0}$ is proved without the "conversion" Rule (5) (solved for version 1).
- U_{0} is the "canonical" or "static" type of T. This property holds in a PTS with delayed Π-reduction (Kamareddine, Bloo, Nederpelt, 1999).
- The static type assignment $L \vdash T \bullet{ }_{h} U$ is defined by:

$$
\begin{aligned}
& \overline{L \vdash \star i \bullet_{h} \star h(i)} \quad \frac{L \vdash T \bullet_{h} U}{L \vdash @ V \cdot T \bullet_{h} @ V \cdot U} \quad \frac{L \vdash T \bullet_{h} U}{L \vdash @ V \cdot T \bullet_{h} U} \\
& \frac{{ }_{0 .}{ }^{i} L=K . \delta / \lambda W \quad K \vdash W \bullet_{h} V}{L \vdash \# i \bullet_{h} 0^{i+1} V / W} \quad \frac{L . \delta / \lambda W \vdash T \bullet_{h} U}{L \vdash \delta / \lambda W . T \bullet_{h} \delta / \lambda W . U}
\end{aligned}
$$

- $\langle L, T\rangle$ has a static type iff the head variable reference of T is hereditarily bound in L. An equivalent condition is on the next slide.

11. Degree Assignment

- Contrary to Λ_{∞}, by Rule (1), $\lambda \delta$ has infinite type levels. The degree must be assigned in a parametric reference system, termed g hereafter.
- $g: \mathrm{N} \rightarrow \mathrm{N}$ sets the degree of sorts. It satisfies the "compatibility" condition: $g(h(i))=g(i)-1$. It is formalized as functional relation.
- The rules for assigning degree l to $\langle L, T\rangle$ (write $L \vdash T \bullet_{h, g} l$) are:
- Given $L \vdash T \bullet{ }_{h} U$ with $L \vdash T \bullet_{h, g} l>0$, the transition from $\langle L, T\rangle$ to $\langle L, U\rangle$ is a "step" along the axis of "static typing".
- $\langle L, T\rangle$ has a degree for some g iff it has a static type for that g.
- If $L \vdash T \bullet{ }_{h} U$ and $L \vdash T \bullet_{h, g} l$, then $L \vdash U \bullet_{h, g}(l-1)$.

12. Stratified Validity

- Type is defined modulo conversion: preservation is more difficult. Validity (having or being a type) is not: preservation is less difficult.
- How are these linked? T is valid when it has a type, vice versa the types or a valid T are the valid U 's convertible to the static type of T.
- Stratified validity of $\langle L, T\rangle$ (write $L \vdash T!h_{h, g}$) is defined as follows:

$$
\begin{aligned}
& \overline{L \vdash \star i!_{h, g}} \quad \frac{0 \downarrow^{i} L=K \cdot \delta / \lambda W \quad K \vdash W!_{h, g}}{L \vdash \# i!_{h, g}} \quad \frac{L \vdash W!_{h, g} \quad L \cdot \delta / \lambda W \vdash T!_{h, g}}{L \vdash \delta / \lambda W \cdot T!_{h, g}} \\
& \frac{L \vdash V!_{h, g} \quad L \vdash T!_{h, g} \quad L \vdash T \mathbf{\bullet}_{h, g}(l+1) \quad L \vdash T \bullet_{h} U \quad L \vdash U \leftrightarrow^{*} V}{L \vdash\left(C V \cdot T!_{h, g}\right.} \\
& \frac{L \vdash V!_{h, g}, L \vdash T!_{h, g}, L \vdash V \bullet_{h, g}(l+1), L \vdash V \bullet_{h} W, L \vdash W \Rightarrow^{*} W_{0}, L \vdash T \bullet{ }^{*} \Rightarrow_{h, g}^{*} \lambda W_{0} . U}{L \vdash @ V \cdot T!_{h, g}}
\end{aligned}
$$

- Decomposed extended computation (write $L \vdash T_{1} \bullet{ }^{*} \Rightarrow{ }_{h, g} T_{2}$) is: $\exists T, l_{1}, l_{2} . \quad l_{2} \leqslant l_{1}, L \vdash T_{1} \bullet_{h, g} l_{1}, L \vdash T_{1} \bullet{ }_{h}^{*\left(l_{2}\right)} T, L \vdash T \Rightarrow{ }^{*} T_{2}$.

13. The Mutual Recursion

- Preservation of validity needs a mutual recursion with 4 participants:
$1 \quad L_{1} \vdash T_{1}!_{h, g}$ and $L_{1} \vdash T_{1} \Rightarrow T_{2}$ and $L_{1} \Rightarrow L_{2}$ implies $L_{2} \vdash T_{2}!_{h, g}$;
$2 L_{1} \vdash T_{1}!_{h, g}$ and $L_{1} \vdash T_{1} \mathbf{\iota}_{h, g} l$ and $L_{1} \vdash T_{1} \Rightarrow T_{2}$ and $L_{1} \Rightarrow L_{2}$ implies $L_{2} \vdash T_{2} \mathbf{\bullet}_{h, g} l ;$
$3 L \vdash T_{1}!_{h, g}$ and $l_{2} \leqslant l_{1}$ and $L \vdash T_{1} \bullet_{h, g} l_{1}$ and $L \vdash T_{1} \bullet{ }_{h}^{*\left(l_{2}\right)} T_{2}$ implies $L \vdash T_{2}!_{h, g}$;
4 if $L_{1} \vdash T_{1}!_{h, g}$ and $l_{2} \leqslant l_{1}$ and $L_{1} \vdash T_{1} \mathbf{L}_{h, g} l_{1}$ and $L_{1} \vdash T_{1} \bullet_{h}^{*\left(l_{2}\right)} U_{1}$ and $L_{1} \vdash T_{1} \Rightarrow T_{2}$ and $L_{1} \Rightarrow L_{2}$, then there exists U_{2} such that $L_{2} \vdash T_{2} \bullet{ }_{h}^{*\left(l_{2}\right)} U_{2}$ and $L_{2} \vdash U_{1} \Leftrightarrow^{*} U_{2}$.
- Every Participant depends on all participants (including itself), except for Participant 2 that does not depend on Participant 4.
- Suitable "refinements" appear in the β-cases of Participants 1, 2, 4.
- Given the characterization of typing through validity (previous slide), preservation of type follows immediately from Participants 1 and 4.
- Important properties not depending on the mutual recursion: valid terms have a static type and are strongly normalizing.

14. The Simultaneous Induction: Normal Forms

- Axis of subclosures: $\langle L, T\rangle$ is in n.f. when L and T are atomic.
- Axis of static types: $\langle L, T\rangle$ is in normal form when $L \vdash T \mathbf{h}_{h, g} 0$.
- Axis of term reducts: $\left\langle L, T_{1}\right\rangle$ is in normal form when $L \vdash T_{1} \Rightarrow T_{2}$ implies $T_{1}=T_{2}$. Reduction steps are too short for single-step cycles.
- Axis of env reducts: $\left\langle L_{1}, T\right\rangle$ is in normal form when $L_{1} \Rightarrow L_{2}$ implies $L_{1}=L_{2}$ considering just the entries referred by T.
- To this end we introduce lazy equivalence (write $L_{1 d} \equiv_{U} L_{2}$): $L_{1 d} \equiv_{U} L_{2}$ iff $\left|L_{1}\right|=\left|L_{2}\right|$ and for every $K_{1}, K_{2}, W_{1}, W_{2}, i, d \leqslant i$ and $\forall T .{ }_{i} \uparrow^{1} T \neq U$ and ${ }_{0} \downarrow^{i} L_{1}=K_{1} . \delta / \lambda W_{1}$ and ${ }_{0} \downarrow^{i} L_{2}=K_{2} . \delta / \lambda W_{2}$ imply $W_{1}=W_{2}$ and $K_{10} \equiv_{W_{1}} K_{2}$.
- $|L|$ counts the entries of L and the "depth" d allows to prove:

$$
L_{1 d} \equiv_{W} L_{2} \text { and } L_{1} \cdot \delta / \lambda W{ }_{(d+1)} \equiv_{T} L_{2} \cdot \delta / \lambda W \text { imply } L_{1 d} \equiv_{\delta / \lambda W \cdot U} L_{2} .
$$

- So, last axis: $\left\langle L_{1}, T\right\rangle$ is in n.f. when $L_{1} \Rightarrow L_{2}$ implies $L_{1} \equiv_{T} L_{2}$.

15. The Simultaneous Induction: Extension

- Leading idea: if we could rearrange a computation t in the "big tree" grouping the steps along each axis, we could prove that t is finite.
- Unfortunately: static type assignment commutes neither with reduction (participant 4), nor with the order on subclosures.
- Reduction and static type assignment are not separable in "big trees". We generalize both by extending reduction with "type inference" steps.
- Extended redexes: $L \vdash \star i \xrightarrow{s} \star h(i)$ if $g(i)>0 \bullet$ © $V \cdot T \xrightarrow{t} V$ $L \vdash \# i \xrightarrow{l}\left({ }_{0} \wedge^{i+1} W\right)$ if ${ }_{0} \downarrow^{i} L=K . \lambda W$ (the " δ-redex for λ ").
- Hereafter the relations $L \vdash T_{1} \Rightarrow_{h, g} T_{2}$ and $L_{1} \Rightarrow_{h, g} L_{2}$ denote one step of extended reduction on terms and environments respectively.
- No single-step cycles: unchanged halting conditions on these axes.
- No confluence in general (ϵ-step vs. t-step). May hold on valid terms.

16. The Simultaneous Induction: Decomposition

- Note: we can prove that $L \vdash T_{1} \bullet{ }^{*}{ }_{h, g}^{*} T_{2}$ implies $L \vdash T_{1} \Rightarrow{ }_{h, g}^{*} T_{2}$.
- Extended reduction, subclosures, and lazy equivalence commute thus:

$$
\begin{gathered}
\frac{\left\langle L, T_{1}\right\rangle \sqsupset\left\langle K, V_{1}\right\rangle ; K \vdash V_{1} \Rightarrow_{h, g} V_{2}}{\exists T_{2} \cdot L \vdash T_{1} \Rightarrow_{h, g} T_{2} ;\left\langle L, T_{2}\right\rangle \sqsupset\left\langle K, V_{2}\right\rangle}(A) \quad \frac{L_{1} \Rightarrow_{h, g} L_{2} ; L_{2} \vdash T_{1} \Rightarrow_{h, g} T_{2}}{L_{1} \vdash T_{1} \Rightarrow_{h, g}^{*} T_{2}}(B) \\
\frac{L_{10} \equiv_{T_{1}} L_{2} ; L_{2} \vdash T_{1} \Rightarrow_{h, g} T_{2}}{L_{1} \vdash T_{1} \Rightarrow_{h, g} T_{2}}(C) \frac{L_{1} \Rightarrow_{h, g} L_{2} ;\left\langle L_{2}, T_{2}\right\rangle \sqsupset\left\langle K_{2}, V\right\rangle}{\exists K_{1}, T . L_{1} \vdash T_{2} \Rightarrow_{h, g} T ;\left\langle L_{1}, T\right\rangle \sqsupset\left\langle K_{1}, V\right\rangle ; K_{1} \Rightarrow_{h, g} K_{2}}(D) \\
\frac{L_{10} \equiv_{T} L_{2} ;\left\langle L_{2}, T\right\rangle \sqsupset\left\langle K_{2}, V\right\rangle}{\exists K_{1} \cdot\left\langle L_{1}, T\right\rangle \sqsupset\left\langle K_{1}, V\right\rangle ; K_{10} \equiv_{V} K_{2}}(E) \quad \frac{L_{1 d} \equiv_{T} L_{2} ; L_{2} \Rightarrow_{h, g} K_{2}}{\exists K_{1} \cdot L_{1} \Rightarrow_{h, g} K_{1} ; K_{1 d} \equiv_{T} K_{2}}(F)
\end{gathered}
$$

- Rule (A) shows the gain of extended reduction over ordinary one (compare with slide 5). We did not try Rule (D) for ordinary reduction.
- The proof of rule (F) is hard and requires a dedicated apparatus.
- Given a computation t from $\left\langle L_{1}, T_{1}\right\rangle$ to $\left\langle L_{2}, T_{2}\right\rangle$, there are L_{0}, L, T s.t. $L_{1} \vdash T_{1} \Rightarrow{ }_{h, g}^{*} T ;\left\langle L_{1}, T\right\rangle \sqsupset^{*}\left\langle L, T_{2}\right\rangle ; L \Rightarrow{ }_{h, g}^{*} L_{0} ; L_{0} \equiv_{T_{2}} L_{2}$

17. Atomic Arity Assignment

- Strong normalization must be proved for extended reduction. We can adapt the proof working in $\lambda \delta$ version 1 for ordinary reduction.
- We use Tait's candidates of reducibility (CR) containing closures.
- An "arity" encodes the structure of a CR: a "simple" type in this case. $L \vdash T: A$ means that $\langle L, T\rangle$ may belong to the CR with arity A.

$$
\begin{gathered}
\overline{L \vdash \star i: \star} \quad \frac{0 l^{i} L=K . \delta / \lambda W \quad K \vdash W: B}{L \vdash \# i: B} \quad \frac{L \vdash W: B \quad L . \delta W \vdash T: A}{L \vdash \delta W \cdot T: A} \\
\frac{L \vdash W: B \quad L \cdot \lambda W \vdash T: A}{L \vdash \lambda W \cdot T: B \rightarrow A}
\end{gathered} \frac{L \vdash V: B \quad L \vdash T: B \rightarrow A}{L \vdash @ V \cdot T: A} \quad \frac{L \vdash V: A \quad L \vdash T: A}{L \vdash(\odot V T: A}
$$

- Important: $L \vdash T!_{h, g}$ implies $L \vdash T: A$ for some A. Valid terms are simply typed (replacing type annotations with their arities).
- $L \vdash T: A$ implies $L \vdash T \bullet{ }_{h} U$ and $L \vdash U: A$ for some U.

If we take an extended reduction step, we remain in the same CR.

18. Some Points on Strong Normalization

- Idea of the proof. Given $L \vdash T: A$ we construct the CR $\llbracket A \rrbracket_{h, g}$ by induction on A, and prove $\langle L, T\rangle \in \llbracket A \rrbracket_{h, g}$ by induction on $L \vdash T: A$.
- The statement requires a suitable "refinement" relation to handle the β-cases, and a generalization of the relocating functions: $d \uparrow^{e}$ and ${ }_{d} \downarrow^{e}$.
- A CR must satisfy saturation conditions S 0 to $\mathrm{S} 7 . \mathrm{S} 1$ is Girard's CR1, S 2 is Tait's iii, S 0 is $\left\langle{ }_{d} \downarrow^{e} L, T\right\rangle \in \llbracket A \rrbracket_{h, g}$ implies $\left\langle L,{ }_{d} \uparrow^{e} T\right\rangle \in \llbracket A \rrbracket_{h, g}$.
- S3 (Tait's ii) is: $\left\langle L, @ V_{1} \ldots @ V_{n} \cdot \delta(© W \cdot V) \cdot T\right\rangle \in \llbracket A \rrbracket_{h, g}$ implies $\left\langle L, @ V_{1} \ldots @ V_{n} . @ V \cdot \lambda W \cdot T\right\rangle \in \llbracket A \rrbracket_{h, g}$. Proving S3 for $\llbracket \star \rrbracket_{h, g}$ requires:
- $L \vdash @ V \cdot \lambda W \cdot T \Rightarrow_{h, g}^{*} U$ (head) implies $L \vdash \delta(© W \cdot V) \cdot T \Rightarrow{ }_{h, g}^{*} U$. With extended reduction, $T=\# 0, U={ }_{0} \uparrow^{1} W$ is possible on the l.h.s.
- To handle this case on the r.h.s, we need W in the β-reductum (contrary to $\lambda \delta$ version 1), and we need the t-reduction step.

Thank you

