2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department, University of Bologna, Italy.
6 ||T|| HELM is free software; you can redistribute it and/or
7 ||A|| modify it under the terms of the GNU General Public License
8 \ / version 2 or (at your option) any later version.
9 \ / This software is distributed as is, NO WARRANTY.
10 V_______________________________________________________________ *)
20 module E = NCicEnvironment
21 module V = NCicTypeChecker
33 i: string; (* item name *)
34 n: string; (* reference name *)
35 s: int list; (* scope *)
36 c: C.context (* context for kernel calls *)
39 (* internal functions *******************************************************)
42 X.error ("engine: malformed stack: " ^ s)
45 X.error ("engine: malformed term: " ^ s)
48 X.log (P.sprintf "engine: missing macro for %s (%u)" s l)
50 (* generic term processing *)
52 let rec rename s = function
54 | (s1, s2) :: _ when s1 = s -> s2
55 | _ :: tl -> rename s tl
60 rename s !G.alpha_gref
63 if G.is_global_id name then P.sprintf "%s.%s" st.i name else ""
66 let rec aux = function
68 if !G.log_missing then missing s l;
70 | (r, m, a, x) :: _ when r = s && a = l -> m, x
75 let get_head = function
77 let s, _ = K.resolve_reference c in
78 let l = L.length ts in
79 let macro, x = get_macro s l in
80 begin match macro with
84 let ts1, ts2 = X.split_at x ts in
85 Some (macro, s, ts1, ts2)
89 let proc_sort st is = function
90 | C.Prop -> T.Macro "PROP" :: is
91 | C.Type [`Type, u] -> T.Macro "TYPE" :: T.arg (U.string_of_uri u) :: is
92 | C.Type [`CProp, u] -> T.Macro "CROP" :: T.arg (U.string_of_uri u) :: is
93 | C.Type _ -> malformed "T1"
95 let rec proc_term st is = function
98 | C.Implicit _ -> malformed "T2"
100 let s = K.resolve_lref st.c m in
101 T.Macro "LREF" :: T.arg (mk_lname s) :: T.free (mk_ptr st s) :: is
103 begin match get_head ts with
105 let riss = L.rev_map (proc_term st []) ts in
106 T.Macro "APPL" :: T.mk_rev_args riss is
107 | Some (macro, s, [], ts)
108 | Some (macro, s, ts, []) ->
109 let riss = L.rev_map (proc_term st []) ts in
110 T.Macro macro :: T.free s :: T.mk_rev_args riss is
111 | Some (macro, s, ts1, ts2) ->
112 let riss1 = L.rev_map (proc_term st []) ts1 in
113 let riss2 = L.rev_map (proc_term st []) ts2 in
114 T.Macro macro :: T.free s :: T.mk_rev_args riss1 (T.mk_rev_args riss2 is)
116 | C.Prod (s, w, t) ->
117 let is_w = proc_term st [] w in
118 let c = K.add_dec s w st.c in
119 let is_t = proc_term {st with c=c} is t in
120 let macro = if K.not_prop1 c t then "PROD" else "FALL" in
121 T.Macro macro :: T.arg (mk_lname s) :: T.free (mk_ptr st s) :: T.Group is_w :: is_t
122 | C.Lambda (s, w, t) ->
123 let is_w = proc_term st [] w in
124 let is_t = proc_term {st with c=K.add_dec s w st.c} is t in
125 T.Macro "ABST" :: T.arg (mk_lname s) :: T.free (mk_ptr st s) :: T.Group is_w :: is_t
126 | C.LetIn (s, w, v, t) ->
127 let is_w = proc_term st [] w in
128 let is_v = proc_term st [] v in
129 let is_t = proc_term {st with c=K.add_def s w v st.c} is t in
130 T.Macro "ABBR" :: T.arg (mk_lname s) :: T.free (mk_ptr st s) :: T.Group is_w :: T.Group is_v :: is_t
134 let s, name = K.resolve_reference c in
135 let macro, _ = get_macro s 0 in
136 if macro = "" || macro = "APPL" then
137 T.Macro "GREF" :: T.arg (mk_gname name) :: T.free s :: is
139 T.Macro macro :: T.free s :: is
140 | C.Match (w, u, v, ts) ->
141 let is_w = proc_term st [] (C.Const w) in
142 let is_u = proc_term st [] u in
143 let is_v = proc_term st [] v in
144 let riss = X.rev_mapi (proc_case st [] w) K.fst_con ts in
145 let macro = if ts = [] then "CAZE" else "CASE" in
146 T.Macro macro :: T.Group is_w :: T.Group is_u :: T.Group is_v :: T.mk_rev_args riss is
148 and proc_case st is w i t =
149 let v = R.mk_constructor i w in
150 let is_v = proc_term st [] (C.Const v) in
151 let is_t = proc_term st [] t in
152 T.Macro "PAIR" :: T.Group is_v :: T.Group is_t :: is
154 let proc_term st is t = try proc_term st is t with
156 | Invalid_argument "List.nth"
158 | Failure "name_of_reference" -> malformed "T3"
160 (* proof processing *)
162 let typeof st = function
164 | t -> K.whd_typeof st.c t
168 n = ""; s = [1]; c = [];
171 let push st n = {st with
172 n = n; s = 1 :: st.s;
175 let next st f = {st with
177 n = ""; s = match st.s with [] -> failwith "hd" | i :: tl -> succ i :: tl
181 X.rev_map_concat string_of_int "." "" (L.tl st.s)
184 if st.n <> "" || L.tl st.s = [] then ris else
185 T.free (scope st) :: T.Macro "EXIT" :: ris
188 if st.n = "" then ris else
189 T.free (scope st) :: T.free (mk_ptr st st.n) :: T.arg (mk_lname st.n) :: T.Macro "OPEN" :: ris
191 let mk_dec st kind w s ris =
192 let w = if !G.no_types then [] else w in
193 T.Group w :: T.free (mk_ptr st s) :: T.arg (mk_lname s) :: T.Macro kind :: ris
195 let mk_inferred st t ris =
196 let u = typeof st t in
197 let is_u = proc_term st [] u in
198 mk_dec st "DECL" is_u st.n ris
200 let rec proc_proof st ris t = match t with
205 | C.Prod _ -> malformed "P1"
207 | C.Rel _ -> proc_proof st ris (C.Appl [t])
208 | C.Lambda (s, w, t) ->
209 let is_w = proc_term st [] w in
210 let ris = mk_open st ris in
211 proc_proof (next st (K.add_dec s w)) (mk_dec st "PRIM" is_w s ris) t
212 | C.Appl (t0 :: ts) ->
213 let rts = X.rev_neg_filter (K.not_prop2 st.c) [t0] ts in
214 let ris = T.Macro "STEP" :: mk_inferred st t ris in
215 let tts = L.rev_map (proc_term st []) rts in
216 mk_exit st (T.rev_mk_args tts ris)
217 | C.Match (w, u, v, ts) ->
218 let rts = X.rev_neg_filter (K.not_prop2 st.c) [v] ts in
219 let ris = T.Macro "DEST" :: mk_inferred st t ris in
220 let tts = L.rev_map (proc_term st []) rts in
221 mk_exit st (T.rev_mk_args tts ris)
222 | C.LetIn (s, w, v, t) ->
223 let is_w = proc_term st [] w in
224 let ris = mk_open st ris in
225 if K.not_prop1 st.c w then
226 let is_v = proc_term st [] v in
227 let ris = T.Group is_v :: T.Macro "BODY" :: mk_dec st "DECL" is_w s ris in
228 proc_proof (next st (K.add_def s w v)) ris t
230 let ris_v = proc_proof (push st s) ris v in
231 proc_proof (next st (K.add_def s w v)) ris_v t
233 let proc_proof st rs t = try proc_proof st rs t with
235 | Invalid_argument "List.nth"
237 | Failure "name_of_reference" -> malformed "P2"
238 | V.TypeCheckerFailure s
239 | V.AssertFailure s -> malformed (Lazy.force s)
241 | Failure "tl" -> internal "P2"
243 (* top level processing *)
245 let note = T.Note "This file was automatically generated by MaTeX: do not edit"
247 let proc_item item s ss t =
249 let tt = N.process_top_term s t in (* alpha-conversion *)
250 let is = [T.Macro "end"; T.arg item] in
251 note :: T.Macro "begin" :: T.arg item :: T.arg (mk_gname s) :: T.free ss :: proc_term st is tt
253 let proc_top_proof s ss t =
254 if !G.no_proofs then [] else
256 let t0 = A.process_top_term s t in (* anticipation *)
257 let tt = N.process_top_term s t0 in (* alpha-conversion *)
258 let ris = [T.free ss; T.arg (mk_gname s); T.arg "proof"; T.Macro "begin"; note] in
259 L.rev (T.arg "proof" :: T.Macro "end" :: proc_proof st ris tt)
262 let fname = s ^ T.file_ext in
263 begin match !G.list_och with
265 | Some och -> P.fprintf och "%s\n" fname
267 open_out (F.concat !G.out_dir fname)
269 let proc_pair s ss u = function
272 if K.not_prop1 [] u then proc_item "assumption"
273 else proc_item "axiom"
275 let name = X.rev_map_concat X.id "." "type" ss in
276 let och = open_out_tex name in
277 O.out_text och (text_u s name u);
281 if K.not_prop1 [] u then proc_item "declaration", proc_item "definition"
282 else proc_item "proposition", proc_top_proof
284 let name = X.rev_map_concat X.id "." "type" ss in
285 let och = open_out_tex name in
286 O.out_text och (text_u s name u);
288 let name = X.rev_map_concat X.id "." "body" ss in
289 let och = open_out_tex name in
290 O.out_text och (text_t s name t);
293 let proc_fun ss (r, s, i, u, t) =
294 proc_pair s (s :: ss) u (Some t)
296 let proc_constructor ss (r, s, u) =
297 proc_pair s (s :: ss) u None
299 let proc_type ss (r, s, u, cs) =
300 proc_pair s (s :: ss) u None;
301 L.iter (proc_constructor ss) cs
304 let ss = K.segments_of_uri u in
305 let _, _, _, _, obj = E.get_checked_obj G.status u in
307 | C.Constant (_, s, xt, u, _) -> proc_pair s ss u xt
308 | C.Fixpoint (_, fs, _) -> L.iter (proc_fun ss) fs
309 | C.Inductive (_, _, ts, _) -> L.iter (proc_type ss) ts
311 (* interface functions ******************************************************)
313 let process = proc_obj