8 additive_identity is 82
9 additive_inverse1 is 84
10 additive_inverse2 is 83
13 commutativity_of_add is 92
14 commutativity_of_multiply is 91
20 multiplicative_id1 is 79
21 multiplicative_id2 is 78
22 multiplicative_identity is 85
23 multiplicative_inverse1 is 81
24 multiplicative_inverse2 is 80
26 prove_associativity is 94
28 Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
30 multiply ?5 ?6 =?= multiply ?6 ?5
31 [6, 5] by commutativity_of_multiply ?5 ?6
33 add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10)
34 [10, 9, 8] by distributivity1 ?8 ?9 ?10
36 add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14)
37 [14, 13, 12] by distributivity2 ?12 ?13 ?14
39 multiply (add ?16 ?17) ?18
41 add (multiply ?16 ?18) (multiply ?17 ?18)
42 [18, 17, 16] by distributivity3 ?16 ?17 ?18
44 multiply ?20 (add ?21 ?22)
46 add (multiply ?20 ?21) (multiply ?20 ?22)
47 [22, 21, 20] by distributivity4 ?20 ?21 ?22
49 add ?24 (inverse ?24) =>= multiplicative_identity
50 [24] by additive_inverse1 ?24
52 add (inverse ?26) ?26 =>= multiplicative_identity
53 [26] by additive_inverse2 ?26
55 multiply ?28 (inverse ?28) =>= additive_identity
56 [28] by multiplicative_inverse1 ?28
58 multiply (inverse ?30) ?30 =>= additive_identity
59 [30] by multiplicative_inverse2 ?30
61 multiply ?32 multiplicative_identity =>= ?32
62 [32] by multiplicative_id1 ?32
64 multiply multiplicative_identity ?34 =>= ?34
65 [34] by multiplicative_id2 ?34
66 Id : 28, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36
67 Id : 30, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38
70 multiply a (multiply b c) =<= multiply (multiply a b) c
71 [] by prove_associativity
72 Found proof, 49.803119s
73 % SZS status Unsatisfiable for BOO007-2.p
74 % SZS output start CNFRefutation for BOO007-2.p
75 Id : 22, {_}: multiply (inverse ?30) ?30 =>= additive_identity [30] by multiplicative_inverse2 ?30
76 Id : 24, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32
77 Id : 69, {_}: multiply (add ?160 ?161) ?162 =<= add (multiply ?160 ?162) (multiply ?161 ?162) [162, 161, 160] by distributivity3 ?160 ?161 ?162
78 Id : 28, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36
79 Id : 16, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24
80 Id : 10, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14
81 Id : 26, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34
82 Id : 18, {_}: add (inverse ?26) ?26 =>= multiplicative_identity [26] by additive_inverse2 ?26
83 Id : 8, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10
84 Id : 30, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38
85 Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
86 Id : 20, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28
87 Id : 14, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22
88 Id : 12, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18
89 Id : 6, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6
90 Id : 151, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= add (multiply ?356 ?357) additive_identity [357, 356] by Super 14 with 20 at 2,3
91 Id : 157, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= add additive_identity (multiply ?356 ?357) [357, 356] by Demod 151 with 4 at 3
92 Id : 3270, {_}: multiply ?3107 (add ?3108 (inverse ?3107)) =>= multiply ?3107 ?3108 [3108, 3107] by Demod 157 with 30 at 3
93 Id : 136, {_}: add (multiply (inverse ?335) ?336) ?335 =>= multiply multiplicative_identity (add ?336 ?335) [336, 335] by Super 8 with 18 at 1,3
94 Id : 2697, {_}: add (multiply (inverse ?335) ?336) ?335 =>= add ?336 ?335 [336, 335] by Demod 136 with 26 at 3
95 Id : 3279, {_}: multiply ?3129 (add ?3128 (inverse ?3129)) =<= multiply ?3129 (multiply (inverse (inverse ?3129)) ?3128) [3128, 3129] by Super 3270 with 2697 at 2,2
96 Id : 3256, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= multiply ?356 ?357 [357, 356] by Demod 157 with 30 at 3
97 Id : 3316, {_}: multiply ?3129 ?3128 =<= multiply ?3129 (multiply (inverse (inverse ?3129)) ?3128) [3128, 3129] by Demod 3279 with 3256 at 2
98 Id : 135, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= multiply (add ?333 ?332) multiplicative_identity [332, 333] by Super 8 with 18 at 2,3
99 Id : 141, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= multiply multiplicative_identity (add ?333 ?332) [332, 333] by Demod 135 with 6 at 3
100 Id : 2790, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= add ?333 ?332 [332, 333] by Demod 141 with 26 at 3
101 Id : 152, {_}: multiply ?359 (add (inverse ?359) ?360) =>= add additive_identity (multiply ?359 ?360) [360, 359] by Super 14 with 20 at 1,3
102 Id : 2899, {_}: multiply ?2812 (add (inverse ?2812) ?2813) =>= multiply ?2812 ?2813 [2813, 2812] by Demod 152 with 30 at 3
103 Id : 122, {_}: add ?311 (multiply (inverse ?311) ?312) =>= multiply multiplicative_identity (add ?311 ?312) [312, 311] by Super 10 with 16 at 1,3
104 Id : 1484, {_}: add ?1608 (multiply (inverse ?1608) ?1609) =>= add ?1608 ?1609 [1609, 1608] by Demod 122 with 26 at 3
105 Id : 1488, {_}: add ?1618 additive_identity =<= add ?1618 (inverse (inverse ?1618)) [1618] by Super 1484 with 20 at 2,2
106 Id : 1524, {_}: ?1618 =<= add ?1618 (inverse (inverse ?1618)) [1618] by Demod 1488 with 28 at 2
107 Id : 2914, {_}: multiply ?2849 (inverse ?2849) =<= multiply ?2849 (inverse (inverse (inverse ?2849))) [2849] by Super 2899 with 1524 at 2,2
108 Id : 2987, {_}: additive_identity =<= multiply ?2849 (inverse (inverse (inverse ?2849))) [2849] by Demod 2914 with 20 at 2
109 Id : 3172, {_}: add additive_identity (inverse (inverse ?3022)) =?= add ?3022 (inverse (inverse ?3022)) [3022] by Super 2790 with 2987 at 1,2
110 Id : 3182, {_}: inverse (inverse ?3022) =<= add ?3022 (inverse (inverse ?3022)) [3022] by Demod 3172 with 30 at 2
111 Id : 3183, {_}: inverse (inverse ?3022) =>= ?3022 [3022] by Demod 3182 with 1524 at 3
112 Id : 3317, {_}: multiply ?3129 ?3128 =<= multiply ?3129 (multiply ?3129 ?3128) [3128, 3129] by Demod 3316 with 3183 at 1,2,3
113 Id : 3479, {_}: multiply (multiply ?3373 ?3374) ?3373 =>= multiply ?3373 ?3374 [3374, 3373] by Super 6 with 3317 at 3
114 Id : 3807, {_}: multiply (add ?3814 (multiply ?3812 ?3813)) ?3812 =>= add (multiply ?3814 ?3812) (multiply ?3812 ?3813) [3813, 3812, 3814] by Super 12 with 3479 at 2,3
115 Id : 70, {_}: multiply (add ?164 ?165) ?166 =<= add (multiply ?164 ?166) (multiply ?166 ?165) [166, 165, 164] by Super 69 with 6 at 2,3
116 Id : 27040, {_}: multiply (add ?32987 (multiply ?32988 ?32989)) ?32988 =>= multiply (add ?32987 ?32989) ?32988 [32989, 32988, 32987] by Demod 3807 with 70 at 3
117 Id : 27129, {_}: multiply (multiply (add ?33340 ?33341) ?33342) ?33341 =?= multiply (add (multiply ?33340 ?33342) ?33342) ?33341 [33342, 33341, 33340] by Super 27040 with 12 at 1,2
118 Id : 1722, {_}: add (multiply ?1843 ?1842) (inverse (inverse ?1842)) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1842, 1843] by Super 8 with 1524 at 2,3
119 Id : 1739, {_}: add (inverse (inverse ?1842)) (multiply ?1843 ?1842) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1843, 1842] by Demod 1722 with 4 at 2
120 Id : 6934, {_}: add ?1842 (multiply ?1843 ?1842) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1843, 1842] by Demod 1739 with 3183 at 1,2
121 Id : 6935, {_}: add ?1842 (multiply ?1843 ?1842) =<= multiply (add ?1843 ?1842) ?1842 [1843, 1842] by Demod 6934 with 3183 at 2,1,3
122 Id : 235, {_}: add (multiply ?485 additive_identity) ?484 =<= multiply (add ?485 ?484) ?484 [484, 485] by Super 8 with 30 at 2,3
123 Id : 498, {_}: multiply ?740 (add ?739 ?740) =>= add (multiply ?739 additive_identity) ?740 [739, 740] by Super 6 with 235 at 3
124 Id : 236, {_}: add (multiply additive_identity ?488) ?487 =<= multiply ?487 (add ?488 ?487) [487, 488] by Super 8 with 30 at 1,3
125 Id : 968, {_}: add (multiply additive_identity ?739) ?740 =?= add (multiply ?739 additive_identity) ?740 [740, 739] by Demod 498 with 236 at 2
126 Id : 450, {_}: add ?682 (multiply additive_identity ?683) =<= multiply ?682 (add ?682 ?683) [683, 682] by Super 10 with 28 at 1,3
127 Id : 453, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= multiply (inverse ?690) multiplicative_identity [690] by Super 450 with 18 at 2,3
128 Id : 478, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= multiply multiplicative_identity (inverse ?690) [690] by Demod 453 with 6 at 3
129 Id : 479, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= inverse ?690 [690] by Demod 478 with 26 at 3
130 Id : 2879, {_}: multiply ?359 (add (inverse ?359) ?360) =>= multiply ?359 ?360 [360, 359] by Demod 152 with 30 at 3
131 Id : 2886, {_}: add (inverse (add (inverse additive_identity) ?2774)) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Super 479 with 2879 at 2,2
132 Id : 221, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 18 with 28 at 2
133 Id : 2945, {_}: add (inverse (add multiplicative_identity ?2774)) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2886 with 221 at 1,1,1,2
134 Id : 1490, {_}: add ?1622 (inverse ?1622) =>= add ?1622 multiplicative_identity [1622] by Super 1484 with 24 at 2,2
135 Id : 1526, {_}: multiplicative_identity =<= add ?1622 multiplicative_identity [1622] by Demod 1490 with 16 at 2
136 Id : 1546, {_}: add multiplicative_identity ?1675 =>= multiplicative_identity [1675] by Super 4 with 1526 at 3
137 Id : 2946, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2945 with 1546 at 1,1,2
138 Id : 183, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 22 with 24 at 2
139 Id : 2947, {_}: add additive_identity (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2946 with 183 at 1,2
140 Id : 2948, {_}: multiply additive_identity ?2774 =<= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2947 with 30 at 2
141 Id : 2949, {_}: multiply additive_identity ?2774 =<= inverse (add multiplicative_identity ?2774) [2774] by Demod 2948 with 221 at 1,1,3
142 Id : 2950, {_}: multiply additive_identity ?2774 =>= inverse multiplicative_identity [2774] by Demod 2949 with 1546 at 1,3
143 Id : 2951, {_}: multiply additive_identity ?2774 =>= additive_identity [2774] by Demod 2950 with 183 at 3
144 Id : 3009, {_}: add additive_identity ?740 =<= add (multiply ?739 additive_identity) ?740 [739, 740] by Demod 968 with 2951 at 1,2
145 Id : 3029, {_}: ?740 =<= add (multiply ?739 additive_identity) ?740 [739, 740] by Demod 3009 with 30 at 2
146 Id : 3031, {_}: ?484 =<= multiply (add ?485 ?484) ?484 [485, 484] by Demod 235 with 3029 at 2
147 Id : 6936, {_}: add ?1842 (multiply ?1843 ?1842) =>= ?1842 [1843, 1842] by Demod 6935 with 3031 at 3
148 Id : 6956, {_}: add (multiply ?7059 ?7058) ?7058 =>= ?7058 [7058, 7059] by Super 4 with 6936 at 3
149 Id : 52241, {_}: multiply (multiply (add ?83798 ?83799) ?83800) ?83799 =>= multiply ?83800 ?83799 [83800, 83799, 83798] by Demod 27129 with 6956 at 1,3
150 Id : 52270, {_}: multiply (multiply ?83922 ?83923) (multiply ?83921 ?83922) =>= multiply ?83923 (multiply ?83921 ?83922) [83921, 83923, 83922] by Super 52241 with 6936 at 1,1,2
151 Id : 3280, {_}: multiply ?3132 (add ?3131 (inverse ?3132)) =<= multiply ?3132 (multiply ?3131 (inverse (inverse ?3132))) [3131, 3132] by Super 3270 with 2790 at 2,2
152 Id : 3318, {_}: multiply ?3132 ?3131 =<= multiply ?3132 (multiply ?3131 (inverse (inverse ?3132))) [3131, 3132] by Demod 3280 with 3256 at 2
153 Id : 3319, {_}: multiply ?3132 ?3131 =<= multiply ?3132 (multiply ?3131 ?3132) [3131, 3132] by Demod 3318 with 3183 at 2,2,3
154 Id : 3542, {_}: multiply ?3472 (add ?3474 (multiply ?3473 ?3472)) =>= add (multiply ?3472 ?3474) (multiply ?3472 ?3473) [3473, 3474, 3472] by Super 14 with 3319 at 2,3
155 Id : 23927, {_}: multiply ?27205 (add ?27206 (multiply ?27207 ?27205)) =>= multiply ?27205 (add ?27206 ?27207) [27207, 27206, 27205] by Demod 3542 with 14 at 3
156 Id : 24009, {_}: multiply ?27527 (multiply ?27528 (add ?27526 ?27527)) =?= multiply ?27527 (add (multiply ?27528 ?27526) ?27528) [27526, 27528, 27527] by Super 23927 with 14 at 2,2
157 Id : 7091, {_}: add (multiply ?7292 ?7293) ?7293 =>= ?7293 [7293, 7292] by Super 4 with 6936 at 3
158 Id : 7092, {_}: add (multiply ?7296 ?7295) ?7296 =>= ?7296 [7295, 7296] by Super 7091 with 6 at 1,2
159 Id : 49144, {_}: multiply ?77879 (multiply ?77880 (add ?77881 ?77879)) =>= multiply ?77879 ?77880 [77881, 77880, 77879] by Demod 24009 with 7092 at 2,3
160 Id : 6968, {_}: add ?7096 (multiply ?7097 ?7096) =>= ?7096 [7097, 7096] by Demod 6935 with 3031 at 3
161 Id : 6969, {_}: add ?7099 (multiply ?7099 ?7100) =>= ?7099 [7100, 7099] by Super 6968 with 6 at 2,2
162 Id : 49175, {_}: multiply (multiply ?78012 ?78010) (multiply ?78011 ?78012) =>= multiply (multiply ?78012 ?78010) ?78011 [78011, 78010, 78012] by Super 49144 with 6969 at 2,2,2
163 Id : 77462, {_}: multiply (multiply ?134082 ?134083) ?134084 =?= multiply ?134083 (multiply ?134084 ?134082) [134084, 134083, 134082] by Demod 52270 with 49175 at 2
164 Id : 77468, {_}: multiply (multiply (add (inverse ?134104) ?134102) ?134103) ?134104 =>= multiply ?134103 (multiply ?134104 ?134102) [134103, 134102, 134104] by Super 77462 with 2879 at 2,3
165 Id : 3544, {_}: multiply (multiply ?3481 ?3480) ?3480 =>= multiply ?3480 ?3481 [3480, 3481] by Super 6 with 3319 at 3
166 Id : 3902, {_}: multiply (add ?3943 (multiply ?3941 ?3942)) ?3942 =>= add (multiply ?3943 ?3942) (multiply ?3942 ?3941) [3942, 3941, 3943] by Super 12 with 3544 at 2,3
167 Id : 27853, {_}: multiply (add ?34448 (multiply ?34449 ?34450)) ?34450 =>= multiply (add ?34448 ?34449) ?34450 [34450, 34449, 34448] by Demod 3902 with 70 at 3
168 Id : 27945, {_}: multiply (multiply ?34816 (add ?34815 ?34817)) ?34817 =?= multiply (add (multiply ?34816 ?34815) ?34816) ?34817 [34817, 34815, 34816] by Super 27853 with 14 at 1,2
169 Id : 53412, {_}: multiply (multiply ?86132 (add ?86133 ?86134)) ?86134 =>= multiply ?86132 ?86134 [86134, 86133, 86132] by Demod 27945 with 7092 at 1,3
170 Id : 53441, {_}: multiply (multiply ?86256 ?86257) (multiply ?86255 ?86257) =>= multiply ?86256 (multiply ?86255 ?86257) [86255, 86257, 86256] by Super 53412 with 6936 at 2,1,2
171 Id : 49173, {_}: multiply (multiply ?78002 ?78004) (multiply ?78003 ?78004) =>= multiply (multiply ?78002 ?78004) ?78003 [78003, 78004, 78002] by Super 49144 with 6936 at 2,2,2
172 Id : 79216, {_}: multiply (multiply ?86256 ?86257) ?86255 =?= multiply ?86256 (multiply ?86255 ?86257) [86255, 86257, 86256] by Demod 53441 with 49173 at 2
173 Id : 290220, {_}: multiply (add (inverse ?134104) ?134102) (multiply ?134104 ?134103) =>= multiply ?134103 (multiply ?134104 ?134102) [134103, 134102, 134104] by Demod 77468 with 79216 at 2
174 Id : 148, {_}: multiply (add ?349 ?350) (inverse ?349) =>= add additive_identity (multiply ?350 (inverse ?349)) [350, 349] by Super 12 with 20 at 1,3
175 Id : 160, {_}: multiply (inverse ?349) (add ?349 ?350) =>= add additive_identity (multiply ?350 (inverse ?349)) [350, 349] by Demod 148 with 6 at 2
176 Id : 4141, {_}: multiply (inverse ?4194) (add ?4194 ?4195) =>= multiply ?4195 (inverse ?4194) [4195, 4194] by Demod 160 with 30 at 3
177 Id : 3259, {_}: add (multiply (inverse ?3073) ?3072) ?3073 =<= add (add ?3072 (inverse (inverse ?3073))) ?3073 [3072, 3073] by Super 2697 with 3256 at 1,2
178 Id : 3300, {_}: add ?3072 ?3073 =<= add (add ?3072 (inverse (inverse ?3073))) ?3073 [3073, 3072] by Demod 3259 with 2697 at 2
179 Id : 3301, {_}: add ?3072 ?3073 =<= add (add ?3072 ?3073) ?3073 [3073, 3072] by Demod 3300 with 3183 at 2,1,3
180 Id : 4158, {_}: multiply (inverse (add ?4240 ?4241)) (add ?4240 ?4241) =>= multiply ?4241 (inverse (add ?4240 ?4241)) [4241, 4240] by Super 4141 with 3301 at 2,2
181 Id : 4229, {_}: additive_identity =<= multiply ?4241 (inverse (add ?4240 ?4241)) [4240, 4241] by Demod 4158 with 22 at 2
182 Id : 5045, {_}: multiply (inverse (add ?4937 ?4936)) ?4936 =>= additive_identity [4936, 4937] by Super 6 with 4229 at 3
183 Id : 7219, {_}: multiply (inverse ?7487) (multiply ?7487 ?7488) =>= additive_identity [7488, 7487] by Super 5045 with 6969 at 1,1,2
184 Id : 7871, {_}: multiply (add (inverse ?8300) ?8302) (multiply ?8300 ?8301) =>= add additive_identity (multiply ?8302 (multiply ?8300 ?8301)) [8301, 8302, 8300] by Super 12 with 7219 at 1,3
185 Id : 7967, {_}: multiply (add (inverse ?8300) ?8302) (multiply ?8300 ?8301) =>= multiply ?8302 (multiply ?8300 ?8301) [8301, 8302, 8300] by Demod 7871 with 30 at 3
186 Id : 290221, {_}: multiply ?134102 (multiply ?134104 ?134103) =?= multiply ?134103 (multiply ?134104 ?134102) [134103, 134104, 134102] by Demod 290220 with 7967 at 2
187 Id : 166, {_}: multiply (add (inverse ?383) ?384) ?383 =>= add additive_identity (multiply ?384 ?383) [384, 383] by Super 12 with 22 at 1,3
188 Id : 4249, {_}: multiply (add (inverse ?383) ?384) ?383 =>= multiply ?384 ?383 [384, 383] by Demod 166 with 30 at 3
189 Id : 77480, {_}: multiply (multiply ?134153 ?134154) (add (inverse ?134153) ?134152) =>= multiply ?134154 (multiply ?134152 ?134153) [134152, 134154, 134153] by Super 77462 with 4249 at 2,3
190 Id : 77935, {_}: multiply (add (inverse ?134153) ?134152) (multiply ?134153 ?134154) =>= multiply ?134154 (multiply ?134152 ?134153) [134154, 134152, 134153] by Demod 77480 with 6 at 2
191 Id : 295050, {_}: multiply ?134152 (multiply ?134153 ?134154) =?= multiply ?134154 (multiply ?134152 ?134153) [134154, 134153, 134152] by Demod 77935 with 7967 at 2
192 Id : 3012, {_}: add additive_identity ?487 =<= multiply ?487 (add ?488 ?487) [488, 487] by Demod 236 with 2951 at 1,2
193 Id : 3025, {_}: ?487 =<= multiply ?487 (add ?488 ?487) [488, 487] by Demod 3012 with 30 at 2
194 Id : 6954, {_}: add ?7050 (multiply ?7052 (multiply ?7051 ?7050)) =>= multiply (add ?7050 ?7052) ?7050 [7051, 7052, 7050] by Super 10 with 6936 at 2,3
195 Id : 219, {_}: add ?458 (multiply ?459 additive_identity) =<= multiply (add ?458 ?459) ?458 [459, 458] by Super 10 with 28 at 2,3
196 Id : 310, {_}: multiply ?527 (add ?527 ?528) =>= add ?527 (multiply ?528 additive_identity) [528, 527] by Super 6 with 219 at 3
197 Id : 220, {_}: add ?461 (multiply additive_identity ?462) =<= multiply ?461 (add ?461 ?462) [462, 461] by Super 10 with 28 at 1,3
198 Id : 632, {_}: add ?527 (multiply additive_identity ?528) =?= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 310 with 220 at 2
199 Id : 3013, {_}: add ?527 additive_identity =<= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 632 with 2951 at 2,2
200 Id : 3021, {_}: ?527 =<= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 3013 with 28 at 2
201 Id : 3024, {_}: ?458 =<= multiply (add ?458 ?459) ?458 [459, 458] by Demod 219 with 3021 at 2
202 Id : 7015, {_}: add ?7050 (multiply ?7052 (multiply ?7051 ?7050)) =>= ?7050 [7051, 7052, 7050] by Demod 6954 with 3024 at 3
203 Id : 54601, {_}: multiply ?88480 (multiply ?88481 ?88482) =<= multiply (multiply ?88480 (multiply ?88481 ?88482)) ?88482 [88482, 88481, 88480] by Super 3025 with 7015 at 2,3
204 Id : 54602, {_}: multiply ?88484 (multiply ?88485 ?88486) =<= multiply (multiply ?88484 (multiply ?88486 ?88485)) ?88486 [88486, 88485, 88484] by Super 54601 with 6 at 2,1,3
205 Id : 7204, {_}: add ?7439 (multiply ?7441 (multiply ?7439 ?7440)) =>= multiply (add ?7439 ?7441) ?7439 [7440, 7441, 7439] by Super 10 with 6969 at 2,3
206 Id : 7269, {_}: add ?7439 (multiply ?7441 (multiply ?7439 ?7440)) =>= ?7439 [7440, 7441, 7439] by Demod 7204 with 3024 at 3
207 Id : 30112, {_}: multiply ?38749 (multiply ?38748 ?38750) =<= multiply (multiply ?38749 (multiply ?38748 ?38750)) ?38748 [38750, 38748, 38749] by Super 3025 with 7269 at 2,3
208 Id : 81336, {_}: multiply ?88484 (multiply ?88485 ?88486) =?= multiply ?88484 (multiply ?88486 ?88485) [88486, 88485, 88484] by Demod 54602 with 30112 at 3
209 Id : 297313, {_}: multiply c (multiply b a) === multiply c (multiply b a) [] by Demod 297312 with 81336 at 2
210 Id : 297312, {_}: multiply c (multiply a b) =>= multiply c (multiply b a) [] by Demod 292477 with 295050 at 2
211 Id : 292477, {_}: multiply b (multiply c a) =>= multiply c (multiply b a) [] by Demod 255 with 290221 at 2
212 Id : 255, {_}: multiply a (multiply c b) =>= multiply c (multiply b a) [] by Demod 254 with 6 at 2,3
213 Id : 254, {_}: multiply a (multiply c b) =>= multiply c (multiply a b) [] by Demod 253 with 6 at 3
214 Id : 253, {_}: multiply a (multiply c b) =<= multiply (multiply a b) c [] by Demod 2 with 6 at 2,2
215 Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity
216 % SZS output end CNFRefutation for BOO007-2.p
223 additive_identity is 88
224 additive_inverse1 is 83
227 commutativity_of_add is 92
228 commutativity_of_multiply is 91
229 distributivity1 is 90
230 distributivity2 is 89
232 multiplicative_id1 is 85
233 multiplicative_identity is 86
234 multiplicative_inverse1 is 82
236 prove_associativity is 94
238 Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
240 multiply ?5 ?6 =?= multiply ?6 ?5
241 [6, 5] by commutativity_of_multiply ?5 ?6
243 add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10)
244 [10, 9, 8] by distributivity1 ?8 ?9 ?10
246 multiply ?12 (add ?13 ?14)
248 add (multiply ?12 ?13) (multiply ?12 ?14)
249 [14, 13, 12] by distributivity2 ?12 ?13 ?14
250 Id : 12, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16
252 multiply ?18 multiplicative_identity =>= ?18
253 [18] by multiplicative_id1 ?18
255 add ?20 (inverse ?20) =>= multiplicative_identity
256 [20] by additive_inverse1 ?20
258 multiply ?22 (inverse ?22) =>= additive_identity
259 [22] by multiplicative_inverse1 ?22
262 multiply a (multiply b c) =<= multiply (multiply a b) c
263 [] by prove_associativity
264 Found proof, 75.486209s
265 % SZS status Unsatisfiable for BOO007-4.p
266 % SZS output start CNFRefutation for BOO007-4.p
267 Id : 14, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18
268 Id : 16, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20
269 Id : 8, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10
270 Id : 12, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16
271 Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
272 Id : 18, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22
273 Id : 10, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14
274 Id : 6, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6
275 Id : 81, {_}: multiply ?187 (add (inverse ?187) ?188) =>= add additive_identity (multiply ?187 ?188) [188, 187] by Super 10 with 18 at 1,3
276 Id : 57, {_}: add additive_identity ?136 =>= ?136 [136] by Super 4 with 12 at 3
277 Id : 2041, {_}: multiply ?187 (add (inverse ?187) ?188) =>= multiply ?187 ?188 [188, 187] by Demod 81 with 57 at 3
278 Id : 2049, {_}: multiply (add (inverse ?1798) ?1799) ?1798 =>= multiply ?1798 ?1799 [1799, 1798] by Super 6 with 2041 at 3
279 Id : 72, {_}: add ?169 (multiply (inverse ?169) ?170) =>= multiply multiplicative_identity (add ?169 ?170) [170, 169] by Super 8 with 16 at 1,3
280 Id : 65, {_}: multiply multiplicative_identity ?154 =>= ?154 [154] by Super 6 with 14 at 3
281 Id : 1065, {_}: add ?169 (multiply (inverse ?169) ?170) =>= add ?169 ?170 [170, 169] by Demod 72 with 65 at 3
282 Id : 80, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= add (multiply ?184 ?185) additive_identity [185, 184] by Super 10 with 18 at 2,3
283 Id : 88, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= add additive_identity (multiply ?184 ?185) [185, 184] by Demod 80 with 4 at 3
284 Id : 2371, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= multiply ?184 ?185 [185, 184] by Demod 88 with 57 at 3
285 Id : 2380, {_}: add ?2048 (multiply (inverse ?2048) ?2047) =<= add ?2048 (add ?2047 (inverse (inverse ?2048))) [2047, 2048] by Super 1065 with 2371 at 2,2
286 Id : 2402, {_}: add ?2048 ?2047 =<= add ?2048 (add ?2047 (inverse (inverse ?2048))) [2047, 2048] by Demod 2380 with 1065 at 2
287 Id : 71, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= multiply (add ?166 ?167) multiplicative_identity [167, 166] by Super 8 with 16 at 2,3
288 Id : 79, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= multiply multiplicative_identity (add ?166 ?167) [167, 166] by Demod 71 with 6 at 3
289 Id : 1969, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= add ?166 ?167 [167, 166] by Demod 79 with 65 at 3
290 Id : 2056, {_}: multiply ?1815 (add (inverse ?1815) ?1816) =>= multiply ?1815 ?1816 [1816, 1815] by Demod 81 with 57 at 3
291 Id : 1077, {_}: add ?1042 (multiply (inverse ?1042) ?1043) =>= add ?1042 ?1043 [1043, 1042] by Demod 72 with 65 at 3
292 Id : 1082, {_}: add ?1054 additive_identity =<= add ?1054 (inverse (inverse ?1054)) [1054] by Super 1077 with 18 at 2,2
293 Id : 1115, {_}: ?1054 =<= add ?1054 (inverse (inverse ?1054)) [1054] by Demod 1082 with 12 at 2
294 Id : 2072, {_}: multiply ?1854 (inverse ?1854) =<= multiply ?1854 (inverse (inverse (inverse ?1854))) [1854] by Super 2056 with 1115 at 2,2
295 Id : 2140, {_}: additive_identity =<= multiply ?1854 (inverse (inverse (inverse ?1854))) [1854] by Demod 2072 with 18 at 2
296 Id : 2304, {_}: add (inverse (inverse ?1984)) additive_identity =?= add (inverse (inverse ?1984)) ?1984 [1984] by Super 1969 with 2140 at 2,2
297 Id : 2314, {_}: add additive_identity (inverse (inverse ?1984)) =<= add (inverse (inverse ?1984)) ?1984 [1984] by Demod 2304 with 4 at 2
298 Id : 2315, {_}: inverse (inverse ?1984) =<= add (inverse (inverse ?1984)) ?1984 [1984] by Demod 2314 with 57 at 2
299 Id : 1260, {_}: add (inverse (inverse ?1219)) ?1219 =>= ?1219 [1219] by Super 4 with 1115 at 3
300 Id : 2316, {_}: inverse (inverse ?1984) =>= ?1984 [1984] by Demod 2315 with 1260 at 3
301 Id : 2403, {_}: add ?2048 ?2047 =<= add ?2048 (add ?2047 ?2048) [2047, 2048] by Demod 2402 with 2316 at 2,2,3
302 Id : 2435, {_}: add ?2108 (multiply ?2110 (add ?2109 ?2108)) =<= multiply (add ?2108 ?2110) (add ?2108 ?2109) [2109, 2110, 2108] by Super 8 with 2403 at 2,3
303 Id : 2463, {_}: add ?2108 (multiply ?2110 (add ?2109 ?2108)) =>= add ?2108 (multiply ?2110 ?2109) [2109, 2110, 2108] by Demod 2435 with 8 at 3
304 Id : 18875, {_}: multiply (add (inverse ?19839) (multiply ?19837 ?19838)) ?19839 =?= multiply ?19839 (multiply ?19837 (add ?19838 (inverse ?19839))) [19838, 19837, 19839] by Super 2049 with 2463 at 1,2
305 Id : 151787, {_}: multiply ?278411 (multiply ?278412 ?278413) =<= multiply ?278411 (multiply ?278412 (add ?278413 (inverse ?278411))) [278413, 278412, 278411] by Demod 18875 with 2049 at 2
306 Id : 1071, {_}: add (multiply (inverse ?1025) ?1026) ?1025 =>= add ?1025 ?1026 [1026, 1025] by Super 4 with 1065 at 3
307 Id : 151803, {_}: multiply ?278483 (multiply ?278484 (multiply (inverse (inverse ?278483)) ?278482)) =>= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278484, 278483] by Super 151787 with 1071 at 2,2,3
308 Id : 152295, {_}: multiply ?278483 (multiply ?278484 (multiply ?278483 ?278482)) =<= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278484, 278483] by Demod 151803 with 2316 at 1,2,2,2
309 Id : 228, {_}: add ?322 (multiply ?323 additive_identity) =<= multiply (add ?322 ?323) ?322 [323, 322] by Super 8 with 12 at 2,3
310 Id : 229, {_}: add ?325 (multiply ?326 additive_identity) =<= multiply (add ?326 ?325) ?325 [326, 325] by Super 228 with 4 at 1,3
311 Id : 331, {_}: add ?429 (multiply additive_identity ?430) =<= multiply ?429 (add ?429 ?430) [430, 429] by Super 8 with 12 at 1,3
312 Id : 332, {_}: add ?432 (multiply additive_identity ?433) =<= multiply ?432 (add ?433 ?432) [433, 432] by Super 331 with 4 at 2,3
313 Id : 73, {_}: add (inverse ?172) ?172 =>= multiplicative_identity [172] by Super 4 with 16 at 3
314 Id : 336, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= multiply (inverse ?441) multiplicative_identity [441] by Super 331 with 73 at 2,3
315 Id : 355, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= multiply multiplicative_identity (inverse ?441) [441] by Demod 336 with 6 at 3
316 Id : 356, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= inverse ?441 [441] by Demod 355 with 65 at 3
317 Id : 713, {_}: add (multiply additive_identity ?819) (multiply additive_identity (inverse ?819)) =>= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Super 332 with 356 at 2,3
318 Id : 726, {_}: multiply additive_identity (add ?819 (inverse ?819)) =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 713 with 10 at 2
319 Id : 727, {_}: multiply additive_identity multiplicative_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 726 with 16 at 2,2
320 Id : 728, {_}: multiply multiplicative_identity additive_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 727 with 6 at 2
321 Id : 729, {_}: additive_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 728 with 65 at 2
322 Id : 730, {_}: additive_identity =<= multiply (inverse ?819) (multiply additive_identity ?819) [819] by Demod 729 with 6 at 3
323 Id : 1088, {_}: add ?1069 additive_identity =<= add ?1069 (multiply additive_identity ?1069) [1069] by Super 1077 with 730 at 2,2
324 Id : 1118, {_}: ?1069 =<= add ?1069 (multiply additive_identity ?1069) [1069] by Demod 1088 with 12 at 2
325 Id : 1283, {_}: add (multiply additive_identity ?1241) (multiply additive_identity ?1241) =>= multiply (multiply additive_identity ?1241) ?1241 [1241] by Super 332 with 1118 at 2,3
326 Id : 1319, {_}: multiply additive_identity (add ?1241 ?1241) =<= multiply (multiply additive_identity ?1241) ?1241 [1241] by Demod 1283 with 10 at 2
327 Id : 82, {_}: multiply (inverse ?190) ?190 =>= additive_identity [190] by Super 6 with 18 at 3
328 Id : 1083, {_}: add ?1056 additive_identity =?= add ?1056 ?1056 [1056] by Super 1077 with 82 at 2,2
329 Id : 1116, {_}: ?1056 =<= add ?1056 ?1056 [1056] by Demod 1083 with 12 at 2
330 Id : 1320, {_}: multiply additive_identity ?1241 =<= multiply (multiply additive_identity ?1241) ?1241 [1241] by Demod 1319 with 1116 at 2,2
331 Id : 1567, {_}: multiply ?1480 (multiply additive_identity ?1480) =>= multiply additive_identity ?1480 [1480] by Super 6 with 1320 at 3
332 Id : 2051, {_}: add (inverse (add (inverse additive_identity) ?1804)) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Super 356 with 2041 at 2,2
333 Id : 92, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 16 with 57 at 2
334 Id : 2095, {_}: add (inverse (add multiplicative_identity ?1804)) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2051 with 92 at 1,1,1,2
335 Id : 1081, {_}: add ?1052 (inverse ?1052) =>= add ?1052 multiplicative_identity [1052] by Super 1077 with 14 at 2,2
336 Id : 1114, {_}: multiplicative_identity =<= add ?1052 multiplicative_identity [1052] by Demod 1081 with 16 at 2
337 Id : 1133, {_}: add multiplicative_identity ?1095 =>= multiplicative_identity [1095] by Super 4 with 1114 at 3
338 Id : 2096, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2095 with 1133 at 1,1,2
339 Id : 139, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 18 with 65 at 2
340 Id : 2097, {_}: add additive_identity (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2096 with 139 at 1,2
341 Id : 2098, {_}: multiply additive_identity ?1804 =<= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2097 with 57 at 2
342 Id : 2099, {_}: multiply additive_identity ?1804 =<= inverse (add multiplicative_identity ?1804) [1804] by Demod 2098 with 92 at 1,1,3
343 Id : 2100, {_}: multiply additive_identity ?1804 =>= inverse multiplicative_identity [1804] by Demod 2099 with 1133 at 1,3
344 Id : 2101, {_}: multiply additive_identity ?1804 =>= additive_identity [1804] by Demod 2100 with 139 at 3
345 Id : 2167, {_}: multiply ?1480 additive_identity =?= multiply additive_identity ?1480 [1480] by Demod 1567 with 2101 at 2,2
346 Id : 2168, {_}: multiply ?1480 additive_identity =>= additive_identity [1480] by Demod 2167 with 2101 at 3
347 Id : 2174, {_}: add ?325 additive_identity =<= multiply (add ?326 ?325) ?325 [326, 325] by Demod 229 with 2168 at 2,2
348 Id : 2180, {_}: ?325 =<= multiply (add ?326 ?325) ?325 [326, 325] by Demod 2174 with 12 at 2
349 Id : 1258, {_}: add ?1213 (multiply ?1214 (inverse (inverse ?1213))) =>= multiply (add ?1213 ?1214) ?1213 [1214, 1213] by Super 8 with 1115 at 2,3
350 Id : 55, {_}: add ?130 (multiply ?131 additive_identity) =<= multiply (add ?130 ?131) ?130 [131, 130] by Super 8 with 12 at 2,3
351 Id : 1274, {_}: add ?1213 (multiply ?1214 (inverse (inverse ?1213))) =>= add ?1213 (multiply ?1214 additive_identity) [1214, 1213] by Demod 1258 with 55 at 3
352 Id : 5845, {_}: add ?1213 (multiply ?1214 ?1213) =?= add ?1213 (multiply ?1214 additive_identity) [1214, 1213] by Demod 1274 with 2316 at 2,2,2
353 Id : 5846, {_}: add ?1213 (multiply ?1214 ?1213) =>= add ?1213 additive_identity [1214, 1213] by Demod 5845 with 2168 at 2,3
354 Id : 5877, {_}: add ?5881 (multiply ?5882 ?5881) =>= ?5881 [5882, 5881] by Demod 5846 with 12 at 3
355 Id : 5878, {_}: add ?5884 (multiply ?5884 ?5885) =>= ?5884 [5885, 5884] by Super 5877 with 6 at 2,2
356 Id : 6099, {_}: add ?6204 (multiply ?6206 (multiply ?6204 ?6205)) =>= multiply (add ?6204 ?6206) ?6204 [6205, 6206, 6204] by Super 8 with 5878 at 2,3
357 Id : 2175, {_}: add ?130 additive_identity =<= multiply (add ?130 ?131) ?130 [131, 130] by Demod 55 with 2168 at 2,2
358 Id : 2179, {_}: ?130 =<= multiply (add ?130 ?131) ?130 [131, 130] by Demod 2175 with 12 at 2
359 Id : 6162, {_}: add ?6204 (multiply ?6206 (multiply ?6204 ?6205)) =>= ?6204 [6205, 6206, 6204] by Demod 6099 with 2179 at 3
360 Id : 23650, {_}: multiply ?28445 (multiply ?28444 ?28446) =<= multiply ?28444 (multiply ?28445 (multiply ?28444 ?28446)) [28446, 28444, 28445] by Super 2180 with 6162 at 1,3
361 Id : 152296, {_}: multiply ?278484 (multiply ?278483 ?278482) =<= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278483, 278484] by Demod 152295 with 23650 at 2
362 Id : 2442, {_}: add ?2131 ?2132 =<= add ?2131 (add ?2132 ?2131) [2132, 2131] by Demod 2402 with 2316 at 2,2,3
363 Id : 2443, {_}: add ?2134 ?2135 =<= add ?2134 (add ?2134 ?2135) [2135, 2134] by Super 2442 with 4 at 2,3
364 Id : 2558, {_}: add ?2283 (multiply ?2285 (add ?2283 ?2284)) =<= multiply (add ?2283 ?2285) (add ?2283 ?2284) [2284, 2285, 2283] by Super 8 with 2443 at 2,3
365 Id : 2593, {_}: add ?2283 (multiply ?2285 (add ?2283 ?2284)) =>= add ?2283 (multiply ?2285 ?2284) [2284, 2285, 2283] by Demod 2558 with 8 at 3
366 Id : 19422, {_}: multiply (add (inverse ?20977) (multiply ?20975 ?20976)) ?20977 =?= multiply ?20977 (multiply ?20975 (add (inverse ?20977) ?20976)) [20976, 20975, 20977] by Super 2049 with 2593 at 1,2
367 Id : 19552, {_}: multiply ?20977 (multiply ?20975 ?20976) =<= multiply ?20977 (multiply ?20975 (add (inverse ?20977) ?20976)) [20976, 20975, 20977] by Demod 19422 with 2049 at 2
368 Id : 352787, {_}: multiply ?278484 (multiply ?278483 ?278482) =?= multiply ?278483 (multiply ?278484 ?278482) [278482, 278483, 278484] by Demod 152296 with 19552 at 3
369 Id : 2159, {_}: add ?432 additive_identity =<= multiply ?432 (add ?433 ?432) [433, 432] by Demod 332 with 2101 at 2,2
370 Id : 2194, {_}: ?432 =<= multiply ?432 (add ?433 ?432) [433, 432] by Demod 2159 with 12 at 2
371 Id : 5847, {_}: add ?1213 (multiply ?1214 ?1213) =>= ?1213 [1214, 1213] by Demod 5846 with 12 at 3
372 Id : 5862, {_}: add ?5837 (multiply ?5839 (multiply ?5838 ?5837)) =>= multiply (add ?5837 ?5839) ?5837 [5838, 5839, 5837] by Super 8 with 5847 at 2,3
373 Id : 5925, {_}: add ?5837 (multiply ?5839 (multiply ?5838 ?5837)) =>= ?5837 [5838, 5839, 5837] by Demod 5862 with 2179 at 3
374 Id : 36958, {_}: multiply ?53806 (multiply ?53807 ?53808) =<= multiply (multiply ?53806 (multiply ?53807 ?53808)) ?53808 [53808, 53807, 53806] by Super 2194 with 5925 at 2,3
375 Id : 36959, {_}: multiply ?53810 (multiply ?53811 ?53812) =<= multiply (multiply ?53810 (multiply ?53812 ?53811)) ?53812 [53812, 53811, 53810] by Super 36958 with 6 at 2,1,3
376 Id : 23651, {_}: multiply ?28449 (multiply ?28448 ?28450) =<= multiply (multiply ?28449 (multiply ?28448 ?28450)) ?28448 [28450, 28448, 28449] by Super 2194 with 6162 at 2,3
377 Id : 58893, {_}: multiply ?53810 (multiply ?53811 ?53812) =?= multiply ?53810 (multiply ?53812 ?53811) [53812, 53811, 53810] by Demod 36959 with 23651 at 3
378 Id : 355225, {_}: multiply c (multiply b a) === multiply c (multiply b a) [] by Demod 355224 with 58893 at 2
379 Id : 355224, {_}: multiply c (multiply a b) =>= multiply c (multiply b a) [] by Demod 91 with 352787 at 2
380 Id : 91, {_}: multiply a (multiply c b) =>= multiply c (multiply b a) [] by Demod 90 with 6 at 2,3
381 Id : 90, {_}: multiply a (multiply c b) =>= multiply c (multiply a b) [] by Demod 89 with 6 at 3
382 Id : 89, {_}: multiply a (multiply c b) =<= multiply (multiply a b) c [] by Demod 2 with 6 at 2,2
383 Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity
384 % SZS output end CNFRefutation for BOO007-4.p
390 additive_inverse is 83
391 associativity_of_add is 80
392 associativity_of_multiply is 79
401 multiplicative_inverse is 81
407 prove_multiply_add_property is 93
410 add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2))
412 multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2))
413 [4, 3, 2] by distributivity ?2 ?3 ?4
415 add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6
416 [8, 7, 6] by l1 ?6 ?7 ?8
418 add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11
419 [12, 11, 10] by l3 ?10 ?11 ?12
421 multiply (add ?14 (inverse ?14)) ?15 =>= ?15
422 [15, 14] by property3 ?14 ?15
424 multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17
425 [19, 18, 17] by l2 ?17 ?18 ?19
427 multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22
428 [23, 22, 21] by l4 ?21 ?22 ?23
430 add (multiply ?25 (inverse ?25)) ?26 =>= ?26
431 [26, 25] by property3_dual ?25 ?26
432 Id : 18, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28
434 multiply ?30 (inverse ?30) =>= n0
435 [30] by multiplicative_inverse ?30
437 add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34)
438 [34, 33, 32] by associativity_of_add ?32 ?33 ?34
440 multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38)
441 [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38
444 multiply a (add b c) =<= add (multiply b a) (multiply c a)
445 [] by prove_multiply_add_property
446 Found proof, 19.854450s
447 % SZS status Unsatisfiable for BOO031-1.p
448 % SZS output start CNFRefutation for BOO031-1.p
449 Id : 16, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26
450 Id : 20, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30
451 Id : 18, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28
452 Id : 14, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23
453 Id : 10, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15
454 Id : 64, {_}: multiply (multiply (add ?211 ?212) (add ?212 ?213)) ?212 =>= ?212 [213, 212, 211] by l4 ?211 ?212 ?213
455 Id : 24, {_}: multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38
456 Id : 4, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4
457 Id : 8, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12
458 Id : 12, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19
459 Id : 49, {_}: multiply ?140 (add ?141 (add ?140 ?142)) =>= ?140 [142, 141, 140] by l2 ?140 ?141 ?142
460 Id : 6, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8
461 Id : 30, {_}: add (add (multiply ?60 ?61) (multiply ?61 ?62)) ?61 =>= ?61 [62, 61, 60] by l3 ?60 ?61 ?62
462 Id : 22, {_}: add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34
463 Id : 31, {_}: add (multiply ?65 ?66) ?66 =>= ?66 [66, 65] by Super 30 with 6 at 1,2
464 Id : 51, {_}: multiply ?151 (add ?152 ?151) =>= ?151 [152, 151] by Super 49 with 6 at 2,2,2
465 Id : 568, {_}: add ?1169 (add ?1170 ?1169) =>= add ?1170 ?1169 [1170, 1169] by Super 31 with 51 at 1,2
466 Id : 1034, {_}: add (add ?2011 ?2012) ?2011 =>= add ?2012 ?2011 [2012, 2011] by Super 22 with 568 at 3
467 Id : 47, {_}: add ?131 (multiply ?134 ?131) =>= ?131 [134, 131] by Super 6 with 12 at 2,2,2
468 Id : 54, {_}: multiply ?165 (add ?165 ?166) =>= ?165 [166, 165] by Super 49 with 8 at 2,2
469 Id : 673, {_}: add (add ?1383 ?1384) ?1383 =>= add ?1383 ?1384 [1384, 1383] by Super 47 with 54 at 2,2
470 Id : 1524, {_}: add ?2011 ?2012 =?= add ?2012 ?2011 [2012, 2011] by Demod 1034 with 673 at 2
471 Id : 161, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (multiply (add ?2 ?3) (add ?3 ?4)) (add ?4 ?2) [4, 3, 2] by Demod 4 with 24 at 3
472 Id : 727, {_}: multiply (add ?1499 ?1500) ?1500 =>= ?1500 [1500, 1499] by Super 64 with 12 at 1,2
473 Id : 733, {_}: multiply ?1519 (multiply ?1518 ?1519) =>= multiply ?1518 ?1519 [1518, 1519] by Super 727 with 47 at 1,2
474 Id : 1435, {_}: add (multiply ?2622 ?2620) (add (multiply ?2621 ?2620) (multiply (multiply ?2621 ?2620) ?2622)) =<= multiply (multiply (add ?2622 ?2620) (add ?2620 (multiply ?2621 ?2620))) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Super 161 with 733 at 1,2,2
475 Id : 34, {_}: add ?77 (multiply ?77 ?78) =>= ?77 [78, 77] by Super 6 with 10 at 2,2
476 Id : 1478, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =<= multiply (multiply (add ?2622 ?2620) (add ?2620 (multiply ?2621 ?2620))) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1435 with 34 at 2,2
477 Id : 1479, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =<= multiply (multiply (add ?2622 ?2620) ?2620) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1478 with 47 at 2,1,3
478 Id : 72, {_}: multiply (add ?249 ?250) ?250 =>= ?250 [250, 249] by Super 64 with 12 at 1,2
479 Id : 1480, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =>= multiply ?2620 (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1479 with 72 at 1,3
480 Id : 7843, {_}: multiply ?13007 ?13008 =<= multiply ?13007 (multiply (add ?13009 ?13007) ?13008) [13009, 13008, 13007] by Super 24 with 51 at 1,2
481 Id : 582, {_}: multiply ?1218 (add ?1219 ?1218) =>= ?1218 [1219, 1218] by Super 49 with 6 at 2,2,2
482 Id : 587, {_}: multiply (multiply ?1235 ?1234) ?1235 =>= multiply ?1235 ?1234 [1234, 1235] by Super 582 with 34 at 2,2
483 Id : 1123, {_}: multiply ?2124 ?2125 =<= multiply ?2124 (multiply ?2125 ?2124) [2125, 2124] by Super 24 with 587 at 2
484 Id : 1768, {_}: multiply ?2124 ?2125 =?= multiply ?2125 ?2124 [2125, 2124] by Demod 1123 with 733 at 3
485 Id : 7897, {_}: multiply ?13228 ?13229 =<= multiply ?13228 (multiply ?13229 (add ?13230 ?13228)) [13230, 13229, 13228] by Super 7843 with 1768 at 2,3
486 Id : 586, {_}: multiply ?1232 ?1232 =>= ?1232 [1232] by Super 582 with 31 at 2,2
487 Id : 618, {_}: multiply ?1282 ?1283 =<= multiply ?1282 (multiply ?1282 ?1283) [1283, 1282] by Super 24 with 586 at 1,2
488 Id : 1266, {_}: add (multiply ?2366 ?2364) (add (multiply ?2364 ?2365) (multiply (multiply ?2364 ?2365) ?2366)) =<= multiply (multiply (add ?2366 ?2364) (add ?2364 (multiply ?2364 ?2365))) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Super 161 with 618 at 1,2,2
489 Id : 1308, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =<= multiply (multiply (add ?2366 ?2364) (add ?2364 (multiply ?2364 ?2365))) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1266 with 34 at 2,2
490 Id : 1309, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =<= multiply (multiply (add ?2366 ?2364) ?2364) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1308 with 34 at 2,1,3
491 Id : 16375, {_}: add (multiply ?29661 ?29662) (multiply ?29662 ?29663) =>= multiply ?29662 (add (multiply ?29662 ?29663) ?29661) [29663, 29662, 29661] by Demod 1309 with 72 at 1,3
492 Id : 16381, {_}: add (multiply ?29687 (add ?29686 ?29688)) ?29688 =<= multiply (add ?29686 ?29688) (add (multiply (add ?29686 ?29688) ?29688) ?29687) [29688, 29686, 29687] by Super 16375 with 72 at 2,2
493 Id : 16548, {_}: add (multiply ?29687 (add ?29686 ?29688)) ?29688 =>= multiply (add ?29686 ?29688) (add ?29688 ?29687) [29688, 29686, 29687] by Demod 16381 with 72 at 1,2,3
494 Id : 91, {_}: multiply n1 ?15 =>= ?15 [15] by Demod 10 with 18 at 1,2
495 Id : 101, {_}: n0 =<= inverse n1 [] by Super 91 with 20 at 2
496 Id : 206, {_}: add n1 n0 =>= n1 [] by Super 18 with 101 at 2,2
497 Id : 214, {_}: multiply n1 (add ?663 n1) =>= n1 [663] by Super 12 with 206 at 2,2,2
498 Id : 222, {_}: add ?663 n1 =>= n1 [663] by Demod 214 with 91 at 2
499 Id : 259, {_}: multiply ?726 (add ?727 n1) =>= ?726 [727, 726] by Super 12 with 222 at 2,2,2
500 Id : 268, {_}: multiply ?726 n1 =>= ?726 [726] by Demod 259 with 222 at 2,2
501 Id : 306, {_}: multiply (add ?801 n1) (add n1 ?802) =>= n1 [802, 801] by Super 14 with 268 at 2
502 Id : 312, {_}: multiply n1 (add n1 ?802) =>= n1 [802] by Demod 306 with 222 at 1,2
503 Id : 313, {_}: add n1 ?802 =>= n1 [802] by Demod 312 with 91 at 2
504 Id : 390, {_}: multiply (multiply n1 (add ?884 ?885)) ?884 =>= ?884 [885, 884] by Super 14 with 313 at 1,1,2
505 Id : 401, {_}: multiply n1 (multiply (add ?884 ?885) ?884) =>= ?884 [885, 884] by Demod 390 with 24 at 2
506 Id : 402, {_}: multiply (add ?884 ?885) ?884 =>= ?884 [885, 884] by Demod 401 with 91 at 2
507 Id : 827, {_}: multiply (multiply ?1658 (add ?1656 ?1657)) ?1656 =>= multiply ?1658 ?1656 [1657, 1656, 1658] by Super 24 with 402 at 2,3
508 Id : 77, {_}: add (multiply ?268 ?267) (multiply (inverse ?267) ?268) =<= multiply (add ?268 ?267) (multiply (add ?267 (inverse ?267)) (add (inverse ?267) ?268)) [267, 268] by Super 4 with 16 at 2,2
509 Id : 88, {_}: add (multiply ?268 ?267) (multiply (inverse ?267) ?268) =>= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 77 with 10 at 2,3
510 Id : 1310, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =>= multiply ?2364 (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1309 with 72 at 1,3
511 Id : 16342, {_}: add (multiply ?29521 ?29522) (multiply ?29520 ?29521) =>= multiply ?29521 (add (multiply ?29521 ?29522) ?29520) [29520, 29522, 29521] by Super 1524 with 1310 at 3
512 Id : 51988, {_}: multiply ?268 (add (multiply ?268 ?267) (inverse ?267)) =?= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 88 with 16342 at 2
513 Id : 51989, {_}: multiply ?268 (add (inverse ?267) (multiply ?268 ?267)) =?= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 51988 with 1524 at 2,2
514 Id : 52070, {_}: multiply (multiply (add ?105798 ?105797) (add (inverse ?105797) ?105798)) (inverse ?105797) =>= multiply ?105798 (inverse ?105797) [105797, 105798] by Super 827 with 51989 at 1,2
515 Id : 52559, {_}: multiply (add ?105798 ?105797) (inverse ?105797) =>= multiply ?105798 (inverse ?105797) [105797, 105798] by Demod 52070 with 827 at 2
516 Id : 52560, {_}: multiply (inverse ?105797) (add ?105798 ?105797) =>= multiply ?105798 (inverse ?105797) [105798, 105797] by Demod 52559 with 1768 at 2
517 Id : 54336, {_}: add (multiply ?108230 (inverse ?108229)) ?108229 =<= multiply (add ?108230 ?108229) (add ?108229 (inverse ?108229)) [108229, 108230] by Super 16548 with 52560 at 1,2
518 Id : 54743, {_}: add (multiply ?108230 (inverse ?108229)) ?108229 =>= multiply (add ?108230 ?108229) n1 [108229, 108230] by Demod 54336 with 18 at 2,3
519 Id : 55540, {_}: add (multiply ?110128 (inverse ?110129)) ?110129 =>= add ?110128 ?110129 [110129, 110128] by Demod 54743 with 268 at 3
520 Id : 57387, {_}: add (multiply (inverse ?112946) ?112947) ?112946 =>= add ?112947 ?112946 [112947, 112946] by Super 55540 with 1768 at 1,2
521 Id : 119, {_}: add (multiply ?10 ?11) (add (multiply ?11 ?12) ?11) =>= ?11 [12, 11, 10] by Demod 8 with 22 at 2
522 Id : 216, {_}: multiply (multiply n1 (add n0 ?667)) n0 =>= n0 [667] by Super 14 with 206 at 1,1,2
523 Id : 219, {_}: multiply n1 (multiply (add n0 ?667) n0) =>= n0 [667] by Demod 216 with 24 at 2
524 Id : 220, {_}: multiply (add n0 ?667) n0 =>= n0 [667] by Demod 219 with 91 at 2
525 Id : 100, {_}: add n0 ?26 =>= ?26 [26] by Demod 16 with 20 at 1,2
526 Id : 221, {_}: multiply ?667 n0 =>= n0 [667] by Demod 220 with 100 at 1,2
527 Id : 225, {_}: add ?674 (multiply ?675 n0) =>= ?674 [675, 674] by Super 6 with 221 at 2,2,2
528 Id : 251, {_}: add ?674 n0 =>= ?674 [674] by Demod 225 with 221 at 2,2
529 Id : 281, {_}: add (multiply ?753 n0) (multiply n0 ?754) =>= n0 [754, 753] by Super 119 with 251 at 2,2
530 Id : 292, {_}: add n0 (multiply n0 ?754) =>= n0 [754] by Demod 281 with 221 at 1,2
531 Id : 293, {_}: multiply n0 ?754 =>= n0 [754] by Demod 292 with 100 at 2
532 Id : 338, {_}: add n0 (add (multiply ?829 ?830) ?829) =>= ?829 [830, 829] by Super 119 with 293 at 1,2
533 Id : 377, {_}: add (multiply ?829 ?830) ?829 =>= ?829 [830, 829] by Demod 338 with 100 at 2
534 Id : 38238, {_}: add (multiply ?76482 ?76483) (multiply ?76484 ?76482) =>= multiply ?76482 (add (multiply ?76482 ?76483) ?76484) [76484, 76483, 76482] by Super 1524 with 1310 at 3
535 Id : 38322, {_}: add ?76856 (multiply ?76857 (add ?76856 ?76855)) =<= multiply (add ?76856 ?76855) (add (multiply (add ?76856 ?76855) ?76856) ?76857) [76855, 76857, 76856] by Super 38238 with 402 at 1,2
536 Id : 47380, {_}: add ?97201 (multiply ?97202 (add ?97201 ?97203)) =>= multiply (add ?97201 ?97203) (add ?97201 ?97202) [97203, 97202, 97201] by Demod 38322 with 402 at 1,2,3
537 Id : 47486, {_}: add ?97677 (multiply (add ?97677 ?97679) ?97678) =>= multiply (add ?97677 ?97679) (add ?97677 ?97678) [97678, 97679, 97677] by Super 47380 with 1768 at 2,2
538 Id : 52196, {_}: multiply ?106255 (add (inverse ?106256) (multiply ?106255 ?106256)) =?= multiply (add ?106255 ?106256) (add (inverse ?106256) ?106255) [106256, 106255] by Demod 51988 with 1524 at 2,2
539 Id : 52239, {_}: multiply ?106398 (add (inverse (inverse ?106398)) (multiply ?106398 (inverse ?106398))) =>= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Super 52196 with 18 at 1,3
540 Id : 52779, {_}: multiply ?106398 (add (inverse (inverse ?106398)) n0) =?= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Demod 52239 with 20 at 2,2,2
541 Id : 52780, {_}: multiply ?106398 (inverse (inverse ?106398)) =<= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Demod 52779 with 251 at 2,2
542 Id : 52781, {_}: multiply ?106398 (inverse (inverse ?106398)) =<= add (inverse (inverse ?106398)) ?106398 [106398] by Demod 52780 with 91 at 3
543 Id : 53322, {_}: add (inverse (inverse ?107400)) (multiply (multiply ?107400 (inverse (inverse ?107400))) ?107401) =>= multiply (add (inverse (inverse ?107400)) ?107400) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Super 47486 with 52781 at 1,2,2
544 Id : 177, {_}: add ?561 (multiply (multiply ?560 ?561) ?562) =>= ?561 [562, 560, 561] by Super 6 with 24 at 2,2
545 Id : 53342, {_}: inverse (inverse ?107400) =<= multiply (add (inverse (inverse ?107400)) ?107400) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Demod 53322 with 177 at 2
546 Id : 53343, {_}: inverse (inverse ?107400) =<= multiply (multiply ?107400 (inverse (inverse ?107400))) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Demod 53342 with 52781 at 1,3
547 Id : 670, {_}: multiply (multiply ?1373 ?1371) (add ?1371 ?1372) =>= multiply ?1373 ?1371 [1372, 1371, 1373] by Super 24 with 54 at 2,3
548 Id : 53344, {_}: inverse (inverse ?107400) =<= multiply ?107400 (inverse (inverse ?107400)) [107400] by Demod 53343 with 670 at 3
549 Id : 53988, {_}: add (inverse (inverse ?107962)) ?107962 =>= ?107962 [107962] by Super 377 with 53344 at 1,2
550 Id : 53931, {_}: inverse (inverse ?106398) =<= add (inverse (inverse ?106398)) ?106398 [106398] by Demod 52781 with 53344 at 2
551 Id : 54117, {_}: inverse (inverse ?107962) =>= ?107962 [107962] by Demod 53988 with 53931 at 2
552 Id : 57388, {_}: add (multiply ?112949 ?112950) (inverse ?112949) =>= add ?112950 (inverse ?112949) [112950, 112949] by Super 57387 with 54117 at 1,1,2
553 Id : 57660, {_}: add (inverse ?112949) (multiply ?112949 ?112950) =>= add ?112950 (inverse ?112949) [112950, 112949] by Demod 57388 with 1524 at 2
554 Id : 1445, {_}: multiply ?2651 (multiply ?2652 ?2651) =>= multiply ?2652 ?2651 [2652, 2651] by Super 727 with 47 at 1,2
555 Id : 18543, {_}: multiply ?33695 (multiply ?33696 (multiply ?33697 ?33695)) =>= multiply (multiply ?33696 ?33697) ?33695 [33697, 33696, 33695] by Super 1445 with 24 at 2,2
556 Id : 1430, {_}: multiply (multiply ?2603 ?2601) (multiply ?2602 ?2601) =>= multiply ?2603 (multiply ?2602 ?2601) [2602, 2601, 2603] by Super 24 with 733 at 2,3
557 Id : 18612, {_}: multiply ?33994 (multiply ?33993 (multiply ?33995 ?33994)) =?= multiply (multiply (multiply ?33993 ?33994) ?33995) ?33994 [33995, 33993, 33994] by Super 18543 with 1430 at 2,2
558 Id : 1449, {_}: multiply ?2666 (multiply ?2664 (multiply ?2665 ?2666)) =>= multiply (multiply ?2664 ?2665) ?2666 [2665, 2664, 2666] by Super 1445 with 24 at 2,2
559 Id : 18850, {_}: multiply (multiply ?33993 ?33995) ?33994 =<= multiply (multiply (multiply ?33993 ?33994) ?33995) ?33994 [33994, 33995, 33993] by Demod 18612 with 1449 at 2
560 Id : 4399, {_}: multiply (multiply (multiply ?6795 ?6794) ?6796) ?6794 =>= multiply (multiply ?6795 ?6794) ?6796 [6796, 6794, 6795] by Super 51 with 177 at 2,2
561 Id : 43487, {_}: multiply (multiply ?33993 ?33995) ?33994 =?= multiply (multiply ?33993 ?33994) ?33995 [33994, 33995, 33993] by Demod 18850 with 4399 at 3
562 Id : 54429, {_}: multiply (multiply (inverse ?108571) ?108573) (add ?108572 ?108571) =>= multiply (multiply ?108572 (inverse ?108571)) ?108573 [108572, 108573, 108571] by Super 43487 with 52560 at 1,3
563 Id : 54563, {_}: multiply (inverse ?108571) (multiply ?108573 (add ?108572 ?108571)) =>= multiply (multiply ?108572 (inverse ?108571)) ?108573 [108572, 108573, 108571] by Demod 54429 with 24 at 2
564 Id : 728, {_}: multiply ?1504 (multiply ?1502 (multiply ?1504 ?1503)) =>= multiply ?1502 (multiply ?1504 ?1503) [1503, 1502, 1504] by Super 727 with 6 at 1,2
565 Id : 9518, {_}: multiply (multiply ?16547 ?16548) (multiply ?16547 ?16549) =>= multiply ?16548 (multiply ?16547 ?16549) [16549, 16548, 16547] by Super 24 with 728 at 3
566 Id : 1122, {_}: multiply (multiply ?2120 ?2121) ?2122 =<= multiply (multiply ?2120 ?2121) (multiply ?2120 ?2122) [2122, 2121, 2120] by Super 24 with 587 at 1,2
567 Id : 30202, {_}: multiply (multiply ?16547 ?16548) ?16549 =?= multiply ?16548 (multiply ?16547 ?16549) [16549, 16548, 16547] by Demod 9518 with 1122 at 2
568 Id : 54564, {_}: multiply (inverse ?108571) (multiply ?108573 (add ?108572 ?108571)) =>= multiply (inverse ?108571) (multiply ?108572 ?108573) [108572, 108573, 108571] by Demod 54563 with 30202 at 3
569 Id : 145944, {_}: add (inverse (inverse ?250795)) (multiply (inverse ?250795) (multiply ?250797 ?250796)) =>= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Super 57660 with 54564 at 2,2
570 Id : 146263, {_}: add (multiply ?250797 ?250796) (inverse (inverse ?250795)) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250795, 250796, 250797] by Demod 145944 with 57660 at 2
571 Id : 146264, {_}: add (inverse (inverse ?250795)) (multiply ?250797 ?250796) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Demod 146263 with 1524 at 2
572 Id : 146265, {_}: add ?250795 (multiply ?250797 ?250796) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Demod 146264 with 54117 at 1,2
573 Id : 146266, {_}: add ?250795 (multiply ?250797 ?250796) =<= add (inverse (inverse ?250795)) (multiply ?250796 (add ?250797 ?250795)) [250796, 250797, 250795] by Demod 146265 with 1524 at 3
574 Id : 146267, {_}: add ?250795 (multiply ?250797 ?250796) =<= add ?250795 (multiply ?250796 (add ?250797 ?250795)) [250796, 250797, 250795] by Demod 146266 with 54117 at 1,3
575 Id : 38316, {_}: add ?76835 (multiply ?76836 (add ?76834 ?76835)) =<= multiply (add ?76834 ?76835) (add (multiply (add ?76834 ?76835) ?76835) ?76836) [76834, 76836, 76835] by Super 38238 with 72 at 1,2
576 Id : 38565, {_}: add ?76835 (multiply ?76836 (add ?76834 ?76835)) =>= multiply (add ?76834 ?76835) (add ?76835 ?76836) [76834, 76836, 76835] by Demod 38316 with 72 at 1,2,3
577 Id : 146268, {_}: add ?250795 (multiply ?250797 ?250796) =<= multiply (add ?250797 ?250795) (add ?250795 ?250796) [250796, 250797, 250795] by Demod 146267 with 38565 at 3
578 Id : 147010, {_}: multiply ?252446 (add ?252445 ?252444) =<= multiply ?252446 (add ?252444 (multiply ?252445 ?252446)) [252444, 252445, 252446] by Super 7897 with 146268 at 2,3
579 Id : 152622, {_}: multiply a (add c b) === multiply a (add c b) [] by Demod 152621 with 1524 at 2,3
580 Id : 152621, {_}: multiply a (add c b) =<= multiply a (add b c) [] by Demod 19333 with 147010 at 3
581 Id : 19333, {_}: multiply a (add c b) =<= multiply a (add c (multiply b a)) [] by Demod 19332 with 1524 at 2,3
582 Id : 19332, {_}: multiply a (add c b) =<= multiply a (add (multiply b a) c) [] by Demod 1703 with 1480 at 3
583 Id : 1703, {_}: multiply a (add c b) =<= add (multiply c a) (multiply b a) [] by Demod 1702 with 1524 at 3
584 Id : 1702, {_}: multiply a (add c b) =<= add (multiply b a) (multiply c a) [] by Demod 2 with 1524 at 2,2
585 Id : 2, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property
586 % SZS output end CNFRefutation for BOO031-1.p
601 prove_single_axiom is 89
603 ternary_multiply_1 is 87
604 ternary_multiply_2 is 86
607 multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6)
609 multiply ?2 ?3 (multiply ?4 ?5 ?6)
610 [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
611 Id : 6, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9
613 multiply ?11 ?11 ?12 =>= ?11
614 [12, 11] by ternary_multiply_2 ?11 ?12
616 multiply (inverse ?14) ?14 ?15 =>= ?15
617 [15, 14] by left_inverse ?14 ?15
619 multiply ?17 ?18 (inverse ?18) =>= ?17
620 [18, 17] by right_inverse ?17 ?18
623 multiply (multiply a (inverse a) b)
624 (inverse (multiply (multiply c d e) f (multiply c d g)))
625 (multiply d (multiply g f e) c)
628 [] by prove_single_axiom
629 Found proof, 2.683225s
630 % SZS status Unsatisfiable for BOO034-1.p
631 % SZS output start CNFRefutation for BOO034-1.p
632 Id : 8, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12
633 Id : 6, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9
634 Id : 12, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18
635 Id : 10, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15
636 Id : 4, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
637 Id : 75, {_}: multiply ?212 ?213 ?214 =<= multiply ?212 ?213 (multiply ?215 (multiply ?212 ?213 ?214) ?214) [215, 214, 213, 212] by Super 4 with 6 at 2
638 Id : 84, {_}: multiply ?257 ?258 ?259 =<= multiply ?257 ?258 (multiply ?257 ?258 ?259) [259, 258, 257] by Super 75 with 8 at 3,3
639 Id : 115, {_}: multiply (multiply ?285 ?286 ?288) ?289 (multiply ?285 ?286 ?287) =?= multiply ?285 ?286 (multiply ?288 ?289 (multiply ?285 ?286 ?287)) [287, 289, 288, 286, 285] by Super 4 with 84 at 3,2
640 Id : 298, {_}: multiply ?735 ?736 (multiply ?737 ?738 ?739) =<= multiply ?735 ?736 (multiply ?737 ?738 (multiply ?735 ?736 ?739)) [739, 738, 737, 736, 735] by Demod 115 with 4 at 2
641 Id : 184, {_}: multiply ?446 ?447 ?448 =<= multiply ?446 ?447 (multiply ?448 (multiply ?446 ?447 ?448) ?449) [449, 448, 447, 446] by Super 4 with 8 at 2
642 Id : 189, {_}: multiply ?470 ?471 (inverse ?471) =<= multiply ?470 ?471 (multiply (inverse ?471) ?470 ?472) [472, 471, 470] by Super 184 with 12 at 2,3,3
643 Id : 225, {_}: ?470 =<= multiply ?470 ?471 (multiply (inverse ?471) ?470 ?472) [472, 471, 470] by Demod 189 with 12 at 2
644 Id : 321, {_}: multiply (inverse ?865) ?864 (multiply ?864 ?865 ?866) =>= multiply (inverse ?865) ?864 ?864 [866, 864, 865] by Super 298 with 225 at 3,3
645 Id : 387, {_}: multiply (inverse ?963) ?964 (multiply ?964 ?963 ?965) =>= ?964 [965, 964, 963] by Demod 321 with 6 at 3
646 Id : 389, {_}: multiply (inverse ?974) ?973 ?974 =>= ?973 [973, 974] by Super 387 with 6 at 3,2
647 Id : 437, {_}: ?1071 =<= inverse (inverse ?1071) [1071] by Super 12 with 389 at 2
648 Id : 462, {_}: multiply ?1119 (inverse ?1119) ?1120 =>= ?1120 [1120, 1119] by Super 10 with 437 at 1,2
649 Id : 116, {_}: multiply (multiply ?291 ?292 ?293) ?294 (multiply ?291 ?292 ?295) =?= multiply ?291 ?292 (multiply (multiply ?291 ?292 ?293) ?294 ?295) [295, 294, 293, 292, 291] by Super 4 with 84 at 1,2
650 Id : 12671, {_}: multiply ?19232 ?19233 (multiply ?19234 ?19235 ?19236) =<= multiply ?19232 ?19233 (multiply (multiply ?19232 ?19233 ?19234) ?19235 ?19236) [19236, 19235, 19234, 19233, 19232] by Demod 116 with 4 at 2
651 Id : 80, {_}: multiply ?236 ?237 (inverse ?237) =<= multiply ?236 ?237 (multiply ?238 ?236 (inverse ?237)) [238, 237, 236] by Super 75 with 12 at 2,3,3
652 Id : 105, {_}: ?236 =<= multiply ?236 ?237 (multiply ?238 ?236 (inverse ?237)) [238, 237, 236] by Demod 80 with 12 at 2
653 Id : 996, {_}: ?2202 =<= multiply ?2202 (inverse ?2203) (multiply ?2204 ?2202 ?2203) [2204, 2203, 2202] by Super 105 with 437 at 3,3,3
654 Id : 1012, {_}: ?2262 =<= multiply ?2262 (inverse (multiply ?2261 ?2263 (inverse ?2262))) ?2263 [2263, 2261, 2262] by Super 996 with 105 at 3,3
655 Id : 459, {_}: ?1109 =<= multiply ?1109 (inverse ?1108) (multiply ?1108 ?1109 ?1110) [1110, 1108, 1109] by Super 225 with 437 at 1,3,3
656 Id : 1017, {_}: inverse ?2283 =<= multiply (inverse ?2283) (inverse (multiply ?2283 ?2285 ?2284)) ?2285 [2284, 2285, 2283] by Super 996 with 459 at 3,3
657 Id : 1909, {_}: ?3987 =<= multiply ?3987 (inverse (inverse ?3985)) (inverse (multiply ?3985 (inverse ?3987) ?3986)) [3986, 3985, 3987] by Super 1012 with 1017 at 1,2,3
658 Id : 1996, {_}: ?3987 =<= multiply ?3987 ?3985 (inverse (multiply ?3985 (inverse ?3987) ?3986)) [3986, 3985, 3987] by Demod 1909 with 437 at 2,3
659 Id : 2510, {_}: ?5132 =<= multiply ?5132 (multiply ?5132 (inverse ?5131) ?5133) ?5131 [5133, 5131, 5132] by Super 105 with 1996 at 3,3
660 Id : 2812, {_}: multiply ?5719 (inverse (inverse ?5721)) ?5720 =<= multiply (multiply ?5719 (inverse (inverse ?5721)) ?5720) ?5721 ?5719 [5720, 5721, 5719] by Super 105 with 2510 at 3,3
661 Id : 2874, {_}: multiply ?5719 ?5721 ?5720 =<= multiply (multiply ?5719 (inverse (inverse ?5721)) ?5720) ?5721 ?5719 [5720, 5721, 5719] by Demod 2812 with 437 at 2,2
662 Id : 2875, {_}: multiply ?5719 ?5721 ?5720 =<= multiply (multiply ?5719 ?5721 ?5720) ?5721 ?5719 [5720, 5721, 5719] by Demod 2874 with 437 at 2,1,3
663 Id : 12777, {_}: multiply ?19864 ?19863 (multiply ?19862 ?19863 ?19864) =?= multiply ?19864 ?19863 (multiply ?19864 ?19863 ?19862) [19862, 19863, 19864] by Super 12671 with 2875 at 3,3
664 Id : 12993, {_}: multiply ?20226 ?20227 (multiply ?20228 ?20227 ?20226) =>= multiply ?20226 ?20227 ?20228 [20228, 20227, 20226] by Demod 12777 with 84 at 3
665 Id : 19, {_}: multiply ?58 ?59 ?61 =<= multiply ?58 ?59 (multiply ?60 (multiply ?58 ?59 ?61) ?61) [60, 61, 59, 58] by Super 4 with 6 at 2
666 Id : 463, {_}: multiply ?1122 ?1123 (inverse ?1122) =>= ?1123 [1123, 1122] by Super 389 with 437 at 1,2
667 Id : 607, {_}: multiply ?1371 ?1372 (inverse ?1371) =<= multiply ?1371 ?1372 (multiply ?1373 ?1372 (inverse ?1371)) [1373, 1372, 1371] by Super 19 with 463 at 2,3,3
668 Id : 625, {_}: ?1372 =<= multiply ?1371 ?1372 (multiply ?1373 ?1372 (inverse ?1371)) [1373, 1371, 1372] by Demod 607 with 463 at 2
669 Id : 460, {_}: ?1113 =<= multiply ?1113 (inverse ?1112) (multiply ?1114 ?1113 ?1112) [1114, 1112, 1113] by Super 105 with 437 at 3,3,3
670 Id : 1018, {_}: inverse ?2287 =<= multiply (inverse ?2287) (inverse (multiply ?2288 ?2289 ?2287)) ?2289 [2289, 2288, 2287] by Super 996 with 460 at 3,3
671 Id : 2078, {_}: ?4356 =<= multiply ?4356 (inverse (inverse ?4354)) (inverse (multiply ?4355 (inverse ?4356) ?4354)) [4355, 4354, 4356] by Super 1012 with 1018 at 1,2,3
672 Id : 2124, {_}: ?4356 =<= multiply ?4356 ?4354 (inverse (multiply ?4355 (inverse ?4356) ?4354)) [4355, 4354, 4356] by Demod 2078 with 437 at 2,3
673 Id : 3650, {_}: ?7215 =<= multiply ?7215 (multiply ?7216 (inverse ?7214) ?7215) ?7214 [7214, 7216, 7215] by Super 105 with 2124 at 3,3
674 Id : 4032, {_}: multiply ?7968 (inverse (inverse ?7969)) ?7967 =<= multiply ?7969 (multiply ?7968 (inverse (inverse ?7969)) ?7967) ?7967 [7967, 7969, 7968] by Super 625 with 3650 at 3,3
675 Id : 4103, {_}: multiply ?7968 ?7969 ?7967 =<= multiply ?7969 (multiply ?7968 (inverse (inverse ?7969)) ?7967) ?7967 [7967, 7969, 7968] by Demod 4032 with 437 at 2,2
676 Id : 4104, {_}: multiply ?7968 ?7969 ?7967 =<= multiply ?7969 (multiply ?7968 ?7969 ?7967) ?7967 [7967, 7969, 7968] by Demod 4103 with 437 at 2,2,3
677 Id : 13062, {_}: multiply ?20502 (multiply ?20501 ?20503 ?20502) (multiply ?20501 ?20503 ?20502) =>= multiply ?20502 (multiply ?20501 ?20503 ?20502) ?20503 [20503, 20501, 20502] by Super 12993 with 4104 at 3,2
678 Id : 13612, {_}: multiply ?21322 ?21323 ?21324 =<= multiply ?21324 (multiply ?21322 ?21323 ?21324) ?21323 [21324, 21323, 21322] by Demod 13062 with 6 at 2
679 Id : 12903, {_}: multiply ?19864 ?19863 (multiply ?19862 ?19863 ?19864) =>= multiply ?19864 ?19863 ?19862 [19862, 19863, 19864] by Demod 12777 with 84 at 3
680 Id : 13625, {_}: multiply ?21368 ?21369 (multiply ?21367 ?21369 ?21368) =<= multiply (multiply ?21367 ?21369 ?21368) (multiply ?21368 ?21369 ?21367) ?21369 [21367, 21369, 21368] by Super 13612 with 12903 at 2,3
681 Id : 13783, {_}: multiply ?21368 ?21369 ?21367 =<= multiply (multiply ?21367 ?21369 ?21368) (multiply ?21368 ?21369 ?21367) ?21369 [21367, 21369, 21368] by Demod 13625 with 12903 at 2
682 Id : 34256, {_}: multiply (multiply ?56219 ?56220 ?56221) ?56222 ?56219 =<= multiply ?56219 ?56220 (multiply ?56221 ?56222 (multiply ?56223 ?56219 (inverse ?56220))) [56223, 56222, 56221, 56220, 56219] by Super 4 with 105 at 3,2
683 Id : 34781, {_}: multiply (multiply ?57676 ?57677 ?57678) ?57678 ?57676 =>= multiply ?57676 ?57677 ?57678 [57678, 57677, 57676] by Super 34256 with 8 at 3,3
684 Id : 34858, {_}: multiply (multiply ?57992 ?57993 ?57994) ?57994 ?57993 =?= multiply ?57993 (multiply ?57992 ?57993 ?57994) ?57994 [57994, 57993, 57992] by Super 34781 with 4104 at 1,2
685 Id : 35129, {_}: multiply (multiply ?57992 ?57993 ?57994) ?57994 ?57993 =>= multiply ?57992 ?57993 ?57994 [57994, 57993, 57992] by Demod 34858 with 4104 at 3
686 Id : 36343, {_}: multiply (multiply ?60132 ?60133 ?60134) ?60134 ?60133 =<= multiply (multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134)) (multiply ?60132 ?60133 ?60134) ?60134 [60134, 60133, 60132] by Super 13783 with 35129 at 2,3
687 Id : 36700, {_}: multiply ?60132 ?60133 ?60134 =<= multiply (multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134)) (multiply ?60132 ?60133 ?60134) ?60134 [60134, 60133, 60132] by Demod 36343 with 35129 at 2
688 Id : 36701, {_}: multiply ?60132 ?60133 ?60134 =<= multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134) [60134, 60133, 60132] by Demod 36700 with 35129 at 3
689 Id : 136, {_}: multiply ?291 ?292 (multiply ?293 ?294 ?295) =<= multiply ?291 ?292 (multiply (multiply ?291 ?292 ?293) ?294 ?295) [295, 294, 293, 292, 291] by Demod 116 with 4 at 2
690 Id : 2796, {_}: multiply ?5648 (inverse (inverse ?5650)) ?5649 =<= multiply ?5650 (multiply ?5648 (inverse (inverse ?5650)) ?5649) ?5648 [5649, 5650, 5648] by Super 625 with 2510 at 3,3
691 Id : 2887, {_}: multiply ?5648 ?5650 ?5649 =<= multiply ?5650 (multiply ?5648 (inverse (inverse ?5650)) ?5649) ?5648 [5649, 5650, 5648] by Demod 2796 with 437 at 2,2
692 Id : 2888, {_}: multiply ?5648 ?5650 ?5649 =<= multiply ?5650 (multiply ?5648 ?5650 ?5649) ?5648 [5649, 5650, 5648] by Demod 2887 with 437 at 2,2,3
693 Id : 34853, {_}: multiply (multiply ?57974 ?57973 ?57972) ?57974 ?57973 =?= multiply ?57973 (multiply ?57974 ?57973 ?57972) ?57974 [57972, 57973, 57974] by Super 34781 with 2888 at 1,2
694 Id : 35120, {_}: multiply (multiply ?57974 ?57973 ?57972) ?57974 ?57973 =>= multiply ?57974 ?57973 ?57972 [57972, 57973, 57974] by Demod 34853 with 2888 at 3
695 Id : 35775, {_}: multiply ?59268 ?59269 (multiply ?59270 ?59268 ?59269) =?= multiply ?59268 ?59269 (multiply ?59268 ?59269 ?59270) [59270, 59269, 59268] by Super 136 with 35120 at 3,3
696 Id : 36064, {_}: multiply ?59268 ?59269 (multiply ?59270 ?59268 ?59269) =>= multiply ?59268 ?59269 ?59270 [59270, 59269, 59268] by Demod 35775 with 84 at 3
697 Id : 37436, {_}: multiply ?60132 ?60133 ?60134 =?= multiply ?60133 ?60134 ?60132 [60134, 60133, 60132] by Demod 36701 with 36064 at 3
698 Id : 25, {_}: multiply ?84 ?85 ?86 =<= multiply ?84 ?85 (multiply ?86 (multiply ?84 ?85 ?86) ?87) [87, 86, 85, 84] by Super 4 with 8 at 2
699 Id : 317, {_}: multiply ?845 (multiply ?846 ?847 ?845) (multiply ?846 ?847 ?848) =?= multiply ?845 (multiply ?846 ?847 ?845) (multiply ?846 ?847 ?845) [848, 847, 846, 845] by Super 298 with 25 at 3,3
700 Id : 24761, {_}: multiply ?36657 (multiply ?36658 ?36659 ?36657) (multiply ?36658 ?36659 ?36660) =>= multiply ?36658 ?36659 ?36657 [36660, 36659, 36658, 36657] by Demod 317 with 6 at 3
701 Id : 24766, {_}: multiply ?36681 (multiply ?36682 ?36683 ?36681) ?36682 =>= multiply ?36682 ?36683 ?36681 [36683, 36682, 36681] by Super 24761 with 12 at 3,2
702 Id : 37850, {_}: multiply ?63783 ?63784 (multiply ?63783 ?63785 ?63784) =>= multiply ?63783 ?63785 ?63784 [63785, 63784, 63783] by Super 24766 with 37436 at 2
703 Id : 37801, {_}: multiply ?63587 ?63589 (multiply ?63587 ?63588 ?63589) =>= multiply ?63587 ?63589 ?63588 [63588, 63589, 63587] by Super 12903 with 37436 at 3,2
704 Id : 41412, {_}: multiply ?63783 ?63784 ?63785 =?= multiply ?63783 ?63785 ?63784 [63785, 63784, 63783] by Demod 37850 with 37801 at 2
705 Id : 42484, {_}: b === b [] by Demod 42483 with 12 at 2
706 Id : 42483, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply g f e))) =>= b [] by Demod 42482 with 41412 at 3,1,3,2
707 Id : 42482, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply g e f))) =>= b [] by Demod 42481 with 41412 at 1,3,2
708 Id : 42481, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d (multiply g e f) c)) =>= b [] by Demod 42480 with 41412 at 2,2
709 Id : 42480, {_}: multiply b (multiply d (multiply g f e) c) (inverse (multiply d (multiply g e f) c)) =>= b [] by Demod 38492 with 41412 at 2
710 Id : 38492, {_}: multiply b (inverse (multiply d (multiply g e f) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 38491 with 37436 at 2,1,2,2
711 Id : 38491, {_}: multiply b (inverse (multiply d (multiply f g e) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 38490 with 37436 at 2,1,2,2
712 Id : 38490, {_}: multiply b (inverse (multiply d (multiply e f g) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 595 with 37436 at 1,2,2
713 Id : 595, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 53 with 462 at 1,2
714 Id : 53, {_}: multiply (multiply a (inverse a) b) (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 2 with 4 at 1,2,2
715 Id : 2, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom
716 % SZS output end CNFRefutation for BOO034-1.p
729 (add (inverse (add (inverse (add ?2 ?3)) ?4))
731 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
734 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
736 Id : 2, {_}: add b a =>= add a b [] by huntinton_1
737 Found proof, 0.407895s
738 % SZS status Unsatisfiable for BOO072-1.p
739 % SZS output start CNFRefutation for BOO072-1.p
740 Id : 5, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10
741 Id : 4, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
742 Id : 17, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?80)) ?81)) ?80)) ?82)) (inverse ?80))) ?80) =>= inverse ?80 [82, 81, 80] by Super 5 with 4 at 2,1,2
743 Id : 22, {_}: inverse (add (inverse (add ?111 (inverse ?111))) ?111) =>= inverse ?111 [111] by Super 17 with 4 at 1,1,1,1,2
744 Id : 36, {_}: inverse (add (inverse ?135) (inverse (add ?135 (inverse (add (inverse ?135) (inverse (add ?135 ?136))))))) =>= ?135 [136, 135] by Super 4 with 22 at 1,1,2
745 Id : 57, {_}: inverse (add (inverse (add (inverse (add ?192 ?193)) ?190)) (inverse (add ?192 ?190))) =>= ?190 [190, 193, 192] by Super 4 with 36 at 2,1,2,1,2
746 Id : 131, {_}: inverse (add (inverse (add (inverse (add ?400 ?401)) ?402)) (inverse (add ?400 ?402))) =>= ?402 [402, 401, 400] by Super 4 with 36 at 2,1,2,1,2
747 Id : 141, {_}: inverse (add (inverse (add ?444 ?446)) (inverse (add (inverse ?444) ?446))) =>= ?446 [446, 444] by Super 131 with 36 at 1,1,1,1,2
748 Id : 175, {_}: inverse (add ?545 (inverse (add ?544 (inverse (add (inverse ?544) ?545))))) =>= inverse (add (inverse ?544) ?545) [544, 545] by Super 57 with 141 at 1,1,2
749 Id : 341, {_}: inverse (add (inverse ?894) (inverse (add ?894 (inverse (add (inverse ?894) (inverse ?894)))))) =>= ?894 [894] by Super 36 with 175 at 2,1,2,1,2
750 Id : 390, {_}: inverse (add (inverse ?894) (inverse ?894)) =>= ?894 [894] by Demod 341 with 175 at 2
751 Id : 176, {_}: inverse (add (inverse (add ?547 ?548)) (inverse (add (inverse ?547) ?548))) =>= ?548 [548, 547] by Super 131 with 36 at 1,1,1,1,2
752 Id : 61, {_}: inverse (add (inverse ?208) (inverse (add ?208 (inverse (add (inverse ?208) (inverse (add ?208 ?209))))))) =>= ?208 [209, 208] by Super 4 with 22 at 1,1,2
753 Id : 70, {_}: inverse (add (inverse ?244) (inverse (add ?244 ?244))) =>= ?244 [244] by Super 61 with 36 at 2,1,2,1,2
754 Id : 189, {_}: inverse (add (inverse (add ?598 (inverse (add ?598 ?598)))) ?598) =>= inverse (add ?598 ?598) [598] by Super 176 with 70 at 2,1,2
755 Id : 209, {_}: inverse (add (inverse (add ?635 ?635)) (inverse (add ?635 ?635))) =>= ?635 [635] by Super 57 with 189 at 1,1,2
756 Id : 418, {_}: add ?635 ?635 =>= ?635 [635] by Demod 209 with 390 at 2
757 Id : 441, {_}: inverse (inverse ?1072) =>= ?1072 [1072] by Demod 390 with 418 at 1,2
758 Id : 447, {_}: inverse (inverse (add (inverse ?1092) ?1091)) =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Super 441 with 175 at 1,2
759 Id : 427, {_}: inverse (inverse ?894) =>= ?894 [894] by Demod 390 with 418 at 1,2
760 Id : 835, {_}: add (inverse ?1599) ?1600 =<= add ?1600 (inverse (add ?1599 (inverse (add (inverse ?1599) ?1600)))) [1600, 1599] by Demod 447 with 427 at 2
761 Id : 839, {_}: add (inverse (inverse ?1617)) ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Super 835 with 427 at 1,1,2,1,2,3
762 Id : 866, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Demod 839 with 427 at 1,2
763 Id : 459, {_}: add (inverse ?1092) ?1091 =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Demod 447 with 427 at 2
764 Id : 8, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?28)) ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Super 5 with 4 at 2,1,2
765 Id : 428, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?28 ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Demod 8 with 427 at 1,1,1,1,1,1,1,1,1,1,2
766 Id : 443, {_}: inverse (inverse ?1079) =<= add (inverse (add ?1079 (inverse ?1079))) ?1079 [1079] by Super 441 with 22 at 1,2
767 Id : 476, {_}: ?1141 =<= add (inverse (add ?1141 (inverse ?1141))) ?1141 [1141] by Demod 443 with 427 at 2
768 Id : 483, {_}: inverse ?1163 =<= add (inverse (add (inverse ?1163) ?1163)) (inverse ?1163) [1163] by Super 476 with 427 at 2,1,1,3
769 Id : 545, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?1237)) ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Super 428 with 483 at 1,1,1,1,1,1,1,2
770 Id : 596, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 545 with 427 at 1,1,1,1,1,1,2
771 Id : 597, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) ?1237)) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 596 with 427 at 2,1,1,1,2
772 Id : 1828, {_}: inverse (add (inverse (add (inverse (add ?2824 ?2825)) ?2824)) (inverse ?2824)) =>= ?2824 [2825, 2824] by Demod 597 with 427 at 3
773 Id : 1862, {_}: inverse (add ?2924 (inverse (inverse (add ?2923 ?2924)))) =>= inverse (add ?2923 ?2924) [2923, 2924] by Super 1828 with 57 at 1,1,2
774 Id : 1957, {_}: inverse (add ?2924 (add ?2923 ?2924)) =>= inverse (add ?2923 ?2924) [2923, 2924] by Demod 1862 with 427 at 2,1,2
775 Id : 1989, {_}: inverse (inverse (add ?3044 ?3043)) =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Super 427 with 1957 at 1,2
776 Id : 2126, {_}: add ?3204 ?3205 =<= add ?3205 (add ?3204 ?3205) [3205, 3204] by Demod 1989 with 427 at 2
777 Id : 733, {_}: inverse ?1452 =<= add (inverse (add ?1453 ?1452)) (inverse (add (inverse ?1453) ?1452)) [1453, 1452] by Super 441 with 141 at 1,2
778 Id : 738, {_}: inverse ?1475 =<= add (inverse (add (inverse ?1474) ?1475)) (inverse (add ?1474 ?1475)) [1474, 1475] by Super 733 with 427 at 1,1,2,3
779 Id : 2134, {_}: add (inverse (add (inverse ?3224) ?3223)) (inverse (add ?3224 ?3223)) =>= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3223, 3224] by Super 2126 with 738 at 2,3
780 Id : 2159, {_}: inverse ?3223 =<= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3224, 3223] by Demod 2134 with 738 at 2
781 Id : 2197, {_}: inverse (add (inverse (inverse ?3289)) (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Super 57 with 2159 at 1,1,1,2
782 Id : 2249, {_}: inverse (add ?3289 (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Demod 2197 with 427 at 1,1,2
783 Id : 2455, {_}: add (inverse ?3654) (inverse (add ?3653 (inverse (inverse ?3654)))) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Super 459 with 2249 at 2,1,2,3
784 Id : 2497, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2455 with 427 at 2,1,2,2
785 Id : 2498, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2497 with 427 at 2,1,1,3
786 Id : 2499, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 ?3654)) [3653, 3654] by Demod 2498 with 427 at 2,1,2,3
787 Id : 2500, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =?= add (inverse (add ?3653 ?3654)) (inverse ?3654) [3653, 3654] by Demod 2499 with 418 at 1,2,3
788 Id : 2501, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =>= inverse ?3654 [3653, 3654] by Demod 2500 with 2159 at 3
789 Id : 2761, {_}: add (inverse ?4078) (inverse (add ?4079 ?4078)) =>= inverse ?4078 [4079, 4078] by Demod 2500 with 2159 at 3
790 Id : 2775, {_}: add (inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Super 2761 with 4 at 2,2
791 Id : 2871, {_}: add (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Demod 2775 with 427 at 1,2
792 Id : 4872, {_}: add (add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487))))) ?6486 =>= add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487)))) [6487, 6486, 6485] by Demod 2871 with 427 at 3
793 Id : 4906, {_}: add (inverse (inverse (add ?6624 ?6625))) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Super 4872 with 2501 at 1,2
794 Id : 5128, {_}: add (add ?6624 ?6625) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Demod 4906 with 427 at 1,2
795 Id : 5129, {_}: add (add ?6624 ?6625) ?6624 =>= inverse (inverse (add ?6624 ?6625)) [6625, 6624] by Demod 5128 with 2501 at 3
796 Id : 5130, {_}: add (add ?6624 ?6625) ?6624 =>= add ?6624 ?6625 [6625, 6624] by Demod 5129 with 427 at 3
797 Id : 5176, {_}: add (inverse ?6745) (inverse (add ?6745 ?6746)) =>= inverse ?6745 [6746, 6745] by Super 2501 with 5130 at 1,2,2
798 Id : 5963, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (inverse ?1617)) [1618, 1617] by Demod 866 with 5176 at 1,2,3
799 Id : 5973, {_}: add ?1617 ?1618 =?= add ?1618 ?1617 [1618, 1617] by Demod 5963 with 427 at 2,3
800 Id : 6201, {_}: add a b === add a b [] by Demod 2 with 5973 at 2
801 Id : 2, {_}: add b a =>= add a b [] by huntinton_1
802 % SZS output end CNFRefutation for BOO072-1.p
816 (add (inverse (add (inverse (add ?2 ?3)) ?4))
818 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
821 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
823 Id : 2, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2
824 Found proof, 88.886424s
825 % SZS status Unsatisfiable for BOO073-1.p
826 % SZS output start CNFRefutation for BOO073-1.p
827 Id : 5, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10
828 Id : 4, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
829 Id : 17, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?80)) ?81)) ?80)) ?82)) (inverse ?80))) ?80) =>= inverse ?80 [82, 81, 80] by Super 5 with 4 at 2,1,2
830 Id : 22, {_}: inverse (add (inverse (add ?111 (inverse ?111))) ?111) =>= inverse ?111 [111] by Super 17 with 4 at 1,1,1,1,2
831 Id : 36, {_}: inverse (add (inverse ?135) (inverse (add ?135 (inverse (add (inverse ?135) (inverse (add ?135 ?136))))))) =>= ?135 [136, 135] by Super 4 with 22 at 1,1,2
832 Id : 57, {_}: inverse (add (inverse (add (inverse (add ?192 ?193)) ?190)) (inverse (add ?192 ?190))) =>= ?190 [190, 193, 192] by Super 4 with 36 at 2,1,2,1,2
833 Id : 131, {_}: inverse (add (inverse (add (inverse (add ?400 ?401)) ?402)) (inverse (add ?400 ?402))) =>= ?402 [402, 401, 400] by Super 4 with 36 at 2,1,2,1,2
834 Id : 141, {_}: inverse (add (inverse (add ?444 ?446)) (inverse (add (inverse ?444) ?446))) =>= ?446 [446, 444] by Super 131 with 36 at 1,1,1,1,2
835 Id : 175, {_}: inverse (add ?545 (inverse (add ?544 (inverse (add (inverse ?544) ?545))))) =>= inverse (add (inverse ?544) ?545) [544, 545] by Super 57 with 141 at 1,1,2
836 Id : 341, {_}: inverse (add (inverse ?894) (inverse (add ?894 (inverse (add (inverse ?894) (inverse ?894)))))) =>= ?894 [894] by Super 36 with 175 at 2,1,2,1,2
837 Id : 390, {_}: inverse (add (inverse ?894) (inverse ?894)) =>= ?894 [894] by Demod 341 with 175 at 2
838 Id : 176, {_}: inverse (add (inverse (add ?547 ?548)) (inverse (add (inverse ?547) ?548))) =>= ?548 [548, 547] by Super 131 with 36 at 1,1,1,1,2
839 Id : 61, {_}: inverse (add (inverse ?208) (inverse (add ?208 (inverse (add (inverse ?208) (inverse (add ?208 ?209))))))) =>= ?208 [209, 208] by Super 4 with 22 at 1,1,2
840 Id : 70, {_}: inverse (add (inverse ?244) (inverse (add ?244 ?244))) =>= ?244 [244] by Super 61 with 36 at 2,1,2,1,2
841 Id : 189, {_}: inverse (add (inverse (add ?598 (inverse (add ?598 ?598)))) ?598) =>= inverse (add ?598 ?598) [598] by Super 176 with 70 at 2,1,2
842 Id : 209, {_}: inverse (add (inverse (add ?635 ?635)) (inverse (add ?635 ?635))) =>= ?635 [635] by Super 57 with 189 at 1,1,2
843 Id : 418, {_}: add ?635 ?635 =>= ?635 [635] by Demod 209 with 390 at 2
844 Id : 441, {_}: inverse (inverse ?1072) =>= ?1072 [1072] by Demod 390 with 418 at 1,2
845 Id : 447, {_}: inverse (inverse (add (inverse ?1092) ?1091)) =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Super 441 with 175 at 1,2
846 Id : 427, {_}: inverse (inverse ?894) =>= ?894 [894] by Demod 390 with 418 at 1,2
847 Id : 835, {_}: add (inverse ?1599) ?1600 =<= add ?1600 (inverse (add ?1599 (inverse (add (inverse ?1599) ?1600)))) [1600, 1599] by Demod 447 with 427 at 2
848 Id : 839, {_}: add (inverse (inverse ?1617)) ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Super 835 with 427 at 1,1,2,1,2,3
849 Id : 866, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Demod 839 with 427 at 1,2
850 Id : 459, {_}: add (inverse ?1092) ?1091 =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Demod 447 with 427 at 2
851 Id : 8, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?28)) ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Super 5 with 4 at 2,1,2
852 Id : 428, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?28 ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Demod 8 with 427 at 1,1,1,1,1,1,1,1,1,1,2
853 Id : 443, {_}: inverse (inverse ?1079) =<= add (inverse (add ?1079 (inverse ?1079))) ?1079 [1079] by Super 441 with 22 at 1,2
854 Id : 476, {_}: ?1141 =<= add (inverse (add ?1141 (inverse ?1141))) ?1141 [1141] by Demod 443 with 427 at 2
855 Id : 483, {_}: inverse ?1163 =<= add (inverse (add (inverse ?1163) ?1163)) (inverse ?1163) [1163] by Super 476 with 427 at 2,1,1,3
856 Id : 545, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?1237)) ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Super 428 with 483 at 1,1,1,1,1,1,1,2
857 Id : 596, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 545 with 427 at 1,1,1,1,1,1,2
858 Id : 597, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) ?1237)) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 596 with 427 at 2,1,1,1,2
859 Id : 1828, {_}: inverse (add (inverse (add (inverse (add ?2824 ?2825)) ?2824)) (inverse ?2824)) =>= ?2824 [2825, 2824] by Demod 597 with 427 at 3
860 Id : 1862, {_}: inverse (add ?2924 (inverse (inverse (add ?2923 ?2924)))) =>= inverse (add ?2923 ?2924) [2923, 2924] by Super 1828 with 57 at 1,1,2
861 Id : 1957, {_}: inverse (add ?2924 (add ?2923 ?2924)) =>= inverse (add ?2923 ?2924) [2923, 2924] by Demod 1862 with 427 at 2,1,2
862 Id : 1989, {_}: inverse (inverse (add ?3044 ?3043)) =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Super 427 with 1957 at 1,2
863 Id : 2126, {_}: add ?3204 ?3205 =<= add ?3205 (add ?3204 ?3205) [3205, 3204] by Demod 1989 with 427 at 2
864 Id : 733, {_}: inverse ?1452 =<= add (inverse (add ?1453 ?1452)) (inverse (add (inverse ?1453) ?1452)) [1453, 1452] by Super 441 with 141 at 1,2
865 Id : 738, {_}: inverse ?1475 =<= add (inverse (add (inverse ?1474) ?1475)) (inverse (add ?1474 ?1475)) [1474, 1475] by Super 733 with 427 at 1,1,2,3
866 Id : 2134, {_}: add (inverse (add (inverse ?3224) ?3223)) (inverse (add ?3224 ?3223)) =>= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3223, 3224] by Super 2126 with 738 at 2,3
867 Id : 2159, {_}: inverse ?3223 =<= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3224, 3223] by Demod 2134 with 738 at 2
868 Id : 2197, {_}: inverse (add (inverse (inverse ?3289)) (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Super 57 with 2159 at 1,1,1,2
869 Id : 2249, {_}: inverse (add ?3289 (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Demod 2197 with 427 at 1,1,2
870 Id : 2455, {_}: add (inverse ?3654) (inverse (add ?3653 (inverse (inverse ?3654)))) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Super 459 with 2249 at 2,1,2,3
871 Id : 2497, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2455 with 427 at 2,1,2,2
872 Id : 2498, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2497 with 427 at 2,1,1,3
873 Id : 2499, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 ?3654)) [3653, 3654] by Demod 2498 with 427 at 2,1,2,3
874 Id : 2500, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =?= add (inverse (add ?3653 ?3654)) (inverse ?3654) [3653, 3654] by Demod 2499 with 418 at 1,2,3
875 Id : 2501, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =>= inverse ?3654 [3653, 3654] by Demod 2500 with 2159 at 3
876 Id : 2761, {_}: add (inverse ?4078) (inverse (add ?4079 ?4078)) =>= inverse ?4078 [4079, 4078] by Demod 2500 with 2159 at 3
877 Id : 2775, {_}: add (inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Super 2761 with 4 at 2,2
878 Id : 2871, {_}: add (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Demod 2775 with 427 at 1,2
879 Id : 4872, {_}: add (add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487))))) ?6486 =>= add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487)))) [6487, 6486, 6485] by Demod 2871 with 427 at 3
880 Id : 4906, {_}: add (inverse (inverse (add ?6624 ?6625))) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Super 4872 with 2501 at 1,2
881 Id : 5128, {_}: add (add ?6624 ?6625) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Demod 4906 with 427 at 1,2
882 Id : 5129, {_}: add (add ?6624 ?6625) ?6624 =>= inverse (inverse (add ?6624 ?6625)) [6625, 6624] by Demod 5128 with 2501 at 3
883 Id : 5130, {_}: add (add ?6624 ?6625) ?6624 =>= add ?6624 ?6625 [6625, 6624] by Demod 5129 with 427 at 3
884 Id : 5176, {_}: add (inverse ?6745) (inverse (add ?6745 ?6746)) =>= inverse ?6745 [6746, 6745] by Super 2501 with 5130 at 1,2,2
885 Id : 5963, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (inverse ?1617)) [1618, 1617] by Demod 866 with 5176 at 1,2,3
886 Id : 5973, {_}: add ?1617 ?1618 =?= add ?1618 ?1617 [1618, 1617] by Demod 5963 with 427 at 2,3
887 Id : 445, {_}: inverse ?1086 =<= add (inverse (add (inverse (add ?1084 ?1085)) ?1086)) (inverse (add ?1084 ?1086)) [1085, 1084, 1086] by Super 441 with 57 at 1,2
888 Id : 3282, {_}: inverse ?4640 =<= add (inverse (add (inverse (add ?4641 ?4642)) ?4640)) (inverse (add ?4641 ?4640)) [4642, 4641, 4640] by Super 441 with 57 at 1,2
889 Id : 3306, {_}: inverse ?4739 =<= add (inverse (add (inverse (add ?4738 ?4740)) ?4739)) (inverse (add ?4740 ?4739)) [4740, 4738, 4739] by Super 3282 with 866 at 1,1,1,1,3
890 Id : 9402, {_}: inverse (inverse (add ?10628 ?10626)) =<= add (inverse (inverse ?10626)) (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Super 445 with 3306 at 1,1,3
891 Id : 9643, {_}: add ?10628 ?10626 =<= add (inverse (inverse ?10626)) (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Demod 9402 with 427 at 2
892 Id : 9644, {_}: add ?10628 ?10626 =<= add ?10626 (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Demod 9643 with 427 at 1,3
893 Id : 3277, {_}: add (inverse (add (inverse (add ?4621 ?4622)) ?4620)) (inverse (add ?4621 ?4620)) =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (inverse (add (inverse (add ?4621 ?4622)) ?4620))) (inverse (inverse ?4620)))) [4620, 4622, 4621] by Super 866 with 445 at 1,2,1,2,3
894 Id : 3341, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (inverse (add (inverse (add ?4621 ?4622)) ?4620))) (inverse (inverse ?4620)))) [4622, 4621, 4620] by Demod 3277 with 445 at 2
895 Id : 3342, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (add (inverse (add ?4621 ?4622)) ?4620) (inverse (inverse ?4620)))) [4622, 4621, 4620] by Demod 3341 with 427 at 1,1,2,3
896 Id : 3343, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (add (inverse (add ?4621 ?4622)) ?4620) ?4620)) [4622, 4621, 4620] by Demod 3342 with 427 at 2,1,2,3
897 Id : 2463, {_}: inverse (add ?3677 (inverse (add ?3678 (inverse ?3677)))) =>= inverse ?3677 [3678, 3677] by Demod 2197 with 427 at 1,1,2
898 Id : 2485, {_}: inverse (add (add ?3744 ?3746) ?3746) =>= inverse (add ?3744 ?3746) [3746, 3744] by Super 2463 with 57 at 2,1,2
899 Id : 2605, {_}: add (add ?3852 ?3853) ?3853 =<= add ?3853 (inverse (add (inverse (add ?3852 ?3853)) (inverse (add ?3852 ?3853)))) [3853, 3852] by Super 866 with 2485 at 2,1,2,3
900 Id : 2630, {_}: add (add ?3852 ?3853) ?3853 =<= add ?3853 (inverse (inverse (add ?3852 ?3853))) [3853, 3852] by Demod 2605 with 418 at 1,2,3
901 Id : 2631, {_}: add (add ?3852 ?3853) ?3853 =?= add ?3853 (add ?3852 ?3853) [3853, 3852] by Demod 2630 with 427 at 2,3
902 Id : 2044, {_}: add ?3044 ?3043 =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Demod 1989 with 427 at 2
903 Id : 2632, {_}: add (add ?3852 ?3853) ?3853 =>= add ?3852 ?3853 [3853, 3852] by Demod 2631 with 2044 at 3
904 Id : 3344, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (add ?4621 ?4622)) ?4620)) [4622, 4621, 4620] by Demod 3343 with 2632 at 1,2,3
905 Id : 9856, {_}: inverse (inverse (add (inverse (add ?11316 ?11317)) ?11315)) =<= add (inverse (inverse ?11315)) (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Super 445 with 3344 at 1,1,3
906 Id : 10050, {_}: add (inverse (add ?11316 ?11317)) ?11315 =<= add (inverse (inverse ?11315)) (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Demod 9856 with 427 at 2
907 Id : 10051, {_}: add (inverse (add ?11316 ?11317)) ?11315 =<= add ?11315 (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Demod 10050 with 427 at 1,3
908 Id : 27274, {_}: add (inverse (add ?27240 ?27241)) ?27242 =<= add ?27242 (inverse (add ?27240 (inverse (add (inverse (add ?27240 ?27241)) ?27242)))) [27242, 27241, 27240] by Demod 10050 with 427 at 1,3
909 Id : 446, {_}: inverse ?1089 =<= add (inverse (add ?1088 ?1089)) (inverse (add (inverse ?1088) ?1089)) [1088, 1089] by Super 441 with 141 at 1,2
910 Id : 3303, {_}: inverse ?4728 =<= add (inverse (add (inverse (inverse ?4726)) ?4728)) (inverse (add (inverse (add ?4727 ?4726)) ?4728)) [4727, 4726, 4728] by Super 3282 with 446 at 1,1,1,1,3
911 Id : 3407, {_}: inverse ?4728 =<= add (inverse (add ?4726 ?4728)) (inverse (add (inverse (add ?4727 ?4726)) ?4728)) [4727, 4726, 4728] by Demod 3303 with 427 at 1,1,1,3
912 Id : 27388, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= add ?27679 (inverse (inverse ?27679)) [27679, 27678] by Super 27274 with 3407 at 1,2,3
913 Id : 27835, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= add ?27679 ?27679 [27679, 27678] by Demod 27388 with 427 at 2,3
914 Id : 27836, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= ?27679 [27679, 27678] by Demod 27835 with 418 at 3
915 Id : 35831, {_}: add ?35916 (inverse (add (inverse (add ?35917 ?35916)) ?35917)) =>= ?35916 [35917, 35916] by Super 5973 with 27836 at 3
916 Id : 35837, {_}: add ?35933 (inverse (add (inverse (add ?35933 ?35934)) ?35934)) =>= ?35933 [35934, 35933] by Super 35831 with 5973 at 1,1,1,2,2
917 Id : 43017, {_}: add (inverse (add ?44930 ?44931)) ?44931 =>= add ?44931 (inverse ?44930) [44931, 44930] by Super 10051 with 35837 at 1,2,3
918 Id : 43043, {_}: add (inverse (inverse ?45008)) (inverse ?45008) =<= add (inverse ?45008) (inverse (inverse (add ?45009 ?45008))) [45009, 45008] by Super 43017 with 2159 at 1,1,2
919 Id : 43373, {_}: add ?45008 (inverse ?45008) =<= add (inverse ?45008) (inverse (inverse (add ?45009 ?45008))) [45009, 45008] by Demod 43043 with 427 at 1,2
920 Id : 44805, {_}: add ?46602 (inverse ?46602) =<= add (inverse ?46602) (add ?46603 ?46602) [46603, 46602] by Demod 43373 with 427 at 2,3
921 Id : 895, {_}: inverse (inverse (add ?1666 ?1665)) =<= add (inverse (inverse ?1665)) (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Super 446 with 738 at 1,1,3
922 Id : 960, {_}: add ?1666 ?1665 =<= add (inverse (inverse ?1665)) (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 895 with 427 at 2
923 Id : 961, {_}: add ?1666 ?1665 =<= add ?1665 (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 960 with 427 at 1,3
924 Id : 962, {_}: add ?1666 ?1665 =<= add ?1665 (inverse (add (add (inverse ?1666) ?1665) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 961 with 427 at 1,1,2,3
925 Id : 5181, {_}: add (add ?6762 ?6763) ?6762 =<= add ?6762 (inverse (add (add (inverse (add ?6762 ?6763)) ?6762) (inverse (add ?6762 ?6763)))) [6763, 6762] by Super 962 with 5130 at 1,2,1,2,3
926 Id : 5222, {_}: add ?6762 ?6763 =<= add ?6762 (inverse (add (add (inverse (add ?6762 ?6763)) ?6762) (inverse (add ?6762 ?6763)))) [6763, 6762] by Demod 5181 with 5130 at 2
927 Id : 6255, {_}: add ?7893 ?7894 =<= add ?7893 (inverse (add (inverse (add ?7893 ?7894)) ?7893)) [7894, 7893] by Demod 5222 with 5130 at 1,2,3
928 Id : 6261, {_}: add ?7910 ?7911 =<= add ?7910 (inverse (add (inverse (add ?7911 ?7910)) ?7910)) [7911, 7910] by Super 6255 with 5973 at 1,1,1,2,3
929 Id : 27395, {_}: add (inverse (add ?27697 ?27698)) (inverse (add ?27698 ?27697)) =?= add (inverse (add ?27698 ?27697)) (inverse (add ?27698 ?27697)) [27698, 27697] by Super 27274 with 9644 at 1,2,3
930 Id : 27857, {_}: add (inverse (add ?27697 ?27698)) (inverse (add ?27698 ?27697)) =>= inverse (add ?27698 ?27697) [27698, 27697] by Demod 27395 with 418 at 3
931 Id : 28327, {_}: add (inverse (add ?28496 ?28495)) (inverse (add ?28495 ?28496)) =<= add (inverse (add ?28496 ?28495)) (inverse (add (inverse (inverse (add ?28496 ?28495))) (inverse (add ?28496 ?28495)))) [28495, 28496] by Super 6261 with 27857 at 1,1,1,2,3
932 Id : 28628, {_}: inverse (add ?28495 ?28496) =<= add (inverse (add ?28496 ?28495)) (inverse (add (inverse (inverse (add ?28496 ?28495))) (inverse (add ?28496 ?28495)))) [28496, 28495] by Demod 28327 with 27857 at 2
933 Id : 2450, {_}: inverse (inverse ?3637) =<= add ?3637 (inverse (add ?3638 (inverse ?3637))) [3638, 3637] by Super 427 with 2249 at 1,2
934 Id : 2506, {_}: ?3637 =<= add ?3637 (inverse (add ?3638 (inverse ?3637))) [3638, 3637] by Demod 2450 with 427 at 2
935 Id : 5163, {_}: ?6702 =<= add ?6702 (inverse (add (inverse ?6702) ?6701)) [6701, 6702] by Super 2506 with 5130 at 1,2,3
936 Id : 28629, {_}: inverse (add ?28495 ?28496) =?= inverse (add ?28496 ?28495) [28496, 28495] by Demod 28628 with 5163 at 3
937 Id : 44870, {_}: add (add ?46807 ?46808) (inverse (add ?46807 ?46808)) =<= add (inverse (add ?46808 ?46807)) (add ?46809 (add ?46807 ?46808)) [46809, 46808, 46807] by Super 44805 with 28629 at 1,3
938 Id : 45240, {_}: add (inverse (add ?46807 ?46808)) (add ?46807 ?46808) =<= add (inverse (add ?46808 ?46807)) (add ?46809 (add ?46807 ?46808)) [46809, 46808, 46807] by Demod 44870 with 5973 at 2
939 Id : 75570, {_}: inverse (add ?71946 (add ?71944 ?71945)) =<= add (inverse (add ?71945 (add ?71946 (add ?71944 ?71945)))) (inverse (add (inverse (add ?71944 ?71945)) (add ?71944 ?71945))) [71945, 71944, 71946] by Super 3344 with 45240 at 1,2,3
940 Id : 2205, {_}: inverse ?3320 =<= add (inverse (add ?3321 ?3320)) (inverse ?3320) [3321, 3320] by Demod 2134 with 738 at 2
941 Id : 2209, {_}: inverse (inverse ?3338) =<= add (inverse (add ?3339 (inverse ?3338))) ?3338 [3339, 3338] by Super 2205 with 427 at 2,3
942 Id : 2281, {_}: ?3338 =<= add (inverse (add ?3339 (inverse ?3338))) ?3338 [3339, 3338] by Demod 2209 with 427 at 2
943 Id : 5175, {_}: ?6743 =<= add (inverse (add (inverse ?6743) ?6742)) ?6743 [6742, 6743] by Super 2281 with 5130 at 1,1,3
944 Id : 43053, {_}: add (inverse ?45043) ?45043 =<= add ?45043 (inverse (inverse (add (inverse ?45043) ?45042))) [45042, 45043] by Super 43017 with 5175 at 1,1,2
945 Id : 43393, {_}: add (inverse ?45043) ?45043 =<= add ?45043 (add (inverse ?45043) ?45042) [45042, 45043] by Demod 43053 with 427 at 2,3
946 Id : 46219, {_}: add (add (inverse ?47976) ?47977) ?47976 =>= add (inverse ?47976) ?47976 [47977, 47976] by Super 5973 with 43393 at 3
947 Id : 2228, {_}: inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389)))))) =<= add ?3388 (inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389))))))) [3389, 3388, 3386] by Super 2205 with 4 at 1,3
948 Id : 2327, {_}: add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389)))) =<= add ?3388 (inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389))))))) [3389, 3388, 3386] by Demod 2228 with 427 at 2
949 Id : 4116, {_}: add ?5774 (inverse (add (inverse ?5775) (inverse (add ?5775 ?5776)))) =<= add ?5775 (add ?5774 (inverse (add (inverse ?5775) (inverse (add ?5775 ?5776))))) [5776, 5775, 5774] by Demod 2327 with 427 at 2,3
950 Id : 4147, {_}: add (inverse (inverse (add ?5900 ?5901))) (inverse (add (inverse ?5900) (inverse (add ?5900 ?5901)))) =>= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Super 4116 with 2501 at 2,3
951 Id : 4368, {_}: inverse (inverse (add ?5900 ?5901)) =<= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Demod 4147 with 2501 at 2
952 Id : 4369, {_}: add ?5900 ?5901 =<= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Demod 4368 with 427 at 2
953 Id : 4370, {_}: add ?5900 ?5901 =<= add ?5900 (add ?5900 ?5901) [5901, 5900] by Demod 4369 with 427 at 2,3
954 Id : 43050, {_}: add (inverse (add ?45034 ?45033)) (add ?45034 ?45033) =>= add (add ?45034 ?45033) (inverse ?45034) [45033, 45034] by Super 43017 with 4370 at 1,1,2
955 Id : 43389, {_}: add (inverse (add ?45034 ?45033)) (add ?45034 ?45033) =>= add (inverse ?45034) (add ?45034 ?45033) [45033, 45034] by Demod 43050 with 5973 at 3
956 Id : 43042, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add (add ?45005 ?45006) (inverse ?45006) [45006, 45005] by Super 43017 with 2044 at 1,1,2
957 Id : 43372, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add (inverse ?45006) (add ?45005 ?45006) [45006, 45005] by Demod 43042 with 5973 at 3
958 Id : 43374, {_}: add ?45008 (inverse ?45008) =<= add (inverse ?45008) (add ?45009 ?45008) [45009, 45008] by Demod 43373 with 427 at 2,3
959 Id : 48043, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add ?45006 (inverse ?45006) [45006, 45005] by Demod 43372 with 43374 at 3
960 Id : 49303, {_}: add ?45033 (inverse ?45033) =?= add (inverse ?45034) (add ?45034 ?45033) [45034, 45033] by Demod 43389 with 48043 at 2
961 Id : 5166, {_}: inverse ?6709 =<= add (inverse (add ?6709 ?6710)) (inverse ?6709) [6710, 6709] by Super 2159 with 5130 at 1,1,3
962 Id : 43052, {_}: add (inverse (inverse ?45039)) (inverse ?45039) =<= add (inverse ?45039) (inverse (inverse (add ?45039 ?45040))) [45040, 45039] by Super 43017 with 5166 at 1,1,2
963 Id : 43391, {_}: add ?45039 (inverse ?45039) =<= add (inverse ?45039) (inverse (inverse (add ?45039 ?45040))) [45040, 45039] by Demod 43052 with 427 at 1,2
964 Id : 43392, {_}: add ?45039 (inverse ?45039) =<= add (inverse ?45039) (add ?45039 ?45040) [45040, 45039] by Demod 43391 with 427 at 2,3
965 Id : 49304, {_}: add ?45033 (inverse ?45033) =?= add ?45034 (inverse ?45034) [45034, 45033] by Demod 49303 with 43392 at 3
966 Id : 49415, {_}: ?50953 =<= add (inverse (add ?50954 (inverse ?50954))) ?50953 [50954, 50953] by Super 2281 with 49304 at 1,1,3
967 Id : 50053, {_}: add ?51918 (add ?51919 (inverse ?51919)) =?= add (inverse (add ?51919 (inverse ?51919))) (add ?51919 (inverse ?51919)) [51919, 51918] by Super 46219 with 49415 at 1,2
968 Id : 50133, {_}: add ?51918 (add ?51919 (inverse ?51919)) =?= add (inverse ?51919) (inverse (inverse ?51919)) [51919, 51918] by Demod 50053 with 48043 at 3
969 Id : 50134, {_}: add ?51918 (add ?51919 (inverse ?51919)) =>= add (inverse ?51919) ?51919 [51919, 51918] by Demod 50133 with 427 at 2,3
970 Id : 50710, {_}: ?52352 =<= add ?52352 (inverse (add (inverse ?52351) ?52351)) [52351, 52352] by Super 5163 with 50134 at 1,2,3
971 Id : 75914, {_}: inverse (add ?71946 (add ?71944 ?71945)) =<= inverse (add ?71945 (add ?71946 (add ?71944 ?71945))) [71945, 71944, 71946] by Demod 75570 with 50710 at 3
972 Id : 77144, {_}: add ?73328 (add ?73326 (add ?73327 ?73328)) =<= add (add ?73326 (add ?73327 ?73328)) (inverse (add (inverse (add ?73329 ?73328)) (inverse (add ?73326 (add ?73327 ?73328))))) [73329, 73327, 73326, 73328] by Super 9644 with 75914 at 2,1,2,3
973 Id : 77399, {_}: add ?73328 (add ?73326 (add ?73327 ?73328)) =<= add (inverse (add (inverse (add ?73329 ?73328)) (inverse (add ?73326 (add ?73327 ?73328))))) (add ?73326 (add ?73327 ?73328)) [73329, 73327, 73326, 73328] by Demod 77144 with 5973 at 3
974 Id : 77889, {_}: add ?74480 (add ?74481 (add ?74482 ?74480)) =>= add ?74481 (add ?74482 ?74480) [74482, 74481, 74480] by Demod 77399 with 2281 at 3
975 Id : 77893, {_}: add ?74496 (add ?74497 (add ?74496 ?74495)) =?= add ?74497 (add (add ?74496 ?74495) ?74496) [74495, 74497, 74496] by Super 77889 with 5130 at 2,2,2
976 Id : 78169, {_}: add ?74496 (add ?74497 (add ?74496 ?74495)) =>= add ?74497 (add ?74496 ?74495) [74495, 74497, 74496] by Demod 77893 with 5130 at 2,3
977 Id : 77895, {_}: add ?74503 (add ?74504 (add ?74503 ?74505)) =>= add ?74504 (add ?74505 ?74503) [74505, 74504, 74503] by Super 77889 with 5973 at 2,2,2
978 Id : 80396, {_}: add ?74497 (add ?74495 ?74496) =?= add ?74497 (add ?74496 ?74495) [74496, 74495, 74497] by Demod 78169 with 77895 at 2
979 Id : 80521, {_}: add (add (add ?78514 ?78515) ?78516) (add ?78515 ?78514) =>= add (add ?78514 ?78515) ?78516 [78516, 78515, 78514] by Super 5130 with 80396 at 2
980 Id : 79247, {_}: add ?76425 (add ?76426 (add ?76425 ?76427)) =>= add ?76426 (add ?76427 ?76425) [76427, 76426, 76425] by Super 77889 with 5973 at 2,2,2
981 Id : 79331, {_}: add ?76775 (add (add ?76775 ?76776) ?76774) =<= add (add (add ?76775 ?76776) ?76774) (add ?76776 ?76775) [76774, 76776, 76775] by Super 79247 with 5130 at 2,2
982 Id : 79332, {_}: add ?76778 (add (add ?76778 ?76780) ?76779) =>= add ?76779 (add ?76780 ?76778) [76779, 76780, 76778] by Super 79247 with 5973 at 2,2
983 Id : 135898, {_}: add ?76774 (add ?76776 ?76775) =<= add (add (add ?76775 ?76776) ?76774) (add ?76776 ?76775) [76775, 76776, 76774] by Demod 79331 with 79332 at 2
984 Id : 140658, {_}: add ?78516 (add ?78515 ?78514) =?= add (add ?78514 ?78515) ?78516 [78514, 78515, 78516] by Demod 80521 with 135898 at 2
985 Id : 43039, {_}: add (inverse (inverse ?44995)) (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) [44997, 44996, 44995] by Super 43017 with 445 at 1,1,2
986 Id : 43360, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) [44997, 44996, 44995] by Demod 43039 with 427 at 1,2
987 Id : 43361, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) (inverse (add ?44996 ?44995)) [44997, 44996, 44995] by Demod 43360 with 5973 at 3
988 Id : 43362, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (add (inverse (add ?44996 ?44997)) ?44995) (inverse (add ?44996 ?44995)) [44997, 44996, 44995] by Demod 43361 with 427 at 1,3
989 Id : 43363, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (add (inverse (add ?44996 ?44997)) ?44995) [44997, 44996, 44995] by Demod 43362 with 5973 at 3
990 Id : 42258, {_}: add (inverse (add ?43873 ?43874)) ?43874 =>= add ?43874 (inverse ?43873) [43874, 43873] by Super 10051 with 35837 at 1,2,3
991 Id : 42969, {_}: add ?44778 (inverse (add ?44777 ?44778)) =>= add ?44778 (inverse ?44777) [44777, 44778] by Super 5973 with 42258 at 3
992 Id : 415299, {_}: add ?44995 (inverse ?44996) =<= add (inverse (add ?44996 ?44995)) (add (inverse (add ?44996 ?44997)) ?44995) [44997, 44996, 44995] by Demod 43363 with 42969 at 2
993 Id : 415494, {_}: add (inverse (add ?628669 ?628668)) (add (inverse (add ?628669 ?628670)) ?628668) =<= add (add (inverse (add ?628669 ?628670)) ?628668) (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) [628670, 628668, 628669] by Super 10051 with 415299 at 1,2,1,2,3
994 Id : 416655, {_}: add ?628668 (inverse ?628669) =<= add (add (inverse (add ?628669 ?628670)) ?628668) (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) [628670, 628669, 628668] by Demod 415494 with 415299 at 2
995 Id : 416656, {_}: add ?628668 (inverse ?628669) =<= add (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) (add (inverse (add ?628669 ?628670)) ?628668) [628670, 628669, 628668] by Demod 416655 with 5973 at 3
996 Id : 418876, {_}: add ?634385 (inverse ?634386) =<= add (inverse ?634386) (add (inverse (add ?634386 ?634387)) ?634385) [634387, 634386, 634385] by Demod 416656 with 2506 at 1,1,3
997 Id : 9436, {_}: inverse ?10759 =<= add (inverse (add (inverse (add ?10760 ?10761)) ?10759)) (inverse (add ?10761 ?10759)) [10761, 10760, 10759] by Super 3282 with 866 at 1,1,1,1,3
998 Id : 18533, {_}: inverse ?18554 =<= add (inverse (add (inverse (add ?18555 ?18556)) ?18554)) (inverse (add ?18554 ?18556)) [18556, 18555, 18554] by Super 9436 with 5973 at 1,2,3
999 Id : 18582, {_}: inverse ?18755 =<= add (inverse (add (inverse ?18756) ?18755)) (inverse (add ?18755 ?18756)) [18756, 18755] by Super 18533 with 418 at 1,1,1,1,3
1000 Id : 19155, {_}: add (inverse (add ?19200 ?19201)) (inverse (add (inverse ?19201) ?19200)) =>= inverse ?19200 [19201, 19200] by Super 5973 with 18582 at 3
1001 Id : 418883, {_}: add ?634414 (inverse (inverse (add ?634412 ?634413))) =<= add (inverse (inverse (add ?634412 ?634413))) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Super 418876 with 19155 at 1,1,2,3
1002 Id : 420154, {_}: add ?634414 (add ?634412 ?634413) =<= add (inverse (inverse (add ?634412 ?634413))) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Demod 418883 with 427 at 2,2
1003 Id : 420155, {_}: add ?634414 (add ?634412 ?634413) =<= add (add ?634412 ?634413) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Demod 420154 with 427 at 1,3
1004 Id : 420156, {_}: add ?634414 (add ?634412 ?634413) =<= add (add ?634412 ?634413) (add ?634412 ?634414) [634413, 634412, 634414] by Demod 420155 with 427 at 1,2,3
1005 Id : 421396, {_}: add (add ?637936 ?637935) (add ?637937 ?637936) =>= add ?637935 (add ?637936 ?637937) [637937, 637935, 637936] by Super 140658 with 420156 at 3
1006 Id : 421337, {_}: add (add ?637673 ?637674) (add ?637672 ?637673) =>= add ?637672 (add ?637673 ?637674) [637672, 637674, 637673] by Super 80396 with 420156 at 3
1007 Id : 428375, {_}: add ?637937 (add ?637936 ?637935) =?= add ?637935 (add ?637936 ?637937) [637935, 637936, 637937] by Demod 421396 with 421337 at 2
1008 Id : 421398, {_}: add ?637944 (add ?637945 ?637946) =<= add (add ?637944 ?637945) (add ?637945 ?637946) [637946, 637945, 637944] by Super 140658 with 420156 at 2
1009 Id : 418964, {_}: add ?634834 (inverse (inverse (add ?634833 ?634832))) =<= add (inverse (inverse (add ?634833 ?634832))) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Super 418876 with 446 at 1,1,2,3
1010 Id : 420298, {_}: add ?634834 (add ?634833 ?634832) =<= add (inverse (inverse (add ?634833 ?634832))) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Demod 418964 with 427 at 2,2
1011 Id : 420299, {_}: add ?634834 (add ?634833 ?634832) =<= add (add ?634833 ?634832) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Demod 420298 with 427 at 1,3
1012 Id : 420300, {_}: add ?634834 (add ?634833 ?634832) =<= add (add ?634833 ?634832) (add ?634832 ?634834) [634832, 634833, 634834] by Demod 420299 with 427 at 1,2,3
1013 Id : 431824, {_}: add ?637944 (add ?637945 ?637946) =?= add ?637946 (add ?637944 ?637945) [637946, 637945, 637944] by Demod 421398 with 420300 at 3
1014 Id : 435227, {_}: add c (add b a) === add c (add b a) [] by Demod 435226 with 80396 at 3
1015 Id : 435226, {_}: add c (add b a) =<= add c (add a b) [] by Demod 431823 with 431824 at 3
1016 Id : 431823, {_}: add c (add b a) =<= add b (add c a) [] by Demod 6203 with 428375 at 3
1017 Id : 6203, {_}: add c (add b a) =<= add a (add c b) [] by Demod 6202 with 5973 at 2,3
1018 Id : 6202, {_}: add c (add b a) =<= add a (add b c) [] by Demod 6201 with 5973 at 2,2
1019 Id : 6201, {_}: add c (add a b) =<= add a (add b c) [] by Demod 2 with 5973 at 2
1020 Id : 2, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2
1021 % SZS output end CNFRefutation for BOO073-1.p
1029 prove_meredith_2_basis_2 is 94
1033 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3
1034 [4, 3, 2] by sh_1 ?2 ?3 ?4
1037 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
1038 [] by prove_meredith_2_basis_2
1039 Last chance: 1246125322.97
1040 Last chance: all is indexed 1246125342.97
1041 Last chance: failed over 100 goal 1246125342.97
1042 FAILURE in 0 iterations
1043 % SZS status Timeout for BOO076-1.p
1051 prove_strong_fixed_point is 95
1052 strong_fixed_point is 98
1057 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1058 [4, 3, 2] by b_definition ?2 ?3 ?4
1060 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1061 [7, 6] by w_definition ?6 ?7
1065 apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b))
1066 [] by strong_fixed_point
1069 apply strong_fixed_point fixed_pt
1071 apply fixed_pt (apply strong_fixed_point fixed_pt)
1072 [] by prove_strong_fixed_point
1073 Last chance: 1246125613.41
1074 Last chance: all is indexed 1246125633.41
1075 Last chance: failed over 100 goal 1246125633.41
1076 FAILURE in 0 iterations
1077 % SZS status Timeout for COL003-12.p
1085 prove_strong_fixed_point is 96
1090 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1091 [5, 4, 3] by b_definition ?3 ?4 ?5
1093 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
1094 [8, 7] by w_definition ?7 ?8
1097 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1098 [1] by prove_strong_fixed_point ?1
1099 Last chance: 1246125903.86
1100 Last chance: all is indexed 1246125923.87
1101 Last chance: failed over 100 goal 1246125924.12
1102 FAILURE in 0 iterations
1103 % SZS status Timeout for COL003-1.p
1111 prove_strong_fixed_point is 95
1112 strong_fixed_point is 98
1117 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1118 [4, 3, 2] by b_definition ?2 ?3 ?4
1120 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1121 [7, 6] by w_definition ?6 ?7
1125 apply (apply b (apply w w))
1126 (apply (apply b (apply b w)) (apply (apply b b) b))
1127 [] by strong_fixed_point
1130 apply strong_fixed_point fixed_pt
1132 apply fixed_pt (apply strong_fixed_point fixed_pt)
1133 [] by prove_strong_fixed_point
1134 Last chance: 1246126194.44
1135 Last chance: all is indexed 1246126214.45
1136 Last chance: failed over 100 goal 1246126214.45
1137 FAILURE in 0 iterations
1138 % SZS status Timeout for COL003-20.p
1146 prove_strong_fixed_point is 95
1149 strong_fixed_point is 98
1152 apply (apply (apply s ?2) ?3) ?4
1154 apply (apply ?2 ?4) (apply ?3 ?4)
1155 [4, 3, 2] by s_definition ?2 ?3 ?4
1156 Id : 6, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
1163 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
1164 (apply (apply s (apply (apply s (apply k s)) k))
1166 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
1167 [] by strong_fixed_point
1170 apply strong_fixed_point fixed_pt
1172 apply fixed_pt (apply strong_fixed_point fixed_pt)
1173 [] by prove_strong_fixed_point
1174 Last chance: 1246126485.35
1175 Last chance: all is indexed 1246126505.41
1176 Last chance: failed over 100 goal 1246126505.41
1177 FAILURE in 0 iterations
1178 % SZS status Timeout for COL006-6.p
1186 prove_fixed_point is 96
1191 apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4)
1192 [4, 3] by o_definition ?3 ?4
1194 apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7)
1195 [8, 7, 6] by q1_definition ?6 ?7 ?8
1197 Id : 2, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1
1198 Last chance: 1246126776.98
1199 Last chance: all is indexed 1246126796.99
1200 Last chance: failed over 100 goal 1246126797.08
1201 FAILURE in 0 iterations
1202 % SZS status Timeout for COL011-1.p
1212 prove_fixed_point is 96
1217 apply (apply (apply s ?3) ?4) ?5
1219 apply (apply ?3 ?5) (apply ?4 ?5)
1220 [5, 4, 3] by s_definition ?3 ?4 ?5
1222 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
1223 [9, 8, 7] by b_definition ?7 ?8 ?9
1225 apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12
1226 [13, 12, 11] by c_definition ?11 ?12 ?13
1229 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1230 [1] by prove_fixed_point ?1
1231 Last chance: 1246127067.89
1232 Last chance: all is indexed 1246127087.95
1233 Last chance: failed over 100 goal 1246127088.09
1234 FAILURE in 0 iterations
1235 % SZS status Timeout for COL037-1.p
1245 prove_fixed_point is 96
1250 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1251 [5, 4, 3] by b_definition ?3 ?4 ?5
1252 Id : 6, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1254 apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10
1255 [11, 10, 9] by v_definition ?9 ?10 ?11
1258 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1259 [1] by prove_fixed_point ?1
1260 Last chance: 1246127360.45
1261 Last chance: all is indexed 1246127380.5
1262 Last chance: failed over 100 goal 1246127380.54
1263 FAILURE in 0 iterations
1264 % SZS status Timeout for COL038-1.p
1274 prove_strong_fixed_point is 95
1275 strong_fixed_point is 98
1278 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1279 [4, 3, 2] by b_definition ?2 ?3 ?4
1281 apply (apply (apply h ?6) ?7) ?8
1283 apply (apply (apply ?6 ?7) ?8) ?7
1284 [8, 7, 6] by h_definition ?6 ?7 ?8
1294 (apply (apply b (apply (apply b h) (apply b b)))
1295 (apply h (apply (apply b h) (apply b b))))) h)) b)) b
1296 [] by strong_fixed_point
1299 apply strong_fixed_point fixed_pt
1301 apply fixed_pt (apply strong_fixed_point fixed_pt)
1302 [] by prove_strong_fixed_point
1303 Last chance: 1246127651.76
1304 Last chance: all is indexed 1246127671.76
1305 Last chance: failed over 100 goal 1246127671.76
1306 FAILURE in 0 iterations
1307 % SZS status Timeout for COL043-3.p
1317 prove_strong_fixed_point is 95
1318 strong_fixed_point is 98
1321 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1322 [4, 3, 2] by b_definition ?2 ?3 ?4
1324 apply (apply (apply n ?6) ?7) ?8
1326 apply (apply (apply ?6 ?8) ?7) ?8
1327 [8, 7, 6] by n_definition ?6 ?7 ?8
1338 (apply (apply b (apply b b))
1339 (apply n (apply (apply b b) n))))) n)) b)) b
1340 [] by strong_fixed_point
1343 apply strong_fixed_point fixed_pt
1345 apply fixed_pt (apply strong_fixed_point fixed_pt)
1346 [] by prove_strong_fixed_point
1347 Last chance: 1246127942.43
1348 Last chance: all is indexed 1246127962.43
1349 Last chance: failed over 100 goal 1246127962.43
1350 FAILURE in 0 iterations
1351 % SZS status Timeout for COL044-8.p
1361 prove_fixed_point is 96
1366 apply (apply (apply s ?3) ?4) ?5
1368 apply (apply ?3 ?5) (apply ?4 ?5)
1369 [5, 4, 3] by s_definition ?3 ?4 ?5
1371 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
1372 [9, 8, 7] by b_definition ?7 ?8 ?9
1373 Id : 8, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11
1376 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1377 [1] by prove_fixed_point ?1
1378 Last chance: 1246128232.93
1379 Last chance: all is indexed 1246128253.01
1380 Last chance: failed over 100 goal 1246128253.19
1381 FAILURE in 0 iterations
1382 % SZS status Timeout for COL046-1.p
1392 prove_strong_fixed_point is 96
1397 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1398 [5, 4, 3] by b_definition ?3 ?4 ?5
1400 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
1401 [8, 7] by w_definition ?7 ?8
1402 Id : 8, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10
1405 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1406 [1] by prove_strong_fixed_point ?1
1407 Last chance: 1246128524.07
1408 Last chance: all is indexed 1246128544.07
1409 Last chance: failed over 100 goal 1246128544.25
1410 FAILURE in 0 iterations
1411 % SZS status Timeout for COL049-1.p
1423 prove_strong_fixed_point is 96
1428 apply (apply (apply s ?3) ?4) ?5
1430 apply (apply ?3 ?5) (apply ?4 ?5)
1431 [5, 4, 3] by s_definition ?3 ?4 ?5
1433 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
1434 [9, 8, 7] by b_definition ?7 ?8 ?9
1436 apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12
1437 [13, 12, 11] by c_definition ?11 ?12 ?13
1438 Id : 10, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15
1441 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1442 [1] by prove_strong_fixed_point ?1
1443 Last chance: 1246128814.63
1444 Last chance: all is indexed 1246128834.73
1446 Found proof, 290.682237s
1447 % SZS status Unsatisfiable for COL057-1.p
1448 % SZS output start CNFRefutation for COL057-1.p
1449 Id : 6, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9
1450 Id : 10, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15
1451 Id : 4, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5
1452 Id : 35, {_}: apply (apply (apply s i) ?113) ?112 =?= apply ?112 (apply ?113 ?112) [112, 113] by Super 4 with 10 at 1,3
1453 Id : 34, {_}: apply (apply (apply s ?110) i) ?109 =?= apply (apply ?110 ?109) ?109 [109, 110] by Super 4 with 10 at 2,3
1454 Id : 56, {_}: apply (apply (apply s (apply b ?164)) i) ?163 =?= apply ?164 (apply ?163 ?163) [163, 164] by Super 6 with 34 at 2
1455 Id : 761617, {_}: apply (apply (apply s i) (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i))) (f (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i))) === apply (apply (apply s i) (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i))) (f (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i))) [] by Super 4653 with 56 at 1,2
1456 Id : 4653, {_}: apply ?3570 (f ?3570) =<= apply (apply (apply s i) ?3570) (f ?3570) [3570] by Super 2 with 35 at 3
1457 Id : 2, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1
1458 % SZS output end CNFRefutation for COL057-1.p
1468 prove_q_combinator is 94
1473 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1474 [5, 4, 3] by b_definition ?3 ?4 ?5
1476 apply (apply t ?7) ?8 =>= apply ?8 ?7
1477 [8, 7] by t_definition ?7 ?8
1480 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
1482 apply (g ?1) (apply (f ?1) (h ?1))
1483 [1] by prove_q_combinator ?1
1485 Found proof, 0.123092s
1486 % SZS status Unsatisfiable for COL060-1.p
1487 % SZS output start CNFRefutation for COL060-1.p
1488 Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
1489 Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1490 Id : 410, {_}: apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) === apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) [] by Super 408 with 4 at 2
1491 Id : 408, {_}: apply (apply (apply ?1205 (g (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1205)) (apply (apply b b) t))) =>= apply (g (apply (apply b (apply t ?1205)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t ?1205)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) [1205] by Super 389 with 6 at 1,2
1492 Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (apply (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) [1152, 1151] by Super 50 with 4 at 1,2
1493 Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (apply (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2
1494 Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (g (apply (apply b (apply t ?57)) ?58)) (apply (f (apply (apply b (apply t ?57)) ?58)) (h (apply (apply b (apply t ?57)) ?58))) [57, 58] by Super 11 with 6 at 1,1,2
1495 Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (g (apply (apply b ?24) ?25)) (apply (f (apply (apply b ?24) ?25)) (h (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,2
1496 Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1
1497 % SZS output end CNFRefutation for COL060-1.p
1507 prove_q1_combinator is 94
1512 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1513 [5, 4, 3] by b_definition ?3 ?4 ?5
1515 apply (apply t ?7) ?8 =>= apply ?8 ?7
1516 [8, 7] by t_definition ?7 ?8
1519 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
1521 apply (f ?1) (apply (h ?1) (g ?1))
1522 [1] by prove_q1_combinator ?1
1524 Found proof, 0.122812s
1525 % SZS status Unsatisfiable for COL061-1.p
1526 % SZS output start CNFRefutation for COL061-1.p
1527 Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
1528 Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1529 Id : 410, {_}: apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) === apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) [] by Super 409 with 6 at 2,2
1530 Id : 409, {_}: apply (f (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (apply (apply ?1207 (g (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) (h (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) =>= apply (f (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (g (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) [1207] by Super 389 with 4 at 2
1531 Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) [1152, 1151] by Super 50 with 4 at 1,2
1532 Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2
1533 Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (f (apply (apply b (apply t ?57)) ?58)) (apply (h (apply (apply b (apply t ?57)) ?58)) (g (apply (apply b (apply t ?57)) ?58))) [57, 58] by Super 11 with 6 at 1,1,2
1534 Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (f (apply (apply b ?24) ?25)) (apply (h (apply (apply b ?24) ?25)) (g (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,2
1535 Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1
1536 % SZS output end CNFRefutation for COL061-1.p
1546 prove_f_combinator is 94
1551 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1552 [5, 4, 3] by b_definition ?3 ?4 ?5
1554 apply (apply t ?7) ?8 =>= apply ?8 ?7
1555 [8, 7] by t_definition ?7 ?8
1558 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
1560 apply (apply (h ?1) (g ?1)) (f ?1)
1561 [1] by prove_f_combinator ?1
1563 Found proof, 2.025852s
1564 % SZS status Unsatisfiable for COL063-1.p
1565 % SZS output start CNFRefutation for COL063-1.p
1566 Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
1567 Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1568 Id : 3084, {_}: apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) [] by Super 3079 with 6 at 2
1569 Id : 3079, {_}: apply (apply ?9991 (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) =>= apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) [9991] by Super 3059 with 6 at 2,2
1570 Id : 3059, {_}: apply (apply ?9940 (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (apply (apply ?9941 (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) =>= apply (apply (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) [9941, 9940] by Super 405 with 4 at 2
1571 Id : 405, {_}: apply (apply (apply ?1195 (apply ?1196 (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (apply ?1197 (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) =>= apply (apply (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196))))) (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) [1197, 1196, 1195] by Super 389 with 4 at 1,1,2
1572 Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) [1152, 1151] by Super 50 with 4 at 1,2
1573 Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2
1574 Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (apply (h (apply (apply b (apply t ?57)) ?58)) (g (apply (apply b (apply t ?57)) ?58))) (f (apply (apply b (apply t ?57)) ?58)) [57, 58] by Super 11 with 6 at 1,1,2
1575 Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (apply (h (apply (apply b ?24) ?25)) (g (apply (apply b ?24) ?25))) (f (apply (apply b ?24) ?25)) [25, 24] by Super 2 with 4 at 1,1,2
1576 Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1
1577 % SZS output end CNFRefutation for COL063-1.p
1587 prove_v_combinator is 94
1592 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1593 [5, 4, 3] by b_definition ?3 ?4 ?5
1595 apply (apply t ?7) ?8 =>= apply ?8 ?7
1596 [8, 7] by t_definition ?7 ?8
1599 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
1601 apply (apply (h ?1) (f ?1)) (g ?1)
1602 [1] by prove_v_combinator ?1
1604 Found proof, 14.670988s
1605 % SZS status Unsatisfiable for COL064-1.p
1606 % SZS output start CNFRefutation for COL064-1.p
1607 Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
1608 Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1609 Id : 10866, {_}: apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) [] by Super 10865 with 6 at 2
1610 Id : 10865, {_}: apply (apply ?36992 (g (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) (apply (h (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) [36992] by Super 3088 with 4 at 2
1611 Id : 3088, {_}: apply (apply (apply ?10013 (apply ?10014 (g (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))))) (h (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) [10014, 10013] by Super 3083 with 4 at 1,1,2
1612 Id : 3083, {_}: apply (apply (apply ?10003 (g (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (h (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) [10003] by Super 3059 with 6 at 2
1613 Id : 3059, {_}: apply (apply ?9940 (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (apply (apply ?9941 (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) =>= apply (apply (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) [9941, 9940] by Super 405 with 4 at 2
1614 Id : 405, {_}: apply (apply (apply ?1195 (apply ?1196 (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (apply ?1197 (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) =>= apply (apply (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196))))) (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) [1197, 1196, 1195] by Super 389 with 4 at 1,1,2
1615 Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) [1152, 1151] by Super 50 with 4 at 1,2
1616 Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2
1617 Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (apply (h (apply (apply b (apply t ?57)) ?58)) (f (apply (apply b (apply t ?57)) ?58))) (g (apply (apply b (apply t ?57)) ?58)) [57, 58] by Super 11 with 6 at 1,1,2
1618 Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (apply (h (apply (apply b ?24) ?25)) (f (apply (apply b ?24) ?25))) (g (apply (apply b ?24) ?25)) [25, 24] by Super 2 with 4 at 1,1,2
1619 Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1
1620 % SZS output end CNFRefutation for COL064-1.p
1631 prove_g_combinator is 93
1636 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1637 [5, 4, 3] by b_definition ?3 ?4 ?5
1639 apply (apply t ?7) ?8 =>= apply ?8 ?7
1640 [8, 7] by t_definition ?7 ?8
1643 apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1)
1645 apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1))
1646 [1] by prove_g_combinator ?1
1648 Found proof, 71.486989s
1649 % SZS status Unsatisfiable for COL065-1.p
1650 % SZS output start CNFRefutation for COL065-1.p
1651 Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
1652 Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1653 Id : 24512, {_}: apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) === apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) [] by Super 24511 with 6 at 2
1654 Id : 24511, {_}: apply (apply ?78509 (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))))) (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) [78509] by Super 5051 with 4 at 2
1655 Id : 5051, {_}: apply (apply (apply ?14812 (apply ?14813 (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))))) (f (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) [14813, 14812] by Super 5049 with 4 at 1,1,2
1656 Id : 5049, {_}: apply (apply (apply ?14808 (apply (g (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))))) (f (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) (i (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) [14808] by Super 5030 with 6 at 1,2
1657 Id : 5030, {_}: apply (apply (apply ?14754 (f (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) (apply ?14755 (apply (g (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (h (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))))) (i (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (i (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (h (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) [14755, 14754] by Super 388 with 4 at 1,2
1658 Id : 388, {_}: apply (apply (apply (apply ?1025 (apply ?1026 (f (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))))) ?1027) (apply (g (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (h (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))))) (i (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (i (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (h (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026))))) [1027, 1026, 1025] by Super 132 with 4 at 1,1,1,2
1659 Id : 132, {_}: apply (apply (apply (apply ?316 (f (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) ?315) (apply (g (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (h (apply (apply b b) (apply (apply b (apply t ?315)) ?316))))) (i (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (i (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) (apply (g (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (h (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) [315, 316] by Super 34 with 6 at 1,1,2
1660 Id : 34, {_}: apply (apply (apply ?76 (apply ?77 (f (apply (apply b b) (apply (apply b ?76) ?77))))) (apply (g (apply (apply b b) (apply (apply b ?76) ?77))) (h (apply (apply b b) (apply (apply b ?76) ?77))))) (i (apply (apply b b) (apply (apply b ?76) ?77))) =>= apply (apply (f (apply (apply b b) (apply (apply b ?76) ?77))) (i (apply (apply b b) (apply (apply b ?76) ?77)))) (apply (g (apply (apply b b) (apply (apply b ?76) ?77))) (h (apply (apply b b) (apply (apply b ?76) ?77)))) [77, 76] by Super 31 with 4 at 1,1,2
1661 Id : 31, {_}: apply (apply (apply ?69 (f (apply (apply b b) ?69))) (apply (g (apply (apply b b) ?69)) (h (apply (apply b b) ?69)))) (i (apply (apply b b) ?69)) =>= apply (apply (f (apply (apply b b) ?69)) (i (apply (apply b b) ?69))) (apply (g (apply (apply b b) ?69)) (h (apply (apply b b) ?69))) [69] by Super 11 with 4 at 1,2
1662 Id : 11, {_}: apply (apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25))) (i (apply (apply b ?24) ?25)) =>= apply (apply (f (apply (apply b ?24) ?25)) (i (apply (apply b ?24) ?25))) (apply (g (apply (apply b ?24) ?25)) (h (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,1,2
1663 Id : 2, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) =>= apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) [1] by prove_g_combinator ?1
1664 % SZS output end CNFRefutation for COL065-1.p
1674 prove_associativity is 94
1681 (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4)))
1682 ?5) (inverse (multiply ?3 ?5))))
1685 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5
1688 multiply a (multiply b c) =<= multiply (multiply a b) c
1689 [] by prove_associativity
1690 Found proof, 3.167539s
1691 % SZS status Unsatisfiable for GRP014-1.p
1692 % SZS output start CNFRefutation for GRP014-1.p
1693 Id : 5, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by group_axiom ?7 ?8 ?9 ?10
1694 Id : 4, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5
1695 Id : 7, {_}: multiply ?22 (inverse (multiply (multiply (inverse (multiply (inverse ?23) ?20)) ?24) (inverse (multiply ?23 ?24)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?19) (multiply (inverse (inverse ?22)) ?20))) ?21) (inverse (multiply ?19 ?21))) [21, 19, 24, 20, 23, 22] by Super 5 with 4 at 2,1,1,1,1,2,2
1696 Id : 65, {_}: multiply (inverse ?586) (multiply ?586 (inverse (multiply (multiply (inverse (multiply (inverse ?587) ?588)) ?589) (inverse (multiply ?587 ?589))))) =>= ?588 [589, 588, 587, 586] by Super 4 with 7 at 2,2
1697 Id : 66, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?596) (multiply (inverse (inverse ?593)) (multiply (inverse ?593) ?598)))) ?597) (inverse (multiply ?596 ?597))) =>= ?598 [597, 598, 593, 596] by Super 4 with 7 at 2
1698 Id : 285, {_}: multiply (inverse ?2327) (multiply ?2327 ?2328) =?= multiply (inverse (inverse ?2329)) (multiply (inverse ?2329) ?2328) [2329, 2328, 2327] by Super 65 with 66 at 2,2,2
1699 Id : 188, {_}: multiply (inverse ?1696) (multiply ?1696 ?1694) =?= multiply (inverse (inverse ?1693)) (multiply (inverse ?1693) ?1694) [1693, 1694, 1696] by Super 65 with 66 at 2,2,2
1700 Id : 299, {_}: multiply (inverse ?2421) (multiply ?2421 ?2422) =?= multiply (inverse ?2420) (multiply ?2420 ?2422) [2420, 2422, 2421] by Super 285 with 188 at 3
1701 Id : 379, {_}: multiply ?2799 (inverse (multiply (multiply (inverse ?2798) (multiply ?2798 ?2797)) (inverse (multiply ?2800 (multiply (multiply (inverse ?2800) (multiply (inverse ?2799) ?2801)) ?2797))))) =>= ?2801 [2801, 2800, 2797, 2798, 2799] by Super 4 with 299 at 1,1,2,2
1702 Id : 550, {_}: multiply ?3835 (inverse (multiply (multiply (inverse (multiply (inverse ?3836) (multiply ?3836 ?3837))) ?3838) (inverse (multiply (inverse ?3835) ?3838)))) =>= ?3837 [3838, 3837, 3836, 3835] by Super 4 with 188 at 1,1,1,1,2,2
1703 Id : 2860, {_}: multiply ?17926 (inverse (multiply (multiply (inverse (multiply (inverse ?17927) (multiply ?17927 ?17928))) (multiply ?17926 ?17929)) (inverse (multiply (inverse ?17930) (multiply ?17930 ?17929))))) =>= ?17928 [17930, 17929, 17928, 17927, 17926] by Super 550 with 299 at 1,2,1,2,2
1704 Id : 2947, {_}: multiply (multiply (inverse ?18671) (multiply ?18671 ?18672)) (inverse (multiply ?18669 (inverse (multiply (inverse ?18673) (multiply ?18673 (inverse (multiply (multiply (inverse (multiply (inverse ?18668) ?18669)) ?18670) (inverse (multiply ?18668 ?18670))))))))) =>= ?18672 [18670, 18668, 18673, 18669, 18672, 18671] by Super 2860 with 65 at 1,1,2,2
1705 Id : 2989, {_}: multiply (multiply (inverse ?18671) (multiply ?18671 ?18672)) (inverse (multiply ?18669 (inverse ?18669))) =>= ?18672 [18669, 18672, 18671] by Demod 2947 with 65 at 1,2,1,2,2
1706 Id : 3000, {_}: multiply ?18805 (inverse (multiply (multiply (inverse ?18806) (multiply ?18806 (inverse (multiply ?18804 (inverse ?18804))))) (inverse (multiply (inverse ?18805) ?18803)))) =>= ?18803 [18803, 18804, 18806, 18805] by Super 379 with 2989 at 2,1,2,1,2,2
1707 Id : 7432, {_}: multiply (inverse ?40377) (multiply (multiply (inverse (inverse ?40377)) ?40378) (inverse (multiply ?40379 (inverse ?40379)))) =>= ?40378 [40379, 40378, 40377] by Super 65 with 3000 at 2,2
1708 Id : 3646, {_}: multiply ?23036 (inverse (multiply (multiply (inverse ?23037) (multiply ?23037 (inverse (multiply ?23038 (inverse ?23038))))) (inverse (multiply (inverse ?23036) ?23039)))) =>= ?23039 [23039, 23038, 23037, 23036] by Super 379 with 2989 at 2,1,2,1,2,2
1709 Id : 3702, {_}: multiply ?23470 (inverse (inverse (multiply ?23472 (inverse ?23472)))) =>= inverse (inverse ?23470) [23472, 23470] by Super 3646 with 2989 at 1,2,2
1710 Id : 3804, {_}: multiply (inverse ?23847) (multiply ?23847 (inverse (inverse (multiply ?23846 (inverse ?23846))))) =?= multiply (inverse ?23845) (inverse (inverse ?23845)) [23845, 23846, 23847] by Super 299 with 3702 at 2,3
1711 Id : 4420, {_}: multiply (inverse ?26554) (inverse (inverse ?26554)) =?= multiply (inverse ?26555) (inverse (inverse ?26555)) [26555, 26554] by Demod 3804 with 3702 at 2,2
1712 Id : 190, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1706) (multiply (inverse (inverse ?1707)) (multiply (inverse ?1707) ?1708)))) ?1709) (inverse (multiply ?1706 ?1709))) =>= ?1708 [1709, 1708, 1707, 1706] by Super 4 with 7 at 2
1713 Id : 198, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1768) (multiply (inverse (inverse ?1769)) (multiply (inverse ?1769) ?1770)))) ?1771) (inverse (multiply ?1768 ?1771))))) (multiply ?1770 ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1771, 1770, 1769, 1768, 1772] by Super 190 with 66 at 1,2,2,1,1,1,1,2
1714 Id : 223, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (multiply (inverse ?1770) (multiply ?1770 ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1770, 1772] by Demod 198 with 66 at 1,1,2,1,1,1,1,2
1715 Id : 4421, {_}: multiply (inverse ?26561) (inverse (inverse ?26561)) =?= multiply (inverse (multiply (multiply (inverse (multiply (inverse ?26557) (multiply (inverse ?26558) (multiply ?26558 ?26559)))) ?26560) (inverse (multiply ?26557 ?26560)))) (inverse ?26559) [26560, 26559, 26558, 26557, 26561] by Super 4420 with 223 at 1,2,3
1716 Id : 4696, {_}: multiply (inverse ?27771) (inverse (inverse ?27771)) =?= multiply ?27772 (inverse ?27772) [27772, 27771] by Demod 4421 with 223 at 1,3
1717 Id : 4493, {_}: multiply (inverse ?26561) (inverse (inverse ?26561)) =?= multiply ?26559 (inverse ?26559) [26559, 26561] by Demod 4421 with 223 at 1,3
1718 Id : 4736, {_}: multiply ?27992 (inverse ?27992) =?= multiply ?27994 (inverse ?27994) [27994, 27992] by Super 4696 with 4493 at 2
1719 Id : 7526, {_}: multiply (inverse ?40902) (multiply ?40901 (inverse ?40901)) =>= inverse (inverse (inverse ?40902)) [40901, 40902] by Super 7432 with 4736 at 2,2
1720 Id : 7653, {_}: multiply (inverse ?41400) (multiply ?41400 (inverse ?41399)) =>= inverse (inverse (inverse ?41399)) [41399, 41400] by Super 299 with 7526 at 3
1721 Id : 8053, {_}: multiply ?18805 (inverse (multiply (inverse (inverse (inverse (multiply ?18804 (inverse ?18804))))) (inverse (multiply (inverse ?18805) ?18803)))) =>= ?18803 [18803, 18804, 18805] by Demod 3000 with 7653 at 1,1,2,2
1722 Id : 395, {_}: multiply (inverse ?2916) (multiply ?2916 (inverse (multiply (multiply (inverse (multiply (inverse ?2915) (multiply ?2915 ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914, 2915, 2916] by Super 65 with 299 at 1,1,1,1,2,2,2
1723 Id : 8051, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?2915) (multiply ?2915 ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914, 2915] by Demod 395 with 7653 at 2
1724 Id : 8154, {_}: multiply (inverse ?43172) (multiply ?43172 (inverse ?43173)) =>= inverse (inverse (inverse ?43173)) [43173, 43172] by Super 299 with 7526 at 3
1725 Id : 474, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?3355) (multiply (inverse ?3356) (multiply ?3356 ?3357)))) ?3358) (inverse (multiply ?3355 ?3358))) =>= ?3357 [3358, 3357, 3356, 3355] by Demod 198 with 66 at 1,1,2,1,1,1,1,2
1726 Id : 505, {_}: inverse (multiply (multiply (inverse ?3589) (multiply ?3589 ?3588)) (inverse (multiply ?3590 (multiply (multiply (inverse ?3590) (multiply (inverse ?3591) (multiply ?3591 ?3592))) ?3588)))) =>= ?3592 [3592, 3591, 3590, 3588, 3589] by Super 474 with 299 at 1,1,2
1727 Id : 3283, {_}: inverse (multiply (multiply (inverse ?20660) (multiply ?20660 (inverse (multiply ?20661 (inverse ?20661))))) (inverse (multiply (inverse ?20662) (multiply ?20662 ?20663)))) =>= ?20663 [20663, 20662, 20661, 20660] by Super 505 with 2989 at 2,1,2,1,2
1728 Id : 251, {_}: multiply ?2088 (inverse (multiply (multiply (inverse (multiply (inverse ?2086) (multiply ?2086 ?2087))) ?2089) (inverse (multiply (inverse ?2088) ?2089)))) =>= ?2087 [2089, 2087, 2086, 2088] by Super 4 with 188 at 1,1,1,1,2,2
1729 Id : 3330, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?21019) (multiply ?21019 ?21020))) ?21020) (inverse (multiply (inverse ?21022) (multiply ?21022 ?21023)))) =>= ?21023 [21023, 21022, 21020, 21019] by Super 3283 with 251 at 2,1,1,2
1730 Id : 8160, {_}: multiply (inverse ?43212) (multiply ?43212 ?43211) =?= inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?43208) (multiply ?43208 ?43209))) ?43209) (inverse (multiply (inverse ?43210) (multiply ?43210 ?43211)))))) [43210, 43209, 43208, 43211, 43212] by Super 8154 with 3330 at 2,2,2
1731 Id : 8246, {_}: multiply (inverse ?43212) (multiply ?43212 ?43211) =>= inverse (inverse ?43211) [43211, 43212] by Demod 8160 with 3330 at 1,1,3
1732 Id : 8276, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914] by Demod 8051 with 8246 at 1,1,1,1,1,1,2
1733 Id : 3034, {_}: multiply (multiply (inverse ?19018) (multiply ?19018 ?19019)) (inverse (multiply ?19020 (inverse ?19020))) =>= ?19019 [19020, 19019, 19018] by Demod 2947 with 65 at 1,2,1,2,2
1734 Id : 3049, {_}: multiply (multiply (inverse (inverse ?19126)) (multiply (inverse ?19128) (multiply ?19128 ?19127))) (inverse (multiply ?19129 (inverse ?19129))) =>= multiply ?19126 ?19127 [19129, 19127, 19128, 19126] by Super 3034 with 299 at 2,1,2
1735 Id : 7592, {_}: multiply (multiply (inverse (inverse ?41055)) (multiply (inverse (inverse ?41053)) (inverse (inverse (inverse ?41053))))) (inverse (multiply ?41056 (inverse ?41056))) =?= multiply ?41055 (multiply ?41054 (inverse ?41054)) [41054, 41056, 41053, 41055] by Super 3049 with 7526 at 2,2,1,2
1736 Id : 6756, {_}: multiply (multiply (inverse ?37293) (multiply ?37294 (inverse ?37294))) (inverse (multiply ?37295 (inverse ?37295))) =>= inverse ?37293 [37295, 37294, 37293] by Super 2989 with 4736 at 2,1,2
1737 Id : 6813, {_}: multiply (multiply ?37621 (multiply ?37623 (inverse ?37623))) (inverse (multiply ?37624 (inverse ?37624))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?37619) (multiply (inverse ?37620) (multiply ?37620 ?37621)))) ?37622) (inverse (multiply ?37619 ?37622))) [37622, 37620, 37619, 37624, 37623, 37621] by Super 6756 with 223 at 1,1,2
1738 Id : 6857, {_}: multiply (multiply ?37621 (multiply ?37623 (inverse ?37623))) (inverse (multiply ?37624 (inverse ?37624))) =>= ?37621 [37624, 37623, 37621] by Demod 6813 with 223 at 3
1739 Id : 7919, {_}: inverse (inverse ?42462) =<= multiply ?42462 (multiply ?42463 (inverse ?42463)) [42463, 42462] by Demod 7592 with 6857 at 2
1740 Id : 2998, {_}: inverse (multiply (multiply (inverse ?18792) (multiply ?18792 (inverse (multiply ?18791 (inverse ?18791))))) (inverse (multiply (inverse ?18793) (multiply ?18793 ?18794)))) =>= ?18794 [18794, 18793, 18791, 18792] by Super 505 with 2989 at 2,1,2,1,2
1741 Id : 5265, {_}: inverse (multiply ?30443 (inverse ?30443)) =?= inverse (multiply ?30444 (inverse ?30444)) [30444, 30443] by Super 2998 with 4736 at 1,2
1742 Id : 5279, {_}: inverse (multiply ?30523 (inverse ?30523)) =?= inverse (inverse (inverse (inverse (multiply ?30522 (inverse ?30522))))) [30522, 30523] by Super 5265 with 3702 at 1,3
1743 Id : 7936, {_}: inverse (inverse ?42552) =<= multiply ?42552 (multiply (inverse (inverse (inverse (multiply ?42551 (inverse ?42551))))) (inverse (multiply ?42550 (inverse ?42550)))) [42550, 42551, 42552] by Super 7919 with 5279 at 2,2,3
1744 Id : 7778, {_}: inverse (inverse ?41055) =<= multiply ?41055 (multiply ?41054 (inverse ?41054)) [41054, 41055] by Demod 7592 with 6857 at 2
1745 Id : 7804, {_}: multiply (inverse (inverse ?37621)) (inverse (multiply ?37624 (inverse ?37624))) =>= ?37621 [37624, 37621] by Demod 6857 with 7778 at 1,2
1746 Id : 8036, {_}: inverse (inverse ?42552) =<= multiply ?42552 (inverse (multiply ?42551 (inverse ?42551))) [42551, 42552] by Demod 7936 with 7804 at 2,3
1747 Id : 8529, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?44275))) (inverse (multiply ?44274 (inverse ?44274)))) (inverse (inverse (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44274, 44275] by Super 8276 with 8036 at 1,2,1,1,1,2
1748 Id : 8588, {_}: inverse (inverse (inverse (multiply (inverse (inverse (inverse (inverse (inverse ?44275))))) (inverse (inverse (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8529 with 8036 at 1,1,1,1,2
1749 Id : 401, {_}: multiply (inverse ?2949) (multiply ?2949 ?2950) =?= multiply (inverse ?2951) (multiply ?2951 ?2950) [2951, 2950, 2949] by Super 285 with 188 at 3
1750 Id : 407, {_}: multiply (inverse ?2992) (multiply ?2992 (multiply ?2989 ?2990)) =?= multiply (inverse (inverse ?2989)) (multiply (inverse ?2991) (multiply ?2991 ?2990)) [2991, 2990, 2989, 2992] by Super 401 with 299 at 2,3
1751 Id : 8291, {_}: inverse (inverse (multiply ?2989 ?2990)) =<= multiply (inverse (inverse ?2989)) (multiply (inverse ?2991) (multiply ?2991 ?2990)) [2991, 2990, 2989] by Demod 407 with 8246 at 2
1752 Id : 8292, {_}: inverse (inverse (multiply ?2989 ?2990)) =<= multiply (inverse (inverse ?2989)) (inverse (inverse ?2990)) [2990, 2989] by Demod 8291 with 8246 at 2,3
1753 Id : 8589, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse ?44275))) (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8588 with 8292 at 1,1,1,2
1754 Id : 8446, {_}: inverse (inverse (inverse (inverse ?37621))) =>= ?37621 [37621] by Demod 7804 with 8036 at 2
1755 Id : 8590, {_}: inverse (multiply (inverse (inverse (inverse ?44275))) (inverse ?44273)) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8589 with 8446 at 2
1756 Id : 8757, {_}: multiply ?18805 (multiply (multiply (inverse ?18805) ?18803) (multiply ?18804 (inverse ?18804))) =>= ?18803 [18804, 18803, 18805] by Demod 8053 with 8590 at 2,2
1757 Id : 8758, {_}: multiply ?18805 (inverse (inverse (multiply (inverse ?18805) ?18803))) =>= ?18803 [18803, 18805] by Demod 8757 with 7778 at 2,2
1758 Id : 8857, {_}: inverse (multiply (inverse (inverse (inverse ?44963))) (inverse ?44964)) =>= multiply ?44964 ?44963 [44964, 44963] by Demod 8589 with 8446 at 2
1759 Id : 8919, {_}: inverse (multiply ?45241 (inverse ?45242)) =>= multiply ?45242 (inverse ?45241) [45242, 45241] by Super 8857 with 8446 at 1,1,2
1760 Id : 9051, {_}: multiply ?2 (multiply (multiply ?3 ?5) (inverse (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5))) =>= ?4 [4, 5, 3, 2] by Demod 4 with 8919 at 2,2
1761 Id : 137, {_}: multiply (inverse ?1284) (multiply ?1284 (inverse (multiply (multiply (inverse (multiply (inverse ?1285) ?1286)) ?1287) (inverse (multiply ?1285 ?1287))))) =>= ?1286 [1287, 1286, 1285, 1284] by Super 4 with 7 at 2,2
1762 Id : 156, {_}: multiply (inverse ?1443) (multiply ?1443 (multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439, 1443] by Super 137 with 7 at 2,2,2
1763 Id : 8285, {_}: inverse (inverse (multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439] by Demod 156 with 8246 at 2
1764 Id : 9071, {_}: inverse (multiply (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442))) (inverse ?1439)) =>= multiply (inverse (inverse ?1439)) ?1441 [1439, 1442, 1441, 1440] by Demod 8285 with 8919 at 1,2
1765 Id : 9072, {_}: multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439] by Demod 9071 with 8919 at 2
1766 Id : 9073, {_}: multiply ?1439 (multiply (multiply ?1440 ?1442) (inverse (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442))) =>= multiply (inverse (inverse ?1439)) ?1441 [1441, 1442, 1440, 1439] by Demod 9072 with 8919 at 2,2
1767 Id : 9086, {_}: multiply (inverse (inverse ?2)) (multiply (inverse ?2) ?4) =>= ?4 [4, 2] by Demod 9051 with 9073 at 2
1768 Id : 9087, {_}: inverse (inverse ?4) =>= ?4 [4] by Demod 9086 with 8246 at 2
1769 Id : 9094, {_}: multiply ?18805 (multiply (inverse ?18805) ?18803) =>= ?18803 [18803, 18805] by Demod 8758 with 9087 at 2,2
1770 Id : 9160, {_}: inverse (multiply ?45446 (inverse ?45447)) =>= multiply ?45447 (inverse ?45446) [45447, 45446] by Super 8857 with 8446 at 1,1,2
1771 Id : 9162, {_}: inverse (multiply ?45454 ?45453) =<= multiply (inverse ?45453) (inverse ?45454) [45453, 45454] by Super 9160 with 9087 at 2,1,2
1772 Id : 9195, {_}: multiply ?45501 (inverse (multiply ?45500 ?45501)) =>= inverse ?45500 [45500, 45501] by Super 9094 with 9162 at 2,2
1773 Id : 8933, {_}: inverse ?45303 =<= multiply (inverse (multiply (inverse (inverse (inverse (inverse ?45304)))) ?45303)) ?45304 [45304, 45303] by Super 8857 with 8758 at 1,2
1774 Id : 9467, {_}: inverse ?46002 =<= multiply (inverse (multiply ?46003 ?46002)) ?46003 [46003, 46002] by Demod 8933 with 8446 at 1,1,1,3
1775 Id : 8287, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (inverse (inverse ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1772] by Demod 223 with 8246 at 2,1,1,1,1,2
1776 Id : 9069, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (inverse (multiply (inverse ?1772) (inverse (inverse ?1773)))) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 8287 with 8919 at 2
1777 Id : 9070, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (multiply (inverse ?1773) (inverse (inverse ?1772))) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 9069 with 8919 at 1,1,2,2
1778 Id : 9090, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (multiply (inverse ?1773) ?1772) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 9070 with 9087 at 2,1,1,2,2
1779 Id : 9469, {_}: inverse (inverse (multiply (multiply (inverse ?46010) ?46008) ?46009)) =>= multiply (inverse ?46010) (multiply ?46008 ?46009) [46009, 46008, 46010] by Super 9467 with 9090 at 1,1,3
1780 Id : 9509, {_}: multiply (multiply (inverse ?46010) ?46008) ?46009 =>= multiply (inverse ?46010) (multiply ?46008 ?46009) [46009, 46008, 46010] by Demod 9469 with 9087 at 2
1781 Id : 9851, {_}: multiply ?46565 (inverse (multiply (inverse ?46563) (multiply ?46564 ?46565))) =>= inverse (multiply (inverse ?46563) ?46564) [46564, 46563, 46565] by Super 9195 with 9509 at 1,2,2
1782 Id : 9213, {_}: inverse (multiply ?45576 ?45577) =<= multiply (inverse ?45577) (inverse ?45576) [45577, 45576] by Super 9160 with 9087 at 2,1,2
1783 Id : 9215, {_}: inverse (multiply (inverse ?45583) ?45584) =>= multiply (inverse ?45584) ?45583 [45584, 45583] by Super 9213 with 9087 at 2,3
1784 Id : 9934, {_}: multiply ?46565 (multiply (inverse (multiply ?46564 ?46565)) ?46563) =>= inverse (multiply (inverse ?46563) ?46564) [46563, 46564, 46565] by Demod 9851 with 9215 at 2,2
1785 Id : 12550, {_}: multiply ?50696 (multiply (inverse (multiply ?50697 ?50696)) ?50698) =>= multiply (inverse ?50697) ?50698 [50698, 50697, 50696] by Demod 9934 with 9215 at 3
1786 Id : 9075, {_}: inverse (inverse (multiply (multiply ?2913 ?2917) (inverse (multiply (inverse (inverse (inverse ?2914))) ?2917)))) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 8276 with 8919 at 1,1,2
1787 Id : 9076, {_}: inverse (multiply (multiply (inverse (inverse (inverse ?2914))) ?2917) (inverse (multiply ?2913 ?2917))) =>= multiply ?2913 ?2914 [2913, 2917, 2914] by Demod 9075 with 8919 at 1,2
1788 Id : 9077, {_}: multiply (multiply ?2913 ?2917) (inverse (multiply (inverse (inverse (inverse ?2914))) ?2917)) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9076 with 8919 at 2
1789 Id : 9102, {_}: multiply (multiply ?2913 ?2917) (inverse (multiply (inverse ?2914) ?2917)) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9077 with 9087 at 1,1,2,2
1790 Id : 9248, {_}: multiply (multiply ?2913 ?2917) (multiply (inverse ?2917) ?2914) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9102 with 9215 at 2,2
1791 Id : 9533, {_}: multiply (inverse ?46084) (multiply (inverse (inverse (multiply ?46084 ?46083))) ?46085) =>= multiply ?46083 ?46085 [46085, 46083, 46084] by Super 9248 with 9195 at 1,2
1792 Id : 9598, {_}: multiply (inverse ?46084) (multiply (multiply ?46084 ?46083) ?46085) =>= multiply ?46083 ?46085 [46085, 46083, 46084] by Demod 9533 with 9087 at 1,2,2
1793 Id : 12590, {_}: multiply ?50874 (multiply ?50872 ?50873) =<= multiply (inverse ?50875) (multiply (multiply (multiply ?50875 ?50874) ?50872) ?50873) [50875, 50873, 50872, 50874] by Super 12550 with 9598 at 2,2
1794 Id : 12312, {_}: multiply (multiply ?50214 ?50215) ?50216 =<= multiply (inverse ?50213) (multiply (multiply (multiply ?50213 ?50214) ?50215) ?50216) [50213, 50216, 50215, 50214] by Super 9509 with 9598 at 1,2
1795 Id : 29878, {_}: multiply ?50874 (multiply ?50872 ?50873) =?= multiply (multiply ?50874 ?50872) ?50873 [50873, 50872, 50874] by Demod 12590 with 12312 at 3
1796 Id : 30629, {_}: multiply a (multiply b c) === multiply a (multiply b c) [] by Demod 2 with 29878 at 3
1797 Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity
1798 % SZS output end CNFRefutation for GRP014-1.p
1804 associativity_of_commutator is 86
1816 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
1817 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
1819 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
1820 [8, 7, 6] by associativity ?6 ?7 ?8
1824 multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11))
1825 [11, 10] by name ?10 ?11
1827 commutator (commutator ?13 ?14) ?15
1829 commutator ?13 (commutator ?14 ?15)
1830 [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15
1833 multiply a (commutator b c) =<= multiply (commutator b c) a
1835 Last chance: 1246129199.8
1836 Last chance: all is indexed 1246129219.81
1837 Last chance: failed over 100 goal 1246129219.81
1838 FAILURE in 0 iterations
1839 % SZS status Timeout for GRP024-5.p
1847 intersection_associative is 79
1848 intersection_commutative is 81
1849 intersection_idempotent is 84
1850 intersection_union_absorbtion is 76
1852 inverse_involution is 87
1853 inverse_of_identity is 88
1854 inverse_product_lemma is 86
1858 multiply_intersection1 is 74
1859 multiply_intersection2 is 72
1860 multiply_union1 is 75
1861 multiply_union2 is 73
1866 union_associative is 78
1867 union_commutative is 80
1868 union_idempotent is 82
1869 union_intersection_absorbtion is 77
1871 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
1872 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
1874 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
1875 [8, 7, 6] by associativity ?6 ?7 ?8
1876 Id : 10, {_}: inverse identity =>= identity [] by inverse_of_identity
1877 Id : 12, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11
1879 inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13)
1880 [14, 13] by inverse_product_lemma ?13 ?14
1881 Id : 16, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16
1882 Id : 18, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18
1884 intersection ?20 ?21 =?= intersection ?21 ?20
1885 [21, 20] by intersection_commutative ?20 ?21
1887 union ?23 ?24 =?= union ?24 ?23
1888 [24, 23] by union_commutative ?23 ?24
1890 intersection ?26 (intersection ?27 ?28)
1892 intersection (intersection ?26 ?27) ?28
1893 [28, 27, 26] by intersection_associative ?26 ?27 ?28
1895 union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32
1896 [32, 31, 30] by union_associative ?30 ?31 ?32
1898 union (intersection ?34 ?35) ?35 =>= ?35
1899 [35, 34] by union_intersection_absorbtion ?34 ?35
1901 intersection (union ?37 ?38) ?38 =>= ?38
1902 [38, 37] by intersection_union_absorbtion ?37 ?38
1904 multiply ?40 (union ?41 ?42)
1906 union (multiply ?40 ?41) (multiply ?40 ?42)
1907 [42, 41, 40] by multiply_union1 ?40 ?41 ?42
1909 multiply ?44 (intersection ?45 ?46)
1911 intersection (multiply ?44 ?45) (multiply ?44 ?46)
1912 [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46
1914 multiply (union ?48 ?49) ?50
1916 union (multiply ?48 ?50) (multiply ?49 ?50)
1917 [50, 49, 48] by multiply_union2 ?48 ?49 ?50
1919 multiply (intersection ?52 ?53) ?54
1921 intersection (multiply ?52 ?54) (multiply ?53 ?54)
1922 [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54
1924 positive_part ?56 =<= union ?56 identity
1925 [56] by positive_part ?56
1927 negative_part ?58 =<= intersection ?58 identity
1928 [58] by negative_part ?58
1931 multiply (positive_part a) (negative_part a) =>= a
1933 Found proof, 2.757502s
1934 % SZS status Unsatisfiable for GRP114-1.p
1935 % SZS output start CNFRefutation for GRP114-1.p
1936 Id : 16, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16
1937 Id : 24, {_}: intersection ?26 (intersection ?27 ?28) =?= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28
1938 Id : 34, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46
1939 Id : 28, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35
1940 Id : 26, {_}: union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32
1941 Id : 267, {_}: multiply (union ?680 ?681) ?682 =<= union (multiply ?680 ?682) (multiply ?681 ?682) [682, 681, 680] by multiply_union2 ?680 ?681 ?682
1942 Id : 30, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38
1943 Id : 230, {_}: multiply ?593 (intersection ?594 ?595) =<= intersection (multiply ?593 ?594) (multiply ?593 ?595) [595, 594, 593] by multiply_intersection1 ?593 ?594 ?595
1944 Id : 42, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58
1945 Id : 20, {_}: intersection ?20 ?21 =?= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21
1946 Id : 303, {_}: multiply (intersection ?770 ?771) ?772 =<= intersection (multiply ?770 ?772) (multiply ?771 ?772) [772, 771, 770] by multiply_intersection2 ?770 ?771 ?772
1947 Id : 14, {_}: inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) [14, 13] by inverse_product_lemma ?13 ?14
1948 Id : 22, {_}: union ?23 ?24 =?= union ?24 ?23 [24, 23] by union_commutative ?23 ?24
1949 Id : 40, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56
1950 Id : 10, {_}: inverse identity =>= identity [] by inverse_of_identity
1951 Id : 32, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42
1952 Id : 12, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11
1953 Id : 79, {_}: inverse (multiply ?142 ?143) =<= multiply (inverse ?143) (inverse ?142) [143, 142] by inverse_product_lemma ?142 ?143
1954 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
1955 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
1956 Id : 47, {_}: multiply (multiply ?68 ?69) ?70 =?= multiply ?68 (multiply ?69 ?70) [70, 69, 68] by associativity ?68 ?69 ?70
1957 Id : 56, {_}: multiply identity ?103 =<= multiply (inverse ?102) (multiply ?102 ?103) [102, 103] by Super 47 with 6 at 1,2
1958 Id : 8890, {_}: ?10861 =<= multiply (inverse ?10862) (multiply ?10862 ?10861) [10862, 10861] by Demod 56 with 4 at 2
1959 Id : 81, {_}: inverse (multiply (inverse ?147) ?148) =>= multiply (inverse ?148) ?147 [148, 147] by Super 79 with 12 at 2,3
1960 Id : 80, {_}: inverse (multiply identity ?145) =<= multiply (inverse ?145) identity [145] by Super 79 with 10 at 2,3
1961 Id : 450, {_}: inverse ?990 =<= multiply (inverse ?990) identity [990] by Demod 80 with 4 at 1,2
1962 Id : 452, {_}: inverse (inverse ?993) =<= multiply ?993 identity [993] by Super 450 with 12 at 1,3
1963 Id : 467, {_}: ?993 =<= multiply ?993 identity [993] by Demod 452 with 12 at 2
1964 Id : 472, {_}: multiply ?1004 (union ?1005 identity) =?= union (multiply ?1004 ?1005) ?1004 [1005, 1004] by Super 32 with 467 at 2,3
1965 Id : 3162, {_}: multiply ?4224 (positive_part ?4225) =<= union (multiply ?4224 ?4225) ?4224 [4225, 4224] by Demod 472 with 40 at 2,2
1966 Id : 3164, {_}: multiply (inverse ?4229) (positive_part ?4229) =>= union identity (inverse ?4229) [4229] by Super 3162 with 6 at 1,3
1967 Id : 336, {_}: union identity ?835 =>= positive_part ?835 [835] by Super 22 with 40 at 3
1968 Id : 3201, {_}: multiply (inverse ?4229) (positive_part ?4229) =>= positive_part (inverse ?4229) [4229] by Demod 3164 with 336 at 3
1969 Id : 3231, {_}: inverse (positive_part (inverse ?4304)) =<= multiply (inverse (positive_part ?4304)) ?4304 [4304] by Super 81 with 3201 at 1,2
1970 Id : 8905, {_}: ?10899 =<= multiply (inverse (inverse (positive_part ?10899))) (inverse (positive_part (inverse ?10899))) [10899] by Super 8890 with 3231 at 2,3
1971 Id : 8940, {_}: ?10899 =<= inverse (multiply (positive_part (inverse ?10899)) (inverse (positive_part ?10899))) [10899] by Demod 8905 with 14 at 3
1972 Id : 83, {_}: inverse (multiply ?153 (inverse ?152)) =>= multiply ?152 (inverse ?153) [152, 153] by Super 79 with 12 at 1,3
1973 Id : 8941, {_}: ?10899 =<= multiply (positive_part ?10899) (inverse (positive_part (inverse ?10899))) [10899] by Demod 8940 with 83 at 3
1974 Id : 310, {_}: multiply (intersection (inverse ?798) ?797) ?798 =>= intersection identity (multiply ?797 ?798) [797, 798] by Super 303 with 6 at 1,3
1975 Id : 355, {_}: intersection identity ?867 =>= negative_part ?867 [867] by Super 20 with 42 at 3
1976 Id : 15926, {_}: multiply (intersection (inverse ?16735) ?16736) ?16735 =>= negative_part (multiply ?16736 ?16735) [16736, 16735] by Demod 310 with 355 at 3
1977 Id : 15951, {_}: multiply (negative_part (inverse ?16817)) ?16817 =>= negative_part (multiply identity ?16817) [16817] by Super 15926 with 42 at 1,2
1978 Id : 15996, {_}: multiply (negative_part (inverse ?16817)) ?16817 =>= negative_part ?16817 [16817] by Demod 15951 with 4 at 1,3
1979 Id : 237, {_}: multiply (inverse ?620) (intersection ?620 ?621) =>= intersection identity (multiply (inverse ?620) ?621) [621, 620] by Super 230 with 6 at 1,3
1980 Id : 9389, {_}: multiply (inverse ?620) (intersection ?620 ?621) =>= negative_part (multiply (inverse ?620) ?621) [621, 620] by Demod 237 with 355 at 3
1981 Id : 387, {_}: intersection (positive_part ?915) ?915 =>= ?915 [915] by Super 30 with 336 at 1,2
1982 Id : 274, {_}: multiply (union (inverse ?708) ?707) ?708 =>= union identity (multiply ?707 ?708) [707, 708] by Super 267 with 6 at 1,3
1983 Id : 9866, {_}: multiply (union (inverse ?12356) ?12357) ?12356 =>= positive_part (multiply ?12357 ?12356) [12357, 12356] by Demod 274 with 336 at 3
1984 Id : 384, {_}: union identity (union ?906 ?907) =>= union (positive_part ?906) ?907 [907, 906] by Super 26 with 336 at 1,3
1985 Id : 394, {_}: positive_part (union ?906 ?907) =>= union (positive_part ?906) ?907 [907, 906] by Demod 384 with 336 at 2
1986 Id : 339, {_}: union ?842 (union ?843 identity) =>= positive_part (union ?842 ?843) [843, 842] by Super 26 with 40 at 3
1987 Id : 350, {_}: union ?842 (positive_part ?843) =<= positive_part (union ?842 ?843) [843, 842] by Demod 339 with 40 at 2,2
1988 Id : 667, {_}: union ?906 (positive_part ?907) =?= union (positive_part ?906) ?907 [907, 906] by Demod 394 with 350 at 2
1989 Id : 414, {_}: union (negative_part ?942) ?942 =>= ?942 [942] by Super 28 with 355 at 1,2
1990 Id : 479, {_}: multiply ?1021 (intersection ?1022 identity) =?= intersection (multiply ?1021 ?1022) ?1021 [1022, 1021] by Super 34 with 467 at 2,3
1991 Id : 2583, {_}: multiply ?3618 (negative_part ?3619) =<= intersection (multiply ?3618 ?3619) ?3618 [3619, 3618] by Demod 479 with 42 at 2,2
1992 Id : 2585, {_}: multiply (inverse ?3623) (negative_part ?3623) =>= intersection identity (inverse ?3623) [3623] by Super 2583 with 6 at 1,3
1993 Id : 2636, {_}: multiply (inverse ?3692) (negative_part ?3692) =>= negative_part (inverse ?3692) [3692] by Demod 2585 with 355 at 3
1994 Id : 358, {_}: intersection ?874 (intersection ?875 identity) =>= negative_part (intersection ?874 ?875) [875, 874] by Super 24 with 42 at 3
1995 Id : 603, {_}: intersection ?1157 (negative_part ?1158) =<= negative_part (intersection ?1157 ?1158) [1158, 1157] by Demod 358 with 42 at 2,2
1996 Id : 613, {_}: intersection ?1189 (negative_part identity) =>= negative_part (negative_part ?1189) [1189] by Super 603 with 42 at 1,3
1997 Id : 354, {_}: negative_part identity =>= identity [] by Super 16 with 42 at 2
1998 Id : 624, {_}: intersection ?1189 identity =<= negative_part (negative_part ?1189) [1189] by Demod 613 with 354 at 2,2
1999 Id : 625, {_}: negative_part ?1189 =<= negative_part (negative_part ?1189) [1189] by Demod 624 with 42 at 2
2000 Id : 2642, {_}: multiply (inverse (negative_part ?3706)) (negative_part ?3706) =>= negative_part (inverse (negative_part ?3706)) [3706] by Super 2636 with 625 at 2,2
2001 Id : 2662, {_}: identity =<= negative_part (inverse (negative_part ?3706)) [3706] by Demod 2642 with 6 at 2
2002 Id : 2732, {_}: union identity (inverse (negative_part ?3792)) =>= inverse (negative_part ?3792) [3792] by Super 414 with 2662 at 1,2
2003 Id : 2769, {_}: positive_part (inverse (negative_part ?3792)) =>= inverse (negative_part ?3792) [3792] by Demod 2732 with 336 at 2
2004 Id : 2879, {_}: union (inverse (negative_part ?3906)) (positive_part ?3907) =>= union (inverse (negative_part ?3906)) ?3907 [3907, 3906] by Super 667 with 2769 at 1,3
2005 Id : 9889, {_}: multiply (union (inverse (negative_part ?12432)) ?12433) (negative_part ?12432) =>= positive_part (multiply (positive_part ?12433) (negative_part ?12432)) [12433, 12432] by Super 9866 with 2879 at 1,2
2006 Id : 9846, {_}: multiply (union (inverse ?708) ?707) ?708 =>= positive_part (multiply ?707 ?708) [707, 708] by Demod 274 with 336 at 3
2007 Id : 9923, {_}: positive_part (multiply ?12433 (negative_part ?12432)) =<= positive_part (multiply (positive_part ?12433) (negative_part ?12432)) [12432, 12433] by Demod 9889 with 9846 at 2
2008 Id : 492, {_}: multiply ?1021 (negative_part ?1022) =<= intersection (multiply ?1021 ?1022) ?1021 [1022, 1021] by Demod 479 with 42 at 2,2
2009 Id : 9892, {_}: multiply (positive_part (inverse ?12441)) ?12441 =>= positive_part (multiply identity ?12441) [12441] by Super 9866 with 40 at 1,2
2010 Id : 9926, {_}: multiply (positive_part (inverse ?12441)) ?12441 =>= positive_part ?12441 [12441] by Demod 9892 with 4 at 1,3
2011 Id : 9949, {_}: multiply (positive_part (inverse ?12495)) (negative_part ?12495) =>= intersection (positive_part ?12495) (positive_part (inverse ?12495)) [12495] by Super 492 with 9926 at 1,3
2012 Id : 10776, {_}: positive_part (multiply (inverse ?13313) (negative_part ?13313)) =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Super 9923 with 9949 at 1,3
2013 Id : 2613, {_}: multiply (inverse ?3623) (negative_part ?3623) =>= negative_part (inverse ?3623) [3623] by Demod 2585 with 355 at 3
2014 Id : 10814, {_}: positive_part (negative_part (inverse ?13313)) =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Demod 10776 with 2613 at 1,2
2015 Id : 334, {_}: positive_part (intersection ?832 identity) =>= identity [832] by Super 28 with 40 at 2
2016 Id : 507, {_}: positive_part (negative_part ?832) =>= identity [832] by Demod 334 with 42 at 1,2
2017 Id : 10815, {_}: identity =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Demod 10814 with 507 at 2
2018 Id : 51491, {_}: intersection identity (intersection (positive_part ?50477) (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Super 387 with 10815 at 1,2
2019 Id : 51798, {_}: negative_part (intersection (positive_part ?50477) (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51491 with 355 at 2
2020 Id : 369, {_}: intersection ?874 (negative_part ?875) =<= negative_part (intersection ?874 ?875) [875, 874] by Demod 358 with 42 at 2,2
2021 Id : 51799, {_}: intersection (positive_part ?50477) (negative_part (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51798 with 369 at 2
2022 Id : 51800, {_}: intersection (negative_part (positive_part (inverse ?50477))) (positive_part ?50477) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51799 with 20 at 2
2023 Id : 411, {_}: intersection identity (intersection ?933 ?934) =>= intersection (negative_part ?933) ?934 [934, 933] by Super 24 with 355 at 1,3
2024 Id : 421, {_}: negative_part (intersection ?933 ?934) =>= intersection (negative_part ?933) ?934 [934, 933] by Demod 411 with 355 at 2
2025 Id : 795, {_}: intersection ?1452 (negative_part ?1453) =?= intersection (negative_part ?1452) ?1453 [1453, 1452] by Demod 421 with 369 at 2
2026 Id : 353, {_}: negative_part (union ?864 identity) =>= identity [864] by Super 30 with 42 at 2
2027 Id : 371, {_}: negative_part (positive_part ?864) =>= identity [864] by Demod 353 with 40 at 1,2
2028 Id : 797, {_}: intersection (positive_part ?1457) (negative_part ?1458) =>= intersection identity ?1458 [1458, 1457] by Super 795 with 371 at 1,3
2029 Id : 834, {_}: intersection (negative_part ?1458) (positive_part ?1457) =>= intersection identity ?1458 [1457, 1458] by Demod 797 with 20 at 2
2030 Id : 835, {_}: intersection (negative_part ?1458) (positive_part ?1457) =>= negative_part ?1458 [1457, 1458] by Demod 834 with 355 at 3
2031 Id : 51801, {_}: negative_part (positive_part (inverse ?50477)) =<= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51800 with 835 at 2
2032 Id : 51802, {_}: identity =<= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51801 with 371 at 2
2033 Id : 52174, {_}: multiply (inverse (positive_part ?50853)) identity =<= negative_part (multiply (inverse (positive_part ?50853)) (positive_part (inverse ?50853))) [50853] by Super 9389 with 51802 at 2,2
2034 Id : 52262, {_}: inverse (positive_part ?50853) =<= negative_part (multiply (inverse (positive_part ?50853)) (positive_part (inverse ?50853))) [50853] by Demod 52174 with 467 at 2
2035 Id : 65, {_}: ?103 =<= multiply (inverse ?102) (multiply ?102 ?103) [102, 103] by Demod 56 with 4 at 2
2036 Id : 9954, {_}: multiply (positive_part (inverse ?12505)) ?12505 =>= positive_part ?12505 [12505] by Demod 9892 with 4 at 1,3
2037 Id : 9956, {_}: multiply (positive_part ?12508) (inverse ?12508) =>= positive_part (inverse ?12508) [12508] by Super 9954 with 12 at 1,1,2
2038 Id : 10049, {_}: inverse ?12562 =<= multiply (inverse (positive_part ?12562)) (positive_part (inverse ?12562)) [12562] by Super 65 with 9956 at 2,3
2039 Id : 52263, {_}: inverse (positive_part ?50853) =<= negative_part (inverse ?50853) [50853] by Demod 52262 with 10049 at 1,3
2040 Id : 52532, {_}: multiply (inverse (positive_part ?16817)) ?16817 =>= negative_part ?16817 [16817] by Demod 15996 with 52263 at 1,2
2041 Id : 52563, {_}: inverse (positive_part (inverse ?16817)) =>= negative_part ?16817 [16817] by Demod 52532 with 3231 at 2
2042 Id : 52572, {_}: ?10899 =<= multiply (positive_part ?10899) (negative_part ?10899) [10899] by Demod 8941 with 52563 at 2,3
2043 Id : 52951, {_}: a === a [] by Demod 2 with 52572 at 2
2044 Id : 2, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product
2045 % SZS output end CNFRefutation for GRP114-1.p
2051 associativity_of_glb is 84
2052 associativity_of_lub is 83
2055 glb_absorbtion is 79
2056 greatest_lower_bound is 94
2057 idempotence_of_gld is 81
2058 idempotence_of_lub is 82
2061 least_upper_bound is 95
2064 lub_absorbtion is 80
2071 symmetry_of_glb is 86
2072 symmetry_of_lub is 85
2074 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2075 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2077 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
2078 [8, 7, 6] by associativity ?6 ?7 ?8
2080 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2081 [11, 10] by symmetry_of_glb ?10 ?11
2083 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2084 [14, 13] by symmetry_of_lub ?13 ?14
2086 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2088 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2089 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2091 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2093 least_upper_bound (least_upper_bound ?20 ?21) ?22
2094 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2095 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2097 greatest_lower_bound ?26 ?26 =>= ?26
2098 [26] by idempotence_of_gld ?26
2100 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2101 [29, 28] by lub_absorbtion ?28 ?29
2103 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2104 [32, 31] by glb_absorbtion ?31 ?32
2106 multiply ?34 (least_upper_bound ?35 ?36)
2108 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2109 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2111 multiply ?38 (greatest_lower_bound ?39 ?40)
2113 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2114 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2116 multiply (least_upper_bound ?42 ?43) ?44
2118 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2119 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2121 multiply (greatest_lower_bound ?46 ?47) ?48
2123 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2124 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2127 greatest_lower_bound a (least_upper_bound b c)
2129 least_upper_bound (greatest_lower_bound a b)
2130 (greatest_lower_bound a c)
2132 Last chance: 1246129493.23
2133 Last chance: all is indexed 1246129513.23
2134 Last chance: failed over 100 goal 1246129513.24
2135 FAILURE in 0 iterations
2136 % SZS status Timeout for GRP164-2.p
2142 associativity_of_glb is 84
2143 associativity_of_lub is 83
2144 glb_absorbtion is 79
2145 greatest_lower_bound is 88
2146 idempotence_of_gld is 81
2147 idempotence_of_lub is 82
2154 least_upper_bound is 86
2157 lub_absorbtion is 80
2166 symmetry_of_glb is 87
2167 symmetry_of_lub is 85
2169 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2170 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2172 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
2173 [8, 7, 6] by associativity ?6 ?7 ?8
2175 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2176 [11, 10] by symmetry_of_glb ?10 ?11
2178 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2179 [14, 13] by symmetry_of_lub ?13 ?14
2181 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2183 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2184 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2186 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2188 least_upper_bound (least_upper_bound ?20 ?21) ?22
2189 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2190 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2192 greatest_lower_bound ?26 ?26 =>= ?26
2193 [26] by idempotence_of_gld ?26
2195 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2196 [29, 28] by lub_absorbtion ?28 ?29
2198 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2199 [32, 31] by glb_absorbtion ?31 ?32
2201 multiply ?34 (least_upper_bound ?35 ?36)
2203 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2204 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2206 multiply ?38 (greatest_lower_bound ?39 ?40)
2208 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2209 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2211 multiply (least_upper_bound ?42 ?43) ?44
2213 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2214 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2216 multiply (greatest_lower_bound ?46 ?47) ?48
2218 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2219 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2221 positive_part ?50 =<= least_upper_bound ?50 identity
2224 negative_part ?52 =<= greatest_lower_bound ?52 identity
2227 least_upper_bound ?54 (greatest_lower_bound ?55 ?56)
2229 greatest_lower_bound (least_upper_bound ?54 ?55)
2230 (least_upper_bound ?54 ?56)
2231 [56, 55, 54] by lat4_3 ?54 ?55 ?56
2233 greatest_lower_bound ?58 (least_upper_bound ?59 ?60)
2235 least_upper_bound (greatest_lower_bound ?58 ?59)
2236 (greatest_lower_bound ?58 ?60)
2237 [60, 59, 58] by lat4_4 ?58 ?59 ?60
2240 a =<= multiply (positive_part a) (negative_part a)
2242 Found proof, 4.832821s
2243 % SZS status Unsatisfiable for GRP167-1.p
2244 % SZS output start CNFRefutation for GRP167-1.p
2245 Id : 202, {_}: multiply ?551 (greatest_lower_bound ?552 ?553) =<= greatest_lower_bound (multiply ?551 ?552) (multiply ?551 ?553) [553, 552, 551] by monotony_glb1 ?551 ?552 ?553
2246 Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29
2247 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2248 Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2249 Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32
2250 Id : 171, {_}: multiply ?475 (least_upper_bound ?476 ?477) =<= least_upper_bound (multiply ?475 ?476) (multiply ?475 ?477) [477, 476, 475] by monotony_lub1 ?475 ?476 ?477
2251 Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2252 Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2253 Id : 384, {_}: greatest_lower_bound ?977 (least_upper_bound ?978 ?979) =<= least_upper_bound (greatest_lower_bound ?977 ?978) (greatest_lower_bound ?977 ?979) [979, 978, 977] by lat4_4 ?977 ?978 ?979
2254 Id : 34, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50
2255 Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
2256 Id : 236, {_}: multiply (least_upper_bound ?630 ?631) ?632 =<= least_upper_bound (multiply ?630 ?632) (multiply ?631 ?632) [632, 631, 630] by monotony_lub2 ?630 ?631 ?632
2257 Id : 36, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52
2258 Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
2259 Id : 269, {_}: multiply (greatest_lower_bound ?712 ?713) ?714 =<= greatest_lower_bound (multiply ?712 ?714) (multiply ?713 ?714) [714, 713, 712] by monotony_glb2 ?712 ?713 ?714
2260 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2261 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2262 Id : 45, {_}: multiply (multiply ?70 ?71) ?72 =?= multiply ?70 (multiply ?71 ?72) [72, 71, 70] by associativity ?70 ?71 ?72
2263 Id : 54, {_}: multiply identity ?105 =<= multiply (inverse ?104) (multiply ?104 ?105) [104, 105] by Super 45 with 6 at 1,2
2264 Id : 63, {_}: ?105 =<= multiply (inverse ?104) (multiply ?104 ?105) [104, 105] by Demod 54 with 4 at 2
2265 Id : 275, {_}: multiply (greatest_lower_bound (inverse ?736) ?735) ?736 =>= greatest_lower_bound identity (multiply ?735 ?736) [735, 736] by Super 269 with 6 at 1,3
2266 Id : 314, {_}: greatest_lower_bound identity ?795 =>= negative_part ?795 [795] by Super 10 with 36 at 3
2267 Id : 16391, {_}: multiply (greatest_lower_bound (inverse ?19768) ?19769) ?19768 =>= negative_part (multiply ?19769 ?19768) [19769, 19768] by Demod 275 with 314 at 3
2268 Id : 16415, {_}: multiply (negative_part (inverse ?19845)) ?19845 =>= negative_part (multiply identity ?19845) [19845] by Super 16391 with 36 at 1,2
2269 Id : 16452, {_}: multiply (negative_part (inverse ?19845)) ?19845 =>= negative_part ?19845 [19845] by Demod 16415 with 4 at 1,3
2270 Id : 16463, {_}: ?19856 =<= multiply (inverse (negative_part (inverse ?19856))) (negative_part ?19856) [19856] by Super 63 with 16452 at 2,3
2271 Id : 242, {_}: multiply (least_upper_bound (inverse ?654) ?653) ?654 =>= least_upper_bound identity (multiply ?653 ?654) [653, 654] by Super 236 with 6 at 1,3
2272 Id : 298, {_}: least_upper_bound identity ?767 =>= positive_part ?767 [767] by Super 12 with 34 at 3
2273 Id : 14215, {_}: multiply (least_upper_bound (inverse ?17599) ?17600) ?17599 =>= positive_part (multiply ?17600 ?17599) [17600, 17599] by Demod 242 with 298 at 3
2274 Id : 14238, {_}: multiply (positive_part (inverse ?17673)) ?17673 =>= positive_part (multiply identity ?17673) [17673] by Super 14215 with 34 at 1,2
2275 Id : 14268, {_}: multiply (positive_part (inverse ?17673)) ?17673 =>= positive_part ?17673 [17673] by Demod 14238 with 4 at 1,3
2276 Id : 14200, {_}: multiply (least_upper_bound (inverse ?654) ?653) ?654 =>= positive_part (multiply ?653 ?654) [653, 654] by Demod 242 with 298 at 3
2277 Id : 393, {_}: greatest_lower_bound ?1016 (least_upper_bound ?1017 identity) =<= least_upper_bound (greatest_lower_bound ?1016 ?1017) (negative_part ?1016) [1017, 1016] by Super 384 with 36 at 2,3
2278 Id : 17844, {_}: greatest_lower_bound ?21384 (positive_part ?21385) =<= least_upper_bound (greatest_lower_bound ?21384 ?21385) (negative_part ?21384) [21385, 21384] by Demod 393 with 34 at 2,2
2279 Id : 17873, {_}: greatest_lower_bound ?21489 (positive_part ?21490) =<= least_upper_bound (greatest_lower_bound ?21490 ?21489) (negative_part ?21489) [21490, 21489] by Super 17844 with 10 at 1,3
2280 Id : 16475, {_}: multiply (greatest_lower_bound (negative_part (inverse ?19889)) ?19890) ?19889 =>= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19890, 19889] by Super 32 with 16452 at 1,3
2281 Id : 480, {_}: greatest_lower_bound identity (greatest_lower_bound ?1137 ?1138) =>= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Super 14 with 314 at 1,3
2282 Id : 492, {_}: negative_part (greatest_lower_bound ?1137 ?1138) =>= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Demod 480 with 314 at 2
2283 Id : 317, {_}: greatest_lower_bound ?802 (greatest_lower_bound ?803 identity) =>= negative_part (greatest_lower_bound ?802 ?803) [803, 802] by Super 14 with 36 at 3
2284 Id : 326, {_}: greatest_lower_bound ?802 (negative_part ?803) =<= negative_part (greatest_lower_bound ?802 ?803) [803, 802] by Demod 317 with 36 at 2,2
2285 Id : 770, {_}: greatest_lower_bound ?1137 (negative_part ?1138) =?= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Demod 492 with 326 at 2
2286 Id : 16503, {_}: multiply (greatest_lower_bound (inverse ?19889) (negative_part ?19890)) ?19889 =>= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19890, 19889] by Demod 16475 with 770 at 1,2
2287 Id : 16376, {_}: multiply (greatest_lower_bound (inverse ?736) ?735) ?736 =>= negative_part (multiply ?735 ?736) [735, 736] by Demod 275 with 314 at 3
2288 Id : 16504, {_}: negative_part (multiply (negative_part ?19890) ?19889) =<= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19889, 19890] by Demod 16503 with 16376 at 2
2289 Id : 16505, {_}: negative_part (multiply (negative_part ?19890) ?19889) =<= greatest_lower_bound (multiply ?19890 ?19889) (negative_part ?19889) [19889, 19890] by Demod 16504 with 10 at 3
2290 Id : 47, {_}: multiply (multiply ?77 (inverse ?78)) ?78 =>= multiply ?77 identity [78, 77] by Super 45 with 6 at 2,3
2291 Id : 4534, {_}: multiply (multiply ?6403 (inverse ?6404)) ?6404 =>= multiply ?6403 identity [6404, 6403] by Super 45 with 6 at 2,3
2292 Id : 4537, {_}: multiply identity ?6410 =<= multiply (inverse (inverse ?6410)) identity [6410] by Super 4534 with 6 at 1,2
2293 Id : 4552, {_}: ?6410 =<= multiply (inverse (inverse ?6410)) identity [6410] by Demod 4537 with 4 at 2
2294 Id : 46, {_}: multiply (multiply ?74 identity) ?75 =>= multiply ?74 ?75 [75, 74] by Super 45 with 4 at 2,3
2295 Id : 4557, {_}: multiply ?6432 ?6433 =<= multiply (inverse (inverse ?6432)) ?6433 [6433, 6432] by Super 46 with 4552 at 1,2
2296 Id : 4577, {_}: ?6410 =<= multiply ?6410 identity [6410] by Demod 4552 with 4557 at 3
2297 Id : 4578, {_}: multiply (multiply ?77 (inverse ?78)) ?78 =>= ?77 [78, 77] by Demod 47 with 4577 at 3
2298 Id : 4593, {_}: inverse (inverse ?6519) =<= multiply ?6519 identity [6519] by Super 4577 with 4557 at 3
2299 Id : 4599, {_}: inverse (inverse ?6519) =>= ?6519 [6519] by Demod 4593 with 4577 at 3
2300 Id : 4627, {_}: multiply (multiply ?6536 ?6535) (inverse ?6535) =>= ?6536 [6535, 6536] by Super 4578 with 4599 at 2,1,2
2301 Id : 62773, {_}: inverse ?65768 =<= multiply (inverse (multiply ?65769 ?65768)) ?65769 [65769, 65768] by Super 63 with 4627 at 2,3
2302 Id : 177, {_}: multiply (inverse ?498) (least_upper_bound ?498 ?499) =>= least_upper_bound identity (multiply (inverse ?498) ?499) [499, 498] by Super 171 with 6 at 1,3
2303 Id : 4722, {_}: multiply (inverse ?6711) (least_upper_bound ?6711 ?6712) =>= positive_part (multiply (inverse ?6711) ?6712) [6712, 6711] by Demod 177 with 298 at 3
2304 Id : 4745, {_}: multiply (inverse ?6778) (positive_part ?6778) =?= positive_part (multiply (inverse ?6778) identity) [6778] by Super 4722 with 34 at 2,2
2305 Id : 4793, {_}: multiply (inverse ?6833) (positive_part ?6833) =>= positive_part (inverse ?6833) [6833] by Demod 4745 with 4577 at 1,3
2306 Id : 4805, {_}: multiply ?6862 (positive_part (inverse ?6862)) =>= positive_part (inverse (inverse ?6862)) [6862] by Super 4793 with 4599 at 1,2
2307 Id : 4824, {_}: multiply ?6862 (positive_part (inverse ?6862)) =>= positive_part ?6862 [6862] by Demod 4805 with 4599 at 1,3
2308 Id : 62790, {_}: inverse (positive_part (inverse ?65816)) =<= multiply (inverse (positive_part ?65816)) ?65816 [65816] by Super 62773 with 4824 at 1,1,3
2309 Id : 63210, {_}: negative_part (multiply (negative_part (inverse (positive_part ?66345))) ?66345) =>= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Super 16505 with 62790 at 1,3
2310 Id : 303, {_}: greatest_lower_bound ?780 (positive_part ?780) =>= ?780 [780] by Super 24 with 34 at 2,2
2311 Id : 535, {_}: greatest_lower_bound (positive_part ?1185) ?1185 =>= ?1185 [1185] by Super 10 with 303 at 3
2312 Id : 301, {_}: least_upper_bound ?774 (least_upper_bound ?775 identity) =>= positive_part (least_upper_bound ?774 ?775) [775, 774] by Super 16 with 34 at 3
2313 Id : 566, {_}: least_upper_bound ?1228 (positive_part ?1229) =<= positive_part (least_upper_bound ?1228 ?1229) [1229, 1228] by Demod 301 with 34 at 2,2
2314 Id : 576, {_}: least_upper_bound ?1260 (positive_part identity) =>= positive_part (positive_part ?1260) [1260] by Super 566 with 34 at 1,3
2315 Id : 297, {_}: positive_part identity =>= identity [] by Super 18 with 34 at 2
2316 Id : 590, {_}: least_upper_bound ?1260 identity =<= positive_part (positive_part ?1260) [1260] by Demod 576 with 297 at 2,2
2317 Id : 591, {_}: positive_part ?1260 =<= positive_part (positive_part ?1260) [1260] by Demod 590 with 34 at 2
2318 Id : 4802, {_}: multiply (inverse (positive_part ?6856)) (positive_part ?6856) =>= positive_part (inverse (positive_part ?6856)) [6856] by Super 4793 with 591 at 2,2
2319 Id : 4819, {_}: identity =<= positive_part (inverse (positive_part ?6856)) [6856] by Demod 4802 with 6 at 2
2320 Id : 4905, {_}: greatest_lower_bound identity (inverse (positive_part ?6968)) =>= inverse (positive_part ?6968) [6968] by Super 535 with 4819 at 1,2
2321 Id : 4952, {_}: negative_part (inverse (positive_part ?6968)) =>= inverse (positive_part ?6968) [6968] by Demod 4905 with 314 at 2
2322 Id : 63307, {_}: negative_part (multiply (inverse (positive_part ?66345)) ?66345) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63210 with 4952 at 1,1,2
2323 Id : 63308, {_}: negative_part (inverse (positive_part (inverse ?66345))) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63307 with 62790 at 1,2
2324 Id : 63309, {_}: inverse (positive_part (inverse ?66345)) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63308 with 4952 at 2
2325 Id : 5097, {_}: greatest_lower_bound (inverse (positive_part ?7140)) (negative_part ?7141) =>= greatest_lower_bound (inverse (positive_part ?7140)) ?7141 [7141, 7140] by Super 770 with 4952 at 1,3
2326 Id : 63310, {_}: inverse (positive_part (inverse ?66345)) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) ?66345 [66345] by Demod 63309 with 5097 at 3
2327 Id : 63817, {_}: greatest_lower_bound ?66966 (positive_part (inverse (positive_part (inverse ?66966)))) =>= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Super 17873 with 63310 at 1,3
2328 Id : 64085, {_}: greatest_lower_bound ?66966 identity =<= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Demod 63817 with 4819 at 2,2
2329 Id : 64086, {_}: negative_part ?66966 =<= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Demod 64085 with 36 at 2
2330 Id : 81154, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =<= positive_part (multiply (negative_part ?80770) (positive_part (inverse ?80770))) [80770] by Super 14200 with 64086 at 1,2
2331 Id : 4710, {_}: multiply (inverse ?498) (least_upper_bound ?498 ?499) =>= positive_part (multiply (inverse ?498) ?499) [499, 498] by Demod 177 with 298 at 3
2332 Id : 444, {_}: least_upper_bound identity (least_upper_bound ?1100 ?1101) =>= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Super 16 with 298 at 1,3
2333 Id : 455, {_}: positive_part (least_upper_bound ?1100 ?1101) =>= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Demod 444 with 298 at 2
2334 Id : 310, {_}: least_upper_bound ?774 (positive_part ?775) =<= positive_part (least_upper_bound ?774 ?775) [775, 774] by Demod 301 with 34 at 2,2
2335 Id : 677, {_}: least_upper_bound ?1100 (positive_part ?1101) =?= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Demod 455 with 310 at 2
2336 Id : 483, {_}: least_upper_bound identity (negative_part ?1146) =>= identity [1146] by Super 22 with 314 at 2,2
2337 Id : 491, {_}: positive_part (negative_part ?1146) =>= identity [1146] by Demod 483 with 298 at 2
2338 Id : 4795, {_}: multiply (inverse (negative_part ?6836)) identity =>= positive_part (inverse (negative_part ?6836)) [6836] by Super 4793 with 491 at 2,2
2339 Id : 4816, {_}: inverse (negative_part ?6836) =<= positive_part (inverse (negative_part ?6836)) [6836] by Demod 4795 with 4577 at 2
2340 Id : 4838, {_}: least_upper_bound (inverse (negative_part ?6900)) (positive_part ?6901) =>= least_upper_bound (inverse (negative_part ?6900)) ?6901 [6901, 6900] by Super 677 with 4816 at 1,3
2341 Id : 6365, {_}: multiply (inverse (inverse (negative_part ?8525))) (least_upper_bound (inverse (negative_part ?8525)) ?8526) =>= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Super 4710 with 4838 at 2,2
2342 Id : 6403, {_}: positive_part (multiply (inverse (inverse (negative_part ?8525))) ?8526) =<= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Demod 6365 with 4710 at 2
2343 Id : 6404, {_}: positive_part (multiply (negative_part ?8525) ?8526) =<= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Demod 6403 with 4599 at 1,1,2
2344 Id : 6405, {_}: positive_part (multiply (negative_part ?8525) ?8526) =<= positive_part (multiply (negative_part ?8525) (positive_part ?8526)) [8526, 8525] by Demod 6404 with 4599 at 1,1,3
2345 Id : 81274, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =<= positive_part (multiply (negative_part ?80770) (inverse ?80770)) [80770] by Demod 81154 with 6405 at 3
2346 Id : 16478, {_}: multiply (negative_part (inverse ?19896)) ?19896 =>= negative_part ?19896 [19896] by Demod 16415 with 4 at 1,3
2347 Id : 16480, {_}: multiply (negative_part ?19899) (inverse ?19899) =>= negative_part (inverse ?19899) [19899] by Super 16478 with 4599 at 1,1,2
2348 Id : 81275, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =>= positive_part (negative_part (inverse ?80770)) [80770] by Demod 81274 with 16480 at 1,3
2349 Id : 81276, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =>= identity [80770] by Demod 81275 with 491 at 3
2350 Id : 81601, {_}: positive_part (inverse ?81005) =<= multiply (inverse (negative_part ?81005)) identity [81005] by Super 63 with 81276 at 2,3
2351 Id : 81716, {_}: positive_part (inverse ?81005) =>= inverse (negative_part ?81005) [81005] by Demod 81601 with 4577 at 3
2352 Id : 81904, {_}: multiply (inverse (negative_part ?17673)) ?17673 =>= positive_part ?17673 [17673] by Demod 14268 with 81716 at 1,2
2353 Id : 208, {_}: multiply (inverse ?574) (greatest_lower_bound ?574 ?575) =>= greatest_lower_bound identity (multiply (inverse ?574) ?575) [575, 574] by Super 202 with 6 at 1,3
2354 Id : 13518, {_}: multiply (inverse ?16653) (greatest_lower_bound ?16653 ?16654) =>= negative_part (multiply (inverse ?16653) ?16654) [16654, 16653] by Demod 208 with 314 at 3
2355 Id : 13544, {_}: multiply (inverse ?16729) (negative_part ?16729) =?= negative_part (multiply (inverse ?16729) identity) [16729] by Super 13518 with 36 at 2,2
2356 Id : 13624, {_}: multiply (inverse ?16816) (negative_part ?16816) =>= negative_part (inverse ?16816) [16816] by Demod 13544 with 4577 at 1,3
2357 Id : 13651, {_}: multiply ?16885 (negative_part (inverse ?16885)) =>= negative_part (inverse (inverse ?16885)) [16885] by Super 13624 with 4599 at 1,2
2358 Id : 13713, {_}: multiply ?16885 (negative_part (inverse ?16885)) =>= negative_part ?16885 [16885] by Demod 13651 with 4599 at 1,3
2359 Id : 62794, {_}: inverse (negative_part (inverse ?65826)) =<= multiply (inverse (negative_part ?65826)) ?65826 [65826] by Super 62773 with 13713 at 1,1,3
2360 Id : 81928, {_}: inverse (negative_part (inverse ?17673)) =>= positive_part ?17673 [17673] by Demod 81904 with 62794 at 2
2361 Id : 81935, {_}: ?19856 =<= multiply (positive_part ?19856) (negative_part ?19856) [19856] by Demod 16463 with 81928 at 1,3
2362 Id : 82404, {_}: a === a [] by Demod 2 with 81935 at 3
2363 Id : 2, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4
2364 % SZS output end CNFRefutation for GRP167-1.p
2370 associativity_of_glb is 84
2371 associativity_of_lub is 83
2374 glb_absorbtion is 79
2375 greatest_lower_bound is 94
2376 idempotence_of_gld is 81
2377 idempotence_of_lub is 82
2380 least_upper_bound is 86
2383 lub_absorbtion is 80
2394 symmetry_of_glb is 87
2395 symmetry_of_lub is 85
2397 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2398 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2400 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
2401 [8, 7, 6] by associativity ?6 ?7 ?8
2403 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2404 [11, 10] by symmetry_of_glb ?10 ?11
2406 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2407 [14, 13] by symmetry_of_lub ?13 ?14
2409 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2411 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2412 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2414 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2416 least_upper_bound (least_upper_bound ?20 ?21) ?22
2417 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2418 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2420 greatest_lower_bound ?26 ?26 =>= ?26
2421 [26] by idempotence_of_gld ?26
2423 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2424 [29, 28] by lub_absorbtion ?28 ?29
2426 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2427 [32, 31] by glb_absorbtion ?31 ?32
2429 multiply ?34 (least_upper_bound ?35 ?36)
2431 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2432 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2434 multiply ?38 (greatest_lower_bound ?39 ?40)
2436 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2437 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2439 multiply (least_upper_bound ?42 ?43) ?44
2441 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2442 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2444 multiply (greatest_lower_bound ?46 ?47) ?48
2446 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2447 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2448 Id : 34, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1
2449 Id : 36, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2
2450 Id : 38, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3
2451 Id : 40, {_}: greatest_lower_bound a b =>= identity [] by p09b_4
2454 greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c
2456 Found proof, 198.990674s
2457 % SZS status Unsatisfiable for GRP178-2.p
2458 % SZS output start CNFRefutation for GRP178-2.p
2459 Id : 38, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3
2460 Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2461 Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2462 Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26
2463 Id : 34, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1
2464 Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2465 Id : 40, {_}: greatest_lower_bound a b =>= identity [] by p09b_4
2466 Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29
2467 Id : 171, {_}: multiply ?467 (least_upper_bound ?468 ?469) =<= least_upper_bound (multiply ?467 ?468) (multiply ?467 ?469) [469, 468, 467] by monotony_lub1 ?467 ?468 ?469
2468 Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
2469 Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32
2470 Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2471 Id : 202, {_}: multiply ?543 (greatest_lower_bound ?544 ?545) =<= greatest_lower_bound (multiply ?543 ?544) (multiply ?543 ?545) [545, 544, 543] by monotony_glb1 ?543 ?544 ?545
2472 Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2473 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2474 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2475 Id : 45, {_}: multiply (multiply ?62 ?63) ?64 =?= multiply ?62 (multiply ?63 ?64) [64, 63, 62] by associativity ?62 ?63 ?64
2476 Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8
2477 Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
2478 Id : 54, {_}: multiply identity ?97 =<= multiply (inverse ?96) (multiply ?96 ?97) [96, 97] by Super 45 with 6 at 1,2
2479 Id : 63, {_}: ?97 =<= multiply (inverse ?96) (multiply ?96 ?97) [96, 97] by Demod 54 with 4 at 2
2480 Id : 47, {_}: multiply (multiply ?69 (inverse ?70)) ?70 =>= multiply ?69 identity [70, 69] by Super 45 with 6 at 2,3
2481 Id : 9265, {_}: multiply (multiply ?8232 (inverse ?8233)) ?8233 =>= multiply ?8232 identity [8233, 8232] by Super 45 with 6 at 2,3
2482 Id : 9268, {_}: multiply identity ?8239 =<= multiply (inverse (inverse ?8239)) identity [8239] by Super 9265 with 6 at 1,2
2483 Id : 9283, {_}: ?8239 =<= multiply (inverse (inverse ?8239)) identity [8239] by Demod 9268 with 4 at 2
2484 Id : 46, {_}: multiply (multiply ?66 identity) ?67 =>= multiply ?66 ?67 [67, 66] by Super 45 with 4 at 2,3
2485 Id : 9288, {_}: multiply ?8261 ?8262 =<= multiply (inverse (inverse ?8261)) ?8262 [8262, 8261] by Super 46 with 9283 at 1,2
2486 Id : 9304, {_}: ?8239 =<= multiply ?8239 identity [8239] by Demod 9283 with 9288 at 3
2487 Id : 9305, {_}: multiply (multiply ?69 (inverse ?70)) ?70 =>= ?69 [70, 69] by Demod 47 with 9304 at 3
2488 Id : 9320, {_}: inverse (inverse ?8348) =<= multiply ?8348 identity [8348] by Super 9304 with 9288 at 3
2489 Id : 9326, {_}: inverse (inverse ?8348) =>= ?8348 [8348] by Demod 9320 with 9304 at 3
2490 Id : 9354, {_}: multiply (multiply ?8365 ?8364) (inverse ?8364) =>= ?8365 [8364, 8365] by Super 9305 with 9326 at 2,1,2
2491 Id : 9315, {_}: multiply ?8330 (inverse ?8330) =>= identity [8330] by Super 6 with 9288 at 2
2492 Id : 9365, {_}: multiply ?8382 (greatest_lower_bound ?8383 (inverse ?8382)) =>= greatest_lower_bound (multiply ?8382 ?8383) identity [8383, 8382] by Super 28 with 9315 at 2,3
2493 Id : 9386, {_}: multiply ?8382 (greatest_lower_bound ?8383 (inverse ?8382)) =>= greatest_lower_bound identity (multiply ?8382 ?8383) [8383, 8382] by Demod 9365 with 10 at 3
2494 Id : 137579, {_}: multiply (inverse ?85743) (greatest_lower_bound ?85743 ?85744) =>= greatest_lower_bound identity (multiply (inverse ?85743) ?85744) [85744, 85743] by Super 202 with 6 at 1,3
2495 Id : 4862, {_}: greatest_lower_bound (least_upper_bound ?4719 ?4720) ?4719 =>= ?4719 [4720, 4719] by Super 10 with 24 at 3
2496 Id : 4863, {_}: greatest_lower_bound (least_upper_bound ?4723 ?4722) ?4722 =>= ?4722 [4722, 4723] by Super 4862 with 12 at 1,2
2497 Id : 173, {_}: multiply (inverse ?475) (least_upper_bound ?474 ?475) =>= least_upper_bound (multiply (inverse ?475) ?474) identity [474, 475] by Super 171 with 6 at 2,3
2498 Id : 9616, {_}: multiply (inverse ?8736) (least_upper_bound ?8737 ?8736) =>= least_upper_bound identity (multiply (inverse ?8736) ?8737) [8737, 8736] by Demod 173 with 12 at 3
2499 Id : 336, {_}: greatest_lower_bound b a =>= identity [] by Demod 40 with 10 at 2
2500 Id : 337, {_}: least_upper_bound b identity =>= b [] by Super 22 with 336 at 2,2
2501 Id : 349, {_}: least_upper_bound identity b =>= b [] by Demod 337 with 12 at 2
2502 Id : 9624, {_}: multiply (inverse b) b =<= least_upper_bound identity (multiply (inverse b) identity) [] by Super 9616 with 349 at 2,2
2503 Id : 9699, {_}: identity =<= least_upper_bound identity (multiply (inverse b) identity) [] by Demod 9624 with 6 at 2
2504 Id : 9700, {_}: identity =<= least_upper_bound identity (inverse b) [] by Demod 9699 with 9304 at 2,3
2505 Id : 9734, {_}: greatest_lower_bound identity (inverse b) =>= inverse b [] by Super 4863 with 9700 at 1,2
2506 Id : 9886, {_}: greatest_lower_bound ?8962 (inverse b) =<= greatest_lower_bound (greatest_lower_bound ?8962 identity) (inverse b) [8962] by Super 14 with 9734 at 2,2
2507 Id : 9910, {_}: greatest_lower_bound ?8962 (inverse b) =<= greatest_lower_bound (inverse b) (greatest_lower_bound ?8962 identity) [8962] by Demod 9886 with 10 at 3
2508 Id : 138060, {_}: multiply (inverse (inverse b)) (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply (inverse (inverse b)) (greatest_lower_bound ?86438 identity)) [86438] by Super 137579 with 9910 at 2,2
2509 Id : 139832, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply (inverse (inverse b)) (greatest_lower_bound ?86438 identity)) [86438] by Demod 138060 with 9326 at 1,2
2510 Id : 139833, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?86438 identity)) [86438] by Demod 139832 with 9326 at 1,2,3
2511 Id : 190, {_}: multiply (inverse ?475) (least_upper_bound ?474 ?475) =>= least_upper_bound identity (multiply (inverse ?475) ?474) [474, 475] by Demod 173 with 12 at 3
2512 Id : 299, {_}: greatest_lower_bound ?761 identity =<= greatest_lower_bound (greatest_lower_bound ?761 identity) a [761] by Super 14 with 34 at 2,2
2513 Id : 308, {_}: greatest_lower_bound ?761 identity =<= greatest_lower_bound a (greatest_lower_bound ?761 identity) [761] by Demod 299 with 10 at 3
2514 Id : 691, {_}: least_upper_bound a (greatest_lower_bound ?1150 identity) =>= a [1150] by Super 22 with 308 at 2,2
2515 Id : 693, {_}: least_upper_bound a identity =>= a [] by Super 691 with 20 at 2,2
2516 Id : 704, {_}: least_upper_bound identity a =>= a [] by Demod 693 with 12 at 2
2517 Id : 707, {_}: least_upper_bound ?1166 a =<= least_upper_bound (least_upper_bound ?1166 identity) a [1166] by Super 16 with 704 at 2,2
2518 Id : 1790, {_}: least_upper_bound ?1985 a =<= least_upper_bound a (least_upper_bound ?1985 identity) [1985] by Demod 707 with 12 at 3
2519 Id : 1791, {_}: least_upper_bound ?1987 a =<= least_upper_bound a (least_upper_bound identity ?1987) [1987] by Super 1790 with 12 at 2,3
2520 Id : 9745, {_}: least_upper_bound (inverse b) a =>= least_upper_bound a identity [] by Super 1791 with 9700 at 2,3
2521 Id : 9760, {_}: least_upper_bound a (inverse b) =>= least_upper_bound a identity [] by Demod 9745 with 12 at 2
2522 Id : 9761, {_}: least_upper_bound a (inverse b) =>= least_upper_bound identity a [] by Demod 9760 with 12 at 3
2523 Id : 9762, {_}: least_upper_bound a (inverse b) =>= a [] by Demod 9761 with 704 at 3
2524 Id : 9940, {_}: multiply (inverse (inverse b)) a =<= least_upper_bound identity (multiply (inverse (inverse b)) a) [] by Super 190 with 9762 at 2,2
2525 Id : 9943, {_}: multiply b a =<= least_upper_bound identity (multiply (inverse (inverse b)) a) [] by Demod 9940 with 9326 at 1,2
2526 Id : 9944, {_}: multiply b a =<= least_upper_bound identity (multiply b a) [] by Demod 9943 with 9326 at 1,2,3
2527 Id : 10784, {_}: greatest_lower_bound identity (multiply b a) =>= identity [] by Super 24 with 9944 at 2,2
2528 Id : 47323, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply b a) ?32510) =>= greatest_lower_bound identity ?32510 [32510] by Super 14 with 10784 at 1,3
2529 Id : 69234, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound a ?46169)) =>= greatest_lower_bound identity (multiply b ?46169) [46169] by Super 47323 with 28 at 2,2
2530 Id : 339, {_}: greatest_lower_bound ?788 identity =<= greatest_lower_bound (greatest_lower_bound ?788 b) a [788] by Super 14 with 336 at 2,2
2531 Id : 348, {_}: greatest_lower_bound ?788 identity =<= greatest_lower_bound a (greatest_lower_bound ?788 b) [788] by Demod 339 with 10 at 3
2532 Id : 69253, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 identity)) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 b)) [46206] by Super 69234 with 348 at 2,2,2
2533 Id : 353, {_}: least_upper_bound ?797 b =<= least_upper_bound (least_upper_bound ?797 identity) b [797] by Super 16 with 349 at 2,2
2534 Id : 607, {_}: least_upper_bound ?1066 b =<= least_upper_bound b (least_upper_bound ?1066 identity) [1066] by Demod 353 with 12 at 3
2535 Id : 608, {_}: least_upper_bound ?1068 b =<= least_upper_bound b (least_upper_bound identity ?1068) [1068] by Super 607 with 12 at 2,3
2536 Id : 9739, {_}: least_upper_bound (inverse b) b =>= least_upper_bound b identity [] by Super 608 with 9700 at 2,3
2537 Id : 9768, {_}: least_upper_bound b (inverse b) =>= least_upper_bound b identity [] by Demod 9739 with 12 at 2
2538 Id : 9769, {_}: least_upper_bound b (inverse b) =>= least_upper_bound identity b [] by Demod 9768 with 12 at 3
2539 Id : 9770, {_}: least_upper_bound b (inverse b) =>= b [] by Demod 9769 with 349 at 3
2540 Id : 9967, {_}: multiply (inverse (inverse b)) b =<= least_upper_bound identity (multiply (inverse (inverse b)) b) [] by Super 190 with 9770 at 2,2
2541 Id : 10010, {_}: multiply b b =<= least_upper_bound identity (multiply (inverse (inverse b)) b) [] by Demod 9967 with 9326 at 1,2
2542 Id : 10011, {_}: multiply b b =<= least_upper_bound identity (multiply b b) [] by Demod 10010 with 9326 at 1,2,3
2543 Id : 10830, {_}: greatest_lower_bound identity (multiply b b) =>= identity [] by Super 24 with 10011 at 2,2
2544 Id : 11235, {_}: greatest_lower_bound ?9614 identity =<= greatest_lower_bound (greatest_lower_bound ?9614 identity) (multiply b b) [9614] by Super 14 with 10830 at 2,2
2545 Id : 394, {_}: greatest_lower_bound ?844 identity =<= greatest_lower_bound a (greatest_lower_bound ?844 identity) [844] by Demod 299 with 10 at 3
2546 Id : 395, {_}: greatest_lower_bound ?846 identity =<= greatest_lower_bound a (greatest_lower_bound identity ?846) [846] by Super 394 with 10 at 2,3
2547 Id : 721, {_}: greatest_lower_bound a (greatest_lower_bound (greatest_lower_bound identity ?1178) ?1179) =>= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Super 14 with 395 at 1,3
2548 Id : 751, {_}: greatest_lower_bound a (greatest_lower_bound identity (greatest_lower_bound ?1178 ?1179)) =>= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 721 with 14 at 2,2
2549 Id : 752, {_}: greatest_lower_bound (greatest_lower_bound ?1178 ?1179) identity =?= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 751 with 395 at 2
2550 Id : 753, {_}: greatest_lower_bound identity (greatest_lower_bound ?1178 ?1179) =<= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 752 with 10 at 2
2551 Id : 47765, {_}: greatest_lower_bound ?32774 identity =<= greatest_lower_bound identity (greatest_lower_bound ?32774 (multiply b b)) [32774] by Demod 11235 with 753 at 3
2552 Id : 47777, {_}: greatest_lower_bound (multiply b ?32794) identity =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?32794 b)) [32794] by Super 47765 with 28 at 2,3
2553 Id : 47888, {_}: greatest_lower_bound identity (multiply b ?32794) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?32794 b)) [32794] by Demod 47777 with 10 at 2
2554 Id : 112860, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 identity)) =>= greatest_lower_bound identity (multiply b ?46206) [46206] by Demod 69253 with 47888 at 3
2555 Id : 139834, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =>= greatest_lower_bound identity (multiply b ?86438) [86438] by Demod 139833 with 112860 at 3
2556 Id : 758814, {_}: greatest_lower_bound ?433915 (inverse b) =<= multiply (inverse b) (greatest_lower_bound identity (multiply b ?433915)) [433915] by Super 63 with 139834 at 2,3
2557 Id : 9363, {_}: multiply (greatest_lower_bound ?8377 ?8376) (inverse ?8376) =>= greatest_lower_bound (multiply ?8377 (inverse ?8376)) identity [8376, 8377] by Super 32 with 9315 at 2,3
2558 Id : 389839, {_}: multiply (greatest_lower_bound ?219201 ?219202) (inverse ?219202) =>= greatest_lower_bound identity (multiply ?219201 (inverse ?219202)) [219202, 219201] by Demod 9363 with 10 at 3
2559 Id : 389867, {_}: multiply identity (inverse a) =<= greatest_lower_bound identity (multiply b (inverse a)) [] by Super 389839 with 336 at 1,2
2560 Id : 390920, {_}: inverse a =<= greatest_lower_bound identity (multiply b (inverse a)) [] by Demod 389867 with 4 at 2
2561 Id : 758889, {_}: greatest_lower_bound (inverse a) (inverse b) =<= multiply (inverse b) (inverse a) [] by Super 758814 with 390920 at 2,3
2562 Id : 759137, {_}: greatest_lower_bound (inverse b) (inverse a) =<= multiply (inverse b) (inverse a) [] by Demod 758889 with 10 at 2
2563 Id : 9373, {_}: multiply (least_upper_bound ?8405 ?8404) (inverse ?8404) =>= least_upper_bound (multiply ?8405 (inverse ?8404)) identity [8404, 8405] by Super 30 with 9315 at 2,3
2564 Id : 379748, {_}: multiply (least_upper_bound ?213200 ?213201) (inverse ?213201) =>= least_upper_bound identity (multiply ?213200 (inverse ?213201)) [213201, 213200] by Demod 9373 with 12 at 3
2565 Id : 9632, {_}: multiply (inverse a) a =<= least_upper_bound identity (multiply (inverse a) identity) [] by Super 9616 with 704 at 2,2
2566 Id : 9704, {_}: identity =<= least_upper_bound identity (multiply (inverse a) identity) [] by Demod 9632 with 6 at 2
2567 Id : 9705, {_}: identity =<= least_upper_bound identity (inverse a) [] by Demod 9704 with 9304 at 2,3
2568 Id : 9791, {_}: least_upper_bound (inverse a) b =>= least_upper_bound b identity [] by Super 608 with 9705 at 2,3
2569 Id : 9810, {_}: least_upper_bound b (inverse a) =>= least_upper_bound b identity [] by Demod 9791 with 12 at 2
2570 Id : 9811, {_}: least_upper_bound b (inverse a) =>= least_upper_bound identity b [] by Demod 9810 with 12 at 3
2571 Id : 9812, {_}: least_upper_bound b (inverse a) =>= b [] by Demod 9811 with 349 at 3
2572 Id : 10144, {_}: multiply (inverse (inverse a)) b =<= least_upper_bound identity (multiply (inverse (inverse a)) b) [] by Super 190 with 9812 at 2,2
2573 Id : 10186, {_}: multiply a b =<= least_upper_bound identity (multiply (inverse (inverse a)) b) [] by Demod 10144 with 9326 at 1,2
2574 Id : 10187, {_}: multiply a b =<= least_upper_bound identity (multiply a b) [] by Demod 10186 with 9326 at 1,2,3
2575 Id : 380544, {_}: multiply (multiply a b) (inverse (multiply a b)) =>= least_upper_bound identity (multiply identity (inverse (multiply a b))) [] by Super 379748 with 10187 at 1,2
2576 Id : 382056, {_}: multiply a (multiply b (inverse (multiply a b))) =>= least_upper_bound identity (multiply identity (inverse (multiply a b))) [] by Demod 380544 with 8 at 2
2577 Id : 382057, {_}: multiply a (multiply b (inverse (multiply a b))) =>= least_upper_bound identity (inverse (multiply a b)) [] by Demod 382056 with 4 at 2,3
2578 Id : 10969, {_}: multiply (inverse (multiply a b)) (multiply a b) =>= least_upper_bound identity (multiply (inverse (multiply a b)) identity) [] by Super 190 with 10187 at 2,2
2579 Id : 10972, {_}: identity =<= least_upper_bound identity (multiply (inverse (multiply a b)) identity) [] by Demod 10969 with 6 at 2
2580 Id : 10973, {_}: identity =<= least_upper_bound identity (inverse (multiply a b)) [] by Demod 10972 with 9304 at 2,3
2581 Id : 382058, {_}: multiply a (multiply b (inverse (multiply a b))) =>= identity [] by Demod 382057 with 10973 at 3
2582 Id : 383433, {_}: multiply b (inverse (multiply a b)) =>= multiply (inverse a) identity [] by Super 63 with 382058 at 2,3
2583 Id : 383436, {_}: multiply b (inverse (multiply a b)) =>= inverse a [] by Demod 383433 with 9304 at 3
2584 Id : 383449, {_}: inverse (multiply a b) =<= multiply (inverse b) (inverse a) [] by Super 63 with 383436 at 2,3
2585 Id : 759138, {_}: greatest_lower_bound (inverse b) (inverse a) =>= inverse (multiply a b) [] by Demod 759137 with 383449 at 3
2586 Id : 759204, {_}: multiply a (inverse (multiply a b)) =>= greatest_lower_bound identity (multiply a (inverse b)) [] by Super 9386 with 759138 at 2,2
2587 Id : 368035, {_}: multiply (greatest_lower_bound ?208569 ?208570) (inverse ?208569) =>= greatest_lower_bound identity (multiply ?208570 (inverse ?208569)) [208570, 208569] by Super 32 with 9315 at 1,3
2588 Id : 368063, {_}: multiply identity (inverse b) =<= greatest_lower_bound identity (multiply a (inverse b)) [] by Super 368035 with 336 at 1,2
2589 Id : 369182, {_}: inverse b =<= greatest_lower_bound identity (multiply a (inverse b)) [] by Demod 368063 with 4 at 2
2590 Id : 759234, {_}: multiply a (inverse (multiply a b)) =>= inverse b [] by Demod 759204 with 369182 at 3
2591 Id : 759348, {_}: inverse (multiply a b) =<= multiply (inverse a) (inverse b) [] by Super 63 with 759234 at 2,3
2592 Id : 380530, {_}: multiply (multiply b a) (inverse (multiply b a)) =>= least_upper_bound identity (multiply identity (inverse (multiply b a))) [] by Super 379748 with 9944 at 1,2
2593 Id : 382029, {_}: multiply b (multiply a (inverse (multiply b a))) =>= least_upper_bound identity (multiply identity (inverse (multiply b a))) [] by Demod 380530 with 8 at 2
2594 Id : 382030, {_}: multiply b (multiply a (inverse (multiply b a))) =>= least_upper_bound identity (inverse (multiply b a)) [] by Demod 382029 with 4 at 2,3
2595 Id : 10793, {_}: multiply (inverse (multiply b a)) (multiply b a) =>= least_upper_bound identity (multiply (inverse (multiply b a)) identity) [] by Super 190 with 9944 at 2,2
2596 Id : 10796, {_}: identity =<= least_upper_bound identity (multiply (inverse (multiply b a)) identity) [] by Demod 10793 with 6 at 2
2597 Id : 10797, {_}: identity =<= least_upper_bound identity (inverse (multiply b a)) [] by Demod 10796 with 9304 at 2,3
2598 Id : 382031, {_}: multiply b (multiply a (inverse (multiply b a))) =>= identity [] by Demod 382030 with 10797 at 3
2599 Id : 382929, {_}: multiply a (inverse (multiply b a)) =>= multiply (inverse b) identity [] by Super 63 with 382031 at 2,3
2600 Id : 382932, {_}: multiply a (inverse (multiply b a)) =>= inverse b [] by Demod 382929 with 9304 at 3
2601 Id : 382945, {_}: inverse (multiply b a) =<= multiply (inverse a) (inverse b) [] by Super 63 with 382932 at 2,3
2602 Id : 759368, {_}: inverse (multiply a b) =>= inverse (multiply b a) [] by Demod 759348 with 382945 at 3
2603 Id : 759573, {_}: inverse (inverse (multiply b a)) =>= multiply a b [] by Super 9326 with 759368 at 1,2
2604 Id : 759596, {_}: multiply b a =<= multiply a b [] by Demod 759573 with 9326 at 2
2605 Id : 760017, {_}: multiply (multiply b a) (inverse b) =>= a [] by Super 9354 with 759596 at 1,2
2606 Id : 760034, {_}: multiply b (multiply a (inverse b)) =>= a [] by Demod 760017 with 8 at 2
2607 Id : 760418, {_}: multiply a (inverse b) =<= multiply (inverse b) a [] by Super 63 with 760034 at 2,3
2608 Id : 760473, {_}: multiply (multiply a (inverse b)) ?434336 =>= multiply (inverse b) (multiply a ?434336) [434336] by Super 8 with 760418 at 1,2
2609 Id : 760489, {_}: multiply a (multiply (inverse b) ?434336) =<= multiply (inverse b) (multiply a ?434336) [434336] by Demod 760473 with 8 at 2
2610 Id : 763912, {_}: multiply a (greatest_lower_bound b ?436084) =<= greatest_lower_bound (multiply b a) (multiply a ?436084) [436084] by Super 28 with 759596 at 1,3
2611 Id : 760023, {_}: multiply (multiply b a) ?434182 =>= multiply a (multiply b ?434182) [434182] by Super 8 with 759596 at 1,2
2612 Id : 760032, {_}: multiply b (multiply a ?434182) =<= multiply a (multiply b ?434182) [434182] by Demod 760023 with 8 at 2
2613 Id : 763932, {_}: multiply a (greatest_lower_bound b (multiply b ?436118)) =<= greatest_lower_bound (multiply b a) (multiply b (multiply a ?436118)) [436118] by Super 763912 with 760032 at 2,3
2614 Id : 764080, {_}: multiply a (greatest_lower_bound b (multiply b ?436118)) =>= multiply b (greatest_lower_bound a (multiply a ?436118)) [436118] by Demod 763932 with 28 at 3
2615 Id : 768933, {_}: multiply a (multiply (inverse b) (greatest_lower_bound b (multiply b ?438632))) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Super 760489 with 764080 at 2,3
2616 Id : 208, {_}: multiply (inverse ?566) (greatest_lower_bound ?566 ?567) =>= greatest_lower_bound identity (multiply (inverse ?566) ?567) [567, 566] by Super 202 with 6 at 1,3
2617 Id : 768988, {_}: multiply a (greatest_lower_bound identity (multiply (inverse b) (multiply b ?438632))) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Demod 768933 with 208 at 2,2
2618 Id : 768989, {_}: multiply a (greatest_lower_bound identity ?438632) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Demod 768988 with 63 at 2,2,2
2619 Id : 769075, {_}: multiply a (greatest_lower_bound identity ?438774) =>= greatest_lower_bound a (multiply a ?438774) [438774] by Demod 768989 with 63 at 3
2620 Id : 325, {_}: greatest_lower_bound ?779 identity =<= greatest_lower_bound (greatest_lower_bound ?779 identity) c [779] by Super 14 with 38 at 2,2
2621 Id : 334, {_}: greatest_lower_bound ?779 identity =<= greatest_lower_bound c (greatest_lower_bound ?779 identity) [779] by Demod 325 with 10 at 3
2622 Id : 1055, {_}: least_upper_bound c (greatest_lower_bound ?1435 identity) =>= c [1435] by Super 22 with 334 at 2,2
2623 Id : 1057, {_}: least_upper_bound c identity =>= c [] by Super 1055 with 20 at 2,2
2624 Id : 1068, {_}: least_upper_bound identity c =>= c [] by Demod 1057 with 12 at 2
2625 Id : 1072, {_}: least_upper_bound ?1452 c =<= least_upper_bound (least_upper_bound ?1452 identity) c [1452] by Super 16 with 1068 at 2,2
2626 Id : 2044, {_}: least_upper_bound ?2196 c =<= least_upper_bound c (least_upper_bound ?2196 identity) [2196] by Demod 1072 with 12 at 3
2627 Id : 2045, {_}: least_upper_bound ?2198 c =<= least_upper_bound c (least_upper_bound identity ?2198) [2198] by Super 2044 with 12 at 2,3
2628 Id : 9738, {_}: least_upper_bound (inverse b) c =>= least_upper_bound c identity [] by Super 2045 with 9700 at 2,3
2629 Id : 9771, {_}: least_upper_bound c (inverse b) =>= least_upper_bound c identity [] by Demod 9738 with 12 at 2
2630 Id : 9772, {_}: least_upper_bound c (inverse b) =>= least_upper_bound identity c [] by Demod 9771 with 12 at 3
2631 Id : 9773, {_}: least_upper_bound c (inverse b) =>= c [] by Demod 9772 with 1068 at 3
2632 Id : 10029, {_}: multiply (inverse (inverse b)) c =<= least_upper_bound identity (multiply (inverse (inverse b)) c) [] by Super 190 with 9773 at 2,2
2633 Id : 10032, {_}: multiply b c =<= least_upper_bound identity (multiply (inverse (inverse b)) c) [] by Demod 10029 with 9326 at 1,2
2634 Id : 10033, {_}: multiply b c =<= least_upper_bound identity (multiply b c) [] by Demod 10032 with 9326 at 1,2,3
2635 Id : 10872, {_}: greatest_lower_bound identity (multiply b c) =>= identity [] by Super 24 with 10033 at 2,2
2636 Id : 47955, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply b c) ?32868) =>= greatest_lower_bound identity ?32868 [32868] by Super 14 with 10872 at 1,3
2637 Id : 70757, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound b ?47489) c) =>= greatest_lower_bound identity (multiply ?47489 c) [47489] by Super 47955 with 32 at 2,2
2638 Id : 338, {_}: greatest_lower_bound b (greatest_lower_bound a ?786) =>= greatest_lower_bound identity ?786 [786] by Super 14 with 336 at 1,3
2639 Id : 70764, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound identity ?47501) c) =<= greatest_lower_bound identity (multiply (greatest_lower_bound a ?47501) c) [47501] by Super 70757 with 338 at 1,2,2
2640 Id : 9792, {_}: least_upper_bound (inverse a) c =>= least_upper_bound c identity [] by Super 2045 with 9705 at 2,3
2641 Id : 9807, {_}: least_upper_bound c (inverse a) =>= least_upper_bound c identity [] by Demod 9792 with 12 at 2
2642 Id : 9808, {_}: least_upper_bound c (inverse a) =>= least_upper_bound identity c [] by Demod 9807 with 12 at 3
2643 Id : 9809, {_}: least_upper_bound c (inverse a) =>= c [] by Demod 9808 with 1068 at 3
2644 Id : 10119, {_}: multiply (inverse (inverse a)) c =<= least_upper_bound identity (multiply (inverse (inverse a)) c) [] by Super 190 with 9809 at 2,2
2645 Id : 10122, {_}: multiply a c =<= least_upper_bound identity (multiply (inverse (inverse a)) c) [] by Demod 10119 with 9326 at 1,2
2646 Id : 10123, {_}: multiply a c =<= least_upper_bound identity (multiply a c) [] by Demod 10122 with 9326 at 1,2,3
2647 Id : 10918, {_}: greatest_lower_bound identity (multiply a c) =>= identity [] by Super 24 with 10123 at 2,2
2648 Id : 48295, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply a c) ?33053) =>= greatest_lower_bound identity ?33053 [33053] by Super 14 with 10918 at 1,3
2649 Id : 48305, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound a ?33073) c) =>= greatest_lower_bound identity (multiply ?33073 c) [33073] by Super 48295 with 32 at 2,2
2650 Id : 115728, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound identity ?47501) c) =>= greatest_lower_bound identity (multiply ?47501 c) [47501] by Demod 70764 with 48305 at 3
2651 Id : 204, {_}: multiply (inverse ?551) (greatest_lower_bound ?550 ?551) =>= greatest_lower_bound (multiply (inverse ?551) ?550) identity [550, 551] by Super 202 with 6 at 2,3
2652 Id : 142360, {_}: multiply (inverse ?87937) (greatest_lower_bound ?87938 ?87937) =>= greatest_lower_bound identity (multiply (inverse ?87937) ?87938) [87938, 87937] by Demod 204 with 10 at 3
2653 Id : 142374, {_}: multiply (inverse a) identity =<= greatest_lower_bound identity (multiply (inverse a) b) [] by Super 142360 with 336 at 2,2
2654 Id : 143139, {_}: inverse a =<= greatest_lower_bound identity (multiply (inverse a) b) [] by Demod 142374 with 9304 at 2
2655 Id : 144455, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (multiply (multiply (inverse a) b) c) [] by Super 115728 with 143139 at 1,2,2
2656 Id : 144470, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (multiply (inverse a) (multiply b c)) [] by Demod 144455 with 8 at 2,3
2657 Id : 769471, {_}: multiply a (greatest_lower_bound identity (multiply (inverse a) c)) =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Super 769075 with 144470 at 2,2
2658 Id : 768990, {_}: multiply a (greatest_lower_bound identity ?438632) =>= greatest_lower_bound a (multiply a ?438632) [438632] by Demod 768989 with 63 at 3
2659 Id : 770016, {_}: greatest_lower_bound a (multiply a (multiply (inverse a) c)) =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 769471 with 768990 at 2
2660 Id : 9368, {_}: multiply identity ?8392 =<= multiply ?8391 (multiply (inverse ?8391) ?8392) [8391, 8392] by Super 8 with 9315 at 1,2
2661 Id : 9385, {_}: ?8392 =<= multiply ?8391 (multiply (inverse ?8391) ?8392) [8391, 8392] by Demod 9368 with 4 at 2
2662 Id : 770017, {_}: greatest_lower_bound a c =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 770016 with 9385 at 2,2
2663 Id : 770018, {_}: greatest_lower_bound c a =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 770017 with 10 at 2
2664 Id : 770019, {_}: greatest_lower_bound c a =<= greatest_lower_bound a (multiply b c) [] by Demod 770018 with 9385 at 2,3
2665 Id : 770827, {_}: greatest_lower_bound c a === greatest_lower_bound c a [] by Demod 350 with 770019 at 2
2666 Id : 350, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound c a [] by Demod 2 with 10 at 3
2667 Id : 2, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09b
2668 % SZS output end CNFRefutation for GRP178-2.p
2674 associativity_of_glb is 85
2675 associativity_of_lub is 84
2678 glb_absorbtion is 80
2679 greatest_lower_bound is 89
2680 idempotence_of_gld is 82
2681 idempotence_of_lub is 83
2684 least_upper_bound is 87
2687 lub_absorbtion is 81
2701 symmetry_of_glb is 88
2702 symmetry_of_lub is 86
2704 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2705 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2707 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
2708 [8, 7, 6] by associativity ?6 ?7 ?8
2710 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2711 [11, 10] by symmetry_of_glb ?10 ?11
2713 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2714 [14, 13] by symmetry_of_lub ?13 ?14
2716 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2718 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2719 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2721 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2723 least_upper_bound (least_upper_bound ?20 ?21) ?22
2724 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2725 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2727 greatest_lower_bound ?26 ?26 =>= ?26
2728 [26] by idempotence_of_gld ?26
2730 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2731 [29, 28] by lub_absorbtion ?28 ?29
2733 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2734 [32, 31] by glb_absorbtion ?31 ?32
2736 multiply ?34 (least_upper_bound ?35 ?36)
2738 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2739 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2741 multiply ?38 (greatest_lower_bound ?39 ?40)
2743 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2744 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2746 multiply (least_upper_bound ?42 ?43) ?44
2748 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2749 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2751 multiply (greatest_lower_bound ?46 ?47) ?48
2753 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2754 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2755 Id : 34, {_}: inverse identity =>= identity [] by p12x_1
2756 Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51
2758 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
2759 [54, 53] by p12x_3 ?53 ?54
2761 greatest_lower_bound a c =>= greatest_lower_bound b c
2763 Id : 42, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5
2765 inverse (greatest_lower_bound ?58 ?59)
2767 least_upper_bound (inverse ?58) (inverse ?59)
2768 [59, 58] by p12x_6 ?58 ?59
2770 inverse (least_upper_bound ?61 ?62)
2772 greatest_lower_bound (inverse ?61) (inverse ?62)
2773 [62, 61] by p12x_7 ?61 ?62
2775 Id : 2, {_}: a =>= b [] by prove_p12x
2776 Found proof, 11.815356s
2777 % SZS status Unsatisfiable for GRP181-4.p
2778 % SZS output start CNFRefutation for GRP181-4.p
2779 Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26
2780 Id : 42, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5
2781 Id : 177, {_}: multiply ?477 (least_upper_bound ?478 ?479) =<= least_upper_bound (multiply ?477 ?478) (multiply ?477 ?479) [479, 478, 477] by monotony_lub1 ?477 ?478 ?479
2782 Id : 46, {_}: inverse (least_upper_bound ?61 ?62) =<= greatest_lower_bound (inverse ?61) (inverse ?62) [62, 61] by p12x_7 ?61 ?62
2783 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2784 Id : 40, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_4
2785 Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2786 Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2787 Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
2788 Id : 44, {_}: inverse (greatest_lower_bound ?58 ?59) =<= least_upper_bound (inverse ?58) (inverse ?59) [59, 58] by p12x_6 ?58 ?59
2789 Id : 375, {_}: inverse (greatest_lower_bound ?877 ?878) =<= least_upper_bound (inverse ?877) (inverse ?878) [878, 877] by p12x_6 ?877 ?878
2790 Id : 398, {_}: inverse (least_upper_bound ?920 ?921) =<= greatest_lower_bound (inverse ?920) (inverse ?921) [921, 920] by p12x_7 ?920 ?921
2791 Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
2792 Id : 208, {_}: multiply ?553 (greatest_lower_bound ?554 ?555) =<= greatest_lower_bound (multiply ?553 ?554) (multiply ?553 ?555) [555, 554, 553] by monotony_glb1 ?553 ?554 ?555
2793 Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8
2794 Id : 38, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54
2795 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2796 Id : 34, {_}: inverse identity =>= identity [] by p12x_1
2797 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2798 Id : 51, {_}: multiply (multiply ?72 ?73) ?74 =?= multiply ?72 (multiply ?73 ?74) [74, 73, 72] by associativity ?72 ?73 ?74
2799 Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51
2800 Id : 324, {_}: inverse (multiply ?822 ?823) =<= multiply (inverse ?823) (inverse ?822) [823, 822] by p12x_3 ?822 ?823
2801 Id : 328, {_}: inverse (multiply ?833 (inverse ?832)) =>= multiply ?832 (inverse ?833) [832, 833] by Super 324 with 36 at 1,3
2802 Id : 53, {_}: multiply (multiply ?79 (inverse ?80)) ?80 =>= multiply ?79 identity [80, 79] by Super 51 with 6 at 2,3
2803 Id : 325, {_}: inverse (multiply identity ?825) =<= multiply (inverse ?825) identity [825] by Super 324 with 34 at 2,3
2804 Id : 428, {_}: inverse ?975 =<= multiply (inverse ?975) identity [975] by Demod 325 with 4 at 1,2
2805 Id : 430, {_}: inverse (inverse ?978) =<= multiply ?978 identity [978] by Super 428 with 36 at 1,3
2806 Id : 441, {_}: ?978 =<= multiply ?978 identity [978] by Demod 430 with 36 at 2
2807 Id : 28686, {_}: multiply (multiply ?79 (inverse ?80)) ?80 =>= ?79 [80, 79] by Demod 53 with 441 at 3
2808 Id : 28700, {_}: inverse ?20638 =<= multiply ?20639 (inverse (multiply ?20638 (inverse (inverse ?20639)))) [20639, 20638] by Super 328 with 28686 at 1,2
2809 Id : 28729, {_}: inverse ?20638 =<= multiply ?20639 (multiply (inverse ?20639) (inverse ?20638)) [20639, 20638] by Demod 28700 with 328 at 2,3
2810 Id : 28730, {_}: inverse ?20638 =<= multiply ?20639 (inverse (multiply ?20638 ?20639)) [20639, 20638] by Demod 28729 with 38 at 2,3
2811 Id : 307, {_}: multiply ?771 (inverse ?771) =>= identity [771] by Super 6 with 36 at 1,2
2812 Id : 598, {_}: multiply (multiply ?1178 ?1177) (inverse ?1177) =>= multiply ?1178 identity [1177, 1178] by Super 8 with 307 at 2,3
2813 Id : 42163, {_}: multiply (multiply ?33679 ?33680) (inverse ?33680) =>= ?33679 [33680, 33679] by Demod 598 with 441 at 3
2814 Id : 210, {_}: multiply (inverse ?561) (greatest_lower_bound ?560 ?561) =>= greatest_lower_bound (multiply (inverse ?561) ?560) identity [560, 561] by Super 208 with 6 at 2,3
2815 Id : 229, {_}: multiply (inverse ?561) (greatest_lower_bound ?560 ?561) =>= greatest_lower_bound identity (multiply (inverse ?561) ?560) [560, 561] by Demod 210 with 10 at 3
2816 Id : 401, {_}: inverse (least_upper_bound identity ?928) =>= greatest_lower_bound identity (inverse ?928) [928] by Super 398 with 34 at 1,3
2817 Id : 534, {_}: inverse (multiply (least_upper_bound identity ?1106) ?1107) =<= multiply (inverse ?1107) (greatest_lower_bound identity (inverse ?1106)) [1107, 1106] by Super 38 with 401 at 2,3
2818 Id : 34883, {_}: inverse (multiply (least_upper_bound identity ?27004) (inverse ?27004)) =>= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Super 229 with 534 at 2
2819 Id : 34945, {_}: multiply ?27004 (inverse (least_upper_bound identity ?27004)) =?= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Demod 34883 with 328 at 2
2820 Id : 34946, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =?= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Demod 34945 with 401 at 2,2
2821 Id : 34947, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =>= greatest_lower_bound identity (inverse (inverse ?27004)) [27004] by Demod 34946 with 441 at 2,3
2822 Id : 34948, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =>= greatest_lower_bound identity ?27004 [27004] by Demod 34947 with 36 at 2,3
2823 Id : 42223, {_}: multiply (greatest_lower_bound identity ?33882) (inverse (greatest_lower_bound identity (inverse ?33882))) =>= ?33882 [33882] by Super 42163 with 34948 at 1,2
2824 Id : 377, {_}: inverse (greatest_lower_bound ?883 (inverse ?882)) =>= least_upper_bound (inverse ?883) ?882 [882, 883] by Super 375 with 36 at 2,3
2825 Id : 42257, {_}: multiply (greatest_lower_bound identity ?33882) (least_upper_bound (inverse identity) ?33882) =>= ?33882 [33882] by Demod 42223 with 377 at 2,2
2826 Id : 118341, {_}: multiply (greatest_lower_bound identity ?85951) (least_upper_bound identity ?85951) =>= ?85951 [85951] by Demod 42257 with 34 at 1,2,2
2827 Id : 376, {_}: inverse (greatest_lower_bound ?880 identity) =>= least_upper_bound (inverse ?880) identity [880] by Super 375 with 34 at 2,3
2828 Id : 388, {_}: inverse (greatest_lower_bound ?880 identity) =>= least_upper_bound identity (inverse ?880) [880] by Demod 376 with 12 at 3
2829 Id : 509, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound (inverse ?1077) (least_upper_bound identity (inverse ?1076)) [1076, 1077] by Super 44 with 388 at 2,3
2830 Id : 519, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound (least_upper_bound identity (inverse ?1076)) (inverse ?1077) [1076, 1077] by Demod 509 with 12 at 3
2831 Id : 520, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound identity (least_upper_bound (inverse ?1076) (inverse ?1077)) [1076, 1077] by Demod 519 with 16 at 3
2832 Id : 521, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound ?1076 ?1077)) [1076, 1077] by Demod 520 with 44 at 2,3
2833 Id : 512, {_}: inverse (greatest_lower_bound ?1083 identity) =>= least_upper_bound identity (inverse ?1083) [1083] by Demod 376 with 12 at 3
2834 Id : 516, {_}: inverse (greatest_lower_bound ?1090 (greatest_lower_bound ?1091 identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound ?1090 ?1091)) [1091, 1090] by Super 512 with 14 at 1,2
2835 Id : 2150, {_}: least_upper_bound identity (inverse (greatest_lower_bound ?1077 ?1076)) =?= least_upper_bound identity (inverse (greatest_lower_bound ?1076 ?1077)) [1076, 1077] by Demod 521 with 516 at 2
2836 Id : 30474, {_}: multiply (inverse ?22001) (greatest_lower_bound ?22001 ?22002) =>= greatest_lower_bound identity (multiply (inverse ?22001) ?22002) [22002, 22001] by Super 208 with 6 at 1,3
2837 Id : 337, {_}: greatest_lower_bound c a =<= greatest_lower_bound b c [] by Demod 40 with 10 at 2
2838 Id : 338, {_}: greatest_lower_bound c a =>= greatest_lower_bound c b [] by Demod 337 with 10 at 3
2839 Id : 30482, {_}: multiply (inverse c) (greatest_lower_bound c b) =>= greatest_lower_bound identity (multiply (inverse c) a) [] by Super 30474 with 338 at 2,2
2840 Id : 214, {_}: multiply (inverse ?576) (greatest_lower_bound ?576 ?577) =>= greatest_lower_bound identity (multiply (inverse ?576) ?577) [577, 576] by Super 208 with 6 at 1,3
2841 Id : 30627, {_}: greatest_lower_bound identity (multiply (inverse c) b) =<= greatest_lower_bound identity (multiply (inverse c) a) [] by Demod 30482 with 214 at 2
2842 Id : 30842, {_}: least_upper_bound identity (inverse (greatest_lower_bound (multiply (inverse c) a) identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Super 2150 with 30627 at 1,2,3
2843 Id : 30855, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) a))) =>= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30842 with 2150 at 2
2844 Id : 378, {_}: inverse (greatest_lower_bound identity ?885) =>= least_upper_bound identity (inverse ?885) [885] by Super 375 with 34 at 1,3
2845 Id : 30856, {_}: least_upper_bound identity (least_upper_bound identity (inverse (multiply (inverse c) a))) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30855 with 378 at 2,2
2846 Id : 112, {_}: least_upper_bound ?298 (least_upper_bound ?298 ?299) =>= least_upper_bound ?298 ?299 [299, 298] by Super 16 with 18 at 1,3
2847 Id : 30857, {_}: least_upper_bound identity (inverse (multiply (inverse c) a)) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30856 with 112 at 2
2848 Id : 326, {_}: inverse (multiply (inverse ?827) ?828) =>= multiply (inverse ?828) ?827 [828, 827] by Super 324 with 36 at 2,3
2849 Id : 30858, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30857 with 326 at 2,2
2850 Id : 30859, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (least_upper_bound identity (inverse (multiply (inverse c) b))) [] by Demod 30858 with 378 at 2,3
2851 Id : 30860, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (inverse (multiply (inverse c) b)) [] by Demod 30859 with 112 at 3
2852 Id : 30861, {_}: least_upper_bound identity (multiply (inverse a) c) =>= least_upper_bound identity (multiply (inverse b) c) [] by Demod 30860 with 326 at 2,3
2853 Id : 118363, {_}: multiply (greatest_lower_bound identity (multiply (inverse a) c)) (least_upper_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Super 118341 with 30861 at 2,2
2854 Id : 399, {_}: inverse (least_upper_bound ?923 identity) =>= greatest_lower_bound (inverse ?923) identity [923] by Super 398 with 34 at 2,3
2855 Id : 413, {_}: inverse (least_upper_bound ?923 identity) =>= greatest_lower_bound identity (inverse ?923) [923] by Demod 399 with 10 at 3
2856 Id : 560, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound (inverse ?1130) (greatest_lower_bound identity (inverse ?1129)) [1129, 1130] by Super 46 with 413 at 2,3
2857 Id : 580, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound (greatest_lower_bound identity (inverse ?1129)) (inverse ?1130) [1129, 1130] by Demod 560 with 10 at 3
2858 Id : 581, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound identity (greatest_lower_bound (inverse ?1129) (inverse ?1130)) [1129, 1130] by Demod 580 with 14 at 3
2859 Id : 582, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound ?1129 ?1130)) [1129, 1130] by Demod 581 with 46 at 2,3
2860 Id : 569, {_}: inverse (least_upper_bound ?1152 identity) =>= greatest_lower_bound identity (inverse ?1152) [1152] by Demod 399 with 10 at 3
2861 Id : 573, {_}: inverse (least_upper_bound ?1159 (least_upper_bound ?1160 identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound ?1159 ?1160)) [1160, 1159] by Super 569 with 16 at 1,2
2862 Id : 2778, {_}: greatest_lower_bound identity (inverse (least_upper_bound ?1130 ?1129)) =?= greatest_lower_bound identity (inverse (least_upper_bound ?1129 ?1130)) [1129, 1130] by Demod 582 with 573 at 2
2863 Id : 28815, {_}: multiply (inverse ?20915) (least_upper_bound ?20915 ?20916) =>= least_upper_bound identity (multiply (inverse ?20915) ?20916) [20916, 20915] by Super 177 with 6 at 1,3
2864 Id : 353, {_}: least_upper_bound c a =<= least_upper_bound b c [] by Demod 42 with 12 at 2
2865 Id : 354, {_}: least_upper_bound c a =>= least_upper_bound c b [] by Demod 353 with 12 at 3
2866 Id : 28823, {_}: multiply (inverse c) (least_upper_bound c b) =>= least_upper_bound identity (multiply (inverse c) a) [] by Super 28815 with 354 at 2,2
2867 Id : 183, {_}: multiply (inverse ?500) (least_upper_bound ?500 ?501) =>= least_upper_bound identity (multiply (inverse ?500) ?501) [501, 500] by Super 177 with 6 at 1,3
2868 Id : 28958, {_}: least_upper_bound identity (multiply (inverse c) b) =<= least_upper_bound identity (multiply (inverse c) a) [] by Demod 28823 with 183 at 2
2869 Id : 29161, {_}: greatest_lower_bound identity (inverse (least_upper_bound (multiply (inverse c) a) identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Super 2778 with 28958 at 1,2,3
2870 Id : 29185, {_}: greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) a))) =>= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29161 with 2778 at 2
2871 Id : 29186, {_}: greatest_lower_bound identity (greatest_lower_bound identity (inverse (multiply (inverse c) a))) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29185 with 401 at 2,2
2872 Id : 124, {_}: greatest_lower_bound ?324 (greatest_lower_bound ?324 ?325) =>= greatest_lower_bound ?324 ?325 [325, 324] by Super 14 with 20 at 1,3
2873 Id : 29187, {_}: greatest_lower_bound identity (inverse (multiply (inverse c) a)) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29186 with 124 at 2
2874 Id : 29188, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29187 with 326 at 2,2
2875 Id : 29189, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (greatest_lower_bound identity (inverse (multiply (inverse c) b))) [] by Demod 29188 with 401 at 2,3
2876 Id : 29190, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (inverse (multiply (inverse c) b)) [] by Demod 29189 with 124 at 3
2877 Id : 29191, {_}: greatest_lower_bound identity (multiply (inverse a) c) =>= greatest_lower_bound identity (multiply (inverse b) c) [] by Demod 29190 with 326 at 2,3
2878 Id : 118571, {_}: multiply (greatest_lower_bound identity (multiply (inverse b) c)) (least_upper_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Demod 118363 with 29191 at 1,2
2879 Id : 42258, {_}: multiply (greatest_lower_bound identity ?33882) (least_upper_bound identity ?33882) =>= ?33882 [33882] by Demod 42257 with 34 at 1,2,2
2880 Id : 118572, {_}: multiply (inverse b) c =<= multiply (inverse a) c [] by Demod 118571 with 42258 at 2
2881 Id : 118655, {_}: inverse (inverse a) =<= multiply c (inverse (multiply (inverse b) c)) [] by Super 28730 with 118572 at 1,2,3
2882 Id : 118658, {_}: a =<= multiply c (inverse (multiply (inverse b) c)) [] by Demod 118655 with 36 at 2
2883 Id : 118659, {_}: a =<= inverse (inverse b) [] by Demod 118658 with 28730 at 3
2884 Id : 118660, {_}: a =>= b [] by Demod 118659 with 36 at 3
2885 Id : 119303, {_}: b === b [] by Demod 2 with 118660 at 2
2886 Id : 2, {_}: a =>= b [] by prove_p12x
2887 % SZS output end CNFRefutation for GRP181-4.p
2893 associativity_of_glb is 86
2894 associativity_of_lub is 85
2895 glb_absorbtion is 81
2896 greatest_lower_bound is 94
2897 idempotence_of_gld is 83
2898 idempotence_of_lub is 84
2901 least_upper_bound is 96
2904 lub_absorbtion is 82
2913 symmetry_of_glb is 88
2914 symmetry_of_lub is 87
2916 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2917 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2919 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
2920 [8, 7, 6] by associativity ?6 ?7 ?8
2922 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2923 [11, 10] by symmetry_of_glb ?10 ?11
2925 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2926 [14, 13] by symmetry_of_lub ?13 ?14
2928 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2930 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2931 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2933 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2935 least_upper_bound (least_upper_bound ?20 ?21) ?22
2936 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2937 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2939 greatest_lower_bound ?26 ?26 =>= ?26
2940 [26] by idempotence_of_gld ?26
2942 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2943 [29, 28] by lub_absorbtion ?28 ?29
2945 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2946 [32, 31] by glb_absorbtion ?31 ?32
2948 multiply ?34 (least_upper_bound ?35 ?36)
2950 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2951 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2953 multiply ?38 (greatest_lower_bound ?39 ?40)
2955 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2956 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2958 multiply (least_upper_bound ?42 ?43) ?44
2960 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2961 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2963 multiply (greatest_lower_bound ?46 ?47) ?48
2965 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2966 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2967 Id : 34, {_}: inverse identity =>= identity [] by p20x_1
2968 Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51
2970 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
2971 [54, 53] by p20x_3 ?53 ?54
2974 greatest_lower_bound (least_upper_bound a identity)
2975 (least_upper_bound (inverse a) identity)
2979 Last chance: 1246130000.01
2980 Last chance: all is indexed 1246130020.02
2981 Last chance: failed over 100 goal 1246130020.02
2982 FAILURE in 0 iterations
2983 % SZS status Timeout for GRP183-4.p
2989 associativity_of_glb is 86
2990 associativity_of_lub is 85
2991 glb_absorbtion is 81
2992 greatest_lower_bound is 95
2993 idempotence_of_gld is 83
2994 idempotence_of_lub is 84
2997 least_upper_bound is 96
3000 lub_absorbtion is 82
3007 symmetry_of_glb is 88
3008 symmetry_of_lub is 87
3010 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3011 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3013 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3014 [8, 7, 6] by associativity ?6 ?7 ?8
3016 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3017 [11, 10] by symmetry_of_glb ?10 ?11
3019 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3020 [14, 13] by symmetry_of_lub ?13 ?14
3022 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3024 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3025 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3027 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3029 least_upper_bound (least_upper_bound ?20 ?21) ?22
3030 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3031 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3033 greatest_lower_bound ?26 ?26 =>= ?26
3034 [26] by idempotence_of_gld ?26
3036 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3037 [29, 28] by lub_absorbtion ?28 ?29
3039 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3040 [32, 31] by glb_absorbtion ?31 ?32
3042 multiply ?34 (least_upper_bound ?35 ?36)
3044 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3045 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3047 multiply ?38 (greatest_lower_bound ?39 ?40)
3049 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3050 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3052 multiply (least_upper_bound ?42 ?43) ?44
3054 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3055 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3057 multiply (greatest_lower_bound ?46 ?47) ?48
3059 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3060 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3063 multiply (least_upper_bound a identity)
3064 (inverse (greatest_lower_bound a identity))
3066 multiply (inverse (greatest_lower_bound a identity))
3067 (least_upper_bound a identity)
3069 Found proof, 112.009971s
3070 % SZS status Unsatisfiable for GRP184-1.p
3071 % SZS output start CNFRefutation for GRP184-1.p
3072 Id : 265, {_}: multiply (greatest_lower_bound ?703 ?704) ?705 =<= greatest_lower_bound (multiply ?703 ?705) (multiply ?704 ?705) [705, 704, 703] by monotony_glb2 ?703 ?704 ?705
3073 Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3074 Id : 145, {_}: greatest_lower_bound ?406 (least_upper_bound ?406 ?407) =>= ?406 [407, 406] by glb_absorbtion ?406 ?407
3075 Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26
3076 Id : 127, {_}: least_upper_bound ?353 (greatest_lower_bound ?353 ?354) =>= ?353 [354, 353] by lub_absorbtion ?353 ?354
3077 Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8
3078 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3079 Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3080 Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3081 Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32
3082 Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29
3083 Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3084 Id : 230, {_}: multiply (least_upper_bound ?621 ?622) ?623 =<= least_upper_bound (multiply ?621 ?623) (multiply ?622 ?623) [623, 622, 621] by monotony_lub2 ?621 ?622 ?623
3085 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3086 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3087 Id : 38, {_}: multiply (multiply ?61 ?62) ?63 =?= multiply ?61 (multiply ?62 ?63) [63, 62, 61] by associativity ?61 ?62 ?63
3088 Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3089 Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
3090 Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
3091 Id : 2065, {_}: multiply (multiply ?3204 (inverse ?3205)) ?3205 =>= multiply ?3204 identity [3205, 3204] by Super 38 with 6 at 2,3
3092 Id : 2068, {_}: multiply identity ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Super 2065 with 6 at 1,2
3093 Id : 2091, {_}: ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Demod 2068 with 4 at 2
3094 Id : 2111, {_}: multiply (inverse (inverse ?3262)) (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Super 26 with 2091 at 2,3
3095 Id : 39, {_}: multiply (multiply ?65 identity) ?66 =>= multiply ?65 ?66 [66, 65] by Super 38 with 4 at 2,3
3096 Id : 2108, {_}: multiply ?3253 ?3254 =<= multiply (inverse (inverse ?3253)) ?3254 [3254, 3253] by Super 39 with 2091 at 1,2
3097 Id : 2129, {_}: ?3211 =<= multiply ?3211 identity [3211] by Demod 2091 with 2108 at 3
3098 Id : 2149, {_}: inverse (inverse ?3356) =>= multiply ?3356 identity [3356] by Super 2129 with 2108 at 3
3099 Id : 2156, {_}: inverse (inverse ?3356) =>= ?3356 [3356] by Demod 2149 with 2129 at 3
3100 Id : 9722, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Demod 2111 with 2156 at 1,2
3101 Id : 9764, {_}: multiply ?11921 (least_upper_bound ?11922 identity) =<= least_upper_bound (multiply ?11921 ?11922) ?11921 [11922, 11921] by Demod 9722 with 2156 at 1,1,3
3102 Id : 701, {_}: multiply (least_upper_bound ?1544 identity) ?1545 =<= least_upper_bound (multiply ?1544 ?1545) ?1545 [1545, 1544] by Super 230 with 4 at 2,3
3103 Id : 703, {_}: multiply (least_upper_bound (inverse ?1549) identity) ?1549 =>= least_upper_bound identity ?1549 [1549] by Super 701 with 6 at 1,3
3104 Id : 729, {_}: multiply (least_upper_bound identity (inverse ?1549)) ?1549 =>= least_upper_bound identity ?1549 [1549] by Demod 703 with 12 at 1,2
3105 Id : 2193, {_}: multiply (least_upper_bound identity ?3378) (inverse ?3378) =>= least_upper_bound identity (inverse ?3378) [3378] by Super 729 with 2156 at 2,1,2
3106 Id : 9777, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound (inverse ?11957) identity) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Super 9764 with 2193 at 1,3
3107 Id : 9888, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Demod 9777 with 12 at 2,2
3108 Id : 9889, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound identity (least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957)) [11957] by Demod 9888 with 16 at 3
3109 Id : 523, {_}: least_upper_bound (greatest_lower_bound ?1203 ?1204) ?1203 =>= ?1203 [1204, 1203] by Super 12 with 22 at 3
3110 Id : 524, {_}: least_upper_bound (greatest_lower_bound ?1207 ?1206) ?1206 =>= ?1206 [1206, 1207] by Super 523 with 10 at 1,2
3111 Id : 139, {_}: greatest_lower_bound (least_upper_bound ?385 ?386) ?385 =>= ?385 [386, 385] by Super 10 with 24 at 3
3112 Id : 40, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= multiply ?68 identity [69, 68] by Super 38 with 6 at 2,3
3113 Id : 2130, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= ?68 [69, 68] by Demod 40 with 2129 at 3
3114 Id : 231, {_}: multiply (least_upper_bound ?625 identity) ?626 =<= least_upper_bound (multiply ?625 ?626) ?626 [626, 625] by Super 230 with 4 at 2,3
3115 Id : 693, {_}: least_upper_bound ?1518 (multiply ?1517 ?1518) =>= multiply (least_upper_bound ?1517 identity) ?1518 [1517, 1518] by Super 12 with 231 at 3
3116 Id : 235, {_}: multiply (least_upper_bound identity ?641) ?642 =<= least_upper_bound ?642 (multiply ?641 ?642) [642, 641] by Super 230 with 4 at 1,3
3117 Id : 1616, {_}: multiply (least_upper_bound identity ?1517) ?1518 =?= multiply (least_upper_bound ?1517 identity) ?1518 [1518, 1517] by Demod 693 with 235 at 2
3118 Id : 1625, {_}: multiply (least_upper_bound (least_upper_bound identity ?2728) ?2730) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Super 30 with 1616 at 1,3
3119 Id : 1699, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Demod 1625 with 16 at 1,2
3120 Id : 1700, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= multiply (least_upper_bound (least_upper_bound ?2728 identity) ?2730) ?2729 [2729, 2730, 2728] by Demod 1699 with 30 at 3
3121 Id : 4487, {_}: multiply (multiply (least_upper_bound identity (least_upper_bound ?5822 ?5823)) (inverse ?5824)) ?5824 =>= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5824, 5823, 5822] by Super 2130 with 1700 at 1,2
3122 Id : 4634, {_}: least_upper_bound identity (least_upper_bound ?6053 ?6054) =<= least_upper_bound (least_upper_bound ?6053 identity) ?6054 [6054, 6053] by Demod 4487 with 2130 at 2
3123 Id : 122, {_}: least_upper_bound (greatest_lower_bound ?335 ?336) ?335 =>= ?335 [336, 335] by Super 12 with 22 at 3
3124 Id : 4738, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound identity ?6182) ?6183) =>= least_upper_bound identity ?6183 [6183, 6182] by Super 4634 with 122 at 1,3
3125 Id : 4751, {_}: least_upper_bound identity (least_upper_bound ?6221 (greatest_lower_bound identity ?6220)) =>= least_upper_bound identity ?6221 [6220, 6221] by Super 4738 with 12 at 2,2
3126 Id : 4923, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (least_upper_bound identity ?6418) (greatest_lower_bound identity ?6419) [6419, 6418] by Super 16 with 4751 at 2
3127 Id : 4974, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (greatest_lower_bound identity ?6419) (least_upper_bound identity ?6418) [6419, 6418] by Demod 4923 with 12 at 3
3128 Id : 5424, {_}: greatest_lower_bound (least_upper_bound identity ?7110) (greatest_lower_bound identity ?7111) =>= greatest_lower_bound identity ?7111 [7111, 7110] by Super 139 with 4974 at 1,2
3129 Id : 5471, {_}: greatest_lower_bound (greatest_lower_bound identity ?7111) (least_upper_bound identity ?7110) =>= greatest_lower_bound identity ?7111 [7110, 7111] by Demod 5424 with 10 at 2
3130 Id : 6383, {_}: greatest_lower_bound identity (greatest_lower_bound ?8259 (least_upper_bound identity ?8260)) =>= greatest_lower_bound identity ?8259 [8260, 8259] by Demod 5471 with 14 at 2
3131 Id : 605, {_}: greatest_lower_bound (least_upper_bound ?1361 ?1362) ?1361 =>= ?1361 [1362, 1361] by Super 10 with 24 at 3
3132 Id : 606, {_}: greatest_lower_bound (least_upper_bound ?1365 ?1364) ?1364 =>= ?1364 [1364, 1365] by Super 605 with 12 at 1,2
3133 Id : 6408, {_}: greatest_lower_bound identity (least_upper_bound identity ?8337) =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8336, 8337] by Super 6383 with 606 at 2,2
3134 Id : 6477, {_}: identity =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8337, 8336] by Demod 6408 with 24 at 2
3135 Id : 8574, {_}: least_upper_bound identity (least_upper_bound ?10550 (least_upper_bound identity ?10551)) =>= least_upper_bound ?10550 (least_upper_bound identity ?10551) [10551, 10550] by Super 524 with 6477 at 1,2
3136 Id : 9890, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957) [11957] by Demod 9889 with 8574 at 3
3137 Id : 382, {_}: least_upper_bound ?896 (least_upper_bound ?896 ?897) =>= least_upper_bound ?896 ?897 [897, 896] by Super 16 with 18 at 1,3
3138 Id : 383, {_}: least_upper_bound ?899 (least_upper_bound ?900 ?899) =>= least_upper_bound ?899 ?900 [900, 899] by Super 382 with 12 at 2,2
3139 Id : 9723, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply ?3262 ?3263) ?3262 [3263, 3262] by Demod 9722 with 2156 at 1,1,3
3140 Id : 9944, {_}: least_upper_bound ?12111 (multiply ?12111 ?12112) =>= multiply ?12111 (least_upper_bound ?12112 identity) [12112, 12111] by Super 12 with 9723 at 3
3141 Id : 9957, {_}: least_upper_bound (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Super 9944 with 2193 at 2,2
3142 Id : 10090, {_}: least_upper_bound identity (least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147))) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 9957 with 16 at 2
3143 Id : 10091, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 10090 with 8574 at 2
3144 Id : 10092, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) [12147] by Demod 10091 with 12 at 2,3
3145 Id : 50296, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound (inverse ?12147) (least_upper_bound identity ?12147) [12147] by Demod 10092 with 9890 at 3
3146 Id : 50343, {_}: least_upper_bound (least_upper_bound identity (inverse ?46312)) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Super 383 with 50296 at 2,2
3147 Id : 50540, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312))) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50343 with 16 at 2
3148 Id : 100, {_}: least_upper_bound ?287 (least_upper_bound ?287 ?288) =>= least_upper_bound ?287 ?288 [288, 287] by Super 16 with 18 at 1,3
3149 Id : 50541, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50540 with 100 at 2,2
3150 Id : 50542, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =<= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50541 with 8574 at 2
3151 Id : 50543, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =>= least_upper_bound identity (least_upper_bound (inverse ?46312) ?46312) [46312] by Demod 50542 with 16 at 3
3152 Id : 51165, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound identity (least_upper_bound (inverse ?11957) ?11957) [11957] by Demod 9890 with 50543 at 3
3153 Id : 51164, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 50296 with 50543 at 3
3154 Id : 1772, {_}: multiply (multiply ?2886 (least_upper_bound identity (inverse ?2885))) ?2885 =>= multiply ?2886 (least_upper_bound identity ?2885) [2885, 2886] by Super 8 with 729 at 2,3
3155 Id : 2194, {_}: multiply (multiply ?3381 ?3380) (inverse ?3380) =>= ?3381 [3380, 3381] by Super 2130 with 2156 at 2,1,2
3156 Id : 2142, {_}: multiply ?3332 (inverse ?3332) =>= identity [3332] by Super 6 with 2108 at 2
3157 Id : 2212, {_}: multiply identity ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Super 8 with 2142 at 1,2
3158 Id : 2238, {_}: ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Demod 2212 with 4 at 2
3159 Id : 4219, {_}: multiply ?5438 (inverse (multiply (inverse ?5439) ?5438)) =>= ?5439 [5439, 5438] by Super 2194 with 2238 at 1,2
3160 Id : 18113, {_}: inverse (multiply (inverse ?20071) (inverse ?20072)) =>= multiply ?20072 ?20071 [20072, 20071] by Super 2238 with 4219 at 2,3
3161 Id : 18209, {_}: inverse (multiply ?20210 ?20209) =<= multiply (inverse ?20209) (inverse ?20210) [20209, 20210] by Super 2156 with 18113 at 1,2
3162 Id : 18309, {_}: multiply (inverse (multiply ?20330 ?20331)) ?20330 =>= inverse ?20331 [20331, 20330] by Super 2130 with 18209 at 1,2
3163 Id : 20618, {_}: multiply (least_upper_bound identity (inverse (multiply ?22269 ?22270))) ?22269 =>= least_upper_bound ?22269 (inverse ?22270) [22270, 22269] by Super 235 with 18309 at 2,3
3164 Id : 379959, {_}: multiply (least_upper_bound ?332905 (inverse ?332906)) (inverse ?332905) =>= least_upper_bound identity (inverse (multiply ?332905 ?332906)) [332906, 332905] by Super 2194 with 20618 at 1,2
3165 Id : 243389, {_}: multiply (least_upper_bound identity (multiply ?228491 ?228492)) (inverse ?228492) =>= least_upper_bound (inverse ?228492) ?228491 [228492, 228491] by Super 235 with 2194 at 2,3
3166 Id : 177106, {_}: multiply (multiply ?175304 (least_upper_bound identity (inverse ?175305))) ?175305 =>= multiply ?175304 (least_upper_bound identity ?175305) [175305, 175304] by Super 8 with 729 at 2,3
3167 Id : 10132, {_}: multiply (inverse ?12250) (least_upper_bound ?12250 identity) =>= least_upper_bound identity (inverse ?12250) [12250] by Super 9764 with 6 at 1,3
3168 Id : 10133, {_}: multiply (inverse ?12252) (least_upper_bound identity ?12252) =>= least_upper_bound identity (inverse ?12252) [12252] by Super 10132 with 12 at 2,2
3169 Id : 10242, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound (least_upper_bound identity ?12325) (least_upper_bound identity (inverse ?12325)) [12325] by Super 235 with 10133 at 2,3
3170 Id : 10288, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound identity (least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325))) [12325] by Demod 10242 with 16 at 3
3171 Id : 10289, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325)) [12325] by Demod 10288 with 8574 at 3
3172 Id : 177160, {_}: multiply (least_upper_bound (inverse ?175487) (least_upper_bound identity (inverse (inverse ?175487)))) ?175487 =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Super 177106 with 10289 at 1,2
3173 Id : 236, {_}: multiply (least_upper_bound (inverse ?645) ?644) ?645 =>= least_upper_bound identity (multiply ?644 ?645) [644, 645] by Super 230 with 6 at 1,3
3174 Id : 177356, {_}: least_upper_bound identity (multiply (least_upper_bound identity (inverse (inverse ?175487))) ?175487) =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177160 with 236 at 2
3175 Id : 177357, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =<= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177356 with 2156 at 2,1,2,2
3176 Id : 177519, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175800) ?175800) =>= multiply (least_upper_bound identity ?175800) (least_upper_bound identity ?175800) [175800] by Demod 177357 with 2156 at 2,1,3
3177 Id : 177520, {_}: least_upper_bound identity (multiply (least_upper_bound ?175802 identity) ?175802) =>= multiply (least_upper_bound identity ?175802) (least_upper_bound identity ?175802) [175802] by Super 177519 with 12 at 1,2,2
3178 Id : 3515, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?4381) ?4382)) ?4381 =>= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4382, 4381] by Super 235 with 236 at 2,3
3179 Id : 1778, {_}: multiply (least_upper_bound (least_upper_bound identity (inverse ?2903)) ?2904) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Super 30 with 729 at 1,3
3180 Id : 1803, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Demod 1778 with 16 at 1,2
3181 Id : 1804, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (multiply ?2904 ?2903) (least_upper_bound identity ?2903) [2904, 2903] by Demod 1803 with 12 at 3
3182 Id : 102, {_}: least_upper_bound ?294 ?293 =<= least_upper_bound (least_upper_bound ?294 ?293) ?293 [293, 294] by Super 16 with 18 at 2,2
3183 Id : 29053, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27543 ?27544) ?27545) =<= least_upper_bound (least_upper_bound ?27543 (least_upper_bound ?27544 identity)) ?27545 [27545, 27544, 27543] by Super 4634 with 16 at 1,3
3184 Id : 29054, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27547 ?27548) ?27549) =<= least_upper_bound (least_upper_bound ?27547 (least_upper_bound identity ?27548)) ?27549 [27549, 27548, 27547] by Super 29053 with 12 at 2,1,3
3185 Id : 93172, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324)) [78324, 78323] by Super 102 with 29054 at 3
3186 Id : 93561, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324) [78324, 78323] by Demod 93172 with 8574 at 3
3187 Id : 4534, {_}: least_upper_bound identity (least_upper_bound ?5822 ?5823) =<= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5823, 5822] by Demod 4487 with 2130 at 2
3188 Id : 27996, {_}: least_upper_bound ?26567 (least_upper_bound identity (least_upper_bound ?26568 ?26567)) =>= least_upper_bound ?26567 (least_upper_bound ?26568 identity) [26568, 26567] by Super 383 with 4534 at 2,2
3189 Id : 28002, {_}: least_upper_bound ?26586 (least_upper_bound identity ?26586) =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Super 27996 with 122 at 2,2,2
3190 Id : 28236, {_}: least_upper_bound ?26586 identity =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Demod 28002 with 383 at 2
3191 Id : 8916, {_}: least_upper_bound identity (least_upper_bound ?11024 (least_upper_bound identity ?11025)) =>= least_upper_bound ?11024 (least_upper_bound identity ?11025) [11025, 11024] by Super 524 with 6477 at 1,2
3192 Id : 8917, {_}: least_upper_bound identity (least_upper_bound ?11027 (least_upper_bound ?11028 identity)) =>= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Super 8916 with 12 at 2,2,2
3193 Id : 4835, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound ?6313 identity) ?6314) =>= least_upper_bound identity ?6314 [6314, 6313] by Super 4634 with 524 at 1,3
3194 Id : 4847, {_}: least_upper_bound identity (greatest_lower_bound ?6349 identity) =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Super 4835 with 22 at 2,2
3195 Id : 128, {_}: least_upper_bound ?356 (greatest_lower_bound ?357 ?356) =>= ?356 [357, 356] by Super 127 with 10 at 2,2
3196 Id : 4903, {_}: identity =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Demod 4847 with 128 at 2
3197 Id : 5840, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631) =>= greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631 [7631, 7630] by Super 606 with 4903 at 1,2
3198 Id : 5845, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7645) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Super 5840 with 606 at 1,2,2
3199 Id : 112, {_}: greatest_lower_bound ?313 (greatest_lower_bound ?313 ?314) =>= greatest_lower_bound ?313 ?314 [314, 313] by Super 14 with 20 at 1,3
3200 Id : 5908, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Demod 5845 with 112 at 2
3201 Id : 5909, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound ?7644 identity)) ?7645 [7644, 7645] by Demod 5908 with 10 at 1,3
3202 Id : 7862, {_}: greatest_lower_bound identity ?10013 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound ?10014 identity) ?10013) [10014, 10013] by Demod 5909 with 14 at 3
3203 Id : 146, {_}: greatest_lower_bound ?409 (least_upper_bound ?410 ?409) =>= ?409 [410, 409] by Super 145 with 12 at 2,2
3204 Id : 7879, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= greatest_lower_bound identity (least_upper_bound ?10064 identity) [10064, 10063] by Super 7862 with 146 at 2,3
3205 Id : 7984, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= identity [10064, 10063] by Demod 7879 with 146 at 3
3206 Id : 8758, {_}: least_upper_bound identity (least_upper_bound ?10813 (least_upper_bound ?10814 identity)) =>= least_upper_bound ?10813 (least_upper_bound ?10814 identity) [10814, 10813] by Super 524 with 7984 at 1,2
3207 Id : 9284, {_}: least_upper_bound ?11027 (least_upper_bound ?11028 identity) =?= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Demod 8917 with 8758 at 2
3208 Id : 89245, {_}: least_upper_bound ?75550 identity =<= least_upper_bound ?75550 (least_upper_bound identity (greatest_lower_bound ?75550 ?75551)) [75551, 75550] by Demod 28236 with 9284 at 3
3209 Id : 89255, {_}: least_upper_bound (least_upper_bound ?75580 ?75581) identity =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Super 89245 with 606 at 2,2,3
3210 Id : 89821, {_}: least_upper_bound identity (least_upper_bound ?75580 ?75581) =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Demod 89255 with 12 at 2
3211 Id : 113848, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =?= least_upper_bound identity (least_upper_bound ?78323 ?78324) [78324, 78323] by Demod 93561 with 89821 at 3
3212 Id : 181989, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (least_upper_bound (multiply ?2904 ?2903) ?2903) [2904, 2903] by Demod 1804 with 113848 at 3
3213 Id : 181990, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (multiply (least_upper_bound ?2904 identity) ?2903) [2904, 2903] by Demod 181989 with 231 at 2,3
3214 Id : 230272, {_}: least_upper_bound identity (multiply (least_upper_bound ?4382 identity) ?4381) =?= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4381, 4382] by Demod 3515 with 181990 at 2
3215 Id : 230301, {_}: least_upper_bound ?219571 (least_upper_bound identity (multiply ?219571 ?219571)) =>= multiply (least_upper_bound identity ?219571) (least_upper_bound identity ?219571) [219571] by Super 177520 with 230272 at 2
3216 Id : 232386, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (least_upper_bound ?221067 identity) (multiply ?221067 ?221067) [221067] by Super 16 with 230301 at 2
3217 Id : 233006, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (multiply ?221067 ?221067) (least_upper_bound ?221067 identity) [221067] by Demod 232386 with 12 at 3
3218 Id : 4614, {_}: greatest_lower_bound ?5993 (least_upper_bound identity (least_upper_bound ?5992 ?5993)) =>= ?5993 [5992, 5993] by Super 146 with 4534 at 2,2
3219 Id : 27608, {_}: least_upper_bound ?26112 (least_upper_bound identity (least_upper_bound ?26113 ?26112)) =>= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Super 524 with 4614 at 1,2
3220 Id : 4631, {_}: least_upper_bound ?6045 (least_upper_bound identity (least_upper_bound ?6044 ?6045)) =>= least_upper_bound ?6045 (least_upper_bound ?6044 identity) [6044, 6045] by Super 383 with 4534 at 2,2
3221 Id : 83798, {_}: least_upper_bound ?26112 (least_upper_bound ?26113 identity) =?= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Demod 27608 with 4631 at 2
3222 Id : 233007, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound identity (least_upper_bound ?221067 (multiply ?221067 ?221067)) [221067] by Demod 233006 with 83798 at 3
3223 Id : 9743, {_}: least_upper_bound ?11859 (multiply ?11859 ?11860) =>= multiply ?11859 (least_upper_bound ?11860 identity) [11860, 11859] by Super 12 with 9723 at 3
3224 Id : 233595, {_}: multiply (least_upper_bound identity ?221617) (least_upper_bound identity ?221617) =<= least_upper_bound identity (multiply ?221617 (least_upper_bound ?221617 identity)) [221617] by Demod 233007 with 9743 at 2,3
3225 Id : 233596, {_}: multiply (least_upper_bound identity ?221619) (least_upper_bound identity ?221619) =<= least_upper_bound identity (multiply ?221619 (least_upper_bound identity ?221619)) [221619] by Super 233595 with 12 at 2,2,3
3226 Id : 243525, {_}: multiply (multiply (least_upper_bound identity ?228868) (least_upper_bound identity ?228868)) (inverse (least_upper_bound identity ?228868)) =>= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Super 243389 with 233596 at 1,2
3227 Id : 243950, {_}: least_upper_bound identity ?228868 =<= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Demod 243525 with 2194 at 2
3228 Id : 244049, {_}: least_upper_bound ?229075 (inverse (least_upper_bound identity ?229075)) =>= least_upper_bound identity ?229075 [229075] by Super 12 with 243950 at 3
3229 Id : 380052, {_}: multiply (least_upper_bound identity ?333235) (inverse ?333235) =<= least_upper_bound identity (inverse (multiply ?333235 (least_upper_bound identity ?333235))) [333235] by Super 379959 with 244049 at 1,2
3230 Id : 381402, {_}: least_upper_bound identity (inverse ?334503) =<= least_upper_bound identity (inverse (multiply ?334503 (least_upper_bound identity ?334503))) [334503] by Demod 380052 with 2193 at 2
3231 Id : 177358, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =>= multiply (least_upper_bound identity ?175487) (least_upper_bound identity ?175487) [175487] by Demod 177357 with 2156 at 2,1,3
3232 Id : 177476, {_}: multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (multiply (least_upper_bound identity ?175688) (least_upper_bound identity ?175688)) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Super 10133 with 177358 at 2,2
3233 Id : 177670, {_}: multiply (multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (least_upper_bound identity ?175688)) (least_upper_bound identity ?175688) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177476 with 8 at 2
3234 Id : 177671, {_}: multiply (inverse ?175688) (least_upper_bound identity ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177670 with 18309 at 1,2
3235 Id : 177672, {_}: least_upper_bound identity (inverse ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177671 with 10133 at 2
3236 Id : 381492, {_}: least_upper_bound identity (inverse (inverse (multiply (least_upper_bound identity ?334735) ?334735))) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Super 381402 with 177672 at 2,1,2,3
3237 Id : 382266, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?334735) ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 381492 with 2156 at 2,2
3238 Id : 382267, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 382266 with 177358 at 2
3239 Id : 18224, {_}: inverse (multiply (inverse ?20261) (inverse ?20262)) =>= multiply ?20262 ?20261 [20262, 20261] by Super 2238 with 4219 at 2,3
3240 Id : 18226, {_}: inverse (multiply (inverse ?20267) ?20266) =>= multiply (inverse ?20266) ?20267 [20266, 20267] by Super 18224 with 2156 at 2,1,2
3241 Id : 382268, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (inverse (least_upper_bound identity (inverse ?334735))) (multiply (least_upper_bound identity ?334735) ?334735)) [334735] by Demod 382267 with 18226 at 2,3
3242 Id : 382269, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (multiply (inverse (least_upper_bound identity (inverse ?334735))) (least_upper_bound identity ?334735)) ?334735) [334735] by Demod 382268 with 8 at 2,3
3243 Id : 18545, {_}: inverse (multiply ?20706 (inverse ?20707)) =>= multiply ?20707 (inverse ?20706) [20707, 20706] by Super 18224 with 2156 at 1,1,2
3244 Id : 18566, {_}: inverse (least_upper_bound identity (inverse ?20767)) =<= multiply ?20767 (inverse (least_upper_bound identity ?20767)) [20767] by Super 18545 with 2193 at 1,2
3245 Id : 19741, {_}: multiply (inverse (least_upper_bound identity (inverse ?21554))) (least_upper_bound identity ?21554) =>= ?21554 [21554] by Super 2130 with 18566 at 1,2
3246 Id : 382270, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =>= least_upper_bound identity (multiply ?334735 ?334735) [334735] by Demod 382269 with 19741 at 1,2,3
3247 Id : 382385, {_}: multiply (least_upper_bound identity (multiply (inverse ?334827) (inverse ?334827))) ?334827 =>= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Super 1772 with 382270 at 1,2
3248 Id : 2064, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 (multiply ?3201 identity) [3202, 3201] by Super 235 with 40 at 2,3
3249 Id : 223367, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 ?3201 [3202, 3201] by Demod 2064 with 2129 at 2,3
3250 Id : 382807, {_}: least_upper_bound ?334827 (inverse ?334827) =<= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Demod 382385 with 223367 at 2
3251 Id : 382808, {_}: least_upper_bound ?334827 (inverse ?334827) =<= least_upper_bound ?334827 (least_upper_bound identity (inverse ?334827)) [334827] by Demod 382807 with 10289 at 3
3252 Id : 383798, {_}: least_upper_bound ?12147 (inverse ?12147) =<= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 51164 with 382808 at 2
3253 Id : 383800, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 51165 with 383798 at 3
3254 Id : 2115, {_}: multiply (inverse (inverse ?3274)) (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Super 28 with 2091 at 2,3
3255 Id : 10659, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Demod 2115 with 2156 at 1,2
3256 Id : 10660, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply ?3274 ?3275) ?3274 [3275, 3274] by Demod 10659 with 2156 at 1,1,3
3257 Id : 10678, {_}: greatest_lower_bound ?12834 (multiply ?12834 ?12835) =>= multiply ?12834 (greatest_lower_bound ?12835 identity) [12835, 12834] by Super 10 with 10660 at 3
3258 Id : 18328, {_}: greatest_lower_bound (inverse ?20397) (inverse (multiply ?20396 ?20397)) =>= multiply (inverse ?20397) (greatest_lower_bound (inverse ?20396) identity) [20396, 20397] by Super 10678 with 18209 at 2,2
3259 Id : 2116, {_}: multiply (inverse (inverse ?3277)) (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Super 28 with 2091 at 1,3
3260 Id : 11396, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Demod 2116 with 2156 at 1,2
3261 Id : 11397, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply ?3277 ?3278) [3278, 3277] by Demod 11396 with 2156 at 1,2,3
3262 Id : 11398, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =?= multiply ?3277 (greatest_lower_bound ?3278 identity) [3278, 3277] by Demod 11397 with 10678 at 3
3263 Id : 78468, {_}: greatest_lower_bound (inverse ?65596) (inverse (multiply ?65597 ?65596)) =>= multiply (inverse ?65596) (greatest_lower_bound identity (inverse ?65597)) [65597, 65596] by Demod 18328 with 11398 at 3
3264 Id : 78507, {_}: greatest_lower_bound (inverse ?65693) (inverse (inverse ?65692)) =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Super 78468 with 18309 at 1,2,2
3265 Id : 78731, {_}: greatest_lower_bound (inverse ?65693) ?65692 =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Demod 78507 with 2156 at 2,2
3266 Id : 443714, {_}: greatest_lower_bound (inverse ?378148) ?378149 =<= multiply (inverse ?378148) (greatest_lower_bound identity (multiply ?378148 ?378149)) [378149, 378148] by Demod 78731 with 2156 at 2,2,3
3267 Id : 842, {_}: multiply (greatest_lower_bound ?1730 identity) ?1731 =<= greatest_lower_bound (multiply ?1730 ?1731) ?1731 [1731, 1730] by Super 265 with 4 at 2,3
3268 Id : 844, {_}: multiply (greatest_lower_bound (inverse ?1735) identity) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Super 842 with 6 at 1,3
3269 Id : 874, {_}: multiply (greatest_lower_bound identity (inverse ?1735)) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Demod 844 with 10 at 1,2
3270 Id : 2191, {_}: multiply (greatest_lower_bound identity ?3374) (inverse ?3374) =>= greatest_lower_bound identity (inverse ?3374) [3374] by Super 874 with 2156 at 2,1,2
3271 Id : 9776, {_}: multiply (greatest_lower_bound identity ?11955) (least_upper_bound (inverse ?11955) identity) =<= least_upper_bound (greatest_lower_bound identity (inverse ?11955)) (greatest_lower_bound identity ?11955) [11955] by Super 9764 with 2191 at 1,3
3272 Id : 47906, {_}: multiply (greatest_lower_bound identity ?45245) (least_upper_bound identity (inverse ?45245)) =<= least_upper_bound (greatest_lower_bound identity (inverse ?45245)) (greatest_lower_bound identity ?45245) [45245] by Demod 9776 with 12 at 2,2
3273 Id : 47957, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity (inverse (inverse ?45371))) =>= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Super 47906 with 2156 at 2,1,3
3274 Id : 48268, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =<= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Demod 47957 with 2156 at 2,2,2
3275 Id : 9956, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound (inverse ?12145) identity) [12145] by Super 9944 with 2191 at 2,2
3276 Id : 10089, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound identity (inverse ?12145)) [12145] by Demod 9956 with 12 at 2,3
3277 Id : 105582, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =?= multiply (greatest_lower_bound identity ?45371) (least_upper_bound identity (inverse ?45371)) [45371] by Demod 48268 with 10089 at 3
3278 Id : 443814, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?378412) (least_upper_bound identity (inverse ?378412)))) [378412] by Super 443714 with 105582 at 2,2,3
3279 Id : 5843, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7639) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Super 5840 with 139 at 1,2,2
3280 Id : 5900, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Demod 5843 with 112 at 2
3281 Id : 5901, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound identity ?7638)) ?7639 [7638, 7639] by Demod 5900 with 10 at 1,3
3282 Id : 7645, {_}: greatest_lower_bound identity ?9767 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound identity ?9768) ?9767) [9768, 9767] by Demod 5901 with 14 at 3
3283 Id : 270, {_}: multiply (greatest_lower_bound identity ?723) ?724 =<= greatest_lower_bound ?724 (multiply ?723 ?724) [724, 723] by Super 265 with 4 at 1,3
3284 Id : 7676, {_}: greatest_lower_bound identity (multiply ?9863 (least_upper_bound identity ?9864)) =<= greatest_lower_bound identity (multiply (greatest_lower_bound identity ?9863) (least_upper_bound identity ?9864)) [9864, 9863] by Super 7645 with 270 at 2,3
3285 Id : 444411, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply ?378412 (least_upper_bound identity (inverse ?378412)))) [378412] by Demod 443814 with 7676 at 2,3
3286 Id : 2215, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound (multiply ?3422 ?3423) identity [3423, 3422] by Super 26 with 2142 at 2,3
3287 Id : 2235, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound identity (multiply ?3422 ?3423) [3423, 3422] by Demod 2215 with 12 at 3
3288 Id : 444412, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (least_upper_bound identity (multiply ?378412 identity))) [378412] by Demod 444411 with 2235 at 2,2,3
3289 Id : 444413, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) identity [378412] by Demod 444412 with 24 at 2,3
3290 Id : 444414, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= inverse (greatest_lower_bound identity (inverse ?378412)) [378412] by Demod 444413 with 2129 at 3
3291 Id : 761747, {_}: least_upper_bound (least_upper_bound identity ?693163) (inverse (greatest_lower_bound identity (inverse ?693163))) =>= least_upper_bound identity ?693163 [693163] by Super 128 with 444414 at 2,2
3292 Id : 762288, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) (least_upper_bound identity ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 761747 with 12 at 2
3293 Id : 1150, {_}: least_upper_bound (least_upper_bound ?2078 ?2079) ?2078 =>= least_upper_bound ?2078 ?2079 [2079, 2078] by Super 12 with 100 at 3
3294 Id : 158742, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?149635 ?149636) ?149637) ?149635 =>= least_upper_bound ?149635 (least_upper_bound ?149636 ?149637) [149637, 149636, 149635] by Super 1150 with 16 at 1,2
3295 Id : 375, {_}: least_upper_bound (least_upper_bound ?872 ?873) ?872 =>= least_upper_bound ?872 ?873 [873, 872] by Super 12 with 100 at 3
3296 Id : 1142, {_}: least_upper_bound (least_upper_bound ?2051 ?2052) (least_upper_bound ?2051 ?2053) =>= least_upper_bound (least_upper_bound ?2051 ?2052) ?2053 [2053, 2052, 2051] by Super 16 with 375 at 1,3
3297 Id : 158880, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?150190 ?150191) ?150189) ?150190 =?= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Super 158742 with 1142 at 1,2
3298 Id : 1152, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?2086 ?2084) ?2085) ?2086 =>= least_upper_bound ?2086 (least_upper_bound ?2084 ?2085) [2085, 2084, 2086] by Super 1150 with 16 at 1,2
3299 Id : 159604, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =<= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Demod 158880 with 1152 at 2
3300 Id : 126, {_}: least_upper_bound ?351 ?349 =<= least_upper_bound (least_upper_bound ?351 ?349) (greatest_lower_bound ?349 ?350) [350, 349, 351] by Super 16 with 22 at 2,2
3301 Id : 135029, {_}: least_upper_bound ?113864 ?113865 =<= least_upper_bound (greatest_lower_bound ?113865 ?113866) (least_upper_bound ?113864 ?113865) [113866, 113865, 113864] by Demod 126 with 12 at 3
3302 Id : 135153, {_}: least_upper_bound ?114345 (least_upper_bound ?114346 ?114344) =<= least_upper_bound ?114346 (least_upper_bound ?114345 (least_upper_bound ?114346 ?114344)) [114344, 114346, 114345] by Super 135029 with 139 at 1,3
3303 Id : 503059, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =?= least_upper_bound ?150191 (least_upper_bound ?150190 ?150189) [150189, 150191, 150190] by Demod 159604 with 135153 at 3
3304 Id : 762289, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 762288 with 503059 at 2
3305 Id : 2280, {_}: multiply (greatest_lower_bound identity ?3504) (inverse ?3504) =>= greatest_lower_bound identity (inverse ?3504) [3504] by Super 874 with 2156 at 2,1,2
3306 Id : 2286, {_}: multiply (greatest_lower_bound identity ?3514) (inverse (greatest_lower_bound identity ?3514)) =>= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Super 2280 with 112 at 1,2
3307 Id : 2335, {_}: identity =<= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Demod 2286 with 2142 at 2
3308 Id : 2422, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity ?3608)) =>= inverse (greatest_lower_bound identity ?3608) [3608] by Super 524 with 2335 at 1,2
3309 Id : 2722, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827) =>= least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827 [3827, 3826] by Super 16 with 2422 at 1,3
3310 Id : 762290, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163 =>= least_upper_bound identity ?693163 [693163] by Demod 762289 with 2722 at 2
3311 Id : 18327, {_}: multiply (inverse ?20394) (least_upper_bound (inverse ?20393) identity) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Super 9723 with 18209 at 1,3
3312 Id : 2112, {_}: multiply (inverse (inverse ?3265)) (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Super 26 with 2091 at 1,3
3313 Id : 10376, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Demod 2112 with 2156 at 1,2
3314 Id : 10377, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply ?3265 ?3266) [3266, 3265] by Demod 10376 with 2156 at 1,2,3
3315 Id : 10378, {_}: multiply ?3265 (least_upper_bound identity ?3266) =?= multiply ?3265 (least_upper_bound ?3266 identity) [3266, 3265] by Demod 10377 with 9743 at 3
3316 Id : 18347, {_}: multiply (inverse ?20394) (least_upper_bound identity (inverse ?20393)) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Demod 18327 with 10378 at 2
3317 Id : 2048, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 (multiply ?3142 identity) [3143, 3142] by Super 270 with 40 at 2,3
3318 Id : 194485, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 ?3142 [3143, 3142] by Demod 2048 with 2129 at 2,3
3319 Id : 194529, {_}: multiply (inverse ?186266) (least_upper_bound identity (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Super 18347 with 194485 at 1,1,3
3320 Id : 194632, {_}: multiply (inverse ?186266) (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266)))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Demod 194529 with 2422 at 2,2
3321 Id : 194633, {_}: inverse (multiply (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))) ?186266) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186266, 186265] by Demod 194632 with 18209 at 2
3322 Id : 195668, {_}: inverse (greatest_lower_bound ?187604 ?187605) =<= least_upper_bound (inverse (greatest_lower_bound ?187604 ?187605)) (inverse ?187604) [187605, 187604] by Demod 194633 with 194485 at 1,2
3323 Id : 201008, {_}: inverse (greatest_lower_bound (inverse ?193412) ?193413) =<= least_upper_bound (inverse (greatest_lower_bound (inverse ?193412) ?193413)) ?193412 [193413, 193412] by Super 195668 with 2156 at 2,3
3324 Id : 201035, {_}: inverse (greatest_lower_bound (inverse ?193516) ?193517) =<= least_upper_bound (inverse (greatest_lower_bound ?193517 (inverse ?193516))) ?193516 [193517, 193516] by Super 201008 with 10 at 1,1,3
3325 Id : 762291, {_}: inverse (greatest_lower_bound (inverse ?693163) identity) =>= least_upper_bound identity ?693163 [693163] by Demod 762290 with 201035 at 2
3326 Id : 18116, {_}: multiply ?20080 (inverse (multiply (inverse ?20081) ?20080)) =>= ?20081 [20081, 20080] by Super 2194 with 2238 at 1,2
3327 Id : 20397, {_}: multiply ?22035 (inverse (multiply ?22036 ?22035)) =>= inverse ?22036 [22036, 22035] by Super 18116 with 2156 at 1,1,2,2
3328 Id : 267, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound (multiply ?710 ?711) identity [711, 710] by Super 265 with 6 at 2,3
3329 Id : 287, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound identity (multiply ?710 ?711) [711, 710] by Demod 267 with 10 at 3
3330 Id : 20404, {_}: multiply ?22056 (inverse (greatest_lower_bound identity (multiply ?22055 ?22056))) =>= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Super 20397 with 287 at 1,2,2
3331 Id : 271, {_}: multiply (greatest_lower_bound (inverse ?727) ?726) ?727 =>= greatest_lower_bound identity (multiply ?726 ?727) [726, 727] by Super 265 with 6 at 1,3
3332 Id : 20403, {_}: multiply ?22053 (inverse (greatest_lower_bound identity (multiply ?22052 ?22053))) =>= inverse (greatest_lower_bound (inverse ?22053) ?22052) [22052, 22053] by Super 20397 with 271 at 1,2,2
3333 Id : 354211, {_}: inverse (greatest_lower_bound (inverse ?22056) ?22055) =?= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Demod 20404 with 20403 at 2
3334 Id : 763705, {_}: inverse (greatest_lower_bound identity (inverse ?694794)) =>= least_upper_bound identity ?694794 [694794] by Demod 762291 with 354211 at 2
3335 Id : 763707, {_}: inverse (greatest_lower_bound identity ?694797) =<= least_upper_bound identity (inverse ?694797) [694797] by Super 763705 with 2156 at 2,1,2
3336 Id : 766509, {_}: multiply (least_upper_bound identity ?11957) (inverse (greatest_lower_bound identity ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 383800 with 763707 at 2,2
3337 Id : 383797, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 10289 with 382808 at 3
3338 Id : 766508, {_}: multiply (inverse (greatest_lower_bound identity ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 383797 with 763707 at 1,2
3339 Id : 768092, {_}: least_upper_bound a (inverse a) === least_upper_bound a (inverse a) [] by Demod 768091 with 766508 at 3
3340 Id : 768091, {_}: least_upper_bound a (inverse a) =<= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 298 with 766509 at 2
3341 Id : 298, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 297 with 12 at 2,3
3342 Id : 297, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound a identity) [] by Demod 296 with 10 at 1,1,3
3343 Id : 296, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 295 with 10 at 1,2,2
3344 Id : 295, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 2 with 12 at 1,2
3345 Id : 2, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21
3346 % SZS output end CNFRefutation for GRP184-1.p
3352 associativity_of_glb is 86
3353 associativity_of_lub is 85
3354 glb_absorbtion is 81
3355 greatest_lower_bound is 95
3356 idempotence_of_gld is 83
3357 idempotence_of_lub is 84
3360 least_upper_bound is 96
3363 lub_absorbtion is 82
3370 symmetry_of_glb is 88
3371 symmetry_of_lub is 87
3373 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3374 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3376 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3377 [8, 7, 6] by associativity ?6 ?7 ?8
3379 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3380 [11, 10] by symmetry_of_glb ?10 ?11
3382 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3383 [14, 13] by symmetry_of_lub ?13 ?14
3385 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3387 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3388 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3390 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3392 least_upper_bound (least_upper_bound ?20 ?21) ?22
3393 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3394 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3396 greatest_lower_bound ?26 ?26 =>= ?26
3397 [26] by idempotence_of_gld ?26
3399 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3400 [29, 28] by lub_absorbtion ?28 ?29
3402 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3403 [32, 31] by glb_absorbtion ?31 ?32
3405 multiply ?34 (least_upper_bound ?35 ?36)
3407 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3408 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3410 multiply ?38 (greatest_lower_bound ?39 ?40)
3412 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3413 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3415 multiply (least_upper_bound ?42 ?43) ?44
3417 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3418 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3420 multiply (greatest_lower_bound ?46 ?47) ?48
3422 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3423 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3426 multiply (least_upper_bound a identity)
3427 (inverse (greatest_lower_bound a identity))
3429 multiply (inverse (greatest_lower_bound a identity))
3430 (least_upper_bound a identity)
3432 Found proof, 111.081739s
3433 % SZS status Unsatisfiable for GRP184-3.p
3434 % SZS output start CNFRefutation for GRP184-3.p
3435 Id : 265, {_}: multiply (greatest_lower_bound ?703 ?704) ?705 =<= greatest_lower_bound (multiply ?703 ?705) (multiply ?704 ?705) [705, 704, 703] by monotony_glb2 ?703 ?704 ?705
3436 Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3437 Id : 145, {_}: greatest_lower_bound ?406 (least_upper_bound ?406 ?407) =>= ?406 [407, 406] by glb_absorbtion ?406 ?407
3438 Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26
3439 Id : 127, {_}: least_upper_bound ?353 (greatest_lower_bound ?353 ?354) =>= ?353 [354, 353] by lub_absorbtion ?353 ?354
3440 Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8
3441 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3442 Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3443 Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3444 Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32
3445 Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29
3446 Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3447 Id : 230, {_}: multiply (least_upper_bound ?621 ?622) ?623 =<= least_upper_bound (multiply ?621 ?623) (multiply ?622 ?623) [623, 622, 621] by monotony_lub2 ?621 ?622 ?623
3448 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3449 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3450 Id : 38, {_}: multiply (multiply ?61 ?62) ?63 =?= multiply ?61 (multiply ?62 ?63) [63, 62, 61] by associativity ?61 ?62 ?63
3451 Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3452 Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
3453 Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
3454 Id : 2065, {_}: multiply (multiply ?3204 (inverse ?3205)) ?3205 =>= multiply ?3204 identity [3205, 3204] by Super 38 with 6 at 2,3
3455 Id : 2068, {_}: multiply identity ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Super 2065 with 6 at 1,2
3456 Id : 2091, {_}: ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Demod 2068 with 4 at 2
3457 Id : 2111, {_}: multiply (inverse (inverse ?3262)) (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Super 26 with 2091 at 2,3
3458 Id : 39, {_}: multiply (multiply ?65 identity) ?66 =>= multiply ?65 ?66 [66, 65] by Super 38 with 4 at 2,3
3459 Id : 2108, {_}: multiply ?3253 ?3254 =<= multiply (inverse (inverse ?3253)) ?3254 [3254, 3253] by Super 39 with 2091 at 1,2
3460 Id : 2129, {_}: ?3211 =<= multiply ?3211 identity [3211] by Demod 2091 with 2108 at 3
3461 Id : 2149, {_}: inverse (inverse ?3356) =>= multiply ?3356 identity [3356] by Super 2129 with 2108 at 3
3462 Id : 2156, {_}: inverse (inverse ?3356) =>= ?3356 [3356] by Demod 2149 with 2129 at 3
3463 Id : 9722, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Demod 2111 with 2156 at 1,2
3464 Id : 9764, {_}: multiply ?11921 (least_upper_bound ?11922 identity) =<= least_upper_bound (multiply ?11921 ?11922) ?11921 [11922, 11921] by Demod 9722 with 2156 at 1,1,3
3465 Id : 701, {_}: multiply (least_upper_bound ?1544 identity) ?1545 =<= least_upper_bound (multiply ?1544 ?1545) ?1545 [1545, 1544] by Super 230 with 4 at 2,3
3466 Id : 703, {_}: multiply (least_upper_bound (inverse ?1549) identity) ?1549 =>= least_upper_bound identity ?1549 [1549] by Super 701 with 6 at 1,3
3467 Id : 729, {_}: multiply (least_upper_bound identity (inverse ?1549)) ?1549 =>= least_upper_bound identity ?1549 [1549] by Demod 703 with 12 at 1,2
3468 Id : 2193, {_}: multiply (least_upper_bound identity ?3378) (inverse ?3378) =>= least_upper_bound identity (inverse ?3378) [3378] by Super 729 with 2156 at 2,1,2
3469 Id : 9777, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound (inverse ?11957) identity) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Super 9764 with 2193 at 1,3
3470 Id : 9888, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Demod 9777 with 12 at 2,2
3471 Id : 9889, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound identity (least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957)) [11957] by Demod 9888 with 16 at 3
3472 Id : 523, {_}: least_upper_bound (greatest_lower_bound ?1203 ?1204) ?1203 =>= ?1203 [1204, 1203] by Super 12 with 22 at 3
3473 Id : 524, {_}: least_upper_bound (greatest_lower_bound ?1207 ?1206) ?1206 =>= ?1206 [1206, 1207] by Super 523 with 10 at 1,2
3474 Id : 139, {_}: greatest_lower_bound (least_upper_bound ?385 ?386) ?385 =>= ?385 [386, 385] by Super 10 with 24 at 3
3475 Id : 40, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= multiply ?68 identity [69, 68] by Super 38 with 6 at 2,3
3476 Id : 2130, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= ?68 [69, 68] by Demod 40 with 2129 at 3
3477 Id : 231, {_}: multiply (least_upper_bound ?625 identity) ?626 =<= least_upper_bound (multiply ?625 ?626) ?626 [626, 625] by Super 230 with 4 at 2,3
3478 Id : 693, {_}: least_upper_bound ?1518 (multiply ?1517 ?1518) =>= multiply (least_upper_bound ?1517 identity) ?1518 [1517, 1518] by Super 12 with 231 at 3
3479 Id : 235, {_}: multiply (least_upper_bound identity ?641) ?642 =<= least_upper_bound ?642 (multiply ?641 ?642) [642, 641] by Super 230 with 4 at 1,3
3480 Id : 1616, {_}: multiply (least_upper_bound identity ?1517) ?1518 =?= multiply (least_upper_bound ?1517 identity) ?1518 [1518, 1517] by Demod 693 with 235 at 2
3481 Id : 1625, {_}: multiply (least_upper_bound (least_upper_bound identity ?2728) ?2730) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Super 30 with 1616 at 1,3
3482 Id : 1699, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Demod 1625 with 16 at 1,2
3483 Id : 1700, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= multiply (least_upper_bound (least_upper_bound ?2728 identity) ?2730) ?2729 [2729, 2730, 2728] by Demod 1699 with 30 at 3
3484 Id : 4487, {_}: multiply (multiply (least_upper_bound identity (least_upper_bound ?5822 ?5823)) (inverse ?5824)) ?5824 =>= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5824, 5823, 5822] by Super 2130 with 1700 at 1,2
3485 Id : 4634, {_}: least_upper_bound identity (least_upper_bound ?6053 ?6054) =<= least_upper_bound (least_upper_bound ?6053 identity) ?6054 [6054, 6053] by Demod 4487 with 2130 at 2
3486 Id : 122, {_}: least_upper_bound (greatest_lower_bound ?335 ?336) ?335 =>= ?335 [336, 335] by Super 12 with 22 at 3
3487 Id : 4738, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound identity ?6182) ?6183) =>= least_upper_bound identity ?6183 [6183, 6182] by Super 4634 with 122 at 1,3
3488 Id : 4751, {_}: least_upper_bound identity (least_upper_bound ?6221 (greatest_lower_bound identity ?6220)) =>= least_upper_bound identity ?6221 [6220, 6221] by Super 4738 with 12 at 2,2
3489 Id : 4923, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (least_upper_bound identity ?6418) (greatest_lower_bound identity ?6419) [6419, 6418] by Super 16 with 4751 at 2
3490 Id : 4974, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (greatest_lower_bound identity ?6419) (least_upper_bound identity ?6418) [6419, 6418] by Demod 4923 with 12 at 3
3491 Id : 5424, {_}: greatest_lower_bound (least_upper_bound identity ?7110) (greatest_lower_bound identity ?7111) =>= greatest_lower_bound identity ?7111 [7111, 7110] by Super 139 with 4974 at 1,2
3492 Id : 5471, {_}: greatest_lower_bound (greatest_lower_bound identity ?7111) (least_upper_bound identity ?7110) =>= greatest_lower_bound identity ?7111 [7110, 7111] by Demod 5424 with 10 at 2
3493 Id : 6383, {_}: greatest_lower_bound identity (greatest_lower_bound ?8259 (least_upper_bound identity ?8260)) =>= greatest_lower_bound identity ?8259 [8260, 8259] by Demod 5471 with 14 at 2
3494 Id : 605, {_}: greatest_lower_bound (least_upper_bound ?1361 ?1362) ?1361 =>= ?1361 [1362, 1361] by Super 10 with 24 at 3
3495 Id : 606, {_}: greatest_lower_bound (least_upper_bound ?1365 ?1364) ?1364 =>= ?1364 [1364, 1365] by Super 605 with 12 at 1,2
3496 Id : 6408, {_}: greatest_lower_bound identity (least_upper_bound identity ?8337) =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8336, 8337] by Super 6383 with 606 at 2,2
3497 Id : 6477, {_}: identity =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8337, 8336] by Demod 6408 with 24 at 2
3498 Id : 8574, {_}: least_upper_bound identity (least_upper_bound ?10550 (least_upper_bound identity ?10551)) =>= least_upper_bound ?10550 (least_upper_bound identity ?10551) [10551, 10550] by Super 524 with 6477 at 1,2
3499 Id : 9890, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957) [11957] by Demod 9889 with 8574 at 3
3500 Id : 382, {_}: least_upper_bound ?896 (least_upper_bound ?896 ?897) =>= least_upper_bound ?896 ?897 [897, 896] by Super 16 with 18 at 1,3
3501 Id : 383, {_}: least_upper_bound ?899 (least_upper_bound ?900 ?899) =>= least_upper_bound ?899 ?900 [900, 899] by Super 382 with 12 at 2,2
3502 Id : 9723, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply ?3262 ?3263) ?3262 [3263, 3262] by Demod 9722 with 2156 at 1,1,3
3503 Id : 9944, {_}: least_upper_bound ?12111 (multiply ?12111 ?12112) =>= multiply ?12111 (least_upper_bound ?12112 identity) [12112, 12111] by Super 12 with 9723 at 3
3504 Id : 9957, {_}: least_upper_bound (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Super 9944 with 2193 at 2,2
3505 Id : 10090, {_}: least_upper_bound identity (least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147))) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 9957 with 16 at 2
3506 Id : 10091, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 10090 with 8574 at 2
3507 Id : 10092, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) [12147] by Demod 10091 with 12 at 2,3
3508 Id : 50296, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound (inverse ?12147) (least_upper_bound identity ?12147) [12147] by Demod 10092 with 9890 at 3
3509 Id : 50343, {_}: least_upper_bound (least_upper_bound identity (inverse ?46312)) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Super 383 with 50296 at 2,2
3510 Id : 50540, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312))) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50343 with 16 at 2
3511 Id : 100, {_}: least_upper_bound ?287 (least_upper_bound ?287 ?288) =>= least_upper_bound ?287 ?288 [288, 287] by Super 16 with 18 at 1,3
3512 Id : 50541, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50540 with 100 at 2,2
3513 Id : 50542, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =<= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50541 with 8574 at 2
3514 Id : 50543, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =>= least_upper_bound identity (least_upper_bound (inverse ?46312) ?46312) [46312] by Demod 50542 with 16 at 3
3515 Id : 51165, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound identity (least_upper_bound (inverse ?11957) ?11957) [11957] by Demod 9890 with 50543 at 3
3516 Id : 51164, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 50296 with 50543 at 3
3517 Id : 1772, {_}: multiply (multiply ?2886 (least_upper_bound identity (inverse ?2885))) ?2885 =>= multiply ?2886 (least_upper_bound identity ?2885) [2885, 2886] by Super 8 with 729 at 2,3
3518 Id : 2194, {_}: multiply (multiply ?3381 ?3380) (inverse ?3380) =>= ?3381 [3380, 3381] by Super 2130 with 2156 at 2,1,2
3519 Id : 2142, {_}: multiply ?3332 (inverse ?3332) =>= identity [3332] by Super 6 with 2108 at 2
3520 Id : 2212, {_}: multiply identity ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Super 8 with 2142 at 1,2
3521 Id : 2238, {_}: ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Demod 2212 with 4 at 2
3522 Id : 4219, {_}: multiply ?5438 (inverse (multiply (inverse ?5439) ?5438)) =>= ?5439 [5439, 5438] by Super 2194 with 2238 at 1,2
3523 Id : 18113, {_}: inverse (multiply (inverse ?20071) (inverse ?20072)) =>= multiply ?20072 ?20071 [20072, 20071] by Super 2238 with 4219 at 2,3
3524 Id : 18209, {_}: inverse (multiply ?20210 ?20209) =<= multiply (inverse ?20209) (inverse ?20210) [20209, 20210] by Super 2156 with 18113 at 1,2
3525 Id : 18309, {_}: multiply (inverse (multiply ?20330 ?20331)) ?20330 =>= inverse ?20331 [20331, 20330] by Super 2130 with 18209 at 1,2
3526 Id : 20618, {_}: multiply (least_upper_bound identity (inverse (multiply ?22269 ?22270))) ?22269 =>= least_upper_bound ?22269 (inverse ?22270) [22270, 22269] by Super 235 with 18309 at 2,3
3527 Id : 379959, {_}: multiply (least_upper_bound ?332905 (inverse ?332906)) (inverse ?332905) =>= least_upper_bound identity (inverse (multiply ?332905 ?332906)) [332906, 332905] by Super 2194 with 20618 at 1,2
3528 Id : 243389, {_}: multiply (least_upper_bound identity (multiply ?228491 ?228492)) (inverse ?228492) =>= least_upper_bound (inverse ?228492) ?228491 [228492, 228491] by Super 235 with 2194 at 2,3
3529 Id : 177106, {_}: multiply (multiply ?175304 (least_upper_bound identity (inverse ?175305))) ?175305 =>= multiply ?175304 (least_upper_bound identity ?175305) [175305, 175304] by Super 8 with 729 at 2,3
3530 Id : 10132, {_}: multiply (inverse ?12250) (least_upper_bound ?12250 identity) =>= least_upper_bound identity (inverse ?12250) [12250] by Super 9764 with 6 at 1,3
3531 Id : 10133, {_}: multiply (inverse ?12252) (least_upper_bound identity ?12252) =>= least_upper_bound identity (inverse ?12252) [12252] by Super 10132 with 12 at 2,2
3532 Id : 10242, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound (least_upper_bound identity ?12325) (least_upper_bound identity (inverse ?12325)) [12325] by Super 235 with 10133 at 2,3
3533 Id : 10288, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound identity (least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325))) [12325] by Demod 10242 with 16 at 3
3534 Id : 10289, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325)) [12325] by Demod 10288 with 8574 at 3
3535 Id : 177160, {_}: multiply (least_upper_bound (inverse ?175487) (least_upper_bound identity (inverse (inverse ?175487)))) ?175487 =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Super 177106 with 10289 at 1,2
3536 Id : 236, {_}: multiply (least_upper_bound (inverse ?645) ?644) ?645 =>= least_upper_bound identity (multiply ?644 ?645) [644, 645] by Super 230 with 6 at 1,3
3537 Id : 177356, {_}: least_upper_bound identity (multiply (least_upper_bound identity (inverse (inverse ?175487))) ?175487) =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177160 with 236 at 2
3538 Id : 177357, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =<= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177356 with 2156 at 2,1,2,2
3539 Id : 177519, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175800) ?175800) =>= multiply (least_upper_bound identity ?175800) (least_upper_bound identity ?175800) [175800] by Demod 177357 with 2156 at 2,1,3
3540 Id : 177520, {_}: least_upper_bound identity (multiply (least_upper_bound ?175802 identity) ?175802) =>= multiply (least_upper_bound identity ?175802) (least_upper_bound identity ?175802) [175802] by Super 177519 with 12 at 1,2,2
3541 Id : 3515, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?4381) ?4382)) ?4381 =>= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4382, 4381] by Super 235 with 236 at 2,3
3542 Id : 1778, {_}: multiply (least_upper_bound (least_upper_bound identity (inverse ?2903)) ?2904) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Super 30 with 729 at 1,3
3543 Id : 1803, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Demod 1778 with 16 at 1,2
3544 Id : 1804, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (multiply ?2904 ?2903) (least_upper_bound identity ?2903) [2904, 2903] by Demod 1803 with 12 at 3
3545 Id : 102, {_}: least_upper_bound ?294 ?293 =<= least_upper_bound (least_upper_bound ?294 ?293) ?293 [293, 294] by Super 16 with 18 at 2,2
3546 Id : 29053, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27543 ?27544) ?27545) =<= least_upper_bound (least_upper_bound ?27543 (least_upper_bound ?27544 identity)) ?27545 [27545, 27544, 27543] by Super 4634 with 16 at 1,3
3547 Id : 29054, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27547 ?27548) ?27549) =<= least_upper_bound (least_upper_bound ?27547 (least_upper_bound identity ?27548)) ?27549 [27549, 27548, 27547] by Super 29053 with 12 at 2,1,3
3548 Id : 93172, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324)) [78324, 78323] by Super 102 with 29054 at 3
3549 Id : 93561, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324) [78324, 78323] by Demod 93172 with 8574 at 3
3550 Id : 4534, {_}: least_upper_bound identity (least_upper_bound ?5822 ?5823) =<= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5823, 5822] by Demod 4487 with 2130 at 2
3551 Id : 27996, {_}: least_upper_bound ?26567 (least_upper_bound identity (least_upper_bound ?26568 ?26567)) =>= least_upper_bound ?26567 (least_upper_bound ?26568 identity) [26568, 26567] by Super 383 with 4534 at 2,2
3552 Id : 28002, {_}: least_upper_bound ?26586 (least_upper_bound identity ?26586) =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Super 27996 with 122 at 2,2,2
3553 Id : 28236, {_}: least_upper_bound ?26586 identity =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Demod 28002 with 383 at 2
3554 Id : 8916, {_}: least_upper_bound identity (least_upper_bound ?11024 (least_upper_bound identity ?11025)) =>= least_upper_bound ?11024 (least_upper_bound identity ?11025) [11025, 11024] by Super 524 with 6477 at 1,2
3555 Id : 8917, {_}: least_upper_bound identity (least_upper_bound ?11027 (least_upper_bound ?11028 identity)) =>= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Super 8916 with 12 at 2,2,2
3556 Id : 4835, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound ?6313 identity) ?6314) =>= least_upper_bound identity ?6314 [6314, 6313] by Super 4634 with 524 at 1,3
3557 Id : 4847, {_}: least_upper_bound identity (greatest_lower_bound ?6349 identity) =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Super 4835 with 22 at 2,2
3558 Id : 128, {_}: least_upper_bound ?356 (greatest_lower_bound ?357 ?356) =>= ?356 [357, 356] by Super 127 with 10 at 2,2
3559 Id : 4903, {_}: identity =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Demod 4847 with 128 at 2
3560 Id : 5840, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631) =>= greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631 [7631, 7630] by Super 606 with 4903 at 1,2
3561 Id : 5845, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7645) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Super 5840 with 606 at 1,2,2
3562 Id : 112, {_}: greatest_lower_bound ?313 (greatest_lower_bound ?313 ?314) =>= greatest_lower_bound ?313 ?314 [314, 313] by Super 14 with 20 at 1,3
3563 Id : 5908, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Demod 5845 with 112 at 2
3564 Id : 5909, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound ?7644 identity)) ?7645 [7644, 7645] by Demod 5908 with 10 at 1,3
3565 Id : 7862, {_}: greatest_lower_bound identity ?10013 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound ?10014 identity) ?10013) [10014, 10013] by Demod 5909 with 14 at 3
3566 Id : 146, {_}: greatest_lower_bound ?409 (least_upper_bound ?410 ?409) =>= ?409 [410, 409] by Super 145 with 12 at 2,2
3567 Id : 7879, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= greatest_lower_bound identity (least_upper_bound ?10064 identity) [10064, 10063] by Super 7862 with 146 at 2,3
3568 Id : 7984, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= identity [10064, 10063] by Demod 7879 with 146 at 3
3569 Id : 8758, {_}: least_upper_bound identity (least_upper_bound ?10813 (least_upper_bound ?10814 identity)) =>= least_upper_bound ?10813 (least_upper_bound ?10814 identity) [10814, 10813] by Super 524 with 7984 at 1,2
3570 Id : 9284, {_}: least_upper_bound ?11027 (least_upper_bound ?11028 identity) =?= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Demod 8917 with 8758 at 2
3571 Id : 89245, {_}: least_upper_bound ?75550 identity =<= least_upper_bound ?75550 (least_upper_bound identity (greatest_lower_bound ?75550 ?75551)) [75551, 75550] by Demod 28236 with 9284 at 3
3572 Id : 89255, {_}: least_upper_bound (least_upper_bound ?75580 ?75581) identity =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Super 89245 with 606 at 2,2,3
3573 Id : 89821, {_}: least_upper_bound identity (least_upper_bound ?75580 ?75581) =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Demod 89255 with 12 at 2
3574 Id : 113848, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =?= least_upper_bound identity (least_upper_bound ?78323 ?78324) [78324, 78323] by Demod 93561 with 89821 at 3
3575 Id : 181989, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (least_upper_bound (multiply ?2904 ?2903) ?2903) [2904, 2903] by Demod 1804 with 113848 at 3
3576 Id : 181990, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (multiply (least_upper_bound ?2904 identity) ?2903) [2904, 2903] by Demod 181989 with 231 at 2,3
3577 Id : 230272, {_}: least_upper_bound identity (multiply (least_upper_bound ?4382 identity) ?4381) =?= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4381, 4382] by Demod 3515 with 181990 at 2
3578 Id : 230301, {_}: least_upper_bound ?219571 (least_upper_bound identity (multiply ?219571 ?219571)) =>= multiply (least_upper_bound identity ?219571) (least_upper_bound identity ?219571) [219571] by Super 177520 with 230272 at 2
3579 Id : 232386, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (least_upper_bound ?221067 identity) (multiply ?221067 ?221067) [221067] by Super 16 with 230301 at 2
3580 Id : 233006, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (multiply ?221067 ?221067) (least_upper_bound ?221067 identity) [221067] by Demod 232386 with 12 at 3
3581 Id : 4614, {_}: greatest_lower_bound ?5993 (least_upper_bound identity (least_upper_bound ?5992 ?5993)) =>= ?5993 [5992, 5993] by Super 146 with 4534 at 2,2
3582 Id : 27608, {_}: least_upper_bound ?26112 (least_upper_bound identity (least_upper_bound ?26113 ?26112)) =>= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Super 524 with 4614 at 1,2
3583 Id : 4631, {_}: least_upper_bound ?6045 (least_upper_bound identity (least_upper_bound ?6044 ?6045)) =>= least_upper_bound ?6045 (least_upper_bound ?6044 identity) [6044, 6045] by Super 383 with 4534 at 2,2
3584 Id : 83798, {_}: least_upper_bound ?26112 (least_upper_bound ?26113 identity) =?= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Demod 27608 with 4631 at 2
3585 Id : 233007, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound identity (least_upper_bound ?221067 (multiply ?221067 ?221067)) [221067] by Demod 233006 with 83798 at 3
3586 Id : 9743, {_}: least_upper_bound ?11859 (multiply ?11859 ?11860) =>= multiply ?11859 (least_upper_bound ?11860 identity) [11860, 11859] by Super 12 with 9723 at 3
3587 Id : 233595, {_}: multiply (least_upper_bound identity ?221617) (least_upper_bound identity ?221617) =<= least_upper_bound identity (multiply ?221617 (least_upper_bound ?221617 identity)) [221617] by Demod 233007 with 9743 at 2,3
3588 Id : 233596, {_}: multiply (least_upper_bound identity ?221619) (least_upper_bound identity ?221619) =<= least_upper_bound identity (multiply ?221619 (least_upper_bound identity ?221619)) [221619] by Super 233595 with 12 at 2,2,3
3589 Id : 243525, {_}: multiply (multiply (least_upper_bound identity ?228868) (least_upper_bound identity ?228868)) (inverse (least_upper_bound identity ?228868)) =>= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Super 243389 with 233596 at 1,2
3590 Id : 243950, {_}: least_upper_bound identity ?228868 =<= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Demod 243525 with 2194 at 2
3591 Id : 244049, {_}: least_upper_bound ?229075 (inverse (least_upper_bound identity ?229075)) =>= least_upper_bound identity ?229075 [229075] by Super 12 with 243950 at 3
3592 Id : 380052, {_}: multiply (least_upper_bound identity ?333235) (inverse ?333235) =<= least_upper_bound identity (inverse (multiply ?333235 (least_upper_bound identity ?333235))) [333235] by Super 379959 with 244049 at 1,2
3593 Id : 381402, {_}: least_upper_bound identity (inverse ?334503) =<= least_upper_bound identity (inverse (multiply ?334503 (least_upper_bound identity ?334503))) [334503] by Demod 380052 with 2193 at 2
3594 Id : 177358, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =>= multiply (least_upper_bound identity ?175487) (least_upper_bound identity ?175487) [175487] by Demod 177357 with 2156 at 2,1,3
3595 Id : 177476, {_}: multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (multiply (least_upper_bound identity ?175688) (least_upper_bound identity ?175688)) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Super 10133 with 177358 at 2,2
3596 Id : 177670, {_}: multiply (multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (least_upper_bound identity ?175688)) (least_upper_bound identity ?175688) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177476 with 8 at 2
3597 Id : 177671, {_}: multiply (inverse ?175688) (least_upper_bound identity ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177670 with 18309 at 1,2
3598 Id : 177672, {_}: least_upper_bound identity (inverse ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177671 with 10133 at 2
3599 Id : 381492, {_}: least_upper_bound identity (inverse (inverse (multiply (least_upper_bound identity ?334735) ?334735))) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Super 381402 with 177672 at 2,1,2,3
3600 Id : 382266, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?334735) ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 381492 with 2156 at 2,2
3601 Id : 382267, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 382266 with 177358 at 2
3602 Id : 18224, {_}: inverse (multiply (inverse ?20261) (inverse ?20262)) =>= multiply ?20262 ?20261 [20262, 20261] by Super 2238 with 4219 at 2,3
3603 Id : 18226, {_}: inverse (multiply (inverse ?20267) ?20266) =>= multiply (inverse ?20266) ?20267 [20266, 20267] by Super 18224 with 2156 at 2,1,2
3604 Id : 382268, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (inverse (least_upper_bound identity (inverse ?334735))) (multiply (least_upper_bound identity ?334735) ?334735)) [334735] by Demod 382267 with 18226 at 2,3
3605 Id : 382269, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (multiply (inverse (least_upper_bound identity (inverse ?334735))) (least_upper_bound identity ?334735)) ?334735) [334735] by Demod 382268 with 8 at 2,3
3606 Id : 18545, {_}: inverse (multiply ?20706 (inverse ?20707)) =>= multiply ?20707 (inverse ?20706) [20707, 20706] by Super 18224 with 2156 at 1,1,2
3607 Id : 18566, {_}: inverse (least_upper_bound identity (inverse ?20767)) =<= multiply ?20767 (inverse (least_upper_bound identity ?20767)) [20767] by Super 18545 with 2193 at 1,2
3608 Id : 19741, {_}: multiply (inverse (least_upper_bound identity (inverse ?21554))) (least_upper_bound identity ?21554) =>= ?21554 [21554] by Super 2130 with 18566 at 1,2
3609 Id : 382270, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =>= least_upper_bound identity (multiply ?334735 ?334735) [334735] by Demod 382269 with 19741 at 1,2,3
3610 Id : 382385, {_}: multiply (least_upper_bound identity (multiply (inverse ?334827) (inverse ?334827))) ?334827 =>= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Super 1772 with 382270 at 1,2
3611 Id : 2064, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 (multiply ?3201 identity) [3202, 3201] by Super 235 with 40 at 2,3
3612 Id : 223367, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 ?3201 [3202, 3201] by Demod 2064 with 2129 at 2,3
3613 Id : 382807, {_}: least_upper_bound ?334827 (inverse ?334827) =<= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Demod 382385 with 223367 at 2
3614 Id : 382808, {_}: least_upper_bound ?334827 (inverse ?334827) =<= least_upper_bound ?334827 (least_upper_bound identity (inverse ?334827)) [334827] by Demod 382807 with 10289 at 3
3615 Id : 383798, {_}: least_upper_bound ?12147 (inverse ?12147) =<= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 51164 with 382808 at 2
3616 Id : 383800, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 51165 with 383798 at 3
3617 Id : 2115, {_}: multiply (inverse (inverse ?3274)) (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Super 28 with 2091 at 2,3
3618 Id : 10659, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Demod 2115 with 2156 at 1,2
3619 Id : 10660, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply ?3274 ?3275) ?3274 [3275, 3274] by Demod 10659 with 2156 at 1,1,3
3620 Id : 10678, {_}: greatest_lower_bound ?12834 (multiply ?12834 ?12835) =>= multiply ?12834 (greatest_lower_bound ?12835 identity) [12835, 12834] by Super 10 with 10660 at 3
3621 Id : 18328, {_}: greatest_lower_bound (inverse ?20397) (inverse (multiply ?20396 ?20397)) =>= multiply (inverse ?20397) (greatest_lower_bound (inverse ?20396) identity) [20396, 20397] by Super 10678 with 18209 at 2,2
3622 Id : 2116, {_}: multiply (inverse (inverse ?3277)) (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Super 28 with 2091 at 1,3
3623 Id : 11396, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Demod 2116 with 2156 at 1,2
3624 Id : 11397, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply ?3277 ?3278) [3278, 3277] by Demod 11396 with 2156 at 1,2,3
3625 Id : 11398, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =?= multiply ?3277 (greatest_lower_bound ?3278 identity) [3278, 3277] by Demod 11397 with 10678 at 3
3626 Id : 78468, {_}: greatest_lower_bound (inverse ?65596) (inverse (multiply ?65597 ?65596)) =>= multiply (inverse ?65596) (greatest_lower_bound identity (inverse ?65597)) [65597, 65596] by Demod 18328 with 11398 at 3
3627 Id : 78507, {_}: greatest_lower_bound (inverse ?65693) (inverse (inverse ?65692)) =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Super 78468 with 18309 at 1,2,2
3628 Id : 78731, {_}: greatest_lower_bound (inverse ?65693) ?65692 =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Demod 78507 with 2156 at 2,2
3629 Id : 443714, {_}: greatest_lower_bound (inverse ?378148) ?378149 =<= multiply (inverse ?378148) (greatest_lower_bound identity (multiply ?378148 ?378149)) [378149, 378148] by Demod 78731 with 2156 at 2,2,3
3630 Id : 842, {_}: multiply (greatest_lower_bound ?1730 identity) ?1731 =<= greatest_lower_bound (multiply ?1730 ?1731) ?1731 [1731, 1730] by Super 265 with 4 at 2,3
3631 Id : 844, {_}: multiply (greatest_lower_bound (inverse ?1735) identity) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Super 842 with 6 at 1,3
3632 Id : 874, {_}: multiply (greatest_lower_bound identity (inverse ?1735)) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Demod 844 with 10 at 1,2
3633 Id : 2191, {_}: multiply (greatest_lower_bound identity ?3374) (inverse ?3374) =>= greatest_lower_bound identity (inverse ?3374) [3374] by Super 874 with 2156 at 2,1,2
3634 Id : 9776, {_}: multiply (greatest_lower_bound identity ?11955) (least_upper_bound (inverse ?11955) identity) =<= least_upper_bound (greatest_lower_bound identity (inverse ?11955)) (greatest_lower_bound identity ?11955) [11955] by Super 9764 with 2191 at 1,3
3635 Id : 47906, {_}: multiply (greatest_lower_bound identity ?45245) (least_upper_bound identity (inverse ?45245)) =<= least_upper_bound (greatest_lower_bound identity (inverse ?45245)) (greatest_lower_bound identity ?45245) [45245] by Demod 9776 with 12 at 2,2
3636 Id : 47957, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity (inverse (inverse ?45371))) =>= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Super 47906 with 2156 at 2,1,3
3637 Id : 48268, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =<= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Demod 47957 with 2156 at 2,2,2
3638 Id : 9956, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound (inverse ?12145) identity) [12145] by Super 9944 with 2191 at 2,2
3639 Id : 10089, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound identity (inverse ?12145)) [12145] by Demod 9956 with 12 at 2,3
3640 Id : 105582, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =?= multiply (greatest_lower_bound identity ?45371) (least_upper_bound identity (inverse ?45371)) [45371] by Demod 48268 with 10089 at 3
3641 Id : 443814, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?378412) (least_upper_bound identity (inverse ?378412)))) [378412] by Super 443714 with 105582 at 2,2,3
3642 Id : 5843, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7639) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Super 5840 with 139 at 1,2,2
3643 Id : 5900, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Demod 5843 with 112 at 2
3644 Id : 5901, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound identity ?7638)) ?7639 [7638, 7639] by Demod 5900 with 10 at 1,3
3645 Id : 7645, {_}: greatest_lower_bound identity ?9767 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound identity ?9768) ?9767) [9768, 9767] by Demod 5901 with 14 at 3
3646 Id : 270, {_}: multiply (greatest_lower_bound identity ?723) ?724 =<= greatest_lower_bound ?724 (multiply ?723 ?724) [724, 723] by Super 265 with 4 at 1,3
3647 Id : 7676, {_}: greatest_lower_bound identity (multiply ?9863 (least_upper_bound identity ?9864)) =<= greatest_lower_bound identity (multiply (greatest_lower_bound identity ?9863) (least_upper_bound identity ?9864)) [9864, 9863] by Super 7645 with 270 at 2,3
3648 Id : 444411, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply ?378412 (least_upper_bound identity (inverse ?378412)))) [378412] by Demod 443814 with 7676 at 2,3
3649 Id : 2215, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound (multiply ?3422 ?3423) identity [3423, 3422] by Super 26 with 2142 at 2,3
3650 Id : 2235, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound identity (multiply ?3422 ?3423) [3423, 3422] by Demod 2215 with 12 at 3
3651 Id : 444412, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (least_upper_bound identity (multiply ?378412 identity))) [378412] by Demod 444411 with 2235 at 2,2,3
3652 Id : 444413, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) identity [378412] by Demod 444412 with 24 at 2,3
3653 Id : 444414, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= inverse (greatest_lower_bound identity (inverse ?378412)) [378412] by Demod 444413 with 2129 at 3
3654 Id : 761747, {_}: least_upper_bound (least_upper_bound identity ?693163) (inverse (greatest_lower_bound identity (inverse ?693163))) =>= least_upper_bound identity ?693163 [693163] by Super 128 with 444414 at 2,2
3655 Id : 762288, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) (least_upper_bound identity ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 761747 with 12 at 2
3656 Id : 1150, {_}: least_upper_bound (least_upper_bound ?2078 ?2079) ?2078 =>= least_upper_bound ?2078 ?2079 [2079, 2078] by Super 12 with 100 at 3
3657 Id : 158742, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?149635 ?149636) ?149637) ?149635 =>= least_upper_bound ?149635 (least_upper_bound ?149636 ?149637) [149637, 149636, 149635] by Super 1150 with 16 at 1,2
3658 Id : 375, {_}: least_upper_bound (least_upper_bound ?872 ?873) ?872 =>= least_upper_bound ?872 ?873 [873, 872] by Super 12 with 100 at 3
3659 Id : 1142, {_}: least_upper_bound (least_upper_bound ?2051 ?2052) (least_upper_bound ?2051 ?2053) =>= least_upper_bound (least_upper_bound ?2051 ?2052) ?2053 [2053, 2052, 2051] by Super 16 with 375 at 1,3
3660 Id : 158880, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?150190 ?150191) ?150189) ?150190 =?= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Super 158742 with 1142 at 1,2
3661 Id : 1152, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?2086 ?2084) ?2085) ?2086 =>= least_upper_bound ?2086 (least_upper_bound ?2084 ?2085) [2085, 2084, 2086] by Super 1150 with 16 at 1,2
3662 Id : 159604, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =<= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Demod 158880 with 1152 at 2
3663 Id : 126, {_}: least_upper_bound ?351 ?349 =<= least_upper_bound (least_upper_bound ?351 ?349) (greatest_lower_bound ?349 ?350) [350, 349, 351] by Super 16 with 22 at 2,2
3664 Id : 135029, {_}: least_upper_bound ?113864 ?113865 =<= least_upper_bound (greatest_lower_bound ?113865 ?113866) (least_upper_bound ?113864 ?113865) [113866, 113865, 113864] by Demod 126 with 12 at 3
3665 Id : 135153, {_}: least_upper_bound ?114345 (least_upper_bound ?114346 ?114344) =<= least_upper_bound ?114346 (least_upper_bound ?114345 (least_upper_bound ?114346 ?114344)) [114344, 114346, 114345] by Super 135029 with 139 at 1,3
3666 Id : 503059, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =?= least_upper_bound ?150191 (least_upper_bound ?150190 ?150189) [150189, 150191, 150190] by Demod 159604 with 135153 at 3
3667 Id : 762289, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 762288 with 503059 at 2
3668 Id : 2280, {_}: multiply (greatest_lower_bound identity ?3504) (inverse ?3504) =>= greatest_lower_bound identity (inverse ?3504) [3504] by Super 874 with 2156 at 2,1,2
3669 Id : 2286, {_}: multiply (greatest_lower_bound identity ?3514) (inverse (greatest_lower_bound identity ?3514)) =>= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Super 2280 with 112 at 1,2
3670 Id : 2335, {_}: identity =<= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Demod 2286 with 2142 at 2
3671 Id : 2422, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity ?3608)) =>= inverse (greatest_lower_bound identity ?3608) [3608] by Super 524 with 2335 at 1,2
3672 Id : 2722, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827) =>= least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827 [3827, 3826] by Super 16 with 2422 at 1,3
3673 Id : 762290, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163 =>= least_upper_bound identity ?693163 [693163] by Demod 762289 with 2722 at 2
3674 Id : 18327, {_}: multiply (inverse ?20394) (least_upper_bound (inverse ?20393) identity) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Super 9723 with 18209 at 1,3
3675 Id : 2112, {_}: multiply (inverse (inverse ?3265)) (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Super 26 with 2091 at 1,3
3676 Id : 10376, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Demod 2112 with 2156 at 1,2
3677 Id : 10377, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply ?3265 ?3266) [3266, 3265] by Demod 10376 with 2156 at 1,2,3
3678 Id : 10378, {_}: multiply ?3265 (least_upper_bound identity ?3266) =?= multiply ?3265 (least_upper_bound ?3266 identity) [3266, 3265] by Demod 10377 with 9743 at 3
3679 Id : 18347, {_}: multiply (inverse ?20394) (least_upper_bound identity (inverse ?20393)) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Demod 18327 with 10378 at 2
3680 Id : 2048, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 (multiply ?3142 identity) [3143, 3142] by Super 270 with 40 at 2,3
3681 Id : 194485, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 ?3142 [3143, 3142] by Demod 2048 with 2129 at 2,3
3682 Id : 194529, {_}: multiply (inverse ?186266) (least_upper_bound identity (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Super 18347 with 194485 at 1,1,3
3683 Id : 194632, {_}: multiply (inverse ?186266) (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266)))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Demod 194529 with 2422 at 2,2
3684 Id : 194633, {_}: inverse (multiply (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))) ?186266) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186266, 186265] by Demod 194632 with 18209 at 2
3685 Id : 195668, {_}: inverse (greatest_lower_bound ?187604 ?187605) =<= least_upper_bound (inverse (greatest_lower_bound ?187604 ?187605)) (inverse ?187604) [187605, 187604] by Demod 194633 with 194485 at 1,2
3686 Id : 201008, {_}: inverse (greatest_lower_bound (inverse ?193412) ?193413) =<= least_upper_bound (inverse (greatest_lower_bound (inverse ?193412) ?193413)) ?193412 [193413, 193412] by Super 195668 with 2156 at 2,3
3687 Id : 201035, {_}: inverse (greatest_lower_bound (inverse ?193516) ?193517) =<= least_upper_bound (inverse (greatest_lower_bound ?193517 (inverse ?193516))) ?193516 [193517, 193516] by Super 201008 with 10 at 1,1,3
3688 Id : 762291, {_}: inverse (greatest_lower_bound (inverse ?693163) identity) =>= least_upper_bound identity ?693163 [693163] by Demod 762290 with 201035 at 2
3689 Id : 18116, {_}: multiply ?20080 (inverse (multiply (inverse ?20081) ?20080)) =>= ?20081 [20081, 20080] by Super 2194 with 2238 at 1,2
3690 Id : 20397, {_}: multiply ?22035 (inverse (multiply ?22036 ?22035)) =>= inverse ?22036 [22036, 22035] by Super 18116 with 2156 at 1,1,2,2
3691 Id : 267, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound (multiply ?710 ?711) identity [711, 710] by Super 265 with 6 at 2,3
3692 Id : 287, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound identity (multiply ?710 ?711) [711, 710] by Demod 267 with 10 at 3
3693 Id : 20404, {_}: multiply ?22056 (inverse (greatest_lower_bound identity (multiply ?22055 ?22056))) =>= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Super 20397 with 287 at 1,2,2
3694 Id : 271, {_}: multiply (greatest_lower_bound (inverse ?727) ?726) ?727 =>= greatest_lower_bound identity (multiply ?726 ?727) [726, 727] by Super 265 with 6 at 1,3
3695 Id : 20403, {_}: multiply ?22053 (inverse (greatest_lower_bound identity (multiply ?22052 ?22053))) =>= inverse (greatest_lower_bound (inverse ?22053) ?22052) [22052, 22053] by Super 20397 with 271 at 1,2,2
3696 Id : 354211, {_}: inverse (greatest_lower_bound (inverse ?22056) ?22055) =?= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Demod 20404 with 20403 at 2
3697 Id : 763705, {_}: inverse (greatest_lower_bound identity (inverse ?694794)) =>= least_upper_bound identity ?694794 [694794] by Demod 762291 with 354211 at 2
3698 Id : 763707, {_}: inverse (greatest_lower_bound identity ?694797) =<= least_upper_bound identity (inverse ?694797) [694797] by Super 763705 with 2156 at 2,1,2
3699 Id : 766509, {_}: multiply (least_upper_bound identity ?11957) (inverse (greatest_lower_bound identity ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 383800 with 763707 at 2,2
3700 Id : 383797, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 10289 with 382808 at 3
3701 Id : 766508, {_}: multiply (inverse (greatest_lower_bound identity ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 383797 with 763707 at 1,2
3702 Id : 768092, {_}: least_upper_bound a (inverse a) === least_upper_bound a (inverse a) [] by Demod 768091 with 766508 at 3
3703 Id : 768091, {_}: least_upper_bound a (inverse a) =<= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 298 with 766509 at 2
3704 Id : 298, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 297 with 12 at 2,3
3705 Id : 297, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound a identity) [] by Demod 296 with 10 at 1,1,3
3706 Id : 296, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 295 with 10 at 1,2,2
3707 Id : 295, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 2 with 12 at 1,2
3708 Id : 2, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21x
3709 % SZS output end CNFRefutation for GRP184-3.p
3715 associativity_of_glb is 85
3716 associativity_of_lub is 84
3718 glb_absorbtion is 80
3719 greatest_lower_bound is 88
3720 idempotence_of_gld is 82
3721 idempotence_of_lub is 83
3724 least_upper_bound is 94
3727 lub_absorbtion is 81
3737 symmetry_of_glb is 87
3738 symmetry_of_lub is 86
3740 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3741 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3743 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3744 [8, 7, 6] by associativity ?6 ?7 ?8
3746 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3747 [11, 10] by symmetry_of_glb ?10 ?11
3749 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3750 [14, 13] by symmetry_of_lub ?13 ?14
3752 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3754 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3755 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3757 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3759 least_upper_bound (least_upper_bound ?20 ?21) ?22
3760 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3761 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3763 greatest_lower_bound ?26 ?26 =>= ?26
3764 [26] by idempotence_of_gld ?26
3766 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3767 [29, 28] by lub_absorbtion ?28 ?29
3769 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3770 [32, 31] by glb_absorbtion ?31 ?32
3772 multiply ?34 (least_upper_bound ?35 ?36)
3774 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3775 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3777 multiply ?38 (greatest_lower_bound ?39 ?40)
3779 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3780 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3782 multiply (least_upper_bound ?42 ?43) ?44
3784 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3785 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3787 multiply (greatest_lower_bound ?46 ?47) ?48
3789 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3790 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3791 Id : 34, {_}: inverse identity =>= identity [] by p22a_1
3792 Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51
3794 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
3795 [54, 53] by p22a_3 ?53 ?54
3798 least_upper_bound (least_upper_bound (multiply a b) identity)
3799 (multiply (least_upper_bound a identity)
3800 (least_upper_bound b identity))
3802 multiply (least_upper_bound a identity)
3803 (least_upper_bound b identity)
3805 Last chance: 1246130514.18
3806 Last chance: all is indexed 1246130534.19
3807 Last chance: failed over 100 goal 1246130534.19
3808 FAILURE in 0 iterations
3809 % SZS status Timeout for GRP185-2.p
3815 associativity_of_glb is 85
3816 associativity_of_lub is 84
3818 glb_absorbtion is 80
3819 greatest_lower_bound is 93
3820 idempotence_of_gld is 82
3821 idempotence_of_lub is 83
3824 least_upper_bound is 94
3827 lub_absorbtion is 81
3834 symmetry_of_glb is 87
3835 symmetry_of_lub is 86
3837 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3838 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3840 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3841 [8, 7, 6] by associativity ?6 ?7 ?8
3843 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3844 [11, 10] by symmetry_of_glb ?10 ?11
3846 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3847 [14, 13] by symmetry_of_lub ?13 ?14
3849 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3851 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3852 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3854 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3856 least_upper_bound (least_upper_bound ?20 ?21) ?22
3857 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3858 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3860 greatest_lower_bound ?26 ?26 =>= ?26
3861 [26] by idempotence_of_gld ?26
3863 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3864 [29, 28] by lub_absorbtion ?28 ?29
3866 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3867 [32, 31] by glb_absorbtion ?31 ?32
3869 multiply ?34 (least_upper_bound ?35 ?36)
3871 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3872 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3874 multiply ?38 (greatest_lower_bound ?39 ?40)
3876 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3877 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3879 multiply (least_upper_bound ?42 ?43) ?44
3881 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3882 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3884 multiply (greatest_lower_bound ?46 ?47) ?48
3886 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3887 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3890 greatest_lower_bound (least_upper_bound (multiply a b) identity)
3891 (multiply (least_upper_bound a identity)
3892 (least_upper_bound b identity))
3894 least_upper_bound (multiply a b) identity
3896 Last chance: 1246130804.3
3897 Last chance: all is indexed 1246130824.31
3898 Last chance: failed over 100 goal 1246130824.31
3899 FAILURE in 0 iterations
3900 % SZS status Timeout for GRP185-3.p
3906 associativity_of_glb is 85
3907 associativity_of_lub is 84
3909 glb_absorbtion is 80
3910 greatest_lower_bound is 92
3911 idempotence_of_gld is 82
3912 idempotence_of_lub is 83
3915 least_upper_bound is 94
3918 lub_absorbtion is 81
3925 symmetry_of_glb is 87
3926 symmetry_of_lub is 86
3928 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3929 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3931 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3932 [8, 7, 6] by associativity ?6 ?7 ?8
3934 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3935 [11, 10] by symmetry_of_glb ?10 ?11
3937 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3938 [14, 13] by symmetry_of_lub ?13 ?14
3940 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3942 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3943 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3945 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3947 least_upper_bound (least_upper_bound ?20 ?21) ?22
3948 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3949 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3951 greatest_lower_bound ?26 ?26 =>= ?26
3952 [26] by idempotence_of_gld ?26
3954 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3955 [29, 28] by lub_absorbtion ?28 ?29
3957 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3958 [32, 31] by glb_absorbtion ?31 ?32
3960 multiply ?34 (least_upper_bound ?35 ?36)
3962 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3963 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3965 multiply ?38 (greatest_lower_bound ?39 ?40)
3967 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3968 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3970 multiply (least_upper_bound ?42 ?43) ?44
3972 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3973 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3975 multiply (greatest_lower_bound ?46 ?47) ?48
3977 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3978 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3981 least_upper_bound (multiply a b) identity
3983 multiply a (inverse (greatest_lower_bound a (inverse b)))
3985 Found proof, 55.184694s
3986 % SZS status Unsatisfiable for GRP186-1.p
3987 % SZS output start CNFRefutation for GRP186-1.p
3988 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3989 Id : 194, {_}: multiply ?539 (greatest_lower_bound ?540 ?541) =<= greatest_lower_bound (multiply ?539 ?540) (multiply ?539 ?541) [541, 540, 539] by monotony_glb1 ?539 ?540 ?541
3990 Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3991 Id : 125, {_}: least_upper_bound ?350 (greatest_lower_bound ?350 ?351) =>= ?350 [351, 350] by lub_absorbtion ?350 ?351
3992 Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3993 Id : 143, {_}: greatest_lower_bound ?403 (least_upper_bound ?403 ?404) =>= ?403 [404, 403] by glb_absorbtion ?403 ?404
3994 Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3995 Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26
3996 Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3997 Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3998 Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3999 Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8
4000 Id : 228, {_}: multiply (least_upper_bound ?618 ?619) ?620 =<= least_upper_bound (multiply ?618 ?620) (multiply ?619 ?620) [620, 619, 618] by monotony_lub2 ?618 ?619 ?620
4001 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4002 Id : 37, {_}: multiply (multiply ?58 ?59) ?60 =?= multiply ?58 (multiply ?59 ?60) [60, 59, 58] by associativity ?58 ?59 ?60
4003 Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32
4004 Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
4005 Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29
4006 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4007 Id : 163, {_}: multiply ?463 (least_upper_bound ?464 ?465) =<= least_upper_bound (multiply ?463 ?464) (multiply ?463 ?465) [465, 464, 463] by monotony_lub1 ?463 ?464 ?465
4008 Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
4009 Id : 1397, {_}: multiply (inverse ?2611) (least_upper_bound ?2611 ?2612) =>= least_upper_bound identity (multiply (inverse ?2611) ?2612) [2612, 2611] by Super 163 with 6 at 1,3
4010 Id : 120, {_}: least_upper_bound (greatest_lower_bound ?332 ?333) ?332 =>= ?332 [333, 332] by Super 12 with 22 at 3
4011 Id : 1403, {_}: multiply (inverse (greatest_lower_bound ?2630 ?2629)) ?2630 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2630 ?2629)) ?2630) [2629, 2630] by Super 1397 with 120 at 2,2
4012 Id : 137, {_}: greatest_lower_bound (least_upper_bound ?382 ?383) ?382 =>= ?382 [383, 382] by Super 10 with 24 at 3
4013 Id : 39, {_}: multiply (multiply ?65 (inverse ?66)) ?66 =>= multiply ?65 identity [66, 65] by Super 37 with 6 at 2,3
4014 Id : 1222, {_}: multiply (multiply ?2303 (inverse ?2304)) ?2304 =>= multiply ?2303 identity [2304, 2303] by Super 37 with 6 at 2,3
4015 Id : 1225, {_}: multiply identity ?2310 =<= multiply (inverse (inverse ?2310)) identity [2310] by Super 1222 with 6 at 1,2
4016 Id : 1240, {_}: ?2310 =<= multiply (inverse (inverse ?2310)) identity [2310] by Demod 1225 with 4 at 2
4017 Id : 38, {_}: multiply (multiply ?62 identity) ?63 =>= multiply ?62 ?63 [63, 62] by Super 37 with 4 at 2,3
4018 Id : 1245, {_}: multiply ?2332 ?2333 =<= multiply (inverse (inverse ?2332)) ?2333 [2333, 2332] by Super 38 with 1240 at 1,2
4019 Id : 1261, {_}: ?2310 =<= multiply ?2310 identity [2310] by Demod 1240 with 1245 at 3
4020 Id : 1262, {_}: multiply (multiply ?65 (inverse ?66)) ?66 =>= ?65 [66, 65] by Demod 39 with 1261 at 3
4021 Id : 234, {_}: multiply (least_upper_bound (inverse ?642) ?641) ?642 =>= least_upper_bound identity (multiply ?641 ?642) [641, 642] by Super 228 with 6 at 1,3
4022 Id : 1630, {_}: multiply (least_upper_bound identity (multiply ?2984 (inverse ?2985))) ?2985 =>= least_upper_bound (inverse (inverse ?2985)) ?2984 [2985, 2984] by Super 1262 with 234 at 1,2
4023 Id : 1277, {_}: inverse (inverse ?2419) =<= multiply ?2419 identity [2419] by Super 1261 with 1245 at 3
4024 Id : 1283, {_}: inverse (inverse ?2419) =>= ?2419 [2419] by Demod 1277 with 1261 at 3
4025 Id : 59624, {_}: multiply (least_upper_bound identity (multiply ?78799 (inverse ?78800))) ?78800 =>= least_upper_bound ?78800 ?78799 [78800, 78799] by Demod 1630 with 1283 at 1,3
4026 Id : 59667, {_}: multiply (multiply (inverse (greatest_lower_bound (inverse ?78935) ?78934)) (inverse ?78935)) ?78935 =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Super 59624 with 1403 at 1,2
4027 Id : 59764, {_}: multiply (inverse (greatest_lower_bound (inverse ?78935) ?78934)) (multiply (inverse ?78935) ?78935) =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59667 with 8 at 2
4028 Id : 1311, {_}: multiply (multiply ?2436 ?2435) (inverse ?2435) =>= ?2436 [2435, 2436] by Super 1262 with 1283 at 2,1,2
4029 Id : 46, {_}: multiply identity ?93 =<= multiply (inverse ?92) (multiply ?92 ?93) [92, 93] by Super 37 with 6 at 1,2
4030 Id : 55, {_}: ?93 =<= multiply (inverse ?92) (multiply ?92 ?93) [92, 93] by Demod 46 with 4 at 2
4031 Id : 1907, {_}: inverse ?3391 =<= multiply (inverse (multiply ?3390 ?3391)) ?3390 [3390, 3391] by Super 55 with 1311 at 2,3
4032 Id : 2602, {_}: multiply (inverse ?4415) (inverse ?4416) =>= inverse (multiply ?4416 ?4415) [4416, 4415] by Super 1311 with 1907 at 1,2
4033 Id : 2683, {_}: multiply (inverse (multiply ?4589 ?4588)) ?4590 =<= multiply (inverse ?4588) (multiply (inverse ?4589) ?4590) [4590, 4588, 4589] by Super 8 with 2602 at 1,2
4034 Id : 59765, {_}: multiply (inverse (multiply ?78935 (greatest_lower_bound (inverse ?78935) ?78934))) ?78935 =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59764 with 2683 at 2
4035 Id : 59766, {_}: inverse (greatest_lower_bound (inverse ?78935) ?78934) =<= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59765 with 1907 at 2
4036 Id : 75243, {_}: greatest_lower_bound (inverse (greatest_lower_bound (inverse ?90061) ?90062)) ?90061 =>= ?90061 [90062, 90061] by Super 137 with 59766 at 1,2
4037 Id : 75245, {_}: greatest_lower_bound (inverse (greatest_lower_bound ?90066 ?90067)) (inverse ?90066) =>= inverse ?90066 [90067, 90066] by Super 75243 with 1283 at 1,1,1,2
4038 Id : 90405, {_}: multiply (inverse (greatest_lower_bound (inverse (greatest_lower_bound ?103908 ?103909)) (inverse ?103908))) (inverse (greatest_lower_bound ?103908 ?103909)) =>= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Super 1403 with 75245 at 1,1,2,3
4039 Id : 90576, {_}: inverse (multiply (greatest_lower_bound ?103908 ?103909) (greatest_lower_bound (inverse (greatest_lower_bound ?103908 ?103909)) (inverse ?103908))) =>= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Demod 90405 with 2602 at 2
4040 Id : 1272, {_}: multiply ?2401 (inverse ?2401) =>= identity [2401] by Super 6 with 1245 at 2
4041 Id : 1323, {_}: multiply ?2456 (greatest_lower_bound (inverse ?2456) ?2457) =>= greatest_lower_bound identity (multiply ?2456 ?2457) [2457, 2456] by Super 28 with 1272 at 1,3
4042 Id : 90577, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound ?103908 ?103909) (inverse ?103908))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Demod 90576 with 1323 at 1,2
4043 Id : 1321, {_}: multiply (greatest_lower_bound ?2450 ?2451) (inverse ?2450) =>= greatest_lower_bound identity (multiply ?2451 (inverse ?2450)) [2451, 2450] by Super 32 with 1272 at 1,3
4044 Id : 90578, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply ?103909 (inverse ?103908)))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90577 with 1321 at 2,1,2
4045 Id : 110, {_}: greatest_lower_bound ?310 (greatest_lower_bound ?310 ?311) =>= greatest_lower_bound ?310 ?311 [311, 310] by Super 14 with 20 at 1,3
4046 Id : 90579, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90578 with 110 at 1,2
4047 Id : 90580, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound ?103908 ?103909) (inverse ?103908))) [103908, 103909] by Demod 90579 with 2602 at 2,3
4048 Id : 2693, {_}: multiply (inverse ?4622) (inverse ?4623) =>= inverse (multiply ?4623 ?4622) [4623, 4622] by Super 1311 with 1907 at 1,2
4049 Id : 2697, {_}: multiply ?4632 (inverse ?4633) =<= inverse (multiply ?4633 (inverse ?4632)) [4633, 4632] by Super 2693 with 1283 at 1,2
4050 Id : 90581, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (multiply ?103908 (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90580 with 2697 at 2,3
4051 Id : 2159, {_}: multiply (least_upper_bound ?3809 ?3810) (inverse ?3809) =>= least_upper_bound identity (multiply ?3810 (inverse ?3809)) [3810, 3809] by Super 30 with 1272 at 1,3
4052 Id : 2167, {_}: multiply ?3833 (inverse (greatest_lower_bound ?3833 ?3832)) =<= least_upper_bound identity (multiply ?3833 (inverse (greatest_lower_bound ?3833 ?3832))) [3832, 3833] by Super 2159 with 120 at 1,2
4053 Id : 241130, {_}: inverse (greatest_lower_bound identity (multiply ?281248 (inverse ?281249))) =?= multiply ?281249 (inverse (greatest_lower_bound ?281249 ?281248)) [281249, 281248] by Demod 90581 with 2167 at 3
4054 Id : 241323, {_}: inverse (greatest_lower_bound identity (inverse (multiply ?281886 ?281885))) =<= multiply ?281886 (inverse (greatest_lower_bound ?281886 (inverse ?281885))) [281885, 281886] by Super 241130 with 2602 at 2,1,2
4055 Id : 1908, {_}: multiply (multiply ?3393 ?3394) (inverse ?3394) =>= ?3393 [3394, 3393] by Super 1262 with 1283 at 2,1,2
4056 Id : 1918, {_}: multiply (least_upper_bound identity (multiply ?3421 ?3422)) (inverse ?3422) =>= least_upper_bound (inverse ?3422) ?3421 [3422, 3421] by Super 1908 with 234 at 1,2
4057 Id : 169, {_}: multiply (inverse ?486) (least_upper_bound ?486 ?487) =>= least_upper_bound identity (multiply (inverse ?486) ?487) [487, 486] by Super 163 with 6 at 1,3
4058 Id : 1396, {_}: least_upper_bound ?2608 ?2609 =<= multiply (inverse (inverse ?2608)) (least_upper_bound identity (multiply (inverse ?2608) ?2609)) [2609, 2608] by Super 55 with 169 at 2,3
4059 Id : 1416, {_}: least_upper_bound ?2608 ?2609 =<= multiply ?2608 (least_upper_bound identity (multiply (inverse ?2608) ?2609)) [2609, 2608] by Demod 1396 with 1283 at 1,3
4060 Id : 512, {_}: least_upper_bound (greatest_lower_bound ?1197 ?1198) ?1197 =>= ?1197 [1198, 1197] by Super 12 with 22 at 3
4061 Id : 513, {_}: least_upper_bound (greatest_lower_bound ?1201 ?1200) ?1200 =>= ?1200 [1200, 1201] by Super 512 with 10 at 1,2
4062 Id : 1407, {_}: multiply (inverse (greatest_lower_bound ?2641 ?2642)) ?2642 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2641 ?2642)) ?2642) [2642, 2641] by Super 1397 with 513 at 2,2
4063 Id : 144, {_}: greatest_lower_bound ?406 (least_upper_bound ?407 ?406) =>= ?406 [407, 406] by Super 143 with 12 at 2,2
4064 Id : 12520, {_}: multiply (inverse (greatest_lower_bound ?25685 ?25686)) ?25685 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?25685 ?25686)) ?25685) [25686, 25685] by Super 1397 with 120 at 2,2
4065 Id : 12560, {_}: multiply (inverse (greatest_lower_bound identity ?25830)) identity =>= least_upper_bound identity (inverse (greatest_lower_bound identity ?25830)) [25830] by Super 12520 with 1261 at 2,3
4066 Id : 12795, {_}: inverse (greatest_lower_bound identity ?25965) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?25965)) [25965] by Demod 12560 with 1261 at 2
4067 Id : 12796, {_}: inverse (greatest_lower_bound identity ?25967) =<= least_upper_bound identity (inverse (greatest_lower_bound ?25967 identity)) [25967] by Super 12795 with 10 at 1,2,3
4068 Id : 20061, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound ?34946 identity)) ?34947) =>= least_upper_bound (inverse (greatest_lower_bound identity ?34946)) ?34947 [34947, 34946] by Super 16 with 12796 at 1,3
4069 Id : 20078, {_}: least_upper_bound identity (least_upper_bound ?35005 (inverse (greatest_lower_bound ?35004 identity))) =>= least_upper_bound (inverse (greatest_lower_bound identity ?35004)) ?35005 [35004, 35005] by Super 20061 with 12 at 2,2
4070 Id : 126, {_}: least_upper_bound ?353 (greatest_lower_bound ?354 ?353) =>= ?353 [354, 353] by Super 125 with 10 at 2,2
4071 Id : 547, {_}: least_upper_bound ?1258 ?1256 =<= least_upper_bound (least_upper_bound ?1258 ?1256) (greatest_lower_bound ?1257 ?1256) [1257, 1256, 1258] by Super 16 with 126 at 2,2
4072 Id : 570, {_}: least_upper_bound ?1258 ?1256 =<= least_upper_bound (greatest_lower_bound ?1257 ?1256) (least_upper_bound ?1258 ?1256) [1257, 1256, 1258] by Demod 547 with 12 at 3
4073 Id : 12745, {_}: inverse (greatest_lower_bound identity ?25830) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?25830)) [25830] by Demod 12560 with 1261 at 2
4074 Id : 12983, {_}: greatest_lower_bound identity (inverse (greatest_lower_bound identity ?26133)) =>= identity [26133] by Super 24 with 12745 at 2,2
4075 Id : 12984, {_}: greatest_lower_bound identity (inverse (greatest_lower_bound ?26135 identity)) =>= identity [26135] by Super 12983 with 10 at 1,2,2
4076 Id : 13334, {_}: least_upper_bound ?26447 (inverse (greatest_lower_bound ?26446 identity)) =<= least_upper_bound identity (least_upper_bound ?26447 (inverse (greatest_lower_bound ?26446 identity))) [26446, 26447] by Super 570 with 12984 at 1,3
4077 Id : 33938, {_}: least_upper_bound ?35005 (inverse (greatest_lower_bound ?35004 identity)) =?= least_upper_bound (inverse (greatest_lower_bound identity ?35004)) ?35005 [35004, 35005] by Demod 20078 with 13334 at 2
4078 Id : 59877, {_}: inverse (greatest_lower_bound (inverse ?79280) identity) =<= least_upper_bound (inverse (greatest_lower_bound identity (inverse ?79280))) ?79280 [79280] by Super 33938 with 59766 at 2
4079 Id : 13166, {_}: inverse (greatest_lower_bound identity ?26300) =<= least_upper_bound identity (inverse (greatest_lower_bound ?26300 identity)) [26300] by Super 12795 with 10 at 1,2,3
4080 Id : 588, {_}: greatest_lower_bound ?1337 ?1335 =<= greatest_lower_bound (greatest_lower_bound ?1337 (least_upper_bound ?1335 ?1336)) ?1335 [1336, 1335, 1337] by Super 14 with 137 at 2,2
4081 Id : 13179, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound ?26330 (least_upper_bound identity ?26331))) =>= least_upper_bound identity (inverse (greatest_lower_bound ?26330 identity)) [26331, 26330] by Super 13166 with 588 at 1,2,3
4082 Id : 13288, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound ?26330 (least_upper_bound identity ?26331))) =>= inverse (greatest_lower_bound identity ?26330) [26331, 26330] by Demod 13179 with 12796 at 3
4083 Id : 508, {_}: least_upper_bound ?1185 ?1183 =<= least_upper_bound (least_upper_bound ?1185 (greatest_lower_bound ?1183 ?1184)) ?1183 [1184, 1183, 1185] by Super 16 with 120 at 2,2
4084 Id : 139, {_}: greatest_lower_bound ?388 (greatest_lower_bound (least_upper_bound ?388 ?389) ?390) =>= greatest_lower_bound ?388 ?390 [390, 389, 388] by Super 14 with 24 at 1,3
4085 Id : 12760, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse (greatest_lower_bound identity ?25876)) ?25877) =>= greatest_lower_bound identity ?25877 [25877, 25876] by Super 139 with 12745 at 1,2,2
4086 Id : 13743, {_}: least_upper_bound ?26971 identity =<= least_upper_bound (least_upper_bound ?26971 (greatest_lower_bound identity ?26970)) identity [26970, 26971] by Super 508 with 12760 at 2,1,3
4087 Id : 13824, {_}: least_upper_bound ?26971 identity =<= least_upper_bound identity (least_upper_bound ?26971 (greatest_lower_bound identity ?26970)) [26970, 26971] by Demod 13743 with 12 at 3
4088 Id : 14000, {_}: greatest_lower_bound ?27303 identity =<= greatest_lower_bound (greatest_lower_bound ?27303 (least_upper_bound ?27301 identity)) identity [27301, 27303] by Super 588 with 13824 at 2,1,3
4089 Id : 15451, {_}: greatest_lower_bound ?29213 identity =<= greatest_lower_bound identity (greatest_lower_bound ?29213 (least_upper_bound ?29214 identity)) [29214, 29213] by Demod 14000 with 10 at 3
4090 Id : 15452, {_}: greatest_lower_bound ?29216 identity =<= greatest_lower_bound identity (greatest_lower_bound ?29216 (least_upper_bound identity ?29217)) [29217, 29216] by Super 15451 with 12 at 2,2,3
4091 Id : 21667, {_}: inverse (greatest_lower_bound ?26330 identity) =?= inverse (greatest_lower_bound identity ?26330) [26330] by Demod 13288 with 15452 at 1,2
4092 Id : 60032, {_}: inverse (greatest_lower_bound identity (inverse ?79280)) =<= least_upper_bound (inverse (greatest_lower_bound identity (inverse ?79280))) ?79280 [79280] by Demod 59877 with 21667 at 2
4093 Id : 61973, {_}: greatest_lower_bound ?80555 (inverse (greatest_lower_bound identity (inverse ?80555))) =>= ?80555 [80555] by Super 144 with 60032 at 2,2
4094 Id : 61975, {_}: greatest_lower_bound (inverse ?80558) (inverse (greatest_lower_bound identity ?80558)) =>= inverse ?80558 [80558] by Super 61973 with 1283 at 2,1,2,2
4095 Id : 64087, {_}: multiply (inverse (greatest_lower_bound (inverse ?81915) (inverse (greatest_lower_bound identity ?81915)))) (inverse (greatest_lower_bound identity ?81915)) =>= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Super 1407 with 61975 at 1,1,2,3
4096 Id : 64168, {_}: inverse (multiply (greatest_lower_bound identity ?81915) (greatest_lower_bound (inverse ?81915) (inverse (greatest_lower_bound identity ?81915)))) =>= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64087 with 2602 at 2
4097 Id : 1322, {_}: multiply ?2453 (greatest_lower_bound ?2454 (inverse ?2453)) =>= greatest_lower_bound (multiply ?2453 ?2454) identity [2454, 2453] by Super 28 with 1272 at 2,3
4098 Id : 1343, {_}: multiply ?2453 (greatest_lower_bound ?2454 (inverse ?2453)) =>= greatest_lower_bound identity (multiply ?2453 ?2454) [2454, 2453] by Demod 1322 with 10 at 3
4099 Id : 64169, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?81915) (inverse ?81915))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64168 with 1343 at 1,2
4100 Id : 1320, {_}: multiply (greatest_lower_bound ?2448 ?2447) (inverse ?2447) =>= greatest_lower_bound (multiply ?2448 (inverse ?2447)) identity [2447, 2448] by Super 32 with 1272 at 2,3
4101 Id : 1344, {_}: multiply (greatest_lower_bound ?2448 ?2447) (inverse ?2447) =>= greatest_lower_bound identity (multiply ?2448 (inverse ?2447)) [2447, 2448] by Demod 1320 with 10 at 3
4102 Id : 64170, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply identity (inverse ?81915)))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64169 with 1344 at 2,1,2
4103 Id : 64171, {_}: inverse (greatest_lower_bound identity (multiply identity (inverse ?81915))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64170 with 110 at 1,2
4104 Id : 64172, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64171 with 4 at 2,1,2
4105 Id : 64173, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound identity ?81915) (inverse ?81915))) [81915] by Demod 64172 with 2602 at 2,3
4106 Id : 64174, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (multiply ?81915 (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64173 with 2697 at 2,3
4107 Id : 1328, {_}: multiply ?2469 (least_upper_bound ?2470 (inverse ?2469)) =>= least_upper_bound (multiply ?2469 ?2470) identity [2470, 2469] by Super 26 with 1272 at 2,3
4108 Id : 1339, {_}: multiply ?2469 (least_upper_bound ?2470 (inverse ?2469)) =>= least_upper_bound identity (multiply ?2469 ?2470) [2470, 2469] by Demod 1328 with 12 at 3
4109 Id : 60418, {_}: multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661)))) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661))))) [79661] by Super 1339 with 60032 at 2,2
4110 Id : 60787, {_}: multiply ?79661 (inverse (greatest_lower_bound identity ?79661)) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661))))) [79661] by Demod 60418 with 1283 at 2,1,2,2
4111 Id : 60788, {_}: multiply ?79661 (inverse (greatest_lower_bound identity ?79661)) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity ?79661))) [79661] by Demod 60787 with 1283 at 2,1,2,2,3
4112 Id : 79553, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= multiply ?81915 (inverse (greatest_lower_bound identity ?81915)) [81915] by Demod 64174 with 60788 at 3
4113 Id : 79566, {_}: multiply (inverse (greatest_lower_bound identity (inverse ?93969))) (greatest_lower_bound identity ?93969) =>= ?93969 [93969] by Super 1262 with 79553 at 1,2
4114 Id : 210019, {_}: least_upper_bound (greatest_lower_bound identity (inverse ?259211)) (greatest_lower_bound identity ?259211) =<= multiply (greatest_lower_bound identity (inverse ?259211)) (least_upper_bound identity ?259211) [259211] by Super 1416 with 79566 at 2,2,3
4115 Id : 210576, {_}: multiply (least_upper_bound identity (least_upper_bound (greatest_lower_bound identity (inverse ?259634)) (greatest_lower_bound identity ?259634))) (inverse (least_upper_bound identity ?259634)) =>= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Super 1918 with 210019 at 2,1,2
4116 Id : 122, {_}: least_upper_bound ?338 (least_upper_bound (greatest_lower_bound ?338 ?339) ?340) =>= least_upper_bound ?338 ?340 [340, 339, 338] by Super 16 with 22 at 1,3
4117 Id : 210728, {_}: multiply (least_upper_bound identity (greatest_lower_bound identity ?259634)) (inverse (least_upper_bound identity ?259634)) =>= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210576 with 122 at 1,2
4118 Id : 210729, {_}: multiply identity (inverse (least_upper_bound identity ?259634)) =<= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210728 with 22 at 1,2
4119 Id : 210730, {_}: inverse (least_upper_bound identity ?259634) =<= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210729 with 4 at 2
4120 Id : 210731, {_}: inverse (least_upper_bound identity ?259634) =<= least_upper_bound (greatest_lower_bound identity (inverse ?259634)) (inverse (least_upper_bound identity ?259634)) [259634] by Demod 210730 with 12 at 3
4121 Id : 425033, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?443021)) (greatest_lower_bound identity (inverse ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Super 137 with 210731 at 1,2
4122 Id : 425426, {_}: greatest_lower_bound (greatest_lower_bound identity (inverse ?443021)) (inverse (least_upper_bound identity ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425033 with 10 at 2
4123 Id : 425427, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse ?443021) (inverse (least_upper_bound identity ?443021))) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425426 with 14 at 2
4124 Id : 441, {_}: greatest_lower_bound ?1042 (greatest_lower_bound ?1042 ?1043) =>= greatest_lower_bound ?1042 ?1043 [1043, 1042] by Super 14 with 20 at 1,3
4125 Id : 997, {_}: greatest_lower_bound ?1977 (greatest_lower_bound ?1978 ?1977) =>= greatest_lower_bound ?1977 ?1978 [1978, 1977] by Super 441 with 10 at 2,2
4126 Id : 1008, {_}: greatest_lower_bound ?2012 (greatest_lower_bound ?2010 (greatest_lower_bound ?2011 ?2012)) =>= greatest_lower_bound ?2012 (greatest_lower_bound ?2010 ?2011) [2011, 2010, 2012] by Super 997 with 14 at 2,2
4127 Id : 196, {_}: multiply (inverse ?547) (greatest_lower_bound ?546 ?547) =>= greatest_lower_bound (multiply (inverse ?547) ?546) identity [546, 547] by Super 194 with 6 at 2,3
4128 Id : 215, {_}: multiply (inverse ?547) (greatest_lower_bound ?546 ?547) =>= greatest_lower_bound identity (multiply (inverse ?547) ?546) [546, 547] by Demod 196 with 10 at 3
4129 Id : 145, {_}: greatest_lower_bound ?411 (least_upper_bound (least_upper_bound ?411 ?409) ?410) =>= ?411 [410, 409, 411] by Super 143 with 16 at 2,2
4130 Id : 13972, {_}: greatest_lower_bound identity (least_upper_bound (least_upper_bound ?27209 identity) ?27211) =>= identity [27211, 27209] by Super 145 with 13824 at 1,2,2
4131 Id : 14608, {_}: multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity =<= greatest_lower_bound identity (multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity) [27966, 27965] by Super 215 with 13972 at 2,2
4132 Id : 14746, {_}: inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966) =<= greatest_lower_bound identity (multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity) [27966, 27965] by Demod 14608 with 1261 at 2
4133 Id : 14747, {_}: inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966) =<= greatest_lower_bound identity (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) [27966, 27965] by Demod 14746 with 1261 at 2,3
4134 Id : 14621, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?28005 identity) ?28006) =>= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Super 513 with 13972 at 1,2
4135 Id : 371, {_}: least_upper_bound ?890 (least_upper_bound ?890 ?891) =>= least_upper_bound ?890 ?891 [891, 890] by Super 16 with 18 at 1,3
4136 Id : 372, {_}: least_upper_bound ?893 (least_upper_bound ?894 ?893) =>= least_upper_bound ?893 ?894 [894, 893] by Super 371 with 12 at 2,2
4137 Id : 846, {_}: least_upper_bound ?1742 (least_upper_bound (least_upper_bound ?1743 ?1742) ?1744) =>= least_upper_bound (least_upper_bound ?1742 ?1743) ?1744 [1744, 1743, 1742] by Super 16 with 372 at 1,3
4138 Id : 14731, {_}: least_upper_bound (least_upper_bound identity ?28005) ?28006 =?= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Demod 14621 with 846 at 2
4139 Id : 14732, {_}: least_upper_bound identity (least_upper_bound ?28005 ?28006) =<= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Demod 14731 with 16 at 2
4140 Id : 26166, {_}: inverse (least_upper_bound identity (least_upper_bound ?27965 ?27966)) =<= greatest_lower_bound identity (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) [27966, 27965] by Demod 14747 with 14732 at 1,2
4141 Id : 26240, {_}: inverse (least_upper_bound identity (least_upper_bound ?42502 ?42503)) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (least_upper_bound ?42502 ?42503))) [42503, 42502] by Demod 26166 with 14732 at 1,2,3
4142 Id : 26243, {_}: inverse (least_upper_bound identity (least_upper_bound ?42512 ?42512)) =>= greatest_lower_bound identity (inverse (least_upper_bound identity ?42512)) [42512] by Super 26240 with 18 at 2,1,2,3
4143 Id : 26484, {_}: inverse (least_upper_bound identity ?42512) =<= greatest_lower_bound identity (inverse (least_upper_bound identity ?42512)) [42512] by Demod 26243 with 18 at 2,1,2
4144 Id : 26733, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) =>= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42902, 42901] by Super 1008 with 26484 at 2,2,2
4145 Id : 26831, {_}: greatest_lower_bound (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) (inverse (least_upper_bound identity ?42901)) =>= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42901, 42902] by Demod 26733 with 10 at 2
4146 Id : 112, {_}: greatest_lower_bound ?317 ?316 =<= greatest_lower_bound (greatest_lower_bound ?317 ?316) ?316 [316, 317] by Super 14 with 20 at 2,2
4147 Id : 26832, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42901, 42902] by Demod 26831 with 112 at 2
4148 Id : 26833, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound (greatest_lower_bound ?42902 identity) (inverse (least_upper_bound identity ?42901)) [42901, 42902] by Demod 26832 with 10 at 3
4149 Id : 594, {_}: greatest_lower_bound (least_upper_bound ?1355 ?1356) ?1355 =>= ?1355 [1356, 1355] by Super 10 with 24 at 3
4150 Id : 595, {_}: greatest_lower_bound (least_upper_bound ?1359 ?1358) ?1358 =>= ?1358 [1358, 1359] by Super 594 with 12 at 1,2
4151 Id : 14013, {_}: least_upper_bound ?27351 identity =<= least_upper_bound identity (least_upper_bound ?27351 (greatest_lower_bound identity ?27352)) [27352, 27351] by Demod 13743 with 12 at 3
4152 Id : 15143, {_}: least_upper_bound ?28845 identity =<= least_upper_bound identity (least_upper_bound ?28845 (greatest_lower_bound ?28846 identity)) [28846, 28845] by Super 14013 with 10 at 2,2,3
4153 Id : 15162, {_}: least_upper_bound (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) identity =>= least_upper_bound identity (greatest_lower_bound ?28908 identity) [28907, 28908] by Super 15143 with 120 at 2,3
4154 Id : 15331, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) =>= least_upper_bound identity (greatest_lower_bound ?28908 identity) [28907, 28908] by Demod 15162 with 12 at 2
4155 Id : 15332, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) =>= identity [28907, 28908] by Demod 15331 with 126 at 3
4156 Id : 16566, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607) =>= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Super 595 with 15332 at 1,2
4157 Id : 442, {_}: greatest_lower_bound ?1045 (greatest_lower_bound ?1046 ?1045) =>= greatest_lower_bound ?1045 ?1046 [1046, 1045] by Super 441 with 10 at 2,2
4158 Id : 988, {_}: greatest_lower_bound ?1947 (greatest_lower_bound (greatest_lower_bound ?1948 ?1947) ?1949) =>= greatest_lower_bound (greatest_lower_bound ?1947 ?1948) ?1949 [1949, 1948, 1947] by Super 14 with 442 at 1,3
4159 Id : 16667, {_}: greatest_lower_bound (greatest_lower_bound identity ?30606) ?30607 =?= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Demod 16566 with 988 at 2
4160 Id : 16668, {_}: greatest_lower_bound identity (greatest_lower_bound ?30606 ?30607) =<= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Demod 16667 with 14 at 2
4161 Id : 26834, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound identity (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) [42901, 42902] by Demod 26833 with 16668 at 3
4162 Id : 425428, {_}: greatest_lower_bound (inverse ?443021) (inverse (least_upper_bound identity ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425427 with 26834 at 2
4163 Id : 100, {_}: least_upper_bound ?291 ?290 =<= least_upper_bound (least_upper_bound ?291 ?290) ?290 [290, 291] by Super 16 with 18 at 2,2
4164 Id : 1412, {_}: multiply (inverse (least_upper_bound ?2659 ?2660)) (least_upper_bound ?2659 ?2660) =>= least_upper_bound identity (multiply (inverse (least_upper_bound ?2659 ?2660)) ?2660) [2660, 2659] by Super 1397 with 100 at 2,2
4165 Id : 1437, {_}: identity =<= least_upper_bound identity (multiply (inverse (least_upper_bound ?2659 ?2660)) ?2660) [2660, 2659] by Demod 1412 with 6 at 2
4166 Id : 59670, {_}: multiply identity ?78944 =<= least_upper_bound ?78944 (inverse (least_upper_bound ?78943 (inverse ?78944))) [78943, 78944] by Super 59624 with 1437 at 1,2
4167 Id : 59771, {_}: ?78944 =<= least_upper_bound ?78944 (inverse (least_upper_bound ?78943 (inverse ?78944))) [78943, 78944] by Demod 59670 with 4 at 2
4168 Id : 89100, {_}: greatest_lower_bound ?102689 (inverse (least_upper_bound ?102690 (inverse ?102689))) =>= inverse (least_upper_bound ?102690 (inverse ?102689)) [102690, 102689] by Super 595 with 59771 at 1,2
4169 Id : 89102, {_}: greatest_lower_bound (inverse ?102694) (inverse (least_upper_bound ?102695 ?102694)) =>= inverse (least_upper_bound ?102695 (inverse (inverse ?102694))) [102695, 102694] by Super 89100 with 1283 at 2,1,2,2
4170 Id : 89528, {_}: greatest_lower_bound (inverse ?102694) (inverse (least_upper_bound ?102695 ?102694)) =>= inverse (least_upper_bound ?102695 ?102694) [102695, 102694] by Demod 89102 with 1283 at 2,1,3
4171 Id : 425429, {_}: inverse (least_upper_bound identity ?443021) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425428 with 89528 at 2
4172 Id : 426630, {_}: inverse (greatest_lower_bound identity (inverse ?443891)) =>= least_upper_bound identity ?443891 [443891] by Super 1283 with 425429 at 1,2
4173 Id : 428479, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 243250 with 426630 at 3
4174 Id : 243250, {_}: least_upper_bound identity (multiply a b) =<= inverse (greatest_lower_bound identity (inverse (multiply a b))) [] by Demod 289 with 241323 at 3
4175 Id : 289, {_}: least_upper_bound identity (multiply a b) =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by Demod 2 with 12 at 2
4176 Id : 2, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23
4177 % SZS output end CNFRefutation for GRP186-1.p
4183 associativity_of_glb is 85
4184 associativity_of_lub is 84
4186 glb_absorbtion is 80
4187 greatest_lower_bound is 92
4188 idempotence_of_gld is 82
4189 idempotence_of_lub is 83
4192 least_upper_bound is 94
4195 lub_absorbtion is 81
4205 symmetry_of_glb is 87
4206 symmetry_of_lub is 86
4208 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4209 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4211 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
4212 [8, 7, 6] by associativity ?6 ?7 ?8
4214 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
4215 [11, 10] by symmetry_of_glb ?10 ?11
4217 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
4218 [14, 13] by symmetry_of_lub ?13 ?14
4220 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
4222 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
4223 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
4225 least_upper_bound ?20 (least_upper_bound ?21 ?22)
4227 least_upper_bound (least_upper_bound ?20 ?21) ?22
4228 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4229 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4231 greatest_lower_bound ?26 ?26 =>= ?26
4232 [26] by idempotence_of_gld ?26
4234 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
4235 [29, 28] by lub_absorbtion ?28 ?29
4237 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
4238 [32, 31] by glb_absorbtion ?31 ?32
4240 multiply ?34 (least_upper_bound ?35 ?36)
4242 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
4243 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4245 multiply ?38 (greatest_lower_bound ?39 ?40)
4247 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
4248 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4250 multiply (least_upper_bound ?42 ?43) ?44
4252 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
4253 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4255 multiply (greatest_lower_bound ?46 ?47) ?48
4257 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
4258 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4259 Id : 34, {_}: inverse identity =>= identity [] by p23_1
4260 Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51
4262 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
4263 [54, 53] by p23_3 ?53 ?54
4266 least_upper_bound (multiply a b) identity
4268 multiply a (inverse (greatest_lower_bound a (inverse b)))
4270 Found proof, 100.862668s
4271 % SZS status Unsatisfiable for GRP186-2.p
4272 % SZS output start CNFRefutation for GRP186-2.p
4273 Id : 131, {_}: least_upper_bound ?356 (greatest_lower_bound ?356 ?357) =>= ?356 [357, 356] by lub_absorbtion ?356 ?357
4274 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4275 Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4276 Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4277 Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4278 Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26
4279 Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
4280 Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4281 Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4282 Id : 38, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p23_3 ?53 ?54
4283 Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8
4284 Id : 234, {_}: multiply (least_upper_bound ?624 ?625) ?626 =<= least_upper_bound (multiply ?624 ?626) (multiply ?625 ?626) [626, 625, 624] by monotony_lub2 ?624 ?625 ?626
4285 Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51
4286 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4287 Id : 34, {_}: inverse identity =>= identity [] by p23_1
4288 Id : 316, {_}: inverse (multiply ?814 ?815) =<= multiply (inverse ?815) (inverse ?814) [815, 814] by p23_3 ?814 ?815
4289 Id : 43, {_}: multiply (multiply ?64 ?65) ?66 =?= multiply ?64 (multiply ?65 ?66) [66, 65, 64] by associativity ?64 ?65 ?66
4290 Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32
4291 Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
4292 Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29
4293 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4294 Id : 169, {_}: multiply ?469 (least_upper_bound ?470 ?471) =<= least_upper_bound (multiply ?469 ?470) (multiply ?469 ?471) [471, 470, 469] by monotony_lub1 ?469 ?470 ?471
4295 Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
4296 Id : 1363, {_}: multiply (inverse ?2558) (least_upper_bound ?2558 ?2559) =>= least_upper_bound identity (multiply (inverse ?2558) ?2559) [2559, 2558] by Super 169 with 6 at 1,3
4297 Id : 650, {_}: least_upper_bound (greatest_lower_bound ?1395 ?1396) ?1395 =>= ?1395 [1396, 1395] by Super 12 with 22 at 3
4298 Id : 651, {_}: least_upper_bound (greatest_lower_bound ?1399 ?1398) ?1398 =>= ?1398 [1398, 1399] by Super 650 with 10 at 1,2
4299 Id : 1373, {_}: multiply (inverse (greatest_lower_bound ?2588 ?2589)) ?2589 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2588 ?2589)) ?2589) [2589, 2588] by Super 1363 with 651 at 2,2
4300 Id : 45, {_}: multiply (multiply ?71 (inverse ?72)) ?72 =>= multiply ?71 identity [72, 71] by Super 43 with 6 at 2,3
4301 Id : 317, {_}: inverse (multiply identity ?817) =<= multiply (inverse ?817) identity [817] by Super 316 with 34 at 2,3
4302 Id : 341, {_}: inverse ?863 =<= multiply (inverse ?863) identity [863] by Demod 317 with 4 at 1,2
4303 Id : 343, {_}: inverse (inverse ?866) =<= multiply ?866 identity [866] by Super 341 with 36 at 1,3
4304 Id : 354, {_}: ?866 =<= multiply ?866 identity [866] by Demod 343 with 36 at 2
4305 Id : 1260, {_}: multiply (multiply ?71 (inverse ?72)) ?72 =>= ?71 [72, 71] by Demod 45 with 354 at 3
4306 Id : 240, {_}: multiply (least_upper_bound (inverse ?648) ?647) ?648 =>= least_upper_bound identity (multiply ?647 ?648) [647, 648] by Super 234 with 6 at 1,3
4307 Id : 1623, {_}: multiply (least_upper_bound identity (multiply ?2972 (inverse ?2973))) ?2973 =>= least_upper_bound (inverse (inverse ?2973)) ?2972 [2973, 2972] by Super 1260 with 240 at 1,2
4308 Id : 139882, {_}: multiply (least_upper_bound identity (multiply ?153893 (inverse ?153894))) ?153894 =>= least_upper_bound ?153894 ?153893 [153894, 153893] by Demod 1623 with 36 at 1,3
4309 Id : 126, {_}: least_upper_bound (greatest_lower_bound ?338 ?339) ?338 =>= ?338 [339, 338] by Super 12 with 22 at 3
4310 Id : 1369, {_}: multiply (inverse (greatest_lower_bound ?2577 ?2576)) ?2577 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2577 ?2576)) ?2577) [2576, 2577] by Super 1363 with 126 at 2,2
4311 Id : 139933, {_}: multiply (multiply (inverse (greatest_lower_bound (inverse ?154061) ?154060)) (inverse ?154061)) ?154061 =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Super 139882 with 1369 at 1,2
4312 Id : 140037, {_}: multiply (inverse (greatest_lower_bound (inverse ?154061) ?154060)) (multiply (inverse ?154061) ?154061) =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 139933 with 8 at 2
4313 Id : 311, {_}: multiply (inverse (multiply ?794 ?795)) ?796 =<= multiply (inverse ?795) (multiply (inverse ?794) ?796) [796, 795, 794] by Super 8 with 38 at 1,2
4314 Id : 140038, {_}: multiply (inverse (multiply ?154061 (greatest_lower_bound (inverse ?154061) ?154060))) ?154061 =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 140037 with 311 at 2
4315 Id : 1275, {_}: multiply (multiply ?2378 (inverse ?2379)) ?2379 =>= ?2378 [2379, 2378] by Demod 45 with 354 at 3
4316 Id : 1285, {_}: multiply (inverse (multiply ?2408 ?2407)) ?2408 =>= inverse ?2407 [2407, 2408] by Super 1275 with 38 at 1,2
4317 Id : 140039, {_}: inverse (greatest_lower_bound (inverse ?154061) ?154060) =<= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 140038 with 1285 at 2
4318 Id : 160759, {_}: greatest_lower_bound ?168171 (inverse (greatest_lower_bound (inverse ?168171) ?168172)) =>= ?168171 [168172, 168171] by Super 24 with 140039 at 2,2
4319 Id : 160761, {_}: greatest_lower_bound (inverse ?168176) (inverse (greatest_lower_bound ?168176 ?168177)) =>= inverse ?168176 [168177, 168176] by Super 160759 with 36 at 1,1,2,2
4320 Id : 178590, {_}: multiply (inverse (greatest_lower_bound (inverse ?184996) (inverse (greatest_lower_bound ?184996 ?184997)))) (inverse (greatest_lower_bound ?184996 ?184997)) =>= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Super 1373 with 160761 at 1,1,2,3
4321 Id : 178788, {_}: inverse (multiply (greatest_lower_bound ?184996 ?184997) (greatest_lower_bound (inverse ?184996) (inverse (greatest_lower_bound ?184996 ?184997)))) =>= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Demod 178590 with 38 at 2
4322 Id : 299, {_}: multiply ?763 (inverse ?763) =>= identity [763] by Super 6 with 36 at 1,2
4323 Id : 392, {_}: multiply ?921 (greatest_lower_bound ?922 (inverse ?921)) =>= greatest_lower_bound (multiply ?921 ?922) identity [922, 921] by Super 28 with 299 at 2,3
4324 Id : 417, {_}: multiply ?921 (greatest_lower_bound ?922 (inverse ?921)) =>= greatest_lower_bound identity (multiply ?921 ?922) [922, 921] by Demod 392 with 10 at 3
4325 Id : 178789, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound ?184996 ?184997) (inverse ?184996))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Demod 178788 with 417 at 1,2
4326 Id : 391, {_}: multiply (greatest_lower_bound ?918 ?919) (inverse ?918) =>= greatest_lower_bound identity (multiply ?919 (inverse ?918)) [919, 918] by Super 32 with 299 at 1,3
4327 Id : 178790, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply ?184997 (inverse ?184996)))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178789 with 391 at 2,1,2
4328 Id : 116, {_}: greatest_lower_bound ?316 (greatest_lower_bound ?316 ?317) =>= greatest_lower_bound ?316 ?317 [317, 316] by Super 14 with 20 at 1,3
4329 Id : 178791, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178790 with 116 at 1,2
4330 Id : 178792, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound ?184996 ?184997) (inverse ?184996))) [184996, 184997] by Demod 178791 with 38 at 2,3
4331 Id : 320, {_}: inverse (multiply ?825 (inverse ?824)) =>= multiply ?824 (inverse ?825) [824, 825] by Super 316 with 36 at 1,3
4332 Id : 178793, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (multiply ?184996 (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178792 with 320 at 2,3
4333 Id : 2114, {_}: multiply (least_upper_bound ?3753 ?3754) (inverse ?3753) =>= least_upper_bound identity (multiply ?3754 (inverse ?3753)) [3754, 3753] by Super 30 with 299 at 1,3
4334 Id : 2124, {_}: multiply ?3785 (inverse (greatest_lower_bound ?3785 ?3784)) =<= least_upper_bound identity (multiply ?3785 (inverse (greatest_lower_bound ?3785 ?3784))) [3784, 3785] by Super 2114 with 126 at 1,2
4335 Id : 517036, {_}: inverse (greatest_lower_bound identity (multiply ?520378 (inverse ?520379))) =?= multiply ?520379 (inverse (greatest_lower_bound ?520379 ?520378)) [520379, 520378] by Demod 178793 with 2124 at 3
4336 Id : 517346, {_}: inverse (greatest_lower_bound identity (inverse (multiply ?521360 ?521359))) =<= multiply ?521360 (inverse (greatest_lower_bound ?521360 (inverse ?521359))) [521359, 521360] by Super 517036 with 38 at 2,1,2
4337 Id : 143, {_}: greatest_lower_bound (least_upper_bound ?388 ?389) ?388 =>= ?388 [389, 388] by Super 10 with 24 at 3
4338 Id : 394, {_}: multiply (multiply ?928 ?927) (inverse ?927) =>= multiply ?928 identity [927, 928] by Super 8 with 299 at 2,3
4339 Id : 2350, {_}: multiply (multiply ?4107 ?4108) (inverse ?4108) =>= ?4107 [4108, 4107] by Demod 394 with 354 at 3
4340 Id : 2362, {_}: multiply (least_upper_bound identity (multiply ?4143 ?4144)) (inverse ?4144) =>= least_upper_bound (inverse ?4144) ?4143 [4144, 4143] by Super 2350 with 240 at 1,2
4341 Id : 52, {_}: multiply identity ?99 =<= multiply (inverse ?98) (multiply ?98 ?99) [98, 99] by Super 43 with 6 at 1,2
4342 Id : 61, {_}: ?99 =<= multiply (inverse ?98) (multiply ?98 ?99) [98, 99] by Demod 52 with 4 at 2
4343 Id : 175, {_}: multiply (inverse ?492) (least_upper_bound ?492 ?493) =>= least_upper_bound identity (multiply (inverse ?492) ?493) [493, 492] by Super 169 with 6 at 1,3
4344 Id : 1362, {_}: least_upper_bound ?2555 ?2556 =<= multiply (inverse (inverse ?2555)) (least_upper_bound identity (multiply (inverse ?2555) ?2556)) [2556, 2555] by Super 61 with 175 at 2,3
4345 Id : 1384, {_}: least_upper_bound ?2555 ?2556 =<= multiply ?2555 (least_upper_bound identity (multiply (inverse ?2555) ?2556)) [2556, 2555] by Demod 1362 with 36 at 1,3
4346 Id : 327, {_}: inverse ?817 =<= multiply (inverse ?817) identity [817] by Demod 317 with 4 at 1,2
4347 Id : 338, {_}: multiply (inverse ?854) (least_upper_bound identity ?855) =<= least_upper_bound (inverse ?854) (multiply (inverse ?854) ?855) [855, 854] by Super 26 with 327 at 1,3
4348 Id : 332, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =<= greatest_lower_bound (multiply (inverse ?838) ?839) (inverse ?838) [839, 838] by Super 28 with 327 at 2,3
4349 Id : 350, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =<= greatest_lower_bound (inverse ?838) (multiply (inverse ?838) ?839) [839, 838] by Demod 332 with 10 at 3
4350 Id : 333, {_}: multiply (inverse ?841) (greatest_lower_bound identity ?842) =<= greatest_lower_bound (inverse ?841) (multiply (inverse ?841) ?842) [842, 841] by Super 28 with 327 at 1,3
4351 Id : 3646, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =?= multiply (inverse ?838) (greatest_lower_bound identity ?839) [839, 838] by Demod 350 with 333 at 3
4352 Id : 3670, {_}: multiply (inverse (greatest_lower_bound ?5927 identity)) (greatest_lower_bound identity ?5927) =>= identity [5927] by Super 6 with 3646 at 2
4353 Id : 5362, {_}: multiply (inverse (greatest_lower_bound ?8279 identity)) (least_upper_bound identity (greatest_lower_bound identity ?8279)) =>= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Super 338 with 3670 at 2,3
4354 Id : 5430, {_}: multiply (inverse (greatest_lower_bound ?8279 identity)) identity =>= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Demod 5362 with 22 at 2,2
4355 Id : 5431, {_}: inverse (greatest_lower_bound ?8279 identity) =<= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Demod 5430 with 354 at 2
4356 Id : 5432, {_}: inverse (greatest_lower_bound ?8279 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound ?8279 identity)) [8279] by Demod 5431 with 12 at 3
4357 Id : 5579, {_}: least_upper_bound ?8466 (inverse (greatest_lower_bound ?8465 identity)) =<= least_upper_bound (least_upper_bound ?8466 identity) (inverse (greatest_lower_bound ?8465 identity)) [8465, 8466] by Super 16 with 5432 at 2,2
4358 Id : 5622, {_}: least_upper_bound ?8466 (inverse (greatest_lower_bound ?8465 identity)) =<= least_upper_bound (inverse (greatest_lower_bound ?8465 identity)) (least_upper_bound ?8466 identity) [8465, 8466] by Demod 5579 with 12 at 3
4359 Id : 400, {_}: multiply (least_upper_bound ?944 ?943) (inverse ?943) =>= least_upper_bound (multiply ?944 (inverse ?943)) identity [943, 944] by Super 30 with 299 at 2,3
4360 Id : 412, {_}: multiply (least_upper_bound ?944 ?943) (inverse ?943) =>= least_upper_bound identity (multiply ?944 (inverse ?943)) [943, 944] by Demod 400 with 12 at 3
4361 Id : 337, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =<= least_upper_bound (multiply (inverse ?851) ?852) (inverse ?851) [852, 851] by Super 26 with 327 at 2,3
4362 Id : 347, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =<= least_upper_bound (inverse ?851) (multiply (inverse ?851) ?852) [852, 851] by Demod 337 with 12 at 3
4363 Id : 3431, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =?= multiply (inverse ?851) (least_upper_bound identity ?852) [852, 851] by Demod 347 with 338 at 3
4364 Id : 3454, {_}: multiply (inverse (least_upper_bound ?5686 identity)) (least_upper_bound identity ?5686) =>= identity [5686] by Super 6 with 3431 at 2
4365 Id : 4555, {_}: multiply (inverse (least_upper_bound ?7520 identity)) (least_upper_bound identity (least_upper_bound identity ?7520)) =>= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Super 338 with 3454 at 2,3
4366 Id : 104, {_}: least_upper_bound ?290 (least_upper_bound ?290 ?291) =>= least_upper_bound ?290 ?291 [291, 290] by Super 16 with 18 at 1,3
4367 Id : 4621, {_}: multiply (inverse (least_upper_bound ?7520 identity)) (least_upper_bound identity ?7520) =>= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Demod 4555 with 104 at 2,2
4368 Id : 4622, {_}: identity =<= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Demod 4621 with 3454 at 2
4369 Id : 4773, {_}: identity =<= least_upper_bound identity (inverse (least_upper_bound ?7713 identity)) [7713] by Demod 4622 with 12 at 3
4370 Id : 4780, {_}: identity =<= least_upper_bound identity (inverse (least_upper_bound ?7726 (least_upper_bound ?7727 identity))) [7727, 7726] by Super 4773 with 16 at 1,2,3
4371 Id : 6791, {_}: multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity)))) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Super 412 with 4780 at 1,2
4372 Id : 6824, {_}: inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Demod 6791 with 4 at 2
4373 Id : 6825, {_}: least_upper_bound ?9674 (least_upper_bound ?9675 identity) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Demod 6824 with 36 at 2
4374 Id : 6826, {_}: least_upper_bound ?9674 (least_upper_bound ?9675 identity) =<= least_upper_bound identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity)))) [9675, 9674] by Demod 6825 with 4 at 2,3
4375 Id : 6913, {_}: least_upper_bound ?9827 (least_upper_bound ?9828 identity) =<= least_upper_bound identity (least_upper_bound ?9827 (least_upper_bound ?9828 identity)) [9828, 9827] by Demod 6826 with 36 at 2,3
4376 Id : 6922, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?9855 identity) ?9854) [9855, 9854] by Super 6913 with 12 at 2,3
4377 Id : 502, {_}: least_upper_bound (least_upper_bound ?1064 ?1065) ?1064 =>= least_upper_bound ?1064 ?1065 [1065, 1064] by Super 12 with 104 at 3
4378 Id : 6917, {_}: least_upper_bound ?9839 (least_upper_bound (least_upper_bound identity ?9838) identity) =?= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Super 6913 with 502 at 2,2,3
4379 Id : 6992, {_}: least_upper_bound ?9839 (least_upper_bound identity (least_upper_bound identity ?9838)) =?= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Demod 6917 with 12 at 2,2
4380 Id : 6993, {_}: least_upper_bound ?9839 (least_upper_bound identity ?9838) =<= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Demod 6992 with 104 at 2,2
4381 Id : 6914, {_}: least_upper_bound ?9830 (least_upper_bound ?9831 identity) =<= least_upper_bound identity (least_upper_bound ?9830 (least_upper_bound identity ?9831)) [9831, 9830] by Super 6913 with 12 at 2,2,3
4382 Id : 7479, {_}: least_upper_bound ?9839 (least_upper_bound identity ?9838) =?= least_upper_bound ?9839 (least_upper_bound ?9838 identity) [9838, 9839] by Demod 6993 with 6914 at 3
4383 Id : 7163, {_}: least_upper_bound ?10110 (least_upper_bound ?10111 identity) =<= least_upper_bound identity (least_upper_bound ?10110 (least_upper_bound identity ?10111)) [10111, 10110] by Super 6913 with 12 at 2,2,3
4384 Id : 7180, {_}: least_upper_bound ?10164 (least_upper_bound ?10165 identity) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?10164 identity) ?10165) [10165, 10164] by Super 7163 with 16 at 2,3
4385 Id : 8147, {_}: least_upper_bound ?11328 (least_upper_bound ?11329 identity) =?= least_upper_bound ?11329 (least_upper_bound ?11328 identity) [11329, 11328] by Demod 7180 with 6922 at 3
4386 Id : 8150, {_}: least_upper_bound (greatest_lower_bound identity ?11336) (least_upper_bound ?11337 identity) =>= least_upper_bound ?11337 identity [11337, 11336] by Super 8147 with 126 at 2,3
4387 Id : 8900, {_}: least_upper_bound (greatest_lower_bound identity ?11839) (least_upper_bound identity ?11840) =>= least_upper_bound ?11840 identity [11840, 11839] by Super 7479 with 8150 at 3
4388 Id : 10250, {_}: least_upper_bound (greatest_lower_bound identity ?13083) (least_upper_bound (least_upper_bound identity ?13084) ?13085) =>= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084, 13083] by Super 16 with 8900 at 1,3
4389 Id : 10334, {_}: least_upper_bound (greatest_lower_bound identity ?13083) (least_upper_bound identity (least_upper_bound ?13084 ?13085)) =>= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084, 13083] by Demod 10250 with 16 at 2,2
4390 Id : 10335, {_}: least_upper_bound (least_upper_bound ?13084 ?13085) identity =?= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084] by Demod 10334 with 8900 at 2
4391 Id : 10336, {_}: least_upper_bound identity (least_upper_bound ?13084 ?13085) =<= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084] by Demod 10335 with 12 at 2
4392 Id : 10485, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =<= least_upper_bound identity (least_upper_bound identity (least_upper_bound ?9855 ?9854)) [9855, 9854] by Demod 6922 with 10336 at 2,3
4393 Id : 10492, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =?= least_upper_bound identity (least_upper_bound ?9855 ?9854) [9855, 9854] by Demod 10485 with 104 at 3
4394 Id : 18158, {_}: least_upper_bound ?21052 (inverse (greatest_lower_bound ?21053 identity)) =<= least_upper_bound identity (least_upper_bound ?21052 (inverse (greatest_lower_bound ?21053 identity))) [21053, 21052] by Demod 5622 with 10492 at 3
4395 Id : 577, {_}: greatest_lower_bound (greatest_lower_bound ?1234 ?1235) ?1234 =>= greatest_lower_bound ?1234 ?1235 [1235, 1234] by Super 10 with 116 at 3
4396 Id : 18162, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound (greatest_lower_bound identity ?21063) identity)) =?= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Super 18158 with 577 at 1,2,2,3
4397 Id : 5589, {_}: inverse (greatest_lower_bound ?8486 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound ?8486 identity)) [8486] by Demod 5431 with 12 at 3
4398 Id : 5593, {_}: inverse (greatest_lower_bound (greatest_lower_bound identity ?8493) identity) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Super 5589 with 577 at 1,2,3
4399 Id : 5675, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity ?8493)) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Demod 5593 with 10 at 1,2
4400 Id : 5676, {_}: inverse (greatest_lower_bound identity ?8493) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Demod 5675 with 116 at 1,2
4401 Id : 5590, {_}: inverse (greatest_lower_bound ?8488 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8488)) [8488] by Super 5589 with 10 at 1,2,3
4402 Id : 5940, {_}: inverse (greatest_lower_bound identity ?8493) =?= inverse (greatest_lower_bound ?8493 identity) [8493] by Demod 5676 with 5590 at 3
4403 Id : 18288, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity (greatest_lower_bound identity ?21063))) =?= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Demod 18162 with 5940 at 2,2
4404 Id : 18289, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063)) =<= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Demod 18288 with 116 at 1,2,2
4405 Id : 5804, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound (least_upper_bound ?8608 identity) (inverse (greatest_lower_bound identity ?8607)) [8607, 8608] by Super 16 with 5590 at 2,2
4406 Id : 5849, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound (inverse (greatest_lower_bound identity ?8607)) (least_upper_bound ?8608 identity) [8607, 8608] by Demod 5804 with 12 at 3
4407 Id : 19653, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound identity (least_upper_bound ?8608 (inverse (greatest_lower_bound identity ?8607))) [8607, 8608] by Demod 5849 with 10492 at 3
4408 Id : 50221, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063)) =?= least_upper_bound ?21064 (inverse (greatest_lower_bound ?21063 identity)) [21063, 21064] by Demod 18289 with 19653 at 3
4409 Id : 140157, {_}: least_upper_bound ?154397 (inverse (greatest_lower_bound identity (inverse ?154397))) =>= inverse (greatest_lower_bound (inverse ?154397) identity) [154397] by Super 50221 with 140039 at 3
4410 Id : 140328, {_}: least_upper_bound ?154397 (inverse (greatest_lower_bound identity (inverse ?154397))) =>= inverse (greatest_lower_bound identity (inverse ?154397)) [154397] by Demod 140157 with 5940 at 3
4411 Id : 141908, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?155586))) ?155586 =>= ?155586 [155586] by Super 143 with 140328 at 1,2
4412 Id : 141910, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity ?155589)) (inverse ?155589) =>= inverse ?155589 [155589] by Super 141908 with 36 at 2,1,1,2
4413 Id : 144996, {_}: multiply (inverse (greatest_lower_bound (inverse (greatest_lower_bound identity ?157076)) (inverse ?157076))) (inverse (greatest_lower_bound identity ?157076)) =>= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Super 1369 with 141910 at 1,1,2,3
4414 Id : 145323, {_}: inverse (multiply (greatest_lower_bound identity ?157076) (greatest_lower_bound (inverse (greatest_lower_bound identity ?157076)) (inverse ?157076))) =>= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 144996 with 38 at 2
4415 Id : 393, {_}: multiply ?924 (greatest_lower_bound (inverse ?924) ?925) =>= greatest_lower_bound identity (multiply ?924 ?925) [925, 924] by Super 28 with 299 at 1,3
4416 Id : 145324, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?157076) (inverse ?157076))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145323 with 393 at 1,2
4417 Id : 390, {_}: multiply (greatest_lower_bound ?916 ?915) (inverse ?915) =>= greatest_lower_bound (multiply ?916 (inverse ?915)) identity [915, 916] by Super 32 with 299 at 2,3
4418 Id : 418, {_}: multiply (greatest_lower_bound ?916 ?915) (inverse ?915) =>= greatest_lower_bound identity (multiply ?916 (inverse ?915)) [915, 916] by Demod 390 with 10 at 3
4419 Id : 145325, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply identity (inverse ?157076)))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145324 with 418 at 2,1,2
4420 Id : 145326, {_}: inverse (greatest_lower_bound identity (multiply identity (inverse ?157076))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145325 with 116 at 1,2
4421 Id : 145327, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145326 with 4 at 2,1,2
4422 Id : 145328, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound identity ?157076) (inverse ?157076))) [157076] by Demod 145327 with 38 at 2,3
4423 Id : 145329, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (multiply ?157076 (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145328 with 320 at 2,3
4424 Id : 399, {_}: multiply ?940 (least_upper_bound (inverse ?940) ?941) =>= least_upper_bound identity (multiply ?940 ?941) [941, 940] by Super 26 with 299 at 1,3
4425 Id : 140842, {_}: multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994)))) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994))))) [154994] by Super 399 with 140328 at 2,2
4426 Id : 141158, {_}: multiply ?154994 (inverse (greatest_lower_bound identity ?154994)) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994))))) [154994] by Demod 140842 with 36 at 2,1,2,2
4427 Id : 141159, {_}: multiply ?154994 (inverse (greatest_lower_bound identity ?154994)) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity ?154994))) [154994] by Demod 141158 with 36 at 2,1,2,2,3
4428 Id : 165997, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= multiply ?157076 (inverse (greatest_lower_bound identity ?157076)) [157076] by Demod 145329 with 141159 at 3
4429 Id : 166015, {_}: multiply (inverse (greatest_lower_bound identity (inverse ?173131))) (greatest_lower_bound identity ?173131) =>= ?173131 [173131] by Super 1260 with 165997 at 1,2
4430 Id : 396771, {_}: least_upper_bound (greatest_lower_bound identity (inverse ?441901)) (greatest_lower_bound identity ?441901) =<= multiply (greatest_lower_bound identity (inverse ?441901)) (least_upper_bound identity ?441901) [441901] by Super 1384 with 166015 at 2,2,3
4431 Id : 397621, {_}: multiply (least_upper_bound identity (least_upper_bound (greatest_lower_bound identity (inverse ?442410)) (greatest_lower_bound identity ?442410))) (inverse (least_upper_bound identity ?442410)) =>= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Super 2362 with 396771 at 2,1,2
4432 Id : 128, {_}: least_upper_bound ?344 (least_upper_bound (greatest_lower_bound ?344 ?345) ?346) =>= least_upper_bound ?344 ?346 [346, 345, 344] by Super 16 with 22 at 1,3
4433 Id : 397861, {_}: multiply (least_upper_bound identity (greatest_lower_bound identity ?442410)) (inverse (least_upper_bound identity ?442410)) =>= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397621 with 128 at 1,2
4434 Id : 397862, {_}: multiply identity (inverse (least_upper_bound identity ?442410)) =<= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397861 with 22 at 1,2
4435 Id : 397863, {_}: inverse (least_upper_bound identity ?442410) =<= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397862 with 4 at 2
4436 Id : 397864, {_}: inverse (least_upper_bound identity ?442410) =<= least_upper_bound (greatest_lower_bound identity (inverse ?442410)) (inverse (least_upper_bound identity ?442410)) [442410] by Demod 397863 with 12 at 3
4437 Id : 697689, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?666285)) (greatest_lower_bound identity (inverse ?666285)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Super 143 with 397864 at 1,2
4438 Id : 698150, {_}: greatest_lower_bound (greatest_lower_bound identity (inverse ?666285)) (inverse (least_upper_bound identity ?666285)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 697689 with 10 at 2
4439 Id : 698151, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse ?666285) (inverse (least_upper_bound identity ?666285))) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698150 with 14 at 2
4440 Id : 4574, {_}: multiply (inverse (least_upper_bound ?7568 identity)) (greatest_lower_bound identity (least_upper_bound identity ?7568)) =>= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Super 333 with 3454 at 2,3
4441 Id : 4596, {_}: multiply (inverse (least_upper_bound ?7568 identity)) identity =>= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Demod 4574 with 24 at 2,2
4442 Id : 4597, {_}: inverse (least_upper_bound ?7568 identity) =<= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Demod 4596 with 354 at 2
4443 Id : 4680, {_}: inverse (least_upper_bound ?7650 identity) =<= greatest_lower_bound identity (inverse (least_upper_bound ?7650 identity)) [7650] by Demod 4597 with 10 at 3
4444 Id : 4681, {_}: inverse (least_upper_bound ?7652 identity) =<= greatest_lower_bound identity (inverse (least_upper_bound identity ?7652)) [7652] by Super 4680 with 12 at 1,2,3
4445 Id : 4945, {_}: greatest_lower_bound ?7822 (inverse (least_upper_bound ?7821 identity)) =<= greatest_lower_bound (greatest_lower_bound ?7822 identity) (inverse (least_upper_bound identity ?7821)) [7821, 7822] by Super 14 with 4681 at 2,2
4446 Id : 732, {_}: greatest_lower_bound (least_upper_bound ?1553 ?1554) ?1553 =>= ?1553 [1554, 1553] by Super 10 with 24 at 3
4447 Id : 733, {_}: greatest_lower_bound (least_upper_bound ?1557 ?1556) ?1556 =>= ?1556 [1556, 1557] by Super 732 with 12 at 1,2
4448 Id : 8152, {_}: least_upper_bound (greatest_lower_bound ?11342 identity) (least_upper_bound ?11343 identity) =>= least_upper_bound ?11343 identity [11343, 11342] by Super 8147 with 651 at 2,3
4449 Id : 9033, {_}: least_upper_bound ?11999 identity =<= least_upper_bound (least_upper_bound (greatest_lower_bound ?11998 identity) ?11999) identity [11998, 11999] by Super 16 with 8152 at 2
4450 Id : 11655, {_}: least_upper_bound ?14440 identity =<= least_upper_bound identity (least_upper_bound (greatest_lower_bound ?14441 identity) ?14440) [14441, 14440] by Demod 9033 with 12 at 3
4451 Id : 11666, {_}: least_upper_bound (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) identity =>= least_upper_bound identity (greatest_lower_bound ?14473 identity) [14472, 14473] by Super 11655 with 22 at 2,3
4452 Id : 11846, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) =>= least_upper_bound identity (greatest_lower_bound ?14473 identity) [14472, 14473] by Demod 11666 with 12 at 2
4453 Id : 132, {_}: least_upper_bound ?359 (greatest_lower_bound ?360 ?359) =>= ?359 [360, 359] by Super 131 with 10 at 2,2
4454 Id : 11847, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) =>= identity [14472, 14473] by Demod 11846 with 132 at 3
4455 Id : 13334, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?16294 identity) ?16295) =>= greatest_lower_bound (greatest_lower_bound ?16294 identity) ?16295 [16295, 16294] by Super 733 with 11847 at 1,2
4456 Id : 13335, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound identity ?16297) ?16298) =>= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Super 13334 with 10 at 1,2,2
4457 Id : 13417, {_}: greatest_lower_bound identity (greatest_lower_bound identity (greatest_lower_bound ?16297 ?16298)) =>= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Demod 13335 with 14 at 2,2
4458 Id : 13418, {_}: greatest_lower_bound identity (greatest_lower_bound ?16297 ?16298) =<= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Demod 13417 with 116 at 2
4459 Id : 16433, {_}: greatest_lower_bound ?7822 (inverse (least_upper_bound ?7821 identity)) =<= greatest_lower_bound identity (greatest_lower_bound ?7822 (inverse (least_upper_bound identity ?7821))) [7821, 7822] by Demod 4945 with 13418 at 3
4460 Id : 698152, {_}: greatest_lower_bound (inverse ?666285) (inverse (least_upper_bound ?666285 identity)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698151 with 16433 at 2
4461 Id : 1371, {_}: multiply (inverse (least_upper_bound ?2583 ?2582)) (least_upper_bound ?2583 ?2582) =>= least_upper_bound identity (multiply (inverse (least_upper_bound ?2583 ?2582)) ?2583) [2582, 2583] by Super 1363 with 502 at 2,2
4462 Id : 1403, {_}: identity =<= least_upper_bound identity (multiply (inverse (least_upper_bound ?2583 ?2582)) ?2583) [2582, 2583] by Demod 1371 with 6 at 2
4463 Id : 139935, {_}: multiply identity ?154067 =<= least_upper_bound ?154067 (inverse (least_upper_bound (inverse ?154067) ?154066)) [154066, 154067] by Super 139882 with 1403 at 1,2
4464 Id : 140043, {_}: ?154067 =<= least_upper_bound ?154067 (inverse (least_upper_bound (inverse ?154067) ?154066)) [154066, 154067] by Demod 139935 with 4 at 2
4465 Id : 171519, {_}: greatest_lower_bound ?178895 (inverse (least_upper_bound (inverse ?178895) ?178896)) =>= inverse (least_upper_bound (inverse ?178895) ?178896) [178896, 178895] by Super 733 with 140043 at 1,2
4466 Id : 171521, {_}: greatest_lower_bound (inverse ?178900) (inverse (least_upper_bound ?178900 ?178901)) =>= inverse (least_upper_bound (inverse (inverse ?178900)) ?178901) [178901, 178900] by Super 171519 with 36 at 1,1,2,2
4467 Id : 172001, {_}: greatest_lower_bound (inverse ?178900) (inverse (least_upper_bound ?178900 ?178901)) =>= inverse (least_upper_bound ?178900 ?178901) [178901, 178900] by Demod 171521 with 36 at 1,1,3
4468 Id : 698153, {_}: inverse (least_upper_bound ?666285 identity) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698152 with 172001 at 2
4469 Id : 699473, {_}: inverse (greatest_lower_bound identity (inverse ?667289)) =>= least_upper_bound ?667289 identity [667289] by Super 36 with 698153 at 1,2
4470 Id : 702706, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 702705 with 12 at 3
4471 Id : 702705, {_}: least_upper_bound identity (multiply a b) =<= least_upper_bound (multiply a b) identity [] by Demod 520020 with 699473 at 3
4472 Id : 520020, {_}: least_upper_bound identity (multiply a b) =<= inverse (greatest_lower_bound identity (inverse (multiply a b))) [] by Demod 329 with 517346 at 3
4473 Id : 329, {_}: least_upper_bound identity (multiply a b) =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by Demod 2 with 12 at 2
4474 Id : 2, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23
4475 % SZS output end CNFRefutation for GRP186-2.p
4481 associativity_of_glb is 85
4482 associativity_of_lub is 84
4484 glb_absorbtion is 80
4485 greatest_lower_bound is 89
4486 idempotence_of_gld is 82
4487 idempotence_of_lub is 83
4490 least_upper_bound is 87
4493 lub_absorbtion is 81
4501 symmetry_of_glb is 88
4502 symmetry_of_lub is 86
4504 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4505 Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4507 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
4508 [8, 7, 6] by associativity ?6 ?7 ?8
4510 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
4511 [11, 10] by symmetry_of_glb ?10 ?11
4513 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
4514 [14, 13] by symmetry_of_lub ?13 ?14
4516 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
4518 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
4519 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
4521 least_upper_bound ?20 (least_upper_bound ?21 ?22)
4523 least_upper_bound (least_upper_bound ?20 ?21) ?22
4524 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4525 Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4527 greatest_lower_bound ?26 ?26 =>= ?26
4528 [26] by idempotence_of_gld ?26
4530 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
4531 [29, 28] by lub_absorbtion ?28 ?29
4533 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
4534 [32, 31] by glb_absorbtion ?31 ?32
4536 multiply ?34 (least_upper_bound ?35 ?36)
4538 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
4539 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4541 multiply ?38 (greatest_lower_bound ?39 ?40)
4543 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
4544 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4546 multiply (least_upper_bound ?42 ?43) ?44
4548 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
4549 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4551 multiply (greatest_lower_bound ?46 ?47) ?48
4553 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
4554 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4556 greatest_lower_bound (least_upper_bound a (inverse a))
4557 (least_upper_bound b (inverse b))
4562 Id : 2, {_}: multiply a b =>= multiply b a [] by prove_p33
4563 Last chance: 1246131250.76
4564 Last chance: all is indexed 1246131270.76
4565 Last chance: failed over 100 goal 1246131270.76
4566 FAILURE in 0 iterations
4567 % SZS status Timeout for GRP187-1.p
4576 left_division_multiply is 88
4581 multiply_left_division is 89
4582 multiply_right_division is 86
4583 prove_moufang2 is 94
4584 right_division is 87
4585 right_division_multiply is 85
4586 right_identity is 91
4589 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4590 Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4592 multiply ?6 (left_division ?6 ?7) =>= ?7
4593 [7, 6] by multiply_left_division ?6 ?7
4595 left_division ?9 (multiply ?9 ?10) =>= ?10
4596 [10, 9] by left_division_multiply ?9 ?10
4598 multiply (right_division ?12 ?13) ?13 =>= ?12
4599 [13, 12] by multiply_right_division ?12 ?13
4601 right_division (multiply ?15 ?16) ?16 =>= ?15
4602 [16, 15] by right_division_multiply ?15 ?16
4604 multiply ?18 (right_inverse ?18) =>= identity
4605 [18] by right_inverse ?18
4607 multiply (left_inverse ?20) ?20 =>= identity
4608 [20] by left_inverse ?20
4610 multiply (multiply ?22 (multiply ?23 ?24)) ?22
4612 multiply (multiply ?22 ?23) (multiply ?24 ?22)
4613 [24, 23, 22] by moufang1 ?22 ?23 ?24
4616 multiply (multiply (multiply a b) c) b
4618 multiply a (multiply b (multiply c b))
4619 [] by prove_moufang2
4620 Last chance: 1246131544.05
4621 Last chance: all is indexed 1246131564.16
4622 Last chance: failed over 100 goal 1246131564.16
4623 FAILURE in 0 iterations
4624 % SZS status Timeout for GRP200-1.p
4633 left_division_multiply is 88
4638 multiply_left_division is 89
4639 multiply_right_division is 86
4640 prove_moufang1 is 94
4641 right_division is 87
4642 right_division_multiply is 85
4643 right_identity is 91
4646 Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4647 Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4649 multiply ?6 (left_division ?6 ?7) =>= ?7
4650 [7, 6] by multiply_left_division ?6 ?7
4652 left_division ?9 (multiply ?9 ?10) =>= ?10
4653 [10, 9] by left_division_multiply ?9 ?10
4655 multiply (right_division ?12 ?13) ?13 =>= ?12
4656 [13, 12] by multiply_right_division ?12 ?13
4658 right_division (multiply ?15 ?16) ?16 =>= ?15
4659 [16, 15] by right_division_multiply ?15 ?16
4661 multiply ?18 (right_inverse ?18) =>= identity
4662 [18] by right_inverse ?18
4664 multiply (left_inverse ?20) ?20 =>= identity
4665 [20] by left_inverse ?20
4667 multiply (multiply (multiply ?22 ?23) ?22) ?24
4669 multiply ?22 (multiply ?23 (multiply ?22 ?24))
4670 [24, 23, 22] by moufang3 ?22 ?23 ?24
4673 multiply (multiply a (multiply b c)) a
4675 multiply (multiply a b) (multiply c a)
4676 [] by prove_moufang1
4677 Last chance: 1246131837.06
4678 Last chance: all is indexed 1246131857.16
4679 Last chance: failed over 100 goal 1246131857.2
4680 FAILURE in 0 iterations
4681 % SZS status Timeout for GRP202-1.p
4689 prove_these_axioms_2 is 94
4695 (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4))
4696 (inverse (multiply ?3 (multiply (inverse ?3) ?3)))))
4699 [4, 3, 2] by single_axiom ?2 ?3 ?4
4702 multiply (multiply (inverse b2) b2) a2 =>= a2
4703 [] by prove_these_axioms_2
4704 Last chance: 1246132129.64
4705 Last chance: all is indexed 1246132149.64
4706 Last chance: failed over 100 goal 1246132149.65
4707 FAILURE in 0 iterations
4708 % SZS status Timeout for GRP404-1.p
4717 prove_these_axioms_3 is 94
4723 (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4))
4724 (inverse (multiply ?3 (multiply (inverse ?3) ?3)))))
4727 [4, 3, 2] by single_axiom ?2 ?3 ?4
4730 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
4731 [] by prove_these_axioms_3
4732 Found proof, 218.239700s
4733 % SZS status Unsatisfiable for GRP405-1.p
4734 % SZS output start CNFRefutation for GRP405-1.p
4735 Id : 4, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4
4736 Id : 5, {_}: multiply ?6 (inverse (multiply (inverse (multiply (inverse (multiply ?6 ?7)) ?8)) (inverse (multiply ?7 (multiply (inverse ?7) ?7))))) =>= ?8 [8, 7, 6] by single_axiom ?6 ?7 ?8
4737 Id : 7, {_}: multiply ?17 (inverse (multiply (inverse ?16) (inverse (multiply ?18 (multiply (inverse ?18) ?18))))) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16)) (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) [15, 18, 16, 17] by Super 5 with 4 at 1,1,1,2,2
4738 Id : 40, {_}: multiply (inverse (multiply ?213 ?214)) (multiply ?213 (inverse (multiply (inverse ?215) (inverse (multiply ?214 (multiply (inverse ?214) ?214)))))) =>= ?215 [215, 214, 213] by Super 4 with 7 at 2,2
4739 Id : 64, {_}: multiply (inverse (multiply ?350 ?351)) (multiply ?350 (multiply ?352 (inverse (multiply (inverse ?353) (inverse (multiply ?354 (multiply (inverse ?354) ?354))))))) =>= multiply (inverse (multiply (inverse (multiply ?352 ?354)) ?351)) ?353 [354, 353, 352, 351, 350] by Super 40 with 7 at 2,2,2
4740 Id : 124, {_}: multiply (inverse (multiply ?685 ?686)) (multiply ?685 ?687) =?= multiply (inverse (multiply (inverse (multiply ?688 ?689)) ?686)) (multiply (inverse (multiply ?688 ?689)) ?687) [689, 688, 687, 686, 685] by Super 64 with 4 at 2,2,2
4741 Id : 70, {_}: multiply (inverse (multiply ?400 ?401)) (multiply ?400 ?399) =?= multiply (inverse (multiply (inverse (multiply ?402 ?403)) ?401)) (multiply (inverse (multiply ?402 ?403)) ?399) [403, 402, 399, 401, 400] by Super 64 with 4 at 2,2,2
4742 Id : 155, {_}: multiply (inverse (multiply ?925 ?926)) (multiply ?925 ?927) =?= multiply (inverse (multiply ?924 ?926)) (multiply ?924 ?927) [924, 927, 926, 925] by Super 124 with 70 at 3
4743 Id : 113, {_}: multiply ?598 (inverse (multiply (inverse (multiply (inverse (multiply ?598 ?599)) ?597)) (inverse (multiply ?599 (multiply (inverse ?599) ?599))))) =?= inverse (multiply (inverse (multiply (inverse (multiply ?595 ?596)) (multiply ?595 ?597))) (inverse (multiply ?596 (multiply (inverse ?596) ?596)))) [596, 595, 597, 599, 598] by Super 7 with 70 at 1,1,1,3
4744 Id : 176, {_}: ?597 =<= inverse (multiply (inverse (multiply (inverse (multiply ?595 ?596)) (multiply ?595 ?597))) (inverse (multiply ?596 (multiply (inverse ?596) ?596)))) [596, 595, 597] by Demod 113 with 4 at 2
4745 Id : 9637, {_}: multiply (inverse (multiply ?67788 (inverse (multiply ?67789 (multiply (inverse ?67789) ?67789))))) (multiply ?67788 ?67790) =?= multiply ?67791 (multiply (inverse (multiply (inverse (multiply ?67792 ?67789)) (multiply ?67792 ?67791))) ?67790) [67792, 67791, 67790, 67789, 67788] by Super 155 with 176 at 1,3
4746 Id : 10194, {_}: multiply ?72717 (multiply (inverse (multiply (inverse (multiply ?72718 ?72719)) (multiply ?72718 ?72717))) ?72720) =?= multiply ?72721 (multiply (inverse (multiply (inverse (multiply ?72722 ?72719)) (multiply ?72722 ?72721))) ?72720) [72722, 72721, 72720, 72719, 72718, 72717] by Super 9637 with 176 at 1,2
4747 Id : 10232, {_}: multiply ?73113 (multiply (inverse (multiply (inverse (multiply ?73114 (inverse (multiply (inverse (multiply (inverse (multiply ?73117 ?73111)) ?73112)) (inverse (multiply ?73111 (multiply (inverse ?73111) ?73111))))))) (multiply ?73114 ?73113))) ?73115) =?= multiply ?73116 (multiply (inverse (multiply (inverse ?73112) (multiply ?73117 ?73116))) ?73115) [73116, 73115, 73112, 73111, 73117, 73114, 73113] by Super 10194 with 4 at 1,1,1,1,2,3
4748 Id : 227, {_}: multiply (inverse (multiply ?1261 ?1262)) (multiply ?1261 ?1263) =?= multiply (inverse (multiply ?1264 ?1262)) (multiply ?1264 ?1263) [1264, 1263, 1262, 1261] by Super 124 with 70 at 3
4749 Id : 234, {_}: multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply (inverse (multiply ?1311 ?1307)) ?1308)) (inverse (multiply ?1307 (multiply (inverse ?1307) ?1307))))))) (multiply ?1309 ?1310) =>= multiply (inverse ?1308) (multiply ?1311 ?1310) [1310, 1308, 1307, 1311, 1309] by Super 227 with 4 at 1,1,3
4750 Id : 10841, {_}: multiply ?78382 (multiply (inverse (multiply (inverse ?78383) (multiply ?78384 ?78382))) ?78385) =?= multiply ?78386 (multiply (inverse (multiply (inverse ?78383) (multiply ?78384 ?78386))) ?78385) [78386, 78385, 78384, 78383, 78382] by Demod 10232 with 234 at 1,1,2,2
4751 Id : 10882, {_}: multiply ?78768 (multiply (inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?78766 ?78767)) (multiply ?78766 ?78765))) (inverse (multiply ?78767 (multiply (inverse ?78767) ?78767))))) (multiply ?78769 ?78768))) ?78770) =?= multiply ?78771 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78771))) ?78770) [78771, 78770, 78769, 78765, 78767, 78766, 78768] by Super 10841 with 176 at 1,1,1,2,3
4752 Id : 11114, {_}: multiply ?78768 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78768))) ?78770) =?= multiply ?78771 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78771))) ?78770) [78771, 78770, 78769, 78765, 78768] by Demod 10882 with 176 at 1,1,1,2,2
4753 Id : 11923, {_}: multiply ?86959 (inverse (multiply (inverse (multiply ?86960 (multiply (inverse (multiply ?86961 (multiply ?86962 ?86960))) ?86963))) (inverse (multiply ?86964 (multiply (inverse ?86964) ?86964))))) =>= multiply (inverse (multiply ?86961 (multiply ?86962 (inverse (multiply ?86959 ?86964))))) ?86963 [86964, 86963, 86962, 86961, 86960, 86959] by Super 4 with 11114 at 1,1,1,2,2
4754 Id : 31525, {_}: multiply ?228038 (multiply ?228039 (inverse (multiply (inverse (multiply (inverse (multiply ?228040 (multiply ?228041 (inverse (multiply (inverse (multiply ?228039 ?228042)) ?228043))))) ?228044)) (inverse (multiply ?228042 (multiply (inverse ?228042) ?228042)))))) =>= multiply (inverse (multiply ?228040 (multiply ?228041 (inverse (multiply ?228038 ?228043))))) ?228044 [228044, 228043, 228042, 228041, 228040, 228039, 228038] by Super 11923 with 7 at 2,2
4755 Id : 31856, {_}: multiply ?231713 (multiply ?231714 (inverse (multiply (inverse (multiply (inverse (multiply ?231714 ?231716)) ?231717)) (inverse (multiply ?231716 (multiply (inverse ?231716) ?231716)))))) =?= multiply (inverse (multiply (inverse (multiply ?231715 ?231712)) (multiply ?231715 (inverse (multiply ?231713 ?231717))))) (inverse (multiply ?231712 (multiply (inverse ?231712) ?231712))) [231712, 231715, 231717, 231716, 231714, 231713] by Super 31525 with 176 at 1,1,2,2,2
4756 Id : 32694, {_}: multiply ?234105 ?234106 =<= multiply (inverse (multiply (inverse (multiply ?234107 ?234108)) (multiply ?234107 (inverse (multiply ?234105 ?234106))))) (inverse (multiply ?234108 (multiply (inverse ?234108) ?234108))) [234108, 234107, 234106, 234105] by Demod 31856 with 4 at 2,2
4757 Id : 32770, {_}: multiply ?234751 (inverse (multiply (inverse (multiply (inverse (multiply ?234751 ?234749)) ?234750)) (inverse (multiply ?234749 (multiply (inverse ?234749) ?234749))))) =?= multiply (inverse (multiply (inverse (multiply ?234752 ?234753)) (multiply ?234752 (inverse ?234750)))) (inverse (multiply ?234753 (multiply (inverse ?234753) ?234753))) [234753, 234752, 234750, 234749, 234751] by Super 32694 with 4 at 1,2,2,1,1,3
4758 Id : 33040, {_}: ?234750 =<= multiply (inverse (multiply (inverse (multiply ?234752 ?234753)) (multiply ?234752 (inverse ?234750)))) (inverse (multiply ?234753 (multiply (inverse ?234753) ?234753))) [234753, 234752, 234750] by Demod 32770 with 4 at 2
4759 Id : 15, {_}: multiply (inverse (multiply ?60 ?62)) (multiply ?60 (inverse (multiply (inverse ?61) (inverse (multiply ?62 (multiply (inverse ?62) ?62)))))) =>= ?61 [61, 62, 60] by Super 4 with 7 at 2,2
4760 Id : 11333, {_}: multiply ?82186 (inverse (multiply (inverse (multiply ?82185 (multiply (inverse (multiply ?82182 (multiply ?82183 ?82185))) ?82184))) (inverse (multiply ?82187 (multiply (inverse ?82187) ?82187))))) =>= multiply (inverse (multiply ?82182 (multiply ?82183 (inverse (multiply ?82186 ?82187))))) ?82184 [82187, 82184, 82183, 82182, 82185, 82186] by Super 4 with 11114 at 1,1,1,2,2
4761 Id : 33373, {_}: multiply ?237625 (inverse (multiply (inverse (multiply (inverse ?237622) ?237622)) (inverse (multiply ?237626 (multiply (inverse ?237626) ?237626))))) =?= multiply (inverse (multiply (inverse (multiply ?237623 ?237624)) (multiply ?237623 (inverse (multiply ?237625 ?237626))))) (inverse (multiply ?237624 (multiply (inverse ?237624) ?237624))) [237624, 237623, 237626, 237622, 237625] by Super 11333 with 33040 at 2,1,1,1,2,2
4762 Id : 33632, {_}: multiply ?237625 (inverse (multiply (inverse (multiply (inverse ?237622) ?237622)) (inverse (multiply ?237626 (multiply (inverse ?237626) ?237626))))) =>= multiply ?237625 ?237626 [237626, 237622, 237625] by Demod 33373 with 33040 at 3
4763 Id : 33860, {_}: multiply (inverse (multiply ?240296 ?240298)) (multiply ?240296 ?240298) =?= multiply (inverse ?240297) ?240297 [240297, 240298, 240296] by Super 15 with 33632 at 2,2
4764 Id : 40668, {_}: ?278603 =<= multiply (inverse (multiply (inverse ?278604) ?278604)) (inverse (multiply (inverse ?278603) (multiply (inverse (inverse ?278603)) (inverse ?278603)))) [278604, 278603] by Super 33040 with 33860 at 1,1,3
4765 Id : 35324, {_}: multiply (inverse (multiply ?248214 ?248215)) (multiply ?248214 ?248215) =?= multiply (inverse ?248216) ?248216 [248216, 248215, 248214] by Super 15 with 33632 at 2,2
4766 Id : 35547, {_}: multiply (inverse ?249874) ?249874 =?= multiply (inverse ?249877) ?249877 [249877, 249874] by Super 35324 with 33860 at 2
4767 Id : 40715, {_}: ?278907 =<= multiply (inverse (multiply (inverse ?278908) ?278908)) (inverse (multiply (inverse ?278907) (multiply (inverse ?278906) ?278906))) [278906, 278908, 278907] by Super 40668 with 35547 at 2,1,2,3
4768 Id : 300, {_}: ?1622 =<= inverse (multiply (inverse (multiply (inverse (multiply ?1623 ?1624)) (multiply ?1623 ?1622))) (inverse (multiply ?1624 (multiply (inverse ?1624) ?1624)))) [1624, 1623, 1622] by Demod 113 with 4 at 2
4769 Id : 305, {_}: ?1655 =<= inverse (multiply (inverse (multiply (inverse (multiply ?1656 (multiply ?1652 ?1653))) (multiply ?1656 ?1655))) (inverse (multiply (multiply ?1652 ?1653) (multiply (inverse (multiply ?1654 ?1653)) (multiply ?1654 ?1653))))) [1654, 1653, 1652, 1656, 1655] by Super 300 with 155 at 2,1,2,1,3
4770 Id : 11337, {_}: multiply (inverse (multiply ?82211 (multiply ?82212 ?82210))) ?82213 =<= inverse (multiply (inverse (multiply (inverse (multiply ?82210 ?82215)) (multiply ?82214 (multiply (inverse (multiply ?82211 (multiply ?82212 ?82214))) ?82213)))) (inverse (multiply ?82215 (multiply (inverse ?82215) ?82215)))) [82214, 82215, 82213, 82210, 82212, 82211] by Super 176 with 11114 at 2,1,1,1,3
4771 Id : 14547, {_}: multiply ?104639 (multiply (inverse (multiply ?104634 (multiply ?104635 ?104636))) ?104637) =<= multiply (inverse (multiply ?104640 (multiply ?104641 (inverse (multiply ?104639 ?104638))))) (multiply (inverse (multiply ?104634 (multiply ?104635 (inverse (multiply ?104640 (multiply ?104641 (inverse (multiply ?104636 ?104638)))))))) ?104637) [104638, 104641, 104640, 104637, 104636, 104635, 104634, 104639] by Super 11333 with 11337 at 2,2
4772 Id : 368, {_}: multiply (inverse (multiply ?1959 (multiply ?1960 (inverse (multiply (inverse ?1961) (inverse (multiply ?1962 (multiply (inverse ?1962) ?1962)))))))) (multiply ?1959 ?1963) =>= multiply (inverse ?1961) (multiply (inverse (multiply ?1960 ?1962)) ?1963) [1963, 1962, 1961, 1960, 1959] by Super 124 with 15 at 1,1,3
4773 Id : 384, {_}: multiply (inverse (multiply ?2092 (multiply ?2093 (inverse (multiply ?2089 (inverse (multiply ?2094 (multiply (inverse ?2094) ?2094)))))))) (multiply ?2092 ?2095) =?= multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2090 ?2091)) (multiply ?2090 ?2089))) (inverse (multiply ?2091 (multiply (inverse ?2091) ?2091))))) (multiply (inverse (multiply ?2093 ?2094)) ?2095) [2091, 2090, 2095, 2094, 2089, 2093, 2092] by Super 368 with 176 at 1,1,2,2,1,1,2
4774 Id : 409, {_}: multiply (inverse (multiply ?2092 (multiply ?2093 (inverse (multiply ?2089 (inverse (multiply ?2094 (multiply (inverse ?2094) ?2094)))))))) (multiply ?2092 ?2095) =>= multiply ?2089 (multiply (inverse (multiply ?2093 ?2094)) ?2095) [2095, 2094, 2089, 2093, 2092] by Demod 384 with 176 at 1,3
4775 Id : 11831, {_}: multiply (inverse (multiply ?86031 (multiply ?86037 (inverse (multiply ?86038 (inverse (multiply ?86039 (multiply (inverse ?86039) ?86039)))))))) (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply ?86031 ?86036))))) ?86035) =?= multiply ?86038 (multiply (inverse (multiply ?86037 ?86039)) (inverse (multiply (inverse (multiply ?86032 (multiply (inverse (multiply ?86033 (multiply ?86034 ?86032))) ?86035))) (inverse (multiply ?86036 (multiply (inverse ?86036) ?86036)))))) [86032, 86035, 86036, 86034, 86033, 86039, 86038, 86037, 86031] by Super 409 with 11333 at 2,2
4776 Id : 12202, {_}: multiply (inverse (multiply ?86031 (multiply ?86037 (inverse (multiply ?86038 (inverse (multiply ?86039 (multiply (inverse ?86039) ?86039)))))))) (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply ?86031 ?86036))))) ?86035) =>= multiply ?86038 (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply (inverse (multiply ?86037 ?86039)) ?86036))))) ?86035) [86035, 86036, 86034, 86033, 86039, 86038, 86037, 86031] by Demod 11831 with 11333 at 2,3
4777 Id : 18076, {_}: multiply ?132847 (multiply (inverse (multiply ?132848 (multiply ?132849 ?132850))) ?132851) =<= multiply ?132847 (multiply (inverse (multiply ?132848 (multiply ?132849 (inverse (multiply (inverse (multiply ?132853 ?132846)) (multiply ?132853 (inverse (multiply ?132850 (inverse (multiply ?132846 (multiply (inverse ?132846) ?132846))))))))))) ?132851) [132846, 132853, 132851, 132850, 132849, 132848, 132847] by Super 14547 with 12202 at 3
4778 Id : 21064, {_}: multiply ?157169 (inverse (multiply (inverse (multiply (inverse (multiply ?157169 ?157170)) (multiply (inverse (multiply ?157163 (multiply ?157164 ?157165))) ?157166))) (inverse (multiply ?157170 (multiply (inverse ?157170) ?157170))))) =?= multiply (inverse (multiply ?157163 (multiply ?157164 (inverse (multiply (inverse (multiply ?157167 ?157168)) (multiply ?157167 (inverse (multiply ?157165 (inverse (multiply ?157168 (multiply (inverse ?157168) ?157168))))))))))) ?157166 [157168, 157167, 157166, 157165, 157164, 157163, 157170, 157169] by Super 4 with 18076 at 1,1,1,2,2
4779 Id : 21742, {_}: multiply (inverse (multiply ?157163 (multiply ?157164 ?157165))) ?157166 =<= multiply (inverse (multiply ?157163 (multiply ?157164 (inverse (multiply (inverse (multiply ?157167 ?157168)) (multiply ?157167 (inverse (multiply ?157165 (inverse (multiply ?157168 (multiply (inverse ?157168) ?157168))))))))))) ?157166 [157168, 157167, 157166, 157165, 157164, 157163] by Demod 21064 with 4 at 2
4780 Id : 22341, {_}: inverse (multiply (inverse (multiply ?165075 ?165076)) (multiply ?165075 (inverse (multiply ?165074 (inverse (multiply ?165076 (multiply (inverse ?165076) ?165076))))))) =?= inverse (multiply (inverse (multiply (inverse (multiply ?165073 (multiply ?165077 ?165078))) (multiply ?165073 ?165074))) (inverse (multiply (multiply ?165077 ?165078) (multiply (inverse (multiply ?165079 ?165078)) (multiply ?165079 ?165078))))) [165079, 165078, 165077, 165073, 165074, 165076, 165075] by Super 305 with 21742 at 1,3
4781 Id : 22802, {_}: inverse (multiply (inverse (multiply ?165075 ?165076)) (multiply ?165075 (inverse (multiply ?165074 (inverse (multiply ?165076 (multiply (inverse ?165076) ?165076))))))) =>= ?165074 [165074, 165076, 165075] by Demod 22341 with 305 at 3
4782 Id : 38026, {_}: inverse (multiply (inverse (multiply ?263789 ?263790)) (multiply ?263789 ?263790)) =?= inverse (multiply (inverse ?263791) ?263791) [263791, 263790, 263789] by Super 22802 with 33632 at 2,1,2
4783 Id : 38262, {_}: inverse (multiply (inverse ?265529) ?265529) =?= inverse (multiply (inverse ?265532) ?265532) [265532, 265529] by Super 38026 with 35547 at 1,2
4784 Id : 38507, {_}: multiply (inverse ?265709) ?265709 =?= multiply (inverse (multiply (inverse ?265708) ?265708)) (multiply (inverse ?265707) ?265707) [265707, 265708, 265709] by Super 35547 with 38262 at 1,3
4785 Id : 40747, {_}: multiply (inverse ?279111) ?279111 =?= multiply (inverse (multiply (inverse ?279112) ?279112)) (inverse (multiply (inverse ?279110) ?279110)) [279110, 279112, 279111] by Super 40668 with 38507 at 1,2,3
4786 Id : 41831, {_}: multiply (inverse ?285057) (inverse (multiply (inverse (multiply (inverse ?285056) ?285056)) (inverse (multiply ?285057 (multiply (inverse ?285057) ?285057))))) =?= inverse (multiply (inverse ?285058) ?285058) [285058, 285056, 285057] by Super 4 with 40747 at 1,1,1,2,2
4787 Id : 33864, {_}: multiply ?240317 (inverse (multiply (inverse (multiply (inverse (multiply ?240317 ?240318)) ?240316)) (inverse (multiply ?240318 (multiply (inverse ?240318) ?240318))))) =?= inverse (multiply (inverse (multiply (inverse ?240315) ?240315)) (inverse (multiply ?240316 (multiply (inverse ?240316) ?240316)))) [240315, 240316, 240318, 240317] by Super 4 with 33632 at 1,1,1,2,2
4788 Id : 36969, {_}: ?257201 =<= inverse (multiply (inverse (multiply (inverse ?257202) ?257202)) (inverse (multiply ?257201 (multiply (inverse ?257201) ?257201)))) [257202, 257201] by Demod 33864 with 4 at 2
4789 Id : 37018, {_}: ?257524 =<= inverse (multiply (inverse (multiply (inverse ?257525) ?257525)) (inverse (multiply ?257524 (multiply (inverse ?257523) ?257523)))) [257523, 257525, 257524] by Super 36969 with 35547 at 2,1,2,1,3
4790 Id : 42424, {_}: multiply (inverse ?285057) ?285057 =?= inverse (multiply (inverse ?285058) ?285058) [285058, 285057] by Demod 41831 with 37018 at 2,2
4791 Id : 59456, {_}: ?377115 =<= multiply (inverse (inverse (multiply (inverse ?377116) ?377116))) (inverse (multiply (inverse ?377115) (multiply (inverse ?377117) ?377117))) [377117, 377116, 377115] by Super 40715 with 42424 at 1,1,3
4792 Id : 59618, {_}: multiply (inverse ?378144) ?378141 =<= multiply (inverse (inverse (multiply (inverse ?378143) ?378143))) (inverse (multiply (inverse (multiply ?378142 ?378141)) (multiply ?378142 ?378144))) [378142, 378143, 378141, 378144] by Super 59456 with 155 at 1,2,3
4793 Id : 293, {_}: multiply ?1577 ?1574 =<= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?1577 ?1576)) ?1578)) (multiply (inverse (multiply ?1575 ?1576)) (multiply ?1575 ?1574)))) (inverse (multiply ?1578 (multiply (inverse ?1578) ?1578)))) [1575, 1578, 1576, 1574, 1577] by Super 7 with 176 at 2,2
4794 Id : 49313, {_}: ?325983 =<= multiply (multiply (inverse ?325984) ?325984) (inverse (multiply (inverse ?325983) (multiply (inverse ?325985) ?325985))) [325985, 325984, 325983] by Super 40715 with 42424 at 1,3
4795 Id : 70497, {_}: multiply (inverse ?433725) ?433726 =<= multiply (multiply (inverse ?433727) ?433727) (inverse (multiply (inverse (multiply ?433728 ?433726)) (multiply ?433728 ?433725))) [433728, 433727, 433726, 433725] by Super 49313 with 155 at 1,2,3
4796 Id : 104522, {_}: multiply (inverse ?611346) ?611347 =<= multiply (multiply (inverse ?611348) ?611348) (inverse (multiply (multiply (inverse ?611349) ?611349) (multiply (inverse ?611347) ?611346))) [611349, 611348, 611347, 611346] by Super 70497 with 42424 at 1,1,2,3
4797 Id : 104531, {_}: multiply (inverse ?611424) (multiply (inverse ?611422) ?611422) =?= multiply (multiply (inverse ?611425) ?611425) (inverse (multiply (multiply (inverse ?611426) ?611426) (multiply (inverse (multiply (inverse ?611423) ?611423)) ?611424))) [611423, 611426, 611425, 611422, 611424] by Super 104522 with 38262 at 1,2,1,2,3
4798 Id : 70690, {_}: multiply (inverse ?435205) ?435206 =<= multiply (multiply (inverse ?435207) ?435207) (inverse (multiply (multiply (inverse ?435204) ?435204) (multiply (inverse ?435206) ?435205))) [435204, 435207, 435206, 435205] by Super 70497 with 42424 at 1,1,2,3
4799 Id : 105085, {_}: multiply (inverse ?611424) (multiply (inverse ?611422) ?611422) =?= multiply (inverse ?611424) (multiply (inverse ?611423) ?611423) [611423, 611422, 611424] by Demod 104531 with 70690 at 3
4800 Id : 105821, {_}: multiply ?618521 (multiply (inverse ?618519) ?618519) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?618521 ?618522)) ?618523)) (multiply (inverse (multiply (inverse ?618518) ?618522)) (multiply (inverse ?618518) (multiply (inverse ?618520) ?618520))))) (inverse (multiply ?618523 (multiply (inverse ?618523) ?618523)))) [618520, 618518, 618523, 618522, 618519, 618521] by Super 293 with 105085 at 2,2,1,1,1,3
4801 Id : 108557, {_}: multiply ?634262 (multiply (inverse ?634263) ?634263) =?= multiply ?634262 (multiply (inverse ?634264) ?634264) [634264, 634263, 634262] by Demod 105821 with 293 at 3
4802 Id : 108677, {_}: multiply ?635011 (multiply (inverse ?635012) ?635012) =?= multiply ?635011 (inverse (multiply (inverse ?635010) ?635010)) [635010, 635012, 635011] by Super 108557 with 42424 at 2,3
4803 Id : 41162, {_}: ?281232 =<= multiply (inverse (multiply (inverse ?281233) ?281233)) (inverse (multiply (inverse ?281232) (multiply (inverse ?281234) ?281234))) [281234, 281233, 281232] by Super 40668 with 35547 at 2,1,2,3
4804 Id : 41252, {_}: multiply (inverse ?281896) ?281893 =<= multiply (inverse (multiply (inverse ?281895) ?281895)) (inverse (multiply (inverse (multiply ?281894 ?281893)) (multiply ?281894 ?281896))) [281894, 281895, 281893, 281896] by Super 41162 with 155 at 1,2,3
4805 Id : 104693, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?612594 ?612592)) (multiply ?612594 ?612591)))) (multiply (inverse ?612593) ?612593) =?= multiply (multiply (inverse ?612595) ?612595) (inverse (multiply (multiply (inverse ?612596) ?612596) (multiply (inverse ?612591) ?612592))) [612596, 612595, 612593, 612591, 612592, 612594] by Super 104522 with 41252 at 2,1,2,3
4806 Id : 105218, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?612594 ?612592)) (multiply ?612594 ?612591)))) (multiply (inverse ?612593) ?612593) =>= multiply (inverse ?612592) ?612591 [612593, 612591, 612592, 612594] by Demod 104693 with 70690 at 3
4807 Id : 118665, {_}: multiply (inverse ?687026) ?687027 =<= multiply (inverse (inverse (multiply (inverse (multiply ?687025 ?687026)) (multiply ?687025 ?687027)))) (inverse (multiply (inverse ?687029) ?687029)) [687029, 687025, 687027, 687026] by Super 108677 with 105218 at 2
4808 Id : 118666, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?687031 ?687032)) (multiply ?687031 ?687033)))) (multiply (inverse ?687034) ?687034) =>= multiply (inverse ?687032) ?687033 [687034, 687033, 687032, 687031] by Demod 104693 with 70690 at 3
4809 Id : 202978, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1106072) ?1106072) (multiply (inverse ?1106073) ?1106074)))) (multiply (inverse ?1106075) ?1106075) =>= multiply (inverse ?1106073) ?1106074 [1106075, 1106074, 1106073, 1106072] by Super 118666 with 42424 at 1,1,1,1,2
4810 Id : 203337, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1108543) ?1108543) ?1108542))) (multiply (inverse ?1108545) ?1108545) =?= multiply (inverse ?1108544) (inverse (multiply (inverse (multiply (inverse (multiply (inverse ?1108544) ?1108541)) ?1108542)) (inverse (multiply ?1108541 (multiply (inverse ?1108541) ?1108541))))) [1108541, 1108544, 1108545, 1108542, 1108543] by Super 202978 with 4 at 2,1,1,1,2
4811 Id : 203960, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1108543) ?1108543) ?1108542))) (multiply (inverse ?1108545) ?1108545) =>= ?1108542 [1108545, 1108542, 1108543] by Demod 203337 with 4 at 3
4812 Id : 204499, {_}: ?1113563 =<= multiply (inverse (inverse (multiply (multiply (inverse ?1113562) ?1113562) ?1113563))) (inverse (multiply (inverse ?1113565) ?1113565)) [1113565, 1113562, 1113563] by Super 108677 with 203960 at 2
4813 Id : 42548, {_}: ?289376 =<= multiply (multiply (inverse ?289374) ?289374) (inverse (multiply (inverse ?289376) (multiply (inverse ?289377) ?289377))) [289377, 289374, 289376] by Super 40715 with 42424 at 1,3
4814 Id : 204490, {_}: inverse (multiply (multiply (inverse ?1113513) ?1113513) ?1113514) =?= multiply (multiply (inverse ?1113516) ?1113516) (inverse ?1113514) [1113516, 1113514, 1113513] by Super 42548 with 203960 at 1,2,3
4815 Id : 209225, {_}: ?1138104 =<= multiply (inverse (multiply (multiply (inverse ?1138103) ?1138103) (inverse ?1138104))) (inverse (multiply (inverse ?1138106) ?1138106)) [1138106, 1138103, 1138104] by Super 204499 with 204490 at 1,1,3
4816 Id : 232, {_}: multiply (inverse (multiply ?1297 ?1298)) (multiply ?1297 (multiply ?1293 ?1295)) =?= multiply (inverse (multiply (inverse (multiply ?1293 ?1294)) ?1298)) (multiply (inverse (multiply ?1296 ?1294)) (multiply ?1296 ?1295)) [1296, 1294, 1295, 1293, 1298, 1297] by Super 227 with 155 at 2,3
4817 Id : 210415, {_}: multiply (inverse (multiply (multiply (inverse ?1144394) ?1144394) (inverse ?1144395))) (multiply (inverse ?1144396) ?1144396) =>= ?1144395 [1144396, 1144395, 1144394] by Super 203960 with 204490 at 1,1,2
4818 Id : 210932, {_}: multiply (inverse (multiply (inverse (multiply (inverse ?1147471) ?1147471)) (inverse ?1147473))) (multiply (inverse ?1147474) ?1147474) =>= ?1147473 [1147474, 1147473, 1147471] by Super 210415 with 42424 at 1,1,1,2
4819 Id : 224465, {_}: multiply (inverse (multiply ?1210775 (inverse ?1210776))) (multiply ?1210775 (multiply (inverse ?1210777) ?1210777)) =>= ?1210776 [1210777, 1210776, 1210775] by Super 232 with 210932 at 3
4820 Id : 224626, {_}: multiply (inverse (multiply ?1211759 (inverse ?1211760))) (multiply ?1211759 (inverse (multiply (inverse ?1211758) ?1211758))) =>= ?1211760 [1211758, 1211760, 1211759] by Super 224465 with 42424 at 2,2,2
4821 Id : 227024, {_}: ?1221988 =<= inverse (multiply (inverse ?1221988) (multiply (inverse (inverse ?1221988)) (inverse ?1221988))) [1221988] by Super 15 with 224626 at 2
4822 Id : 228909, {_}: ?1228455 =<= multiply (multiply (inverse ?1228456) ?1228456) ?1228455 [1228456, 1228455] by Super 42548 with 227024 at 2,3
4823 Id : 230161, {_}: ?1138104 =<= multiply (inverse (inverse ?1138104)) (inverse (multiply (inverse ?1138106) ?1138106)) [1138106, 1138104] by Demod 209225 with 228909 at 1,1,3
4824 Id : 230162, {_}: multiply (inverse ?687026) ?687027 =<= multiply (inverse (multiply ?687025 ?687026)) (multiply ?687025 ?687027) [687025, 687027, 687026] by Demod 118665 with 230161 at 3
4825 Id : 230229, {_}: multiply (inverse ?378144) ?378141 =<= multiply (inverse (inverse (multiply (inverse ?378143) ?378143))) (inverse (multiply (inverse ?378141) ?378144)) [378143, 378141, 378144] by Demod 59618 with 230162 at 1,2,3
4826 Id : 70571, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =?= multiply (multiply (inverse ?434318) ?434318) (inverse (multiply (inverse (multiply (inverse (multiply (inverse ?434315) ?434315)) ?434317)) (multiply (inverse ?434314) ?434314))) [434314, 434315, 434318, 434317, 434316] by Super 70497 with 40747 at 2,1,2,3
4827 Id : 70940, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =?= multiply (inverse (multiply (inverse ?434315) ?434315)) ?434317 [434315, 434317, 434316] by Demod 70571 with 42548 at 3
4828 Id : 204504, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1113587) ?1113587) ?1113588))) (multiply (inverse ?1113589) ?1113589) =>= ?1113588 [1113589, 1113588, 1113587] by Demod 203337 with 4 at 3
4829 Id : 204894, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse ?1115926) ?1115926)) ?1115928))) (multiply (inverse ?1115929) ?1115929) =>= ?1115928 [1115929, 1115928, 1115926] by Super 204504 with 42424 at 1,1,1,1,2
4830 Id : 222906, {_}: multiply (inverse (multiply ?1203249 (inverse ?1203248))) (multiply ?1203249 (multiply (inverse ?1203247) ?1203247)) =>= ?1203248 [1203247, 1203248, 1203249] by Super 232 with 210932 at 3
4831 Id : 230230, {_}: multiply (inverse (inverse ?1203248)) (multiply (inverse ?1203247) ?1203247) =>= ?1203248 [1203247, 1203248] by Demod 222906 with 230162 at 2
4832 Id : 230233, {_}: multiply (inverse (multiply (inverse ?1115926) ?1115926)) ?1115928 =>= ?1115928 [1115928, 1115926] by Demod 204894 with 230230 at 2
4833 Id : 230259, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =>= ?434317 [434317, 434316] by Demod 70940 with 230233 at 3
4834 Id : 230302, {_}: multiply (inverse ?378144) ?378141 =<= inverse (multiply (inverse ?378141) ?378144) [378141, 378144] by Demod 230229 with 230259 at 3
4835 Id : 230467, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16)) (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) [15, 16, 18, 17] by Demod 7 with 230302 at 2,2
4836 Id : 230468, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16) [15, 16, 18, 17] by Demod 230467 with 230302 at 3
4837 Id : 230469, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230468 with 230302 at 1,2,3
4838 Id : 43162, {_}: ?293590 =<= inverse (multiply (inverse (inverse (multiply (inverse ?293589) ?293589))) (inverse (multiply ?293590 (multiply (inverse ?293591) ?293591)))) [293591, 293589, 293590] by Super 37018 with 42424 at 1,1,1,3
4839 Id : 230270, {_}: ?293590 =<= inverse (inverse (multiply ?293590 (multiply (inverse ?293591) ?293591))) [293591, 293590] by Demod 43162 with 230259 at 1,3
4840 Id : 230643, {_}: multiply ?17 (multiply ?18 ?16) =<= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230469 with 230270 at 1,2,2
4841 Id : 230644, {_}: multiply ?17 (multiply ?18 ?16) =<= multiply ?15 (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230643 with 230270 at 1,3
4842 Id : 298, {_}: multiply (inverse (multiply ?1613 (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612))))) (multiply ?1613 ?1614) =?= multiply ?1610 (multiply (inverse (multiply (inverse (multiply ?1611 ?1612)) (multiply ?1611 ?1610))) ?1614) [1611, 1610, 1614, 1612, 1613] by Super 155 with 176 at 1,3
4843 Id : 230219, {_}: multiply (inverse (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612)))) ?1614 =?= multiply ?1610 (multiply (inverse (multiply (inverse (multiply ?1611 ?1612)) (multiply ?1611 ?1610))) ?1614) [1611, 1610, 1614, 1612] by Demod 298 with 230162 at 2
4844 Id : 230220, {_}: multiply (inverse (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612)))) ?1614 =?= multiply ?1610 (multiply (inverse (multiply (inverse ?1612) ?1610)) ?1614) [1610, 1614, 1612] by Demod 230219 with 230162 at 1,1,2,3
4845 Id : 230678, {_}: multiply ?1612 ?1614 =<= multiply ?1610 (multiply (inverse (multiply (inverse ?1612) ?1610)) ?1614) [1610, 1614, 1612] by Demod 230220 with 230270 at 1,2
4846 Id : 230679, {_}: multiply ?1612 ?1614 =<= multiply ?1610 (multiply (multiply (inverse ?1610) ?1612) ?1614) [1610, 1614, 1612] by Demod 230678 with 230302 at 1,2,3
4847 Id : 230680, {_}: multiply ?17 (multiply ?18 ?16) =?= multiply (multiply ?17 ?18) ?16 [16, 18, 17] by Demod 230644 with 230679 at 3
4848 Id : 231308, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 230680 at 2
4849 Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
4850 % SZS output end CNFRefutation for GRP405-1.p
4858 prove_these_axioms_2 is 94
4867 (multiply (inverse ?3)
4868 (multiply (inverse ?4)
4869 (inverse (multiply (inverse ?4) ?4)))))))
4873 [4, 3, 2] by single_axiom ?2 ?3 ?4
4876 multiply (multiply (inverse b2) b2) a2 =>= a2
4877 [] by prove_these_axioms_2
4878 Found proof, 13.415244s
4879 % SZS status Unsatisfiable for GRP422-1.p
4880 % SZS output start CNFRefutation for GRP422-1.p
4881 Id : 5, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (multiply (inverse ?8) (inverse (multiply (inverse ?8) ?8))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8
4882 Id : 4, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
4883 Id : 20, {_}: inverse (multiply (inverse (multiply ?72 ?73)) (multiply ?72 ?74)) =?= multiply (inverse ?74) (inverse (multiply (inverse ?73) (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse ?74) ?74))))))) [74, 73, 72] by Super 5 with 4 at 2,1,1,1,2
4884 Id : 9, {_}: inverse (multiply (inverse (multiply ?29 ?28)) (multiply ?29 ?30)) =?= multiply (inverse ?30) (inverse (multiply (inverse ?28) (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse ?30) ?30))))))) [30, 28, 29] by Super 5 with 4 at 2,1,1,1,2
4885 Id : 35, {_}: inverse (multiply (inverse (multiply ?156 ?157)) (multiply ?156 ?158)) =?= inverse (multiply (inverse (multiply ?155 ?157)) (multiply ?155 ?158)) [155, 158, 157, 156] by Super 20 with 9 at 3
4886 Id : 59, {_}: inverse (multiply (inverse (multiply ?228 (inverse (multiply (inverse (multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226))) (multiply (inverse ?229) (inverse (multiply (inverse ?229) ?229))))))) (multiply ?228 ?229)) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 229, 226, 225, 227, 228] by Super 4 with 35 at 1,1,2,1,1,1,2
4887 Id : 156, {_}: multiply (inverse (multiply ?725 ?726)) (multiply ?725 ?727) =?= multiply (inverse (multiply ?728 ?726)) (multiply ?728 ?727) [728, 727, 726, 725] by Demod 59 with 4 at 2
4888 Id : 163, {_}: multiply (inverse (multiply ?773 (multiply ?770 ?772))) (multiply ?773 ?774) =?= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770, 773] by Super 156 with 4 at 1,3
4889 Id : 55, {_}: inverse (multiply (inverse (multiply ?201 (inverse (multiply (inverse ?202) (multiply (inverse (multiply ?198 ?199)) (inverse (multiply (inverse (multiply ?200 ?199)) (multiply ?200 ?199)))))))) (multiply ?201 (multiply ?198 ?199))) =>= ?202 [200, 199, 198, 202, 201] by Super 4 with 35 at 2,2,1,2,1,1,1,2
4890 Id : 3142, {_}: inverse (multiply (inverse (multiply ?22079 (inverse (multiply (inverse (multiply ?22076 (multiply ?22077 ?22078))) (multiply ?22076 (inverse (multiply (inverse (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))))))))) (multiply ?22079 (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078)))))))) =>= ?22080 [22080, 22081, 22078, 22077, 22076, 22079] by Super 55 with 163 at 1,2,1,1,1,2
4891 Id : 290, {_}: inverse (multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply ?1310 ?1311)) (multiply ?1310 (inverse (multiply (inverse ?1312) ?1312))))))) (multiply ?1309 ?1312)) =>= multiply (inverse ?1312) ?1311 [1312, 1311, 1310, 1309] by Super 4 with 35 at 2,1,1,1,2
4892 Id : 110, {_}: multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 226, 225, 227] by Demod 59 with 4 at 2
4893 Id : 300, {_}: inverse (multiply (inverse (multiply ?1382 (inverse (multiply (inverse (multiply ?1383 ?1384)) (multiply ?1383 (inverse (multiply (inverse (multiply ?1381 ?1380)) (multiply ?1381 ?1380)))))))) (multiply ?1382 (multiply ?1379 ?1380))) =>= multiply (inverse (multiply ?1379 ?1380)) ?1384 [1379, 1380, 1381, 1384, 1383, 1382] by Super 290 with 110 at 1,2,2,1,2,1,1,1,2
4894 Id : 3323, {_}: multiply (inverse (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22077 ?22078) =>= ?22080 [22078, 22080, 22077] by Demod 3142 with 300 at 2
4895 Id : 3887, {_}: multiply (inverse (multiply ?27309 (multiply ?27310 ?27311))) (multiply ?27309 (multiply ?27310 ?27311)) =?= multiply (inverse ?27312) ?27312 [27312, 27311, 27310, 27309] by Super 163 with 3323 at 2,3
4896 Id : 3460, {_}: multiply (inverse (multiply ?24443 (multiply ?24440 ?24442))) (multiply ?24443 (multiply ?24440 ?24442)) =?= multiply (inverse ?24441) ?24441 [24441, 24442, 24440, 24443] by Super 163 with 3323 at 2,3
4897 Id : 3992, {_}: multiply (inverse ?28111) ?28111 =?= multiply (inverse ?28115) ?28115 [28115, 28111] by Super 3887 with 3460 at 2
4898 Id : 157, {_}: multiply (inverse (multiply ?734 ?735)) (multiply ?734 (multiply ?730 ?732)) =?= multiply (inverse (multiply (inverse (multiply ?730 ?731)) ?735)) (multiply (inverse (multiply ?733 ?731)) (multiply ?733 ?732)) [733, 731, 732, 730, 735, 734] by Super 156 with 110 at 2,3
4899 Id : 160, {_}: multiply (inverse (multiply ?754 (multiply ?750 ?752))) (multiply ?754 ?755) =?= multiply (inverse (multiply (inverse (multiply ?753 ?751)) (multiply ?753 ?752))) (multiply (inverse (multiply ?750 ?751)) ?755) [751, 753, 755, 752, 750, 754] by Super 156 with 110 at 1,1,3
4900 Id : 587, {_}: multiply (inverse (multiply ?3234 (multiply ?3232 ?3231))) (multiply ?3234 (multiply ?3232 ?3235)) =?= multiply (inverse (multiply ?3229 (multiply ?3230 ?3231))) (multiply ?3229 (multiply ?3230 ?3235)) [3230, 3229, 3235, 3231, 3232, 3234] by Super 157 with 160 at 3
4901 Id : 61, {_}: inverse (multiply (inverse (multiply ?240 (inverse (multiply (inverse (multiply ?239 ?238)) (multiply ?239 (inverse (multiply (inverse ?241) ?241))))))) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 239, 240] by Super 4 with 35 at 2,1,1,1,2
4902 Id : 4188, {_}: multiply (inverse (multiply ?29120 ?29121)) (multiply ?29120 ?29118) =?= multiply (inverse (multiply (inverse ?29118) ?29121)) (multiply (inverse ?29119) ?29119) [29119, 29118, 29121, 29120] by Super 110 with 3992 at 2,3
4903 Id : 10540, {_}: inverse (multiply (inverse (multiply ?66148 (inverse (multiply (inverse (multiply (inverse (multiply ?66144 ?66145)) (multiply ?66144 ?66146))) (multiply (inverse (multiply (inverse ?66146) ?66145)) (inverse (multiply (inverse ?66149) ?66149))))))) (multiply ?66148 ?66149)) =?= multiply (inverse ?66149) (multiply (inverse ?66147) ?66147) [66147, 66149, 66146, 66145, 66144, 66148] by Super 61 with 4188 at 1,1,1,2,1,1,1,2
4904 Id : 306, {_}: inverse (multiply (inverse (multiply ?1422 (inverse (multiply (inverse (multiply (inverse (multiply ?1421 ?1419)) (multiply ?1421 ?1420))) (multiply (inverse (multiply ?1418 ?1419)) (inverse (multiply (inverse ?1423) ?1423))))))) (multiply ?1422 ?1423)) =>= multiply (inverse ?1423) (multiply ?1418 ?1420) [1423, 1418, 1420, 1419, 1421, 1422] by Super 290 with 110 at 1,1,1,2,1,1,1,2
4905 Id : 10986, {_}: multiply (inverse ?66149) (multiply (inverse ?66146) ?66146) =?= multiply (inverse ?66149) (multiply (inverse ?66147) ?66147) [66147, 66146, 66149] by Demod 10540 with 306 at 2
4906 Id : 18, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?64 ?65)) (multiply ?64 ?66)))) (multiply (inverse ?66) (inverse (multiply (inverse ?66) ?66)))) =>= ?65 [66, 65, 64] by Super 4 with 9 at 1,1,1,2
4907 Id : 20513, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?122739 ?122740)) (multiply ?122739 ?122741)))) (multiply (inverse ?122741) (inverse (multiply (inverse ?122742) ?122742)))) =>= ?122740 [122742, 122741, 122740, 122739] by Super 18 with 3992 at 1,2,2,1,2
4908 Id : 23232, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?138627 ?138628)) (multiply ?138627 (inverse (multiply (inverse ?138629) ?138629)))))) (multiply (inverse ?138630) ?138630)) =>= ?138628 [138630, 138629, 138628, 138627] by Super 20513 with 3992 at 2,1,2
4909 Id : 20104, {_}: multiply (inverse (multiply ?120500 (inverse (multiply (inverse (inverse ?120501)) (multiply (inverse ?120502) (inverse (multiply (inverse ?120503) ?120503))))))) (multiply ?120500 ?120502) =>= ?120501 [120503, 120502, 120501, 120500] by Super 3323 with 3992 at 1,2,2,1,2,1,1,2
4910 Id : 20225, {_}: multiply (inverse (multiply ?121420 (inverse (multiply (inverse (inverse ?121421)) (multiply (inverse ?121419) ?121419))))) (multiply ?121420 (inverse (multiply (inverse ?121422) ?121422))) =>= ?121421 [121422, 121419, 121421, 121420] by Super 20104 with 3992 at 2,1,2,1,1,2
4911 Id : 23426, {_}: inverse (multiply (inverse (inverse ?140049)) (multiply (inverse ?140053) ?140053)) =?= inverse (multiply (inverse (inverse ?140049)) (multiply (inverse ?140050) ?140050)) [140050, 140053, 140049] by Super 23232 with 20225 at 1,1,1,1,2
4912 Id : 4770, {_}: inverse (multiply (inverse (multiply ?32594 ?32595)) (multiply ?32594 ?32595)) =?= inverse (multiply (inverse ?32596) ?32596) [32596, 32595, 32594] by Super 35 with 3992 at 1,3
4913 Id : 4818, {_}: inverse (multiply (inverse (multiply (inverse ?32938) ?32938)) (multiply (inverse ?32937) ?32937)) =?= inverse (multiply (inverse ?32939) ?32939) [32939, 32937, 32938] by Super 4770 with 3992 at 2,1,2
4914 Id : 21029, {_}: inverse (multiply (inverse (multiply ?125759 (inverse (multiply (inverse ?125760) (multiply (inverse ?125761) (inverse (multiply (inverse ?125762) ?125762))))))) (multiply ?125759 ?125761)) =>= ?125760 [125762, 125761, 125760, 125759] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2
4915 Id : 21146, {_}: inverse (multiply (inverse (multiply ?126647 (inverse (multiply (inverse ?126648) (multiply (inverse ?126646) ?126646))))) (multiply ?126647 (inverse (multiply (inverse ?126649) ?126649)))) =>= ?126648 [126649, 126646, 126648, 126647] by Super 21029 with 3992 at 2,1,2,1,1,1,2
4916 Id : 26499, {_}: multiply (inverse ?155764) ?155764 =?= inverse (multiply (inverse ?155765) ?155765) [155765, 155764] by Super 4818 with 21146 at 2
4917 Id : 4144, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?28920 ?28921)) (multiply ?28920 ?28918)))) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28918, 28921, 28920] by Super 18 with 3992 at 1,2,2,1,2
4918 Id : 27501, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?161353) ?161353))) (multiply (inverse (inverse (multiply (inverse ?161354) (multiply (inverse ?161355) ?161355)))) (inverse (multiply (inverse ?161356) ?161356)))) =>= ?161354 [161356, 161355, 161354, 161353] by Super 21146 with 26499 at 1,1,1,2
4919 Id : 5969, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?38946) ?38946))) (multiply (inverse ?38947) (inverse (multiply (inverse ?38947) ?38947)))) =>= ?38947 [38947, 38946] by Super 18 with 3992 at 1,1,1,1,2
4920 Id : 5995, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?39112) ?39112))) (multiply (inverse ?39113) (inverse (multiply (inverse ?39111) ?39111)))) =>= ?39113 [39111, 39113, 39112] by Super 5969 with 3992 at 1,2,2,1,2
4921 Id : 27636, {_}: inverse (multiply (inverse ?161354) (multiply (inverse ?161355) ?161355)) =>= ?161354 [161355, 161354] by Demod 27501 with 5995 at 2
4922 Id : 28099, {_}: inverse (multiply (inverse (multiply ?126647 ?126648)) (multiply ?126647 (inverse (multiply (inverse ?126649) ?126649)))) =>= ?126648 [126649, 126648, 126647] by Demod 21146 with 27636 at 2,1,1,1,2
4923 Id : 28101, {_}: inverse (multiply (inverse (multiply ?240 ?238)) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 240] by Demod 61 with 28099 at 2,1,1,1,2
4924 Id : 28103, {_}: inverse (multiply (inverse (multiply (inverse ?28918) ?28921)) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28921, 28918] by Demod 4144 with 28101 at 1,1,1,2
4925 Id : 28104, {_}: multiply (inverse (inverse (multiply (inverse ?28919) ?28919))) ?28921 =>= ?28921 [28921, 28919] by Demod 28103 with 28101 at 2
4926 Id : 28383, {_}: a2 === a2 [] by Demod 27989 with 28104 at 2
4927 Id : 27989, {_}: multiply (inverse (inverse (multiply (inverse ?163408) ?163408))) a2 =>= a2 [163408] by Super 27714 with 26499 at 1,1,2
4928 Id : 27714, {_}: multiply (inverse (multiply (inverse ?162124) ?162124)) a2 =>= a2 [162124] by Super 24198 with 26499 at 1,2
4929 Id : 24198, {_}: multiply (multiply (inverse (multiply (inverse (inverse ?143636)) (multiply (inverse ?143638) ?143638))) (multiply (inverse (inverse ?143636)) (multiply (inverse ?143639) ?143639))) a2 =>= a2 [143639, 143638, 143636] by Super 11949 with 23426 at 1,1,2
4930 Id : 11949, {_}: multiply (multiply (inverse (multiply (inverse ?73741) (multiply (inverse ?73744) ?73744))) (multiply (inverse ?73741) (multiply (inverse ?73743) ?73743))) a2 =>= a2 [73743, 73744, 73741] by Super 5806 with 10986 at 2,1,2
4931 Id : 5806, {_}: multiply (multiply (inverse (multiply ?38037 (multiply (inverse ?38038) ?38038))) (multiply ?38037 (multiply (inverse ?38036) ?38036))) a2 =>= a2 [38036, 38038, 38037] by Super 4426 with 3992 at 2,2,1,2
4932 Id : 4426, {_}: multiply (multiply (inverse (multiply ?30432 (multiply ?30433 ?30431))) (multiply ?30432 (multiply ?30433 ?30431))) a2 =>= a2 [30431, 30433, 30432] by Super 4403 with 587 at 1,2
4933 Id : 4403, {_}: multiply (multiply (inverse ?30303) ?30303) a2 =>= a2 [30303] by Super 2 with 3992 at 1,2
4934 Id : 2, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2
4935 % SZS output end CNFRefutation for GRP422-1.p
4944 prove_these_axioms_3 is 94
4953 (multiply (inverse ?3)
4954 (multiply (inverse ?4)
4955 (inverse (multiply (inverse ?4) ?4)))))))
4959 [4, 3, 2] by single_axiom ?2 ?3 ?4
4962 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
4963 [] by prove_these_axioms_3
4964 Found proof, 11.150294s
4965 % SZS status Unsatisfiable for GRP423-1.p
4966 % SZS output start CNFRefutation for GRP423-1.p
4967 Id : 5, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (multiply (inverse ?8) (inverse (multiply (inverse ?8) ?8))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8
4968 Id : 4, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
4969 Id : 20, {_}: inverse (multiply (inverse (multiply ?72 ?73)) (multiply ?72 ?74)) =?= multiply (inverse ?74) (inverse (multiply (inverse ?73) (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse ?74) ?74))))))) [74, 73, 72] by Super 5 with 4 at 2,1,1,1,2
4970 Id : 9, {_}: inverse (multiply (inverse (multiply ?29 ?28)) (multiply ?29 ?30)) =?= multiply (inverse ?30) (inverse (multiply (inverse ?28) (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse ?30) ?30))))))) [30, 28, 29] by Super 5 with 4 at 2,1,1,1,2
4971 Id : 35, {_}: inverse (multiply (inverse (multiply ?156 ?157)) (multiply ?156 ?158)) =?= inverse (multiply (inverse (multiply ?155 ?157)) (multiply ?155 ?158)) [155, 158, 157, 156] by Super 20 with 9 at 3
4972 Id : 59, {_}: inverse (multiply (inverse (multiply ?228 (inverse (multiply (inverse (multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226))) (multiply (inverse ?229) (inverse (multiply (inverse ?229) ?229))))))) (multiply ?228 ?229)) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 229, 226, 225, 227, 228] by Super 4 with 35 at 1,1,2,1,1,1,2
4973 Id : 156, {_}: multiply (inverse (multiply ?725 ?726)) (multiply ?725 ?727) =?= multiply (inverse (multiply ?728 ?726)) (multiply ?728 ?727) [728, 727, 726, 725] by Demod 59 with 4 at 2
4974 Id : 163, {_}: multiply (inverse (multiply ?773 (multiply ?770 ?772))) (multiply ?773 ?774) =?= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770, 773] by Super 156 with 4 at 1,3
4975 Id : 110, {_}: multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 226, 225, 227] by Demod 59 with 4 at 2
4976 Id : 55, {_}: inverse (multiply (inverse (multiply ?201 (inverse (multiply (inverse ?202) (multiply (inverse (multiply ?198 ?199)) (inverse (multiply (inverse (multiply ?200 ?199)) (multiply ?200 ?199)))))))) (multiply ?201 (multiply ?198 ?199))) =>= ?202 [200, 199, 198, 202, 201] by Super 4 with 35 at 2,2,1,2,1,1,1,2
4977 Id : 3142, {_}: inverse (multiply (inverse (multiply ?22079 (inverse (multiply (inverse (multiply ?22076 (multiply ?22077 ?22078))) (multiply ?22076 (inverse (multiply (inverse (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))))))))) (multiply ?22079 (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078)))))))) =>= ?22080 [22080, 22081, 22078, 22077, 22076, 22079] by Super 55 with 163 at 1,2,1,1,1,2
4978 Id : 290, {_}: inverse (multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply ?1310 ?1311)) (multiply ?1310 (inverse (multiply (inverse ?1312) ?1312))))))) (multiply ?1309 ?1312)) =>= multiply (inverse ?1312) ?1311 [1312, 1311, 1310, 1309] by Super 4 with 35 at 2,1,1,1,2
4979 Id : 300, {_}: inverse (multiply (inverse (multiply ?1382 (inverse (multiply (inverse (multiply ?1383 ?1384)) (multiply ?1383 (inverse (multiply (inverse (multiply ?1381 ?1380)) (multiply ?1381 ?1380)))))))) (multiply ?1382 (multiply ?1379 ?1380))) =>= multiply (inverse (multiply ?1379 ?1380)) ?1384 [1379, 1380, 1381, 1384, 1383, 1382] by Super 290 with 110 at 1,2,2,1,2,1,1,1,2
4980 Id : 3323, {_}: multiply (inverse (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22077 ?22078) =>= ?22080 [22078, 22080, 22077] by Demod 3142 with 300 at 2
4981 Id : 3887, {_}: multiply (inverse (multiply ?27309 (multiply ?27310 ?27311))) (multiply ?27309 (multiply ?27310 ?27311)) =?= multiply (inverse ?27312) ?27312 [27312, 27311, 27310, 27309] by Super 163 with 3323 at 2,3
4982 Id : 3460, {_}: multiply (inverse (multiply ?24443 (multiply ?24440 ?24442))) (multiply ?24443 (multiply ?24440 ?24442)) =?= multiply (inverse ?24441) ?24441 [24441, 24442, 24440, 24443] by Super 163 with 3323 at 2,3
4983 Id : 3992, {_}: multiply (inverse ?28111) ?28111 =?= multiply (inverse ?28115) ?28115 [28115, 28111] by Super 3887 with 3460 at 2
4984 Id : 4190, {_}: multiply (inverse (multiply ?29130 ?29128)) (multiply ?29130 ?29131) =?= multiply (inverse (multiply (inverse ?29129) ?29129)) (multiply (inverse ?29128) ?29131) [29129, 29131, 29128, 29130] by Super 110 with 3992 at 1,1,3
4985 Id : 18, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?64 ?65)) (multiply ?64 ?66)))) (multiply (inverse ?66) (inverse (multiply (inverse ?66) ?66)))) =>= ?65 [66, 65, 64] by Super 4 with 9 at 1,1,1,2
4986 Id : 4144, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?28920 ?28921)) (multiply ?28920 ?28918)))) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28918, 28921, 28920] by Super 18 with 3992 at 1,2,2,1,2
4987 Id : 61, {_}: inverse (multiply (inverse (multiply ?240 (inverse (multiply (inverse (multiply ?239 ?238)) (multiply ?239 (inverse (multiply (inverse ?241) ?241))))))) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 239, 240] by Super 4 with 35 at 2,1,1,1,2
4988 Id : 14797, {_}: inverse (multiply (inverse (multiply ?88631 (inverse (multiply (inverse ?88632) (multiply (inverse ?88633) (inverse (multiply (inverse ?88634) ?88634))))))) (multiply ?88631 ?88633)) =>= ?88632 [88634, 88633, 88632, 88631] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2
4989 Id : 14914, {_}: inverse (multiply (inverse (multiply ?89519 (inverse (multiply (inverse ?89520) (multiply (inverse ?89518) ?89518))))) (multiply ?89519 (inverse (multiply (inverse ?89521) ?89521)))) =>= ?89520 [89521, 89518, 89520, 89519] by Super 14797 with 3992 at 2,1,2,1,1,1,2
4990 Id : 4605, {_}: inverse (multiply (inverse (multiply ?31655 ?31656)) (multiply ?31655 ?31656)) =?= inverse (multiply (inverse ?31657) ?31657) [31657, 31656, 31655] by Super 35 with 3992 at 1,3
4991 Id : 4653, {_}: inverse (multiply (inverse (multiply (inverse ?31999) ?31999)) (multiply (inverse ?31998) ?31998)) =?= inverse (multiply (inverse ?32000) ?32000) [32000, 31998, 31999] by Super 4605 with 3992 at 2,1,2
4992 Id : 18958, {_}: multiply (inverse ?111309) ?111309 =?= inverse (multiply (inverse ?111310) ?111310) [111310, 111309] by Super 4653 with 14914 at 2
4993 Id : 19832, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?116164) ?116164))) (multiply (inverse (inverse (multiply (inverse ?116165) (multiply (inverse ?116166) ?116166)))) (inverse (multiply (inverse ?116167) ?116167)))) =>= ?116165 [116167, 116166, 116165, 116164] by Super 14914 with 18958 at 1,1,1,2
4994 Id : 5672, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?37316) ?37316))) (multiply (inverse ?37317) (inverse (multiply (inverse ?37317) ?37317)))) =>= ?37317 [37317, 37316] by Super 18 with 3992 at 1,1,1,1,2
4995 Id : 5698, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?37482) ?37482))) (multiply (inverse ?37483) (inverse (multiply (inverse ?37481) ?37481)))) =>= ?37483 [37481, 37483, 37482] by Super 5672 with 3992 at 1,2,2,1,2
4996 Id : 19967, {_}: inverse (multiply (inverse ?116165) (multiply (inverse ?116166) ?116166)) =>= ?116165 [116166, 116165] by Demod 19832 with 5698 at 2
4997 Id : 20043, {_}: inverse (multiply (inverse (multiply ?89519 ?89520)) (multiply ?89519 (inverse (multiply (inverse ?89521) ?89521)))) =>= ?89520 [89521, 89520, 89519] by Demod 14914 with 19967 at 2,1,1,1,2
4998 Id : 20045, {_}: inverse (multiply (inverse (multiply ?240 ?238)) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 240] by Demod 61 with 20043 at 2,1,1,1,2
4999 Id : 20047, {_}: inverse (multiply (inverse (multiply (inverse ?28918) ?28921)) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28921, 28918] by Demod 4144 with 20045 at 1,1,1,2
5000 Id : 20048, {_}: multiply (inverse (inverse (multiply (inverse ?28919) ?28919))) ?28921 =>= ?28921 [28921, 28919] by Demod 20047 with 20045 at 2
5001 Id : 20166, {_}: multiply (inverse (multiply (inverse ?117322) ?117322)) ?117323 =>= ?117323 [117323, 117322] by Super 20048 with 19967 at 1,1,2
5002 Id : 20329, {_}: multiply (inverse (multiply ?29130 ?29128)) (multiply ?29130 ?29131) =>= multiply (inverse ?29128) ?29131 [29131, 29128, 29130] by Demod 4190 with 20166 at 3
5003 Id : 20341, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770] by Demod 163 with 20329 at 2
5004 Id : 20330, {_}: inverse (multiply (inverse ?238) ?241) =>= multiply (inverse ?241) ?238 [241, 238] by Demod 20045 with 20329 at 1,2
5005 Id : 20355, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (inverse (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772)))) ?771))) ?774) [771, 774, 772, 770] by Demod 20341 with 20330 at 2,1,1,2,3
5006 Id : 20356, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (inverse (inverse (multiply (inverse ?772) ?772))) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20355 with 20330 at 1,2,1,1,2,3
5007 Id : 20357, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (inverse (multiply (inverse ?772) ?772)) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20356 with 20330 at 1,1,1,2,1,1,2,3
5008 Id : 20358, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (multiply (inverse ?772) ?772) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20357 with 20330 at 1,1,2,1,1,2,3
5009 Id : 20377, {_}: multiply (multiply (inverse ?117322) ?117322) ?117323 =>= ?117323 [117323, 117322] by Demod 20166 with 20330 at 1,2
5010 Id : 20385, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply ?772 ?771))) ?774) [771, 774, 772, 770] by Demod 20358 with 20377 at 1,2,1,1,2,3
5011 Id : 20405, {_}: multiply (inverse (multiply (multiply (inverse ?117787) ?117787) ?117788)) ?117789 =?= multiply ?117790 (multiply (inverse (multiply ?117788 ?117790)) ?117789) [117790, 117789, 117788, 117787] by Super 20385 with 20377 at 1,1,2,3
5012 Id : 20523, {_}: multiply (inverse ?118011) ?118012 =<= multiply ?118013 (multiply (inverse (multiply ?118011 ?118013)) ?118012) [118013, 118012, 118011] by Demod 20405 with 20377 at 1,1,2
5013 Id : 20527, {_}: multiply (inverse (inverse (multiply ?118030 ?118031))) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (inverse (multiply (inverse ?118031) ?118032)) ?118033) [118032, 118033, 118031, 118030] by Super 20523 with 20329 at 1,1,2,3
5014 Id : 20587, {_}: multiply (inverse (inverse (multiply ?118030 ?118031))) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (multiply (inverse ?118032) ?118031) ?118033) [118032, 118033, 118031, 118030] by Demod 20527 with 20330 at 1,2,3
5015 Id : 3464, {_}: multiply (inverse (multiply ?24465 (inverse (multiply (inverse (inverse ?24466)) (multiply (inverse ?24467) (inverse (multiply (inverse ?24467) ?24467))))))) (multiply ?24465 ?24467) =>= ?24466 [24467, 24466, 24465] by Demod 3142 with 300 at 2
5016 Id : 12890, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?78617 (inverse ?78618))) (multiply ?78617 ?78619)))) (multiply (inverse ?78619) (inverse (multiply (inverse ?78619) ?78619))) =>= ?78618 [78619, 78618, 78617] by Super 3464 with 9 at 1,1,2
5017 Id : 13250, {_}: multiply (inverse (inverse (multiply (inverse ?80376) ?80376))) (multiply (inverse (inverse ?80377)) (inverse (multiply (inverse (inverse ?80377)) (inverse ?80377)))) =>= ?80377 [80377, 80376] by Super 12890 with 3992 at 1,1,1,2
5018 Id : 13299, {_}: multiply (inverse (inverse (multiply (inverse ?80682) ?80682))) (multiply (inverse (inverse ?80683)) (inverse (multiply (inverse ?80681) ?80681))) =>= ?80683 [80681, 80683, 80682] by Super 13250 with 3992 at 1,2,2,2
5019 Id : 209, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?973 ?974)) (multiply ?973 ?975)))) (multiply (inverse ?975) (inverse (multiply (inverse ?975) ?975)))) =>= ?974 [975, 974, 973] by Super 4 with 9 at 1,1,1,2
5020 Id : 228, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse (multiply ?1090 ?1088)) (multiply ?1090 ?1089))) (multiply (inverse (multiply ?1087 ?1088)) ?1091)))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1091, 1087, 1089, 1088, 1090] by Super 209 with 110 at 1,1,1,1,1,1,2
5021 Id : 20052, {_}: inverse (multiply (inverse (inverse (multiply (multiply (inverse ?1089) ?1088) (multiply (inverse (multiply ?1087 ?1088)) ?1091)))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1091, 1087, 1088, 1089] by Demod 228 with 20045 at 1,1,1,1,1,2
5022 Id : 87, {_}: inverse (multiply (inverse (multiply ?396 ?397)) (multiply ?396 ?398)) =?= inverse (multiply (inverse (multiply ?399 ?397)) (multiply ?399 ?398)) [399, 398, 397, 396] by Super 20 with 9 at 3
5023 Id : 92, {_}: inverse (multiply (inverse (multiply ?429 (multiply ?425 ?427))) (multiply ?429 ?430)) =?= inverse (multiply (inverse (multiply (inverse (multiply ?428 ?426)) (multiply ?428 ?427))) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 428, 430, 427, 425, 429] by Super 87 with 35 at 1,1,3
5024 Id : 20057, {_}: multiply (inverse ?430) (multiply ?425 ?427) =<= inverse (multiply (inverse (multiply (inverse (multiply ?428 ?426)) (multiply ?428 ?427))) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 428, 427, 425, 430] by Demod 92 with 20045 at 2
5025 Id : 20058, {_}: multiply (inverse ?430) (multiply ?425 ?427) =<= inverse (multiply (multiply (inverse ?427) ?426) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 427, 425, 430] by Demod 20057 with 20045 at 1,1,3
5026 Id : 20064, {_}: inverse (multiply (inverse (multiply (inverse ?1091) (multiply ?1087 ?1089))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1089, 1087, 1091] by Demod 20052 with 20058 at 1,1,1,2
5027 Id : 20065, {_}: multiply (inverse (inverse (multiply (inverse ?1091) ?1091))) (multiply ?1087 ?1089) =>= multiply ?1087 ?1089 [1089, 1087, 1091] by Demod 20064 with 20045 at 2
5028 Id : 20068, {_}: multiply (inverse (inverse ?80683)) (inverse (multiply (inverse ?80681) ?80681)) =>= ?80683 [80681, 80683] by Demod 13299 with 20065 at 2
5029 Id : 20372, {_}: multiply (inverse (inverse ?80683)) (multiply (inverse ?80681) ?80681) =>= ?80683 [80681, 80683] by Demod 20068 with 20330 at 2,2
5030 Id : 20427, {_}: multiply (inverse ?117788) ?117789 =<= multiply ?117790 (multiply (inverse (multiply ?117788 ?117790)) ?117789) [117790, 117789, 117788] by Demod 20405 with 20377 at 1,1,2
5031 Id : 20499, {_}: multiply (inverse ?117898) (multiply ?117898 (inverse (inverse ?117899))) =>= ?117899 [117899, 117898] by Super 20372 with 20427 at 2
5032 Id : 4166, {_}: inverse (multiply (inverse (multiply ?29022 (inverse (multiply (inverse ?29023) (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021))))))) (multiply ?29022 ?29020)) =>= ?29023 [29021, 29020, 29023, 29022] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2
5033 Id : 20061, {_}: multiply (inverse ?29020) (inverse (multiply (inverse ?29023) (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021))))) =>= ?29023 [29021, 29023, 29020] by Demod 4166 with 20045 at 2
5034 Id : 20368, {_}: multiply (inverse ?29020) (multiply (inverse (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021)))) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20061 with 20330 at 2,2
5035 Id : 20369, {_}: multiply (inverse ?29020) (multiply (multiply (inverse (inverse (multiply (inverse ?29021) ?29021))) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20368 with 20330 at 1,2,2
5036 Id : 20370, {_}: multiply (inverse ?29020) (multiply (multiply (inverse (multiply (inverse ?29021) ?29021)) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20369 with 20330 at 1,1,1,2,2
5037 Id : 20371, {_}: multiply (inverse ?29020) (multiply (multiply (multiply (inverse ?29021) ?29021) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20370 with 20330 at 1,1,2,2
5038 Id : 20379, {_}: multiply (inverse ?29020) (multiply ?29020 ?29023) =>= ?29023 [29023, 29020] by Demod 20371 with 20377 at 1,2,2
5039 Id : 20582, {_}: inverse (inverse ?117899) =>= ?117899 [117899] by Demod 20499 with 20379 at 2
5040 Id : 32543, {_}: multiply (multiply ?118030 ?118031) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (multiply (inverse ?118032) ?118031) ?118033) [118032, 118033, 118031, 118030] by Demod 20587 with 20582 at 1,2
5041 Id : 20530, {_}: multiply (inverse (multiply (inverse ?118044) ?118044)) ?118045 =?= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045, 118044] by Super 20523 with 20377 at 1,1,2,3
5042 Id : 20593, {_}: multiply (multiply (inverse ?118044) ?118044) ?118045 =?= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045, 118044] by Demod 20530 with 20330 at 1,2
5043 Id : 20594, {_}: ?118045 =<= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045] by Demod 20593 with 20377 at 2
5044 Id : 20765, {_}: multiply (inverse ?118471) (multiply ?118472 ?118473) =<= multiply (inverse (multiply (inverse ?118472) ?118471)) ?118473 [118473, 118472, 118471] by Super 20329 with 20594 at 1,1,2
5045 Id : 20804, {_}: multiply (inverse ?118471) (multiply ?118472 ?118473) =<= multiply (multiply (inverse ?118471) ?118472) ?118473 [118473, 118472, 118471] by Demod 20765 with 20330 at 1,3
5046 Id : 32544, {_}: multiply (multiply ?118030 ?118031) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (inverse ?118032) (multiply ?118031 ?118033)) [118032, 118033, 118031, 118030] by Demod 32543 with 20804 at 2,3
5047 Id : 20531, {_}: multiply (inverse (inverse ?118048)) ?118050 =<= multiply (multiply ?118048 ?118049) (multiply (inverse ?118049) ?118050) [118049, 118050, 118048] by Super 20523 with 20379 at 1,1,2,3
5048 Id : 22088, {_}: multiply ?118048 ?118050 =<= multiply (multiply ?118048 ?118049) (multiply (inverse ?118049) ?118050) [118049, 118050, 118048] by Demod 20531 with 20582 at 1,2
5049 Id : 32545, {_}: multiply (multiply ?118030 ?118031) ?118033 =?= multiply ?118030 (multiply ?118031 ?118033) [118033, 118031, 118030] by Demod 32544 with 22088 at 3
5050 Id : 33073, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 32545 at 2
5051 Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
5052 % SZS output end CNFRefutation for GRP423-1.p
5061 prove_these_axioms_3 is 94
5068 (multiply (multiply ?4 (inverse ?4))
5069 (inverse (multiply ?5 (multiply ?2 ?3))))))
5072 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
5075 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5076 [] by prove_these_axioms_3
5077 Found proof, 19.948413s
5078 % SZS status Unsatisfiable for GRP444-1.p
5079 % SZS output start CNFRefutation for GRP444-1.p
5080 Id : 5, {_}: inverse (multiply ?7 (multiply ?8 (multiply (multiply ?9 (inverse ?9)) (inverse (multiply ?10 (multiply ?7 ?8)))))) =>= ?10 [10, 9, 8, 7] by single_axiom ?7 ?8 ?9 ?10
5081 Id : 4, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
5082 Id : 6, {_}: inverse (multiply ?14 (multiply (multiply (multiply ?12 (inverse ?12)) (inverse (multiply ?13 (multiply ?16 ?14)))) (multiply (multiply ?15 (inverse ?15)) ?13))) =>= ?16 [15, 16, 13, 12, 14] by Super 5 with 4 at 2,2,2,1,2
5083 Id : 9, {_}: inverse (multiply (multiply (multiply ?32 (inverse ?32)) (inverse (multiply ?33 (multiply ?34 ?31)))) (multiply (multiply (multiply ?35 (inverse ?35)) ?33) (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 35, 31, 34, 33, 32] by Super 4 with 6 at 2,2,2,1,2
5084 Id : 11, {_}: inverse (multiply ?47 (multiply (multiply (multiply ?48 (inverse ?48)) (inverse (multiply ?49 (multiply ?50 ?47)))) (multiply (multiply ?51 (inverse ?51)) ?49))) =>= ?50 [51, 50, 49, 48, 47] by Super 5 with 4 at 2,2,2,1,2
5085 Id : 15, {_}: inverse (multiply (multiply (multiply ?82 (inverse ?82)) ?80) (multiply (multiply (multiply ?83 (inverse ?83)) ?81) (multiply (multiply ?85 (inverse ?85)) ?84))) =?= multiply (multiply ?79 (inverse ?79)) (inverse (multiply ?80 (multiply ?81 ?84))) [79, 84, 85, 81, 83, 80, 82] by Super 11 with 6 at 2,1,2,1,2
5086 Id : 70, {_}: multiply (multiply ?656 (inverse ?656)) (inverse (multiply (inverse (multiply ?653 (multiply ?655 ?657))) (multiply ?653 ?655))) =>= ?657 [657, 655, 653, 656] by Super 9 with 15 at 2
5087 Id : 7, {_}: inverse (multiply ?22 (multiply ?23 (multiply (multiply (multiply ?18 (multiply ?19 (multiply (multiply ?20 (inverse ?20)) (inverse (multiply ?21 (multiply ?18 ?19)))))) ?21) (inverse (multiply ?24 (multiply ?22 ?23)))))) =>= ?24 [24, 21, 20, 19, 18, 23, 22] by Super 5 with 4 at 2,1,2,2,1,2
5088 Id : 141, {_}: multiply (multiply ?1411 (inverse ?1411)) (inverse (multiply (inverse (multiply ?1412 (multiply ?1413 ?1414))) (multiply ?1412 ?1413))) =>= ?1414 [1414, 1413, 1412, 1411] by Super 9 with 15 at 2
5089 Id : 147, {_}: multiply (multiply ?1460 (inverse ?1460)) (inverse (multiply ?1458 (multiply ?1461 (multiply (multiply ?1456 (inverse ?1456)) (inverse (multiply ?1457 (multiply ?1458 ?1461))))))) =?= multiply (multiply ?1459 (inverse ?1459)) ?1457 [1459, 1457, 1456, 1461, 1458, 1460] by Super 141 with 6 at 1,1,2,2
5090 Id : 163, {_}: multiply (multiply ?1460 (inverse ?1460)) ?1457 =?= multiply (multiply ?1459 (inverse ?1459)) ?1457 [1459, 1457, 1460] by Demod 147 with 4 at 2,2
5091 Id : 237, {_}: inverse (multiply ?2095 (multiply ?2096 (multiply (multiply (multiply ?2097 (multiply ?2098 (multiply (multiply ?2099 (inverse ?2099)) (inverse (multiply ?2100 (multiply ?2097 ?2098)))))) ?2100) (inverse (multiply (multiply ?2094 (inverse ?2094)) (multiply ?2095 ?2096)))))) =?= multiply ?2093 (inverse ?2093) [2093, 2094, 2100, 2099, 2098, 2097, 2096, 2095] by Super 7 with 163 at 1,2,2,2,1,2
5092 Id : 290, {_}: multiply ?2094 (inverse ?2094) =?= multiply ?2093 (inverse ?2093) [2093, 2094] by Demod 237 with 7 at 2
5093 Id : 326, {_}: multiply (multiply ?2479 (inverse ?2479)) (inverse (multiply (inverse (multiply ?2477 (multiply (inverse ?2477) ?2480))) (multiply ?2478 (inverse ?2478)))) =>= ?2480 [2478, 2480, 2477, 2479] by Super 70 with 290 at 2,1,2,2
5094 Id : 328, {_}: multiply (multiply ?2489 (inverse ?2489)) (inverse (multiply (inverse (multiply ?2490 (multiply ?2488 (inverse ?2488)))) (multiply ?2490 ?2487))) =>= inverse ?2487 [2487, 2488, 2490, 2489] by Super 70 with 290 at 2,1,1,1,2,2
5095 Id : 604, {_}: inverse (multiply ?3845 (multiply ?3847 (inverse ?3847))) =?= inverse (multiply ?3845 (multiply ?3846 (inverse ?3846))) [3846, 3847, 3845] by Super 4 with 328 at 2,2,1,2
5096 Id : 792, {_}: inverse (multiply ?4988 (multiply (inverse ?4988) ?4987)) =?= inverse (multiply ?4986 (multiply (inverse ?4986) ?4987)) [4986, 4987, 4988] by Super 4 with 326 at 2,2,1,2
5097 Id : 870, {_}: inverse (multiply ?5461 (multiply ?5463 (inverse ?5463))) =?= inverse (multiply ?5462 (multiply (inverse ?5462) (inverse (inverse ?5461)))) [5462, 5463, 5461] by Super 604 with 792 at 3
5098 Id : 2786, {_}: inverse (multiply (inverse ?15453) (multiply ?15454 (multiply (multiply ?15455 (inverse ?15455)) (inverse (multiply ?15456 (multiply (inverse ?15456) ?15454)))))) =>= ?15453 [15456, 15455, 15454, 15453] by Super 6 with 326 at 1,2,1,2
5099 Id : 2859, {_}: inverse (multiply (inverse ?15956) (multiply (inverse (inverse (inverse (multiply ?15954 (multiply (inverse ?15954) ?15955))))) ?15955)) =>= ?15956 [15955, 15954, 15956] by Super 2786 with 326 at 2,2,1,2
5100 Id : 3662, {_}: inverse (multiply (inverse (inverse (inverse (multiply ?19641 (multiply (inverse ?19641) ?19642))))) (multiply ?19642 (multiply (multiply ?19643 (inverse ?19643)) ?19640))) =>= inverse ?19640 [19640, 19643, 19642, 19641] by Super 4 with 2859 at 2,2,2,1,2
5101 Id : 13794, {_}: inverse (inverse (multiply ?72764 (multiply (inverse (inverse (inverse (multiply ?72761 (multiply (inverse ?72761) ?72762))))) ?72762))) =>= ?72764 [72762, 72761, 72764] by Super 4 with 3662 at 2
5102 Id : 3676, {_}: multiply (multiply ?19736 (inverse ?19736)) (multiply (inverse (inverse (inverse (multiply ?19734 (multiply (inverse ?19734) ?19735))))) (multiply ?19737 (inverse ?19737))) =>= inverse ?19735 [19737, 19735, 19734, 19736] by Super 328 with 2859 at 2,2
5103 Id : 16741, {_}: inverse (inverse (inverse (multiply ?88187 (inverse ?88187)))) =?= multiply ?88186 (inverse ?88186) [88186, 88187] by Super 13794 with 3676 at 1,1,2
5104 Id : 17199, {_}: inverse (multiply ?90662 (multiply ?90661 (inverse ?90661))) =?= inverse (multiply ?90662 (inverse (inverse (inverse (multiply ?90660 (inverse ?90660)))))) [90660, 90661, 90662] by Super 870 with 16741 at 2,1,3
5105 Id : 3671, {_}: multiply (multiply ?19707 (inverse ?19707)) (multiply (inverse (inverse (inverse (multiply ?19705 (multiply (inverse ?19705) ?19706))))) (multiply ?19706 ?19708)) =>= ?19708 [19708, 19706, 19705, 19707] by Super 70 with 2859 at 2,2
5106 Id : 2874, {_}: inverse (multiply (inverse (multiply ?16071 (multiply (inverse ?16071) (inverse (inverse ?16069))))) (multiply ?16072 (multiply (multiply ?16073 (inverse ?16073)) (inverse (multiply ?16074 (multiply (inverse ?16074) ?16072)))))) =?= multiply ?16069 (multiply ?16070 (inverse ?16070)) [16070, 16074, 16073, 16072, 16069, 16071] by Super 2786 with 870 at 1,1,2
5107 Id : 790, {_}: inverse (multiply (inverse ?4975) (multiply ?4974 (multiply (multiply ?4976 (inverse ?4976)) (inverse (multiply ?4973 (multiply (inverse ?4973) ?4974)))))) =>= ?4975 [4973, 4976, 4974, 4975] by Super 6 with 326 at 1,2,1,2
5108 Id : 2903, {_}: multiply ?16071 (multiply (inverse ?16071) (inverse (inverse ?16069))) =?= multiply ?16069 (multiply ?16070 (inverse ?16070)) [16070, 16069, 16071] by Demod 2874 with 790 at 2
5109 Id : 17213, {_}: multiply ?90740 (inverse ?90740) =?= multiply (inverse (inverse (multiply ?90738 (inverse ?90738)))) (multiply ?90739 (inverse ?90739)) [90739, 90738, 90740] by Super 290 with 16741 at 2,3
5110 Id : 20625, {_}: multiply ?106744 (multiply (inverse ?106744) (inverse (inverse (inverse (inverse (multiply ?106742 (inverse ?106742))))))) =?= multiply ?106741 (inverse ?106741) [106741, 106742, 106744] by Super 2903 with 17213 at 3
5111 Id : 31961, {_}: multiply (multiply ?163343 (inverse ?163343)) (multiply (inverse (inverse (inverse (multiply ?163344 (multiply (inverse ?163344) ?163340))))) (multiply ?163342 (inverse ?163342))) =?= multiply (inverse ?163340) (inverse (inverse (inverse (inverse (multiply ?163341 (inverse ?163341)))))) [163341, 163342, 163340, 163344, 163343] by Super 3671 with 20625 at 2,2,2
5112 Id : 32420, {_}: inverse ?163340 =<= multiply (inverse ?163340) (inverse (inverse (inverse (inverse (multiply ?163341 (inverse ?163341)))))) [163341, 163340] by Demod 31961 with 3676 at 2
5113 Id : 32623, {_}: inverse (multiply (inverse ?166463) (multiply (inverse (inverse (inverse (multiply ?166461 (inverse ?166461))))) (inverse (inverse (inverse (inverse (multiply ?166462 (inverse ?166462)))))))) =>= ?166463 [166462, 166461, 166463] by Super 2859 with 32420 at 2,1,1,1,1,2,1,2
5114 Id : 32947, {_}: inverse (multiply (inverse ?166463) (inverse (inverse (inverse (multiply ?166461 (inverse ?166461)))))) =>= ?166463 [166461, 166463] by Demod 32623 with 32420 at 2,1,2
5115 Id : 34867, {_}: inverse (multiply (inverse ?172645) (multiply ?172647 (inverse ?172647))) =>= ?172645 [172647, 172645] by Super 17199 with 32947 at 3
5116 Id : 35297, {_}: multiply (multiply ?2479 (inverse ?2479)) (multiply ?2477 (multiply (inverse ?2477) ?2480)) =>= ?2480 [2480, 2477, 2479] by Demod 326 with 34867 at 2,2
5117 Id : 35489, {_}: inverse (multiply (inverse ?174505) (multiply ?174506 (inverse ?174506))) =>= ?174505 [174506, 174505] by Super 17199 with 32947 at 3
5118 Id : 616, {_}: multiply (multiply ?3943 (inverse ?3943)) (inverse (multiply (inverse (multiply ?3944 (multiply ?3945 (inverse ?3945)))) (multiply ?3944 ?3946))) =>= inverse ?3946 [3946, 3945, 3944, 3943] by Super 70 with 290 at 2,1,1,1,2,2
5119 Id : 619, {_}: multiply (multiply ?3962 (inverse ?3962)) (inverse (multiply (inverse (multiply ?3963 (multiply ?3964 (inverse ?3964)))) (multiply ?3961 (inverse ?3961)))) =>= inverse (inverse ?3963) [3961, 3964, 3963, 3962] by Super 616 with 290 at 2,1,2,2
5120 Id : 35296, {_}: multiply (multiply ?3962 (inverse ?3962)) (multiply ?3963 (multiply ?3964 (inverse ?3964))) =>= inverse (inverse ?3963) [3964, 3963, 3962] by Demod 619 with 34867 at 2,2
5121 Id : 35298, {_}: inverse (inverse (inverse (inverse (inverse (multiply ?19734 (multiply (inverse ?19734) ?19735)))))) =>= inverse ?19735 [19735, 19734] by Demod 3676 with 35296 at 2
5122 Id : 35615, {_}: inverse (multiply (inverse ?175100) (multiply ?175101 (inverse ?175101))) =?= inverse (inverse (inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))))) [175099, 175101, 175100] by Super 35489 with 35298 at 1,1,2
5123 Id : 35759, {_}: ?175100 =<= inverse (inverse (inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))))) [175099, 175100] by Demod 35615 with 34867 at 2
5124 Id : 14284, {_}: inverse (inverse (multiply ?75692 (multiply (inverse (inverse (inverse (multiply ?75693 (multiply (inverse ?75693) ?75694))))) ?75694))) =>= ?75692 [75694, 75693, 75692] by Super 4 with 3662 at 2
5125 Id : 14330, {_}: inverse (inverse (multiply ?75974 (multiply (inverse (inverse (inverse (multiply ?75975 (multiply ?75973 (inverse ?75973)))))) (inverse (inverse ?75975))))) =>= ?75974 [75973, 75975, 75974] by Super 14284 with 290 at 2,1,1,1,1,2,1,1,2
5126 Id : 36610, {_}: inverse (inverse (multiply ?177975 (multiply (inverse (inverse (inverse (multiply (inverse (inverse (inverse (multiply ?177974 (multiply (inverse ?177974) ?177973))))) (multiply ?177976 (inverse ?177976)))))) (inverse ?177973)))) =>= ?177975 [177976, 177973, 177974, 177975] by Super 14330 with 35759 at 1,2,2,1,1,2
5127 Id : 36795, {_}: inverse (inverse (multiply ?177975 (multiply (inverse (inverse (inverse (inverse (multiply ?177974 (multiply (inverse ?177974) ?177973)))))) (inverse ?177973)))) =>= ?177975 [177973, 177974, 177975] by Demod 36610 with 34867 at 1,1,1,2,1,1,2
5128 Id : 37525, {_}: inverse (inverse (multiply ?181200 (multiply ?181201 (inverse ?181201)))) =>= ?181200 [181201, 181200] by Demod 36795 with 35759 at 1,2,1,1,2
5129 Id : 37547, {_}: inverse (inverse (multiply ?181321 (multiply (inverse (inverse (multiply ?181319 (inverse ?181319)))) (multiply ?181320 (inverse ?181320))))) =>= ?181321 [181320, 181319, 181321] by Super 37525 with 16741 at 2,2,1,1,2
5130 Id : 36638, {_}: ?178102 =<= inverse (inverse (inverse (inverse (multiply ?178103 (multiply (inverse ?178103) ?178102))))) [178103, 178102] by Demod 35615 with 34867 at 2
5131 Id : 36754, {_}: multiply (inverse (inverse (multiply ?178614 (inverse ?178614)))) ?178615 =>= inverse (inverse (inverse (inverse ?178615))) [178615, 178614] by Super 36638 with 35297 at 1,1,1,1,3
5132 Id : 37663, {_}: inverse (inverse (multiply ?181321 (inverse (inverse (inverse (inverse (multiply ?181320 (inverse ?181320)))))))) =>= ?181321 [181320, 181321] by Demod 37547 with 36754 at 2,1,1,2
5133 Id : 32690, {_}: inverse ?166743 =<= multiply (inverse ?166743) (inverse (inverse (inverse (inverse (multiply ?166744 (inverse ?166744)))))) [166744, 166743] by Demod 31961 with 3676 at 2
5134 Id : 32829, {_}: inverse (multiply ?167379 (multiply ?167380 (multiply (multiply ?167381 (inverse ?167381)) (inverse (multiply ?167382 (multiply ?167379 ?167380)))))) =?= multiply ?167382 (inverse (inverse (inverse (inverse (multiply ?167383 (inverse ?167383)))))) [167383, 167382, 167381, 167380, 167379] by Super 32690 with 4 at 1,3
5135 Id : 33031, {_}: ?167382 =<= multiply ?167382 (inverse (inverse (inverse (inverse (multiply ?167383 (inverse ?167383)))))) [167383, 167382] by Demod 32829 with 4 at 2
5136 Id : 37664, {_}: inverse (inverse ?181321) =>= ?181321 [181321] by Demod 37663 with 33031 at 1,1,2
5137 Id : 37819, {_}: ?175100 =<= inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))) [175099, 175100] by Demod 35759 with 37664 at 3
5138 Id : 37820, {_}: ?175100 =<= multiply ?175099 (multiply (inverse ?175099) ?175100) [175099, 175100] by Demod 37819 with 37664 at 3
5139 Id : 37837, {_}: multiply (multiply ?2479 (inverse ?2479)) ?2480 =>= ?2480 [2480, 2479] by Demod 35297 with 37820 at 2,2
5140 Id : 37843, {_}: inverse (multiply ?2 (multiply ?3 (inverse (multiply ?5 (multiply ?2 ?3))))) =>= ?5 [5, 3, 2] by Demod 4 with 37837 at 2,2,1,2
5141 Id : 37841, {_}: inverse (multiply ?14 (multiply (inverse (multiply ?13 (multiply ?16 ?14))) (multiply (multiply ?15 (inverse ?15)) ?13))) =>= ?16 [15, 16, 13, 14] by Demod 6 with 37837 at 1,2,1,2
5142 Id : 37842, {_}: inverse (multiply ?14 (multiply (inverse (multiply ?13 (multiply ?16 ?14))) ?13)) =>= ?16 [16, 13, 14] by Demod 37841 with 37837 at 2,2,1,2
5143 Id : 13762, {_}: inverse (multiply (inverse ?72514) (multiply ?72515 (multiply (multiply ?72516 (inverse ?72516)) (inverse (multiply ?72517 (multiply (inverse ?72517) ?72515)))))) =?= multiply (inverse (inverse (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72517, 72516, 72515, 72514] by Super 790 with 3662 at 1,1,2
5144 Id : 14092, {_}: ?72514 =<= multiply (inverse (inverse (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72514] by Demod 13762 with 790 at 2
5145 Id : 37791, {_}: ?72514 =<= multiply (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72514] by Demod 14092 with 37664 at 1,3
5146 Id : 37888, {_}: ?72514 =<= multiply (inverse ?72512) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72514] by Demod 37791 with 37820 at 1,1,3
5147 Id : 37889, {_}: ?72514 =<= multiply (inverse ?72512) (multiply ?72512 ?72514) [72512, 72514] by Demod 37888 with 37837 at 2,2,3
5148 Id : 37945, {_}: multiply (multiply (inverse ?181731) ?181731) ?181732 =>= ?181732 [181732, 181731] by Super 37837 with 37664 at 2,1,2
5149 Id : 37993, {_}: inverse (multiply (multiply (inverse ?181852) ?181852) (multiply ?181853 (inverse (multiply ?181854 ?181853)))) =>= ?181854 [181854, 181853, 181852] by Super 37843 with 37945 at 2,1,2,2,1,2
5150 Id : 38039, {_}: inverse (multiply ?181853 (inverse (multiply ?181854 ?181853))) =>= ?181854 [181854, 181853] by Demod 37993 with 37945 at 1,2
5151 Id : 38275, {_}: inverse ?182456 =<= multiply ?182455 (inverse (multiply ?182456 ?182455)) [182455, 182456] by Super 37664 with 38039 at 1,2
5152 Id : 38457, {_}: inverse (multiply ?182870 ?182871) =<= multiply (inverse ?182871) (inverse ?182870) [182871, 182870] by Super 37889 with 38275 at 2,3
5153 Id : 38459, {_}: inverse (multiply (inverse ?182877) ?182878) =>= multiply (inverse ?182878) ?182877 [182878, 182877] by Super 38457 with 37664 at 2,3
5154 Id : 38608, {_}: multiply (inverse (multiply (inverse (multiply ?183123 (multiply ?183124 (inverse ?183122)))) ?183123)) ?183122 =>= ?183124 [183122, 183124, 183123] by Super 37842 with 38459 at 2
5155 Id : 38646, {_}: multiply (multiply (inverse ?183123) (multiply ?183123 (multiply ?183124 (inverse ?183122)))) ?183122 =>= ?183124 [183122, 183124, 183123] by Demod 38608 with 38459 at 1,2
5156 Id : 38647, {_}: multiply (multiply ?183124 (inverse ?183122)) ?183122 =>= ?183124 [183122, 183124] by Demod 38646 with 37889 at 1,2
5157 Id : 39562, {_}: inverse (multiply ?184856 (multiply ?184857 (inverse ?184858))) =>= multiply ?184858 (inverse (multiply ?184856 ?184857)) [184858, 184857, 184856] by Super 37843 with 38647 at 1,2,2,1,2
5158 Id : 39573, {_}: inverse (multiply ?184910 (inverse ?184909)) =<= multiply (multiply ?184909 ?184911) (inverse (multiply ?184910 ?184911)) [184911, 184909, 184910] by Super 39562 with 38275 at 2,1,2
5159 Id : 38360, {_}: inverse (multiply ?182630 (inverse ?182631)) =>= multiply ?182631 (inverse ?182630) [182631, 182630] by Super 37820 with 38275 at 2,3
5160 Id : 40719, {_}: multiply ?186598 (inverse ?186599) =<= multiply (multiply ?186598 ?186600) (inverse (multiply ?186599 ?186600)) [186600, 186599, 186598] by Demod 39573 with 38360 at 2
5161 Id : 37844, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply (multiply (multiply ?35 (inverse ?35)) ?33) (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 35, 31, 34, 33] by Demod 9 with 37837 at 1,1,2
5162 Id : 37845, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply ?33 (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 31, 34, 33] by Demod 37844 with 37837 at 1,2,1,2
5163 Id : 37846, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply ?33 ?34)) =>= ?31 [31, 34, 33] by Demod 37845 with 37837 at 2,2,1,2
5164 Id : 38597, {_}: multiply (inverse (multiply ?33 ?34)) (multiply ?33 (multiply ?34 ?31)) =>= ?31 [31, 34, 33] by Demod 37846 with 38459 at 2
5165 Id : 40727, {_}: multiply ?186633 (inverse (inverse (multiply ?186630 ?186631))) =<= multiply (multiply ?186633 (multiply ?186630 (multiply ?186631 ?186632))) (inverse ?186632) [186632, 186631, 186630, 186633] by Super 40719 with 38597 at 1,2,3
5166 Id : 40827, {_}: multiply ?186633 (multiply ?186630 ?186631) =<= multiply (multiply ?186633 (multiply ?186630 (multiply ?186631 ?186632))) (inverse ?186632) [186632, 186631, 186630, 186633] by Demod 40727 with 37664 at 2,2
5167 Id : 38369, {_}: inverse ?182667 =<= multiply ?182668 (inverse (multiply ?182667 ?182668)) [182668, 182667] by Super 37664 with 38039 at 1,2
5168 Id : 38383, {_}: inverse ?182710 =<= multiply (inverse (multiply ?182709 ?182710)) (inverse (inverse ?182709)) [182709, 182710] by Super 38369 with 38275 at 1,2,3
5169 Id : 38416, {_}: inverse ?182710 =<= multiply (inverse (multiply ?182709 ?182710)) ?182709 [182709, 182710] by Demod 38383 with 37664 at 2,3
5170 Id : 38850, {_}: inverse (multiply ?183591 (multiply ?183592 (inverse ?183590))) =>= multiply ?183590 (inverse (multiply ?183591 ?183592)) [183590, 183592, 183591] by Super 37843 with 38647 at 1,2,2,1,2
5171 Id : 39557, {_}: inverse (multiply ?184829 (inverse ?184830)) =<= multiply (multiply ?184830 (inverse (multiply ?184828 ?184829))) ?184828 [184828, 184830, 184829] by Super 38416 with 38850 at 1,3
5172 Id : 40495, {_}: multiply ?186270 (inverse ?186271) =<= multiply (multiply ?186270 (inverse (multiply ?186272 ?186271))) ?186272 [186272, 186271, 186270] by Demod 39557 with 38360 at 2
5173 Id : 38758, {_}: inverse ?183471 =<= multiply (inverse (multiply ?183472 ?183471)) ?183472 [183472, 183471] by Demod 38383 with 37664 at 2,3
5174 Id : 38773, {_}: inverse (multiply ?183521 (inverse (multiply ?183522 (multiply ?183523 ?183521)))) =>= multiply ?183522 ?183523 [183523, 183522, 183521] by Super 38758 with 37843 at 1,3
5175 Id : 38833, {_}: multiply (multiply ?183522 (multiply ?183523 ?183521)) (inverse ?183521) =>= multiply ?183522 ?183523 [183521, 183523, 183522] by Demod 38773 with 38360 at 2
5176 Id : 40530, {_}: multiply (multiply ?186419 (multiply ?186420 (multiply ?186422 ?186421))) (inverse ?186421) =>= multiply (multiply ?186419 ?186420) ?186422 [186421, 186422, 186420, 186419] by Super 40495 with 38833 at 1,3
5177 Id : 56629, {_}: multiply ?186633 (multiply ?186630 ?186631) =?= multiply (multiply ?186633 ?186630) ?186631 [186631, 186630, 186633] by Demod 40827 with 40530 at 3
5178 Id : 57301, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 56629 at 2
5179 Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
5180 % SZS output end CNFRefutation for GRP444-1.p
5189 prove_these_axioms_2 is 94
5194 (divide (divide ?2 ?2)
5195 (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4))))
5199 [4, 3, 2] by single_axiom ?2 ?3 ?4
5201 multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7)
5202 [8, 7, 6] by multiply ?6 ?7 ?8
5204 inverse ?10 =<= divide (divide ?11 ?11) ?10
5205 [11, 10] by inverse ?10 ?11
5208 multiply (multiply (inverse b2) b2) a2 =>= a2
5209 [] by prove_these_axioms_2
5210 Found proof, 0.102216s
5211 % SZS status Unsatisfiable for GRP452-1.p
5212 % SZS output start CNFRefutation for GRP452-1.p
5213 Id : 39, {_}: inverse ?93 =<= divide (divide ?94 ?94) ?93 [94, 93] by inverse ?93 ?94
5214 Id : 4, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
5215 Id : 8, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11
5216 Id : 6, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8
5217 Id : 33, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 6 with 8 at 2,3
5218 Id : 45, {_}: multiply (divide ?108 ?108) ?109 =>= inverse (inverse ?109) [109, 108] by Super 33 with 8 at 3
5219 Id : 47, {_}: multiply (multiply (inverse ?114) ?114) ?115 =>= inverse (inverse ?115) [115, 114] by Super 45 with 33 at 1,2
5220 Id : 34, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 4 with 8 at 1,2
5221 Id : 35, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 34 with 8 at 1,2,2,1,1,2
5222 Id : 40, {_}: inverse ?97 =<= divide (inverse (divide ?96 ?96)) ?97 [96, 97] by Super 39 with 8 at 1,3
5223 Id : 52, {_}: divide (inverse (divide (divide ?127 ?127) (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128, 127] by Super 35 with 40 at 2,2,1,1,2
5224 Id : 62, {_}: divide (inverse (inverse (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128] by Demod 52 with 8 at 1,1,2
5225 Id : 63, {_}: divide (inverse (inverse (multiply ?128 ?126))) ?126 =>= ?128 [126, 128] by Demod 62 with 33 at 1,1,1,2
5226 Id : 265, {_}: divide (inverse (divide ?664 ?665)) ?666 =<= inverse (inverse (multiply ?665 (divide (inverse ?664) ?666))) [666, 665, 664] by Super 35 with 63 at 2,1,1,2
5227 Id : 269, {_}: divide (inverse (divide ?684 ?685)) (inverse ?683) =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Super 265 with 33 at 2,1,1,3
5228 Id : 285, {_}: multiply (inverse (divide ?684 ?685)) ?683 =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Demod 269 with 33 at 2
5229 Id : 36, {_}: multiply (divide ?82 ?82) ?83 =>= inverse (inverse ?83) [83, 82] by Super 33 with 8 at 3
5230 Id : 270, {_}: divide (inverse (divide (divide ?687 ?687) ?688)) ?689 =>= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688, 687] by Super 265 with 40 at 2,1,1,3
5231 Id : 286, {_}: divide (inverse (inverse ?688)) ?689 =<= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688] by Demod 270 with 8 at 1,1,2
5232 Id : 306, {_}: divide (divide (inverse (inverse ?778)) ?779) (inverse ?779) =>= ?778 [779, 778] by Super 63 with 286 at 1,2
5233 Id : 319, {_}: multiply (divide (inverse (inverse ?778)) ?779) ?779 =>= ?778 [779, 778] by Demod 306 with 33 at 2
5234 Id : 743, {_}: ?1513 =<= inverse (inverse (inverse (inverse ?1513))) [1513] by Super 36 with 319 at 2
5235 Id : 138, {_}: divide (inverse (divide ?349 ?348)) ?350 =<= inverse (inverse (multiply ?348 (divide (inverse ?349) ?350))) [350, 348, 349] by Super 35 with 63 at 2,1,1,2
5236 Id : 1751, {_}: multiply ?3407 (divide (inverse ?3408) ?3409) =<= inverse (inverse (divide (inverse (divide ?3408 ?3407)) ?3409)) [3409, 3408, 3407] by Super 743 with 138 at 1,1,3
5237 Id : 1830, {_}: multiply ?3532 (divide (inverse ?3532) ?3533) =>= inverse (inverse (inverse ?3533)) [3533, 3532] by Super 1751 with 40 at 1,1,3
5238 Id : 682, {_}: ?1380 =<= inverse (inverse (inverse (inverse ?1380))) [1380] by Super 36 with 319 at 2
5239 Id : 735, {_}: multiply ?1490 (inverse (inverse (inverse ?1489))) =>= divide ?1490 ?1489 [1489, 1490] by Super 33 with 682 at 2,3
5240 Id : 742, {_}: multiply (divide ?1510 ?1511) ?1511 =>= inverse (inverse ?1510) [1511, 1510] by Super 319 with 682 at 1,1,2
5241 Id : 868, {_}: inverse (inverse ?1672) =<= divide (divide ?1672 (inverse (inverse (inverse ?1673)))) ?1673 [1673, 1672] by Super 735 with 742 at 2
5242 Id : 1203, {_}: inverse (inverse ?2233) =<= divide (multiply ?2233 (inverse (inverse ?2234))) ?2234 [2234, 2233] by Demod 868 with 33 at 1,3
5243 Id : 55, {_}: multiply (inverse (inverse (divide ?138 ?138))) ?139 =>= inverse (inverse ?139) [139, 138] by Super 36 with 40 at 1,2
5244 Id : 1217, {_}: inverse (inverse (inverse (inverse (divide ?2285 ?2285)))) =?= divide (inverse (inverse (inverse (inverse ?2286)))) ?2286 [2286, 2285] by Super 1203 with 55 at 1,3
5245 Id : 1250, {_}: divide ?2285 ?2285 =?= divide (inverse (inverse (inverse (inverse ?2286)))) ?2286 [2286, 2285] by Demod 1217 with 682 at 2
5246 Id : 1251, {_}: divide ?2285 ?2285 =?= divide ?2286 ?2286 [2286, 2285] by Demod 1250 with 682 at 1,3
5247 Id : 1840, {_}: multiply ?3573 (divide ?3572 ?3572) =?= inverse (inverse (inverse (inverse ?3573))) [3572, 3573] by Super 1830 with 1251 at 2,2
5248 Id : 1879, {_}: multiply ?3573 (divide ?3572 ?3572) =>= ?3573 [3572, 3573] by Demod 1840 with 682 at 3
5249 Id : 1919, {_}: multiply (inverse (divide ?3678 ?3679)) (divide ?3677 ?3677) =>= inverse (inverse (multiply ?3679 (inverse ?3678))) [3677, 3679, 3678] by Super 285 with 1879 at 2,1,1,3
5250 Id : 1946, {_}: inverse (divide ?3678 ?3679) =<= inverse (inverse (multiply ?3679 (inverse ?3678))) [3679, 3678] by Demod 1919 with 1879 at 2
5251 Id : 1947, {_}: inverse (divide ?3678 ?3679) =<= divide (inverse (inverse ?3679)) ?3678 [3679, 3678] by Demod 1946 with 286 at 3
5252 Id : 1966, {_}: inverse (divide ?126 (multiply ?128 ?126)) =>= ?128 [128, 126] by Demod 63 with 1947 at 2
5253 Id : 748, {_}: multiply ?1528 (inverse ?1529) =<= inverse (inverse (divide (inverse (inverse ?1528)) ?1529)) [1529, 1528] by Super 743 with 286 at 1,1,3
5254 Id : 1970, {_}: multiply ?1528 (inverse ?1529) =<= inverse (inverse (inverse (divide ?1529 ?1528))) [1529, 1528] by Demod 748 with 1947 at 1,1,3
5255 Id : 50, {_}: inverse ?121 =<= divide (inverse (inverse (divide ?120 ?120))) ?121 [120, 121] by Super 8 with 40 at 1,3
5256 Id : 1967, {_}: inverse ?121 =<= inverse (divide ?121 (divide ?120 ?120)) [120, 121] by Demod 50 with 1947 at 3
5257 Id : 1903, {_}: divide ?3630 (divide ?3629 ?3629) =>= inverse (inverse ?3630) [3629, 3630] by Super 742 with 1879 at 2
5258 Id : 2257, {_}: inverse ?121 =<= inverse (inverse (inverse ?121)) [121] by Demod 1967 with 1903 at 1,3
5259 Id : 2261, {_}: multiply ?1528 (inverse ?1529) =<= inverse (divide ?1529 ?1528) [1529, 1528] by Demod 1970 with 2257 at 3
5260 Id : 2271, {_}: multiply (multiply ?128 ?126) (inverse ?126) =>= ?128 [126, 128] by Demod 1966 with 2261 at 2
5261 Id : 869, {_}: multiply (divide ?1675 ?1676) ?1676 =>= inverse (inverse ?1675) [1676, 1675] by Super 319 with 682 at 1,1,2
5262 Id : 873, {_}: multiply (multiply ?1689 ?1688) (inverse ?1688) =>= inverse (inverse ?1689) [1688, 1689] by Super 869 with 33 at 1,2
5263 Id : 2276, {_}: inverse (inverse ?128) =>= ?128 [128] by Demod 2271 with 873 at 2
5264 Id : 2434, {_}: a2 === a2 [] by Demod 85 with 2276 at 2
5265 Id : 85, {_}: inverse (inverse a2) =>= a2 [] by Demod 2 with 47 at 2
5266 Id : 2, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2
5267 % SZS output end CNFRefutation for GRP452-1.p
5277 prove_these_axioms_3 is 94
5282 (divide (divide ?2 ?2)
5283 (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4))))
5287 [4, 3, 2] by single_axiom ?2 ?3 ?4
5289 multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7)
5290 [8, 7, 6] by multiply ?6 ?7 ?8
5292 inverse ?10 =<= divide (divide ?11 ?11) ?10
5293 [11, 10] by inverse ?10 ?11
5296 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5297 [] by prove_these_axioms_3
5298 Found proof, 0.110270s
5299 % SZS status Unsatisfiable for GRP453-1.p
5300 % SZS output start CNFRefutation for GRP453-1.p
5301 Id : 6, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8
5302 Id : 39, {_}: inverse ?93 =<= divide (divide ?94 ?94) ?93 [94, 93] by inverse ?93 ?94
5303 Id : 8, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11
5304 Id : 4, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
5305 Id : 34, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 4 with 8 at 1,2
5306 Id : 35, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 34 with 8 at 1,2,2,1,1,2
5307 Id : 40, {_}: inverse ?97 =<= divide (inverse (divide ?96 ?96)) ?97 [96, 97] by Super 39 with 8 at 1,3
5308 Id : 52, {_}: divide (inverse (divide (divide ?127 ?127) (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128, 127] by Super 35 with 40 at 2,2,1,1,2
5309 Id : 62, {_}: divide (inverse (inverse (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128] by Demod 52 with 8 at 1,1,2
5310 Id : 33, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 6 with 8 at 2,3
5311 Id : 63, {_}: divide (inverse (inverse (multiply ?128 ?126))) ?126 =>= ?128 [126, 128] by Demod 62 with 33 at 1,1,1,2
5312 Id : 264, {_}: divide (inverse (divide ?664 ?665)) ?666 =<= inverse (inverse (multiply ?665 (divide (inverse ?664) ?666))) [666, 665, 664] by Super 35 with 63 at 2,1,1,2
5313 Id : 268, {_}: divide (inverse (divide ?684 ?685)) (inverse ?683) =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Super 264 with 33 at 2,1,1,3
5314 Id : 284, {_}: multiply (inverse (divide ?684 ?685)) ?683 =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Demod 268 with 33 at 2
5315 Id : 269, {_}: divide (inverse (divide (divide ?687 ?687) ?688)) ?689 =>= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688, 687] by Super 264 with 40 at 2,1,1,3
5316 Id : 285, {_}: divide (inverse (inverse ?688)) ?689 =<= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688] by Demod 269 with 8 at 1,1,2
5317 Id : 307, {_}: divide (inverse (inverse ?786)) ?787 =<= inverse (inverse (multiply ?786 (inverse ?787))) [787, 786] by Demod 269 with 8 at 1,1,2
5318 Id : 36, {_}: multiply (divide ?82 ?82) ?83 =>= inverse (inverse ?83) [83, 82] by Super 33 with 8 at 3
5319 Id : 310, {_}: divide (inverse (inverse (divide ?798 ?798))) ?799 =>= inverse (inverse (inverse (inverse (inverse ?799)))) [799, 798] by Super 307 with 36 at 1,1,3
5320 Id : 50, {_}: inverse ?121 =<= divide (inverse (inverse (divide ?120 ?120))) ?121 [120, 121] by Super 8 with 40 at 1,3
5321 Id : 325, {_}: inverse ?799 =<= inverse (inverse (inverse (inverse (inverse ?799)))) [799] by Demod 310 with 50 at 2
5322 Id : 332, {_}: multiply ?837 (inverse (inverse (inverse (inverse ?836)))) =>= divide ?837 (inverse ?836) [836, 837] by Super 33 with 325 at 2,3
5323 Id : 354, {_}: multiply ?837 (inverse (inverse (inverse (inverse ?836)))) =>= multiply ?837 ?836 [836, 837] by Demod 332 with 33 at 3
5324 Id : 364, {_}: divide (inverse (inverse ?880)) (inverse (inverse (inverse ?881))) =>= inverse (inverse (multiply ?880 ?881)) [881, 880] by Super 285 with 354 at 1,1,3
5325 Id : 423, {_}: multiply (inverse (inverse ?880)) (inverse (inverse ?881)) =>= inverse (inverse (multiply ?880 ?881)) [881, 880] by Demod 364 with 33 at 2
5326 Id : 448, {_}: divide (inverse (inverse (inverse (inverse ?1012)))) (inverse ?1013) =>= inverse (inverse (inverse (inverse (multiply ?1012 ?1013)))) [1013, 1012] by Super 285 with 423 at 1,1,3
5327 Id : 470, {_}: multiply (inverse (inverse (inverse (inverse ?1012)))) ?1013 =>= inverse (inverse (inverse (inverse (multiply ?1012 ?1013)))) [1013, 1012] by Demod 448 with 33 at 2
5328 Id : 499, {_}: divide (inverse (inverse (inverse (inverse (inverse (inverse (multiply ?1108 ?1109))))))) ?1109 =>= inverse (inverse (inverse (inverse ?1108))) [1109, 1108] by Super 63 with 470 at 1,1,1,2
5329 Id : 519, {_}: divide (inverse (inverse (multiply ?1108 ?1109))) ?1109 =>= inverse (inverse (inverse (inverse ?1108))) [1109, 1108] by Demod 499 with 325 at 1,2
5330 Id : 571, {_}: ?1204 =<= inverse (inverse (inverse (inverse ?1204))) [1204] by Demod 519 with 63 at 2
5331 Id : 137, {_}: divide (inverse (divide ?349 ?348)) ?350 =<= inverse (inverse (multiply ?348 (divide (inverse ?349) ?350))) [350, 348, 349] by Super 35 with 63 at 2,1,1,2
5332 Id : 1535, {_}: multiply ?2972 (divide (inverse ?2973) ?2974) =<= inverse (inverse (divide (inverse (divide ?2973 ?2972)) ?2974)) [2974, 2973, 2972] by Super 571 with 137 at 1,1,3
5333 Id : 1610, {_}: multiply ?3089 (divide (inverse ?3089) ?3090) =>= inverse (inverse (inverse ?3090)) [3090, 3089] by Super 1535 with 40 at 1,1,3
5334 Id : 520, {_}: ?1108 =<= inverse (inverse (inverse (inverse ?1108))) [1108] by Demod 519 with 63 at 2
5335 Id : 565, {_}: multiply ?1187 (inverse (inverse (inverse ?1186))) =>= divide ?1187 ?1186 [1186, 1187] by Super 33 with 520 at 2,3
5336 Id : 590, {_}: divide (inverse (inverse ?1228)) (inverse (inverse ?1229)) =>= inverse (inverse (divide ?1228 ?1229)) [1229, 1228] by Super 285 with 565 at 1,1,3
5337 Id : 652, {_}: multiply (inverse (inverse ?1228)) (inverse ?1229) =>= inverse (inverse (divide ?1228 ?1229)) [1229, 1228] by Demod 590 with 33 at 2
5338 Id : 676, {_}: divide (inverse (inverse (inverse (inverse (divide ?1336 ?1337))))) (inverse ?1337) =>= inverse (inverse ?1336) [1337, 1336] by Super 63 with 652 at 1,1,1,2
5339 Id : 716, {_}: multiply (inverse (inverse (inverse (inverse (divide ?1336 ?1337))))) ?1337 =>= inverse (inverse ?1336) [1337, 1336] by Demod 676 with 33 at 2
5340 Id : 717, {_}: multiply (divide ?1336 ?1337) ?1337 =>= inverse (inverse ?1336) [1337, 1336] by Demod 716 with 520 at 1,2
5341 Id : 729, {_}: inverse (inverse ?1423) =<= divide (divide ?1423 (inverse (inverse (inverse ?1424)))) ?1424 [1424, 1423] by Super 565 with 717 at 2
5342 Id : 1120, {_}: inverse (inverse ?2062) =<= divide (multiply ?2062 (inverse (inverse ?2063))) ?2063 [2063, 2062] by Demod 729 with 33 at 1,3
5343 Id : 55, {_}: multiply (inverse (inverse (divide ?138 ?138))) ?139 =>= inverse (inverse ?139) [139, 138] by Super 36 with 40 at 1,2
5344 Id : 1134, {_}: inverse (inverse (inverse (inverse (divide ?2114 ?2114)))) =?= divide (inverse (inverse (inverse (inverse ?2115)))) ?2115 [2115, 2114] by Super 1120 with 55 at 1,3
5345 Id : 1167, {_}: divide ?2114 ?2114 =?= divide (inverse (inverse (inverse (inverse ?2115)))) ?2115 [2115, 2114] by Demod 1134 with 520 at 2
5346 Id : 1168, {_}: divide ?2114 ?2114 =?= divide ?2115 ?2115 [2115, 2114] by Demod 1167 with 520 at 1,3
5347 Id : 1620, {_}: multiply ?3130 (divide ?3129 ?3129) =>= inverse (inverse (inverse (inverse ?3130))) [3129, 3130] by Super 1610 with 1168 at 2,2
5348 Id : 1658, {_}: multiply ?3130 (divide ?3129 ?3129) =>= ?3130 [3129, 3130] by Demod 1620 with 520 at 3
5349 Id : 1679, {_}: multiply (inverse (divide ?3178 ?3179)) (divide ?3177 ?3177) =>= inverse (inverse (multiply ?3179 (inverse ?3178))) [3177, 3179, 3178] by Super 284 with 1658 at 2,1,1,3
5350 Id : 1729, {_}: inverse (divide ?3178 ?3179) =<= inverse (inverse (multiply ?3179 (inverse ?3178))) [3179, 3178] by Demod 1679 with 1658 at 2
5351 Id : 1730, {_}: inverse (divide ?3178 ?3179) =<= divide (inverse (inverse ?3179)) ?3178 [3179, 3178] by Demod 1729 with 285 at 3
5352 Id : 1760, {_}: multiply (inverse (inverse ?3336)) ?3337 =>= inverse (divide (inverse ?3337) ?3336) [3337, 3336] by Super 33 with 1730 at 3
5353 Id : 1861, {_}: multiply (inverse (divide (inverse ?3480) ?3482)) ?3481 =<= inverse (inverse (multiply ?3482 (inverse (divide (inverse ?3481) ?3480)))) [3481, 3482, 3480] by Super 284 with 1760 at 2,1,1,3
5354 Id : 1743, {_}: inverse (divide ?689 ?688) =<= inverse (inverse (multiply ?688 (inverse ?689))) [688, 689] by Demod 285 with 1730 at 2
5355 Id : 1928, {_}: multiply (inverse (divide (inverse ?3480) ?3482)) ?3481 =>= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3482, 3480] by Demod 1861 with 1743 at 3
5356 Id : 1740, {_}: inverse (divide ?126 (multiply ?128 ?126)) =>= ?128 [128, 126] by Demod 63 with 1730 at 2
5357 Id : 1855, {_}: inverse (divide ?3461 (inverse (divide (inverse ?3461) ?3460))) =>= inverse (inverse ?3460) [3460, 3461] by Super 1740 with 1760 at 2,1,2
5358 Id : 1942, {_}: inverse (multiply ?3461 (divide (inverse ?3461) ?3460)) =>= inverse (inverse ?3460) [3460, 3461] by Demod 1855 with 33 at 1,2
5359 Id : 1552, {_}: multiply ?3041 (divide (inverse ?3041) ?3042) =>= inverse (inverse (inverse ?3042)) [3042, 3041] by Super 1535 with 40 at 1,1,3
5360 Id : 1943, {_}: inverse (inverse (inverse (inverse ?3460))) =>= inverse (inverse ?3460) [3460] by Demod 1942 with 1552 at 1,2
5361 Id : 1944, {_}: ?3460 =<= inverse (inverse ?3460) [3460] by Demod 1943 with 520 at 2
5362 Id : 1988, {_}: multiply ?1187 (inverse ?1186) =>= divide ?1187 ?1186 [1186, 1187] by Demod 565 with 1944 at 2,2
5363 Id : 1992, {_}: inverse (divide ?689 ?688) =<= multiply ?688 (inverse ?689) [688, 689] by Demod 1743 with 1944 at 3
5364 Id : 1998, {_}: inverse (divide ?1186 ?1187) =>= divide ?1187 ?1186 [1187, 1186] by Demod 1988 with 1992 at 2
5365 Id : 2689, {_}: multiply (divide ?3482 (inverse ?3480)) ?3481 =<= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3480, 3482] by Demod 1928 with 1998 at 1,2
5366 Id : 2690, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3480, 3482] by Demod 2689 with 33 at 1,2
5367 Id : 2691, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= divide ?3482 (divide (inverse ?3481) ?3480) [3481, 3480, 3482] by Demod 2690 with 1998 at 3
5368 Id : 2002, {_}: divide (multiply ?128 ?126) ?126 =>= ?128 [126, 128] by Demod 1740 with 1998 at 2
5369 Id : 1619, {_}: multiply (inverse (multiply ?3126 ?3127)) ?3126 =>= inverse (inverse (inverse ?3127)) [3127, 3126] by Super 1610 with 63 at 2,2
5370 Id : 2085, {_}: multiply (inverse (multiply ?3126 ?3127)) ?3126 =>= inverse ?3127 [3127, 3126] by Demod 1619 with 1944 at 3
5371 Id : 2092, {_}: divide (inverse ?3663) ?3662 =>= inverse (multiply ?3662 ?3663) [3662, 3663] by Super 2002 with 2085 at 1,2
5372 Id : 2692, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= divide ?3482 (inverse (multiply ?3480 ?3481)) [3481, 3480, 3482] by Demod 2691 with 2092 at 2,3
5373 Id : 2693, {_}: multiply (multiply ?3482 ?3480) ?3481 =?= multiply ?3482 (multiply ?3480 ?3481) [3481, 3480, 3482] by Demod 2692 with 33 at 3
5374 Id : 2797, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 2693 at 2
5375 Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
5376 % SZS output end CNFRefutation for GRP453-1.p
5386 prove_these_axioms_3 is 94
5390 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
5391 (divide (divide ?5 ?4) ?2)
5394 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
5396 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
5397 [8, 7] by multiply ?7 ?8
5400 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5401 [] by prove_these_axioms_3
5402 Found proof, 128.157849s
5403 % SZS status Unsatisfiable for GRP471-1.p
5404 % SZS output start CNFRefutation for GRP471-1.p
5405 Id : 7, {_}: divide (inverse (divide ?10 (divide ?11 (divide ?12 ?13)))) (divide (divide ?13 ?12) ?10) =>= ?11 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13
5406 Id : 6, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8
5407 Id : 4, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
5408 Id : 466, {_}: divide (inverse (divide (inverse ?2074) (divide ?2075 (divide ?2076 ?2077)))) (multiply (divide ?2077 ?2076) ?2074) =>= ?2075 [2077, 2076, 2075, 2074] by Super 4 with 6 at 2,2
5409 Id : 2222, {_}: divide (inverse ?10322) (multiply (divide ?10323 ?10324) (divide (divide ?10324 ?10323) (divide ?10322 (divide ?10325 ?10326)))) =>= divide ?10326 ?10325 [10326, 10325, 10324, 10323, 10322] by Super 466 with 4 at 1,1,2
5410 Id : 498, {_}: divide (inverse ?2307) (multiply (divide ?2311 ?2310) (divide (divide ?2310 ?2311) (divide ?2307 (divide ?2308 ?2309)))) =>= divide ?2309 ?2308 [2309, 2308, 2310, 2311, 2307] by Super 466 with 4 at 1,1,2
5411 Id : 2240, {_}: divide (inverse ?10483) (multiply (divide ?10484 ?10485) (divide (divide ?10485 ?10484) (divide ?10483 (divide ?10482 ?10481)))) =?= divide (multiply (divide ?10479 ?10480) (divide (divide ?10480 ?10479) (divide ?10478 (divide ?10481 ?10482)))) (inverse ?10478) [10478, 10480, 10479, 10481, 10482, 10485, 10484, 10483] by Super 2222 with 498 at 2,2,2,2,2
5412 Id : 2367, {_}: divide ?10481 ?10482 =<= divide (multiply (divide ?10479 ?10480) (divide (divide ?10480 ?10479) (divide ?10478 (divide ?10481 ?10482)))) (inverse ?10478) [10478, 10480, 10479, 10482, 10481] by Demod 2240 with 498 at 2
5413 Id : 2430, {_}: divide ?11142 ?11143 =<= multiply (multiply (divide ?11144 ?11145) (divide (divide ?11145 ?11144) (divide ?11146 (divide ?11142 ?11143)))) ?11146 [11146, 11145, 11144, 11143, 11142] by Demod 2367 with 6 at 3
5414 Id : 2431, {_}: divide (inverse (divide ?11148 (divide ?11149 (divide ?11150 ?11151)))) (divide (divide ?11151 ?11150) ?11148) =?= multiply (multiply (divide ?11152 ?11153) (divide (divide ?11153 ?11152) (divide ?11154 ?11149))) ?11154 [11154, 11153, 11152, 11151, 11150, 11149, 11148] by Super 2430 with 4 at 2,2,2,1,3
5415 Id : 2616, {_}: ?11858 =<= multiply (multiply (divide ?11859 ?11860) (divide (divide ?11860 ?11859) (divide ?11861 ?11858))) ?11861 [11861, 11860, 11859, 11858] by Demod 2431 with 4 at 2
5416 Id : 2673, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (divide (divide (inverse ?12296) ?12298) (divide ?12299 ?12297))) ?12299 [12299, 12296, 12298, 12297] by Super 2616 with 6 at 1,1,3
5417 Id : 398, {_}: divide (inverse (divide ?1784 (divide ?1785 (divide (inverse ?1786) ?1787)))) (divide (multiply ?1787 ?1786) ?1784) =>= ?1785 [1787, 1786, 1785, 1784] by Super 4 with 6 at 1,2,2
5418 Id : 1221, {_}: divide (inverse (divide ?5281 (divide ?5282 (multiply (inverse ?5283) ?5284)))) (divide (multiply (inverse ?5284) ?5283) ?5281) =>= ?5282 [5284, 5283, 5282, 5281] by Super 398 with 6 at 2,2,1,1,2
5419 Id : 15, {_}: divide (inverse (divide ?58 (divide ?59 (multiply ?56 ?57)))) (divide (divide (inverse ?57) ?56) ?58) =>= ?59 [57, 56, 59, 58] by Super 4 with 6 at 2,2,1,1,2
5420 Id : 1238, {_}: divide (inverse ?5406) (divide (multiply (inverse ?5410) ?5409) (inverse (divide (multiply (inverse ?5409) ?5410) (divide ?5406 (multiply ?5407 ?5408))))) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5409, 5410, 5406] by Super 1221 with 15 at 1,1,2
5421 Id : 1282, {_}: divide (inverse ?5406) (multiply (multiply (inverse ?5410) ?5409) (divide (multiply (inverse ?5409) ?5410) (divide ?5406 (multiply ?5407 ?5408)))) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5409, 5410, 5406] by Demod 1238 with 6 at 2,2
5422 Id : 2872, {_}: ?12927 =<= multiply (multiply (divide (inverse ?12928) ?12929) (divide (multiply ?12929 ?12928) (divide ?12930 ?12927))) ?12930 [12930, 12929, 12928, 12927] by Super 2616 with 6 at 1,2,1,3
5423 Id : 3248, {_}: ?15081 =<= multiply (multiply (multiply (inverse ?15082) ?15083) (divide (multiply (inverse ?15083) ?15082) (divide ?15084 ?15081))) ?15084 [15084, 15083, 15082, 15081] by Super 2872 with 6 at 1,1,3
5424 Id : 10, {_}: divide (inverse (divide ?32 ?29)) (divide (divide ?33 (divide ?31 ?30)) ?32) =>= inverse (divide ?33 (divide ?29 (divide ?30 ?31))) [30, 31, 33, 29, 32] by Super 7 with 4 at 2,1,1,2
5425 Id : 22, {_}: inverse (divide ?98 (divide (divide ?101 (divide (divide ?99 ?100) ?98)) (divide ?100 ?99))) =>= ?101 [100, 99, 101, 98] by Super 4 with 10 at 2
5426 Id : 313, {_}: multiply ?1410 (divide ?1406 (divide (divide ?1407 (divide (divide ?1408 ?1409) ?1406)) (divide ?1409 ?1408))) =>= divide ?1410 ?1407 [1409, 1408, 1407, 1406, 1410] by Super 6 with 22 at 2,3
5427 Id : 13731, {_}: divide ?59402 ?59403 =<= multiply (divide (multiply (inverse ?59404) ?59405) ?59406) (divide ?59406 (divide (divide ?59403 ?59402) (multiply (inverse ?59405) ?59404))) [59406, 59405, 59404, 59403, 59402] by Super 3248 with 313 at 1,3
5428 Id : 13819, {_}: divide ?60191 ?60192 =<= multiply (multiply (multiply (inverse ?60193) ?60194) ?60190) (divide (inverse ?60190) (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193))) [60190, 60194, 60193, 60192, 60191] by Super 13731 with 6 at 1,3
5429 Id : 318, {_}: inverse (divide ?1446 (divide (divide ?1447 (divide (divide ?1448 ?1449) ?1446)) (divide ?1449 ?1448))) =>= ?1447 [1449, 1448, 1447, 1446] by Super 4 with 10 at 2
5430 Id : 1006, {_}: inverse (inverse (divide ?4256 (divide ?4257 (divide (inverse (divide (divide ?4258 ?4259) ?4257)) (divide ?4259 ?4258))))) =>= ?4256 [4259, 4258, 4257, 4256] by Super 318 with 10 at 1,2
5431 Id : 10788, {_}: inverse (inverse (inverse (divide ?46213 (divide ?46214 (divide ?46215 ?46216))))) =<= inverse (divide (divide (inverse (divide (divide ?46217 ?46218) (divide ?46213 (divide ?46216 ?46215)))) (divide ?46218 ?46217)) ?46214) [46218, 46217, 46216, 46215, 46214, 46213] by Super 1006 with 10 at 1,1,2
5432 Id : 31179, {_}: inverse (inverse (inverse (divide (divide ?147814 (divide (divide ?147815 ?147816) (divide ?147817 ?147818))) (divide ?147819 (divide ?147815 ?147816))))) =>= inverse (divide (divide ?147814 (divide ?147818 ?147817)) ?147819) [147819, 147818, 147817, 147816, 147815, 147814] by Super 10788 with 22 at 1,1,1,3
5433 Id : 23, {_}: divide (inverse (divide ?103 ?104)) (divide (divide ?105 (divide ?106 ?107)) ?103) =>= inverse (divide ?105 (divide ?104 (divide ?107 ?106))) [107, 106, 105, 104, 103] by Super 7 with 4 at 2,1,1,2
5434 Id : 32, {_}: divide (inverse (multiply ?171 ?170)) (divide (divide ?172 (divide ?173 ?174)) ?171) =>= inverse (divide ?172 (divide (inverse ?170) (divide ?174 ?173))) [174, 173, 172, 170, 171] by Super 23 with 6 at 1,1,2
5435 Id : 346, {_}: inverse (inverse (divide ?1643 (divide (inverse ?1642) (divide (inverse (multiply (divide ?1645 ?1644) ?1642)) (divide ?1644 ?1645))))) =>= ?1643 [1644, 1645, 1642, 1643] by Super 318 with 32 at 1,2
5436 Id : 31311, {_}: inverse (divide ?149137 (divide (divide (inverse (multiply (divide ?149135 ?149136) ?149134)) (divide ?149136 ?149135)) (divide ?149138 ?149139))) =>= inverse (divide (divide ?149137 (divide ?149139 ?149138)) (inverse ?149134)) [149139, 149138, 149134, 149136, 149135, 149137] by Super 31179 with 346 at 1,2
5437 Id : 57522, {_}: inverse (divide ?312686 (divide (divide (inverse (multiply (divide ?312687 ?312688) ?312689)) (divide ?312688 ?312687)) (divide ?312690 ?312691))) =>= inverse (multiply (divide ?312686 (divide ?312691 ?312690)) ?312689) [312691, 312690, 312689, 312688, 312687, 312686] by Demod 31311 with 6 at 1,3
5438 Id : 3434, {_}: divide ?16101 ?16102 =<= multiply (divide (divide ?16103 ?16104) ?16105) (divide ?16105 (divide (divide ?16102 ?16101) (divide ?16104 ?16103))) [16105, 16104, 16103, 16102, 16101] by Super 2430 with 313 at 1,3
5439 Id : 3646, {_}: divide (inverse ?16919) ?16920 =<= multiply (divide (divide ?16921 ?16922) ?16923) (divide ?16923 (divide (multiply ?16920 ?16919) (divide ?16922 ?16921))) [16923, 16922, 16921, 16920, 16919] by Super 3434 with 6 at 1,2,2,3
5440 Id : 3697, {_}: divide (inverse ?17353) ?17354 =<= multiply (divide (multiply ?17355 ?17352) ?17356) (divide ?17356 (divide (multiply ?17354 ?17353) (divide (inverse ?17352) ?17355))) [17356, 17352, 17355, 17354, 17353] by Super 3646 with 6 at 1,1,3
5441 Id : 154000, {_}: inverse (divide ?867821 (divide (divide (inverse (divide (inverse ?867822) ?867823)) (divide ?867824 (multiply ?867825 ?867826))) (divide ?867827 ?867828))) =>= inverse (multiply (divide ?867821 (divide ?867828 ?867827)) (divide ?867824 (divide (multiply ?867823 ?867822) (divide (inverse ?867826) ?867825)))) [867828, 867827, 867826, 867825, 867824, 867823, 867822, 867821] by Super 57522 with 3697 at 1,1,1,2,1,2
5442 Id : 412, {_}: divide (inverse ?1885) (divide (multiply ?1889 ?1888) (inverse (divide (divide (inverse ?1888) ?1889) (divide ?1885 (divide ?1886 ?1887))))) =>= divide ?1887 ?1886 [1887, 1886, 1888, 1889, 1885] by Super 398 with 4 at 1,1,2
5443 Id : 440, {_}: divide (inverse ?1885) (multiply (multiply ?1889 ?1888) (divide (divide (inverse ?1888) ?1889) (divide ?1885 (divide ?1886 ?1887)))) =>= divide ?1887 ?1886 [1887, 1886, 1888, 1889, 1885] by Demod 412 with 6 at 2,2
5444 Id : 154130, {_}: inverse (divide ?869515 (divide (divide (inverse (divide (inverse ?869516) ?869517)) (divide ?869514 ?869513)) (divide ?869518 ?869519))) =<= inverse (multiply (divide ?869515 (divide ?869519 ?869518)) (divide (inverse ?869510) (divide (multiply ?869517 ?869516) (divide (inverse (divide (divide (inverse ?869512) ?869511) (divide ?869510 (divide ?869513 ?869514)))) (multiply ?869511 ?869512))))) [869511, 869512, 869510, 869519, 869518, 869513, 869514, 869517, 869516, 869515] by Super 154000 with 440 at 2,1,2,1,2
5445 Id : 31180, {_}: inverse (inverse (inverse (divide (divide ?147825 (divide (divide (inverse (divide ?147821 (divide ?147822 (divide ?147823 ?147824)))) (divide (divide ?147824 ?147823) ?147821)) (divide ?147826 ?147827))) (divide ?147828 ?147822)))) =>= inverse (divide (divide ?147825 (divide ?147827 ?147826)) ?147828) [147828, 147827, 147826, 147824, 147823, 147822, 147821, 147825] by Super 31179 with 4 at 2,2,1,1,1,2
5446 Id : 31662, {_}: inverse (inverse (inverse (divide (divide ?150376 (divide ?150377 (divide ?150378 ?150379))) (divide ?150380 ?150377)))) =>= inverse (divide (divide ?150376 (divide ?150379 ?150378)) ?150380) [150380, 150379, 150378, 150377, 150376] by Demod 31180 with 4 at 1,2,1,1,1,1,2
5447 Id : 399, {_}: divide (inverse (divide (inverse ?1789) (divide ?1790 (divide (inverse ?1791) ?1792)))) (multiply (multiply ?1792 ?1791) ?1789) =>= ?1790 [1792, 1791, 1790, 1789] by Super 398 with 6 at 2,2
5448 Id : 31677, {_}: inverse (inverse (inverse (divide (divide ?150512 (divide (multiply (multiply ?150511 ?150510) ?150508) (divide ?150513 ?150514))) ?150509))) =<= inverse (divide (divide ?150512 (divide ?150514 ?150513)) (inverse (divide (inverse ?150508) (divide ?150509 (divide (inverse ?150510) ?150511))))) [150509, 150514, 150513, 150508, 150510, 150511, 150512] by Super 31662 with 399 at 2,1,1,1,2
5449 Id : 31809, {_}: inverse (inverse (inverse (divide (divide ?150512 (divide (multiply (multiply ?150511 ?150510) ?150508) (divide ?150513 ?150514))) ?150509))) =<= inverse (multiply (divide ?150512 (divide ?150514 ?150513)) (divide (inverse ?150508) (divide ?150509 (divide (inverse ?150510) ?150511)))) [150509, 150514, 150513, 150508, 150510, 150511, 150512] by Demod 31677 with 6 at 1,3
5450 Id : 154818, {_}: inverse (divide ?869515 (divide (divide (inverse (divide (inverse ?869516) ?869517)) (divide ?869514 ?869513)) (divide ?869518 ?869519))) =<= inverse (inverse (inverse (divide (divide ?869515 (divide (multiply (multiply (multiply ?869511 ?869512) (divide (divide (inverse ?869512) ?869511) (divide ?869510 (divide ?869513 ?869514)))) ?869510) (divide ?869518 ?869519))) (multiply ?869517 ?869516)))) [869510, 869512, 869511, 869519, 869518, 869513, 869514, 869517, 869516, 869515] by Demod 154130 with 31809 at 3
5451 Id : 155388, {_}: inverse (divide ?877204 (divide (divide (inverse (divide (inverse ?877205) ?877206)) (divide ?877207 ?877208)) (divide ?877209 ?877210))) =>= inverse (inverse (inverse (divide (divide ?877204 (divide (divide ?877208 ?877207) (divide ?877209 ?877210))) (multiply ?877206 ?877205)))) [877210, 877209, 877208, 877207, 877206, 877205, 877204] by Demod 154818 with 2673 at 1,2,1,1,1,1,3
5452 Id : 155389, {_}: inverse (divide ?877216 (divide (divide (inverse (divide (inverse ?877217) ?877218)) (divide ?877219 ?877220)) ?877213)) =<= inverse (inverse (inverse (divide (divide ?877216 (divide (divide ?877220 ?877219) (divide (inverse (divide ?877212 (divide ?877213 (divide ?877214 ?877215)))) (divide (divide ?877215 ?877214) ?877212)))) (multiply ?877218 ?877217)))) [877215, 877214, 877212, 877213, 877220, 877219, 877218, 877217, 877216] by Super 155388 with 4 at 2,2,1,2
5453 Id : 156615, {_}: inverse (divide ?885441 (divide (divide (inverse (divide (inverse ?885442) ?885443)) (divide ?885444 ?885445)) ?885446)) =>= inverse (inverse (inverse (divide (divide ?885441 (divide (divide ?885445 ?885444) ?885446)) (multiply ?885443 ?885442)))) [885446, 885445, 885444, 885443, 885442, 885441] by Demod 155389 with 4 at 2,2,1,1,1,1,3
5454 Id : 156655, {_}: inverse (divide ?885869 (divide (divide (inverse (divide ?885866 ?885870)) (divide ?885871 ?885872)) ?885873)) =<= inverse (inverse (inverse (divide (divide ?885869 (divide (divide ?885872 ?885871) ?885873)) (multiply ?885870 (divide ?885865 (divide (divide ?885866 (divide (divide ?885867 ?885868) ?885865)) (divide ?885868 ?885867))))))) [885868, 885867, 885865, 885873, 885872, 885871, 885870, 885866, 885869] by Super 156615 with 22 at 1,1,1,1,2,1,2
5455 Id : 157579, {_}: inverse (divide ?891923 (divide (divide (inverse (divide ?891924 ?891925)) (divide ?891926 ?891927)) ?891928)) =<= inverse (inverse (inverse (divide (divide ?891923 (divide (divide ?891927 ?891926) ?891928)) (divide ?891925 ?891924)))) [891928, 891927, 891926, 891925, 891924, 891923] by Demod 156655 with 313 at 2,1,1,1,3
5456 Id : 157660, {_}: inverse (divide (inverse (divide ?892784 ?892778)) (divide (divide (inverse (divide ?892781 ?892782)) (divide (divide ?892779 ?892780) ?892783)) ?892784)) =>= inverse (inverse (inverse (divide (inverse (divide ?892783 (divide ?892778 (divide ?892780 ?892779)))) (divide ?892782 ?892781)))) [892783, 892780, 892779, 892782, 892781, 892778, 892784] by Super 157579 with 10 at 1,1,1,1,3
5457 Id : 164761, {_}: inverse (inverse (divide (inverse (divide ?938345 ?938346)) (divide ?938347 (divide ?938348 (divide ?938349 ?938350))))) =<= inverse (inverse (inverse (divide (inverse (divide ?938348 (divide ?938347 (divide ?938350 ?938349)))) (divide ?938346 ?938345)))) [938350, 938349, 938348, 938347, 938346, 938345] by Demod 157660 with 10 at 1,2
5458 Id : 345, {_}: inverse (inverse (divide ?1638 (divide ?1637 (divide (inverse (divide (divide ?1640 ?1639) ?1637)) (divide ?1639 ?1640))))) =>= ?1638 [1639, 1640, 1637, 1638] by Super 318 with 10 at 1,2
5459 Id : 31310, {_}: inverse (divide ?149129 (divide (divide (inverse (divide (divide ?149127 ?149128) ?149132)) (divide ?149128 ?149127)) (divide ?149130 ?149131))) =>= inverse (divide (divide ?149129 (divide ?149131 ?149130)) ?149132) [149131, 149130, 149132, 149128, 149127, 149129] by Super 31179 with 345 at 1,2
5460 Id : 164877, {_}: inverse (inverse (divide (inverse (divide ?939554 ?939555)) (divide (divide (inverse (divide (divide ?939551 ?939552) ?939553)) (divide ?939552 ?939551)) (divide ?939556 (divide ?939557 ?939558))))) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?939556 (divide ?939557 ?939558)) ?939553)) (divide ?939555 ?939554)))) [939558, 939557, 939556, 939553, 939552, 939551, 939555, 939554] by Super 164761 with 31310 at 1,1,1,1,3
5461 Id : 177719, {_}: inverse (inverse (divide (divide (inverse (divide ?1018267 ?1018268)) (divide (divide ?1018269 ?1018270) ?1018271)) ?1018272)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1018271 (divide ?1018269 ?1018270)) ?1018272)) (divide ?1018268 ?1018267)))) [1018272, 1018271, 1018270, 1018269, 1018268, 1018267] by Demod 164877 with 31310 at 1,2
5462 Id : 177759, {_}: inverse (inverse (divide (divide (inverse (divide ?1018695 ?1018696)) (divide (divide (inverse (divide ?1018691 (divide ?1018692 (divide ?1018693 ?1018694)))) (divide (divide ?1018694 ?1018693) ?1018691)) ?1018697)) ?1018698)) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?1018697 ?1018692) ?1018698)) (divide ?1018696 ?1018695)))) [1018698, 1018697, 1018694, 1018693, 1018692, 1018691, 1018696, 1018695] by Super 177719 with 4 at 2,1,1,1,1,1,1,3
5463 Id : 178625, {_}: inverse (inverse (divide (divide (inverse (divide ?1023630 ?1023631)) (divide ?1023632 ?1023633)) ?1023634)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1023633 ?1023632) ?1023634)) (divide ?1023631 ?1023630)))) [1023634, 1023633, 1023632, 1023631, 1023630] by Demod 177759 with 4 at 1,2,1,1,1,2
5464 Id : 180647, {_}: inverse (inverse (divide (divide (inverse (divide ?1035759 ?1035760)) (divide (inverse ?1035761) ?1035762)) ?1035763)) =>= inverse (inverse (inverse (divide (inverse (divide (multiply ?1035762 ?1035761) ?1035763)) (divide ?1035760 ?1035759)))) [1035763, 1035762, 1035761, 1035760, 1035759] by Super 178625 with 6 at 1,1,1,1,1,1,3
5465 Id : 180814, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =<= inverse (inverse (inverse (divide (inverse (divide (multiply (inverse ?1037588) ?1037591) ?1037592)) (divide ?1037590 ?1037589)))) [1037592, 1037588, 1037591, 1037590, 1037589] by Super 180647 with 6 at 2,1,1,1,2
5466 Id : 187329, {_}: multiply ?1072739 (inverse (inverse (divide (inverse (divide (multiply (inverse ?1072737) ?1072736) ?1072738)) (divide ?1072735 ?1072734)))) =>= divide ?1072739 (inverse (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738))) [1072734, 1072735, 1072738, 1072736, 1072737, 1072739] by Super 6 with 180814 at 2,3
5467 Id : 187880, {_}: multiply ?1072739 (inverse (inverse (divide (inverse (divide (multiply (inverse ?1072737) ?1072736) ?1072738)) (divide ?1072735 ?1072734)))) =>= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072734, 1072735, 1072738, 1072736, 1072737, 1072739] by Demod 187329 with 6 at 3
5468 Id : 276296, {_}: inverse (inverse (divide (inverse (divide ?1501612 (divide ?1501613 ?1501614))) (divide ?1501615 (divide ?1501612 (divide ?1501613 ?1501614))))) =>= inverse (inverse (inverse ?1501615)) [1501615, 1501614, 1501613, 1501612] by Super 164761 with 4 at 1,1,1,3
5469 Id : 276336, {_}: inverse (inverse (divide (inverse (divide (inverse (divide ?1501959 (divide ?1501956 (divide ?1501957 ?1501958)))) (divide (divide ?1501958 ?1501957) ?1501959))) (divide ?1501960 ?1501956))) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501958, 1501957, 1501956, 1501959] by Super 276296 with 4 at 2,2,1,1,2
5470 Id : 277437, {_}: inverse (inverse (divide (inverse ?1506460) (divide ?1506461 ?1506460))) =>= inverse (inverse (inverse ?1506461)) [1506461, 1506460] by Demod 276336 with 4 at 1,1,1,1,2
5471 Id : 411, {_}: divide (inverse (divide ?1881 (divide ?1882 (multiply (inverse ?1883) ?1880)))) (divide (multiply (inverse ?1880) ?1883) ?1881) =>= ?1882 [1880, 1883, 1882, 1881] by Super 398 with 6 at 2,2,1,1,2
5472 Id : 277453, {_}: inverse (inverse (divide (inverse (divide (multiply (inverse ?1506555) ?1506554) ?1506552)) ?1506553)) =<= inverse (inverse (inverse (inverse (divide ?1506552 (divide ?1506553 (multiply (inverse ?1506554) ?1506555)))))) [1506553, 1506552, 1506554, 1506555] by Super 277437 with 411 at 2,1,1,2
5473 Id : 339, {_}: inverse (divide (inverse ?1603) (divide (divide ?1604 (multiply (divide ?1605 ?1606) ?1603)) (divide ?1606 ?1605))) =>= ?1604 [1606, 1605, 1604, 1603] by Super 318 with 6 at 2,1,2,1,2
5474 Id : 298734, {_}: inverse ?1602430 =<= inverse (inverse (inverse (divide ?1602430 (multiply (divide ?1602431 ?1602432) (divide ?1602432 ?1602431))))) [1602432, 1602431, 1602430] by Super 277437 with 339 at 1,2
5475 Id : 277476, {_}: inverse (inverse (divide (inverse (inverse ?1506721)) (multiply ?1506722 ?1506721))) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Super 277437 with 6 at 2,1,1,2
5476 Id : 298855, {_}: inverse (inverse (inverse (divide ?1603311 ?1603310))) =<= inverse (inverse (inverse (inverse (divide ?1603310 ?1603311)))) [1603310, 1603311] by Super 298734 with 277476 at 1,3
5477 Id : 299275, {_}: inverse (inverse (divide (inverse (divide (multiply (inverse ?1506555) ?1506554) ?1506552)) ?1506553)) =>= inverse (inverse (inverse (divide (divide ?1506553 (multiply (inverse ?1506554) ?1506555)) ?1506552))) [1506553, 1506552, 1506554, 1506555] by Demod 277453 with 298855 at 3
5478 Id : 299281, {_}: multiply ?1072739 (inverse (inverse (inverse (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738)))) =>= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072738, 1072737, 1072736, 1072734, 1072735, 1072739] by Demod 187880 with 299275 at 2,2
5479 Id : 299680, {_}: inverse (inverse (inverse (divide ?1606480 ?1606481))) =<= inverse (inverse (inverse (inverse (divide ?1606481 ?1606480)))) [1606481, 1606480] by Super 298734 with 277476 at 1,3
5480 Id : 299719, {_}: inverse (inverse (inverse (divide (inverse ?1606741) ?1606742))) =>= inverse (inverse (inverse (inverse (multiply ?1606742 ?1606741)))) [1606742, 1606741] by Super 299680 with 6 at 1,1,1,1,3
5481 Id : 300712, {_}: inverse (inverse (inverse (divide ?1610501 (inverse ?1610500)))) =<= inverse (inverse (inverse (inverse (inverse (multiply ?1610501 ?1610500))))) [1610500, 1610501] by Super 298855 with 299719 at 1,3
5482 Id : 303239, {_}: inverse (inverse (inverse (multiply ?1620581 ?1620582))) =<= inverse (inverse (inverse (inverse (inverse (multiply ?1620581 ?1620582))))) [1620582, 1620581] by Demod 300712 with 6 at 1,1,1,2
5483 Id : 2523, {_}: ?11149 =<= multiply (multiply (divide ?11152 ?11153) (divide (divide ?11153 ?11152) (divide ?11154 ?11149))) ?11154 [11154, 11153, 11152, 11149] by Demod 2431 with 4 at 2
5484 Id : 303314, {_}: inverse (inverse (inverse (multiply (multiply (divide ?1621150 ?1621151) (divide (divide ?1621151 ?1621150) (divide ?1621152 ?1621149))) ?1621152))) =>= inverse (inverse (inverse (inverse (inverse ?1621149)))) [1621149, 1621152, 1621151, 1621150] by Super 303239 with 2523 at 1,1,1,1,1,3
5485 Id : 304462, {_}: inverse (inverse (inverse ?1624383)) =<= inverse (inverse (inverse (inverse (inverse ?1624383)))) [1624383] by Demod 303314 with 2523 at 1,1,1,2
5486 Id : 304463, {_}: inverse (inverse (inverse (divide ?1624385 (divide (divide ?1624386 (divide (divide ?1624387 ?1624388) ?1624385)) (divide ?1624388 ?1624387))))) =>= inverse (inverse (inverse (inverse ?1624386))) [1624388, 1624387, 1624386, 1624385] by Super 304462 with 22 at 1,1,1,1,3
5487 Id : 305044, {_}: inverse (inverse ?1624386) =<= inverse (inverse (inverse (inverse ?1624386))) [1624386] by Demod 304463 with 22 at 1,1,2
5488 Id : 309508, {_}: inverse (inverse (inverse (divide ?1603311 ?1603310))) =>= inverse (inverse (divide ?1603310 ?1603311)) [1603310, 1603311] by Demod 298855 with 305044 at 3
5489 Id : 309601, {_}: multiply ?1072739 (inverse (inverse (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))))) =<= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 299281 with 309508 at 2,2
5490 Id : 310013, {_}: inverse (inverse ?1628964) =<= inverse (inverse (inverse (inverse ?1628964))) [1628964] by Demod 304463 with 22 at 1,1,2
5491 Id : 310154, {_}: inverse (inverse (divide ?1629909 (divide ?1629910 (divide (inverse (divide (divide ?1629911 ?1629912) ?1629910)) (divide ?1629912 ?1629911))))) =>= inverse (inverse ?1629909) [1629912, 1629911, 1629910, 1629909] by Super 310013 with 345 at 1,1,3
5492 Id : 310837, {_}: ?1629909 =<= inverse (inverse ?1629909) [1629909] by Demod 310154 with 345 at 2
5493 Id : 311136, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =<= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 309601 with 310837 at 2,2
5494 Id : 299278, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =<= inverse (inverse (inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)))) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 180814 with 299275 at 1,3
5495 Id : 299285, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =>= inverse (inverse (inverse (divide ?1037592 (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588))))) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 299278 with 298855 at 3
5496 Id : 309533, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =>= inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 299285 with 309508 at 3
5497 Id : 311173, {_}: divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592 =<= inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 309533 with 310837 at 2
5498 Id : 311174, {_}: divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592 =>= divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592 [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 311173 with 310837 at 3
5499 Id : 311184, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =<= multiply ?1072739 (inverse (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 311136 with 311174 at 1,2,3
5500 Id : 328, {_}: inverse (divide ?1523 (divide (divide ?1524 (divide (divide (inverse ?1522) ?1525) ?1523)) (multiply ?1525 ?1522))) =>= ?1524 [1525, 1522, 1524, 1523] by Super 318 with 6 at 2,2,1,2
5501 Id : 5095, {_}: multiply ?23662 (divide ?23663 (divide (divide ?23664 (divide (divide (inverse ?23665) ?23666) ?23663)) (multiply ?23666 ?23665))) =>= divide ?23662 ?23664 [23666, 23665, 23664, 23663, 23662] by Super 6 with 328 at 2,3
5502 Id : 5148, {_}: multiply ?24110 (inverse (divide ?24111 (divide ?24109 (divide (inverse (divide (multiply ?24113 ?24112) ?24109)) (divide (inverse ?24112) ?24113))))) =>= divide ?24110 ?24111 [24112, 24113, 24109, 24111, 24110] by Super 5095 with 10 at 2,2
5503 Id : 722, {_}: inverse (divide ?3136 (divide (divide ?3137 (divide (divide (inverse ?3138) ?3139) ?3136)) (multiply ?3139 ?3138))) =>= ?3137 [3139, 3138, 3137, 3136] by Super 318 with 6 at 2,2,1,2
5504 Id : 746, {_}: inverse (inverse (divide ?3302 (divide ?3301 (divide (inverse (divide (multiply ?3304 ?3303) ?3301)) (divide (inverse ?3303) ?3304))))) =>= ?3302 [3303, 3304, 3301, 3302] by Super 722 with 10 at 1,2
5505 Id : 311071, {_}: divide ?3302 (divide ?3301 (divide (inverse (divide (multiply ?3304 ?3303) ?3301)) (divide (inverse ?3303) ?3304))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 746 with 310837 at 2
5506 Id : 311292, {_}: multiply ?24110 (inverse ?24111) =>= divide ?24110 ?24111 [24111, 24110] by Demod 5148 with 311071 at 1,2,2
5507 Id : 311301, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =>= divide ?1072739 (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 311184 with 311292 at 3
5508 Id : 311313, {_}: divide ?60191 ?60192 =<= divide (multiply (multiply (inverse ?60193) ?60194) ?60190) (divide (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193)) (inverse ?60190)) [60190, 60194, 60193, 60192, 60191] by Demod 13819 with 311301 at 3
5509 Id : 311314, {_}: divide ?60191 ?60192 =<= divide (multiply (multiply (inverse ?60193) ?60194) ?60190) (multiply (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193)) ?60190) [60190, 60194, 60193, 60192, 60191] by Demod 311313 with 6 at 2,3
5510 Id : 54, {_}: divide (inverse (divide ?250 ?251)) (divide (divide ?252 (multiply ?253 ?254)) ?250) =>= inverse (divide ?252 (divide ?251 (divide (inverse ?254) ?253))) [254, 253, 252, 251, 250] by Super 23 with 6 at 2,1,2,2
5511 Id : 55, {_}: divide (inverse (divide (inverse ?256) ?257)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= inverse (divide ?258 (divide ?257 (divide (inverse ?260) ?259))) [260, 259, 258, 257, 256] by Super 54 with 6 at 2,2
5512 Id : 311016, {_}: inverse (divide ?1603311 ?1603310) =<= inverse (inverse (divide ?1603310 ?1603311)) [1603310, 1603311] by Demod 309508 with 310837 at 2
5513 Id : 311017, {_}: inverse (divide ?1603311 ?1603310) =>= divide ?1603310 ?1603311 [1603310, 1603311] by Demod 311016 with 310837 at 3
5514 Id : 311424, {_}: divide (divide ?257 (inverse ?256)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= inverse (divide ?258 (divide ?257 (divide (inverse ?260) ?259))) [260, 259, 258, 256, 257] by Demod 55 with 311017 at 1,2
5515 Id : 311425, {_}: divide (divide ?257 (inverse ?256)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (divide (inverse ?260) ?259)) ?258 [260, 259, 258, 256, 257] by Demod 311424 with 311017 at 3
5516 Id : 311594, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (divide (inverse ?260) ?259)) ?258 [260, 259, 258, 256, 257] by Demod 311425 with 6 at 1,2
5517 Id : 311596, {_}: divide ?60191 ?60192 =<= divide (divide (multiply (inverse ?60193) ?60194) (divide (inverse ?60193) (inverse ?60194))) (divide ?60192 ?60191) [60194, 60193, 60192, 60191] by Demod 311314 with 311594 at 3
5518 Id : 179540, {_}: inverse (inverse (divide (divide (inverse (divide (inverse ?1029056) ?1029057)) (divide ?1029058 ?1029059)) ?1029060)) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?1029059 ?1029058) ?1029060)) (multiply ?1029057 ?1029056)))) [1029060, 1029059, 1029058, 1029057, 1029056] by Super 178625 with 6 at 2,1,1,1,3
5519 Id : 186333, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1068110) ?1068111)) (divide ?1068112 ?1068113)) ?1068114)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1068113 ?1068112) ?1068114)) (multiply (inverse ?1068111) ?1068110)))) [1068114, 1068113, 1068112, 1068111, 1068110] by Super 179540 with 6 at 1,1,1,1,1,2
5520 Id : 186556, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1070554) ?1070555)) (divide (inverse ?1070553) ?1070556)) ?1070557)) =>= inverse (inverse (inverse (divide (inverse (divide (multiply ?1070556 ?1070553) ?1070557)) (multiply (inverse ?1070555) ?1070554)))) [1070557, 1070556, 1070553, 1070555, 1070554] by Super 186333 with 6 at 1,1,1,1,1,1,3
5521 Id : 179745, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1031256 ?1031255) ?1031257)) (multiply (inverse ?1031253) ?1031254)))) [1031257, 1031256, 1031255, 1031253, 1031254] by Super 179540 with 6 at 1,1,1,1,1,2
5522 Id : 277438, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =<= inverse (inverse (inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))))) [1506464, 1506463, 1506465, 1506466] by Super 277437 with 4 at 2,1,1,2
5523 Id : 299272, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =>= inverse (inverse (inverse (divide (divide ?1506464 (divide ?1506465 ?1506466)) ?1506463))) [1506464, 1506463, 1506465, 1506466] by Demod 277438 with 298855 at 3
5524 Id : 299290, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =<= inverse (inverse (inverse (inverse (divide (divide (multiply (inverse ?1031253) ?1031254) (divide ?1031255 ?1031256)) ?1031257)))) [1031257, 1031256, 1031255, 1031253, 1031254] by Demod 179745 with 299272 at 1,3
5525 Id : 299299, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =>= inverse (inverse (inverse (divide ?1031257 (divide (multiply (inverse ?1031253) ?1031254) (divide ?1031255 ?1031256))))) [1031257, 1031256, 1031255, 1031253, 1031254] by Demod 299290 with 298855 at 3
5526 Id : 299300, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =?= inverse (inverse (inverse (divide (inverse (divide (multiply ?1070556 ?1070553) ?1070557)) (multiply (inverse ?1070555) ?1070554)))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 186556 with 299299 at 2
5527 Id : 300336, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =>= inverse (inverse (inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 299300 with 299719 at 3
5528 Id : 309498, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =>= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 300336 with 305044 at 3
5529 Id : 309684, {_}: inverse (inverse (divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557)) =>= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 309498 with 309508 at 2
5530 Id : 311181, {_}: divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557 =<= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 309684 with 310837 at 2
5531 Id : 311182, {_}: divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557 =>= multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 311181 with 310837 at 3
5532 Id : 311600, {_}: divide ?60191 ?60192 =<= multiply (multiply (inverse ?60193) ?60194) (divide (multiply (inverse ?60194) ?60193) (divide ?60192 ?60191)) [60194, 60193, 60192, 60191] by Demod 311596 with 311182 at 3
5533 Id : 311603, {_}: divide (inverse ?5406) (divide (multiply ?5407 ?5408) ?5406) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5406] by Demod 1282 with 311600 at 2,2
5534 Id : 276834, {_}: inverse (inverse (divide (inverse ?1501956) (divide ?1501960 ?1501956))) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501956] by Demod 276336 with 4 at 1,1,1,1,2
5535 Id : 311035, {_}: divide (inverse ?1501956) (divide ?1501960 ?1501956) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501956] by Demod 276834 with 310837 at 2
5536 Id : 311036, {_}: divide (inverse ?1501956) (divide ?1501960 ?1501956) =>= inverse ?1501960 [1501960, 1501956] by Demod 311035 with 310837 at 3
5537 Id : 311604, {_}: inverse (multiply ?5407 ?5408) =<= divide (inverse ?5408) ?5407 [5408, 5407] by Demod 311603 with 311036 at 2
5538 Id : 311708, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (divide (inverse (multiply ?12298 ?12296)) (divide ?12299 ?12297))) ?12299 [12299, 12296, 12298, 12297] by Demod 2673 with 311604 at 1,2,1,3
5539 Id : 311709, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (inverse (multiply (divide ?12299 ?12297) (multiply ?12298 ?12296)))) ?12299 [12299, 12296, 12298, 12297] by Demod 311708 with 311604 at 2,1,3
5540 Id : 311866, {_}: ?12297 =<= multiply (divide (multiply ?12298 ?12296) (multiply (divide ?12299 ?12297) (multiply ?12298 ?12296))) ?12299 [12299, 12296, 12298, 12297] by Demod 311709 with 311292 at 1,3
5541 Id : 311110, {_}: divide (inverse (inverse ?1506721)) (multiply ?1506722 ?1506721) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Demod 277476 with 310837 at 2
5542 Id : 311111, {_}: divide ?1506721 (multiply ?1506722 ?1506721) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Demod 311110 with 310837 at 1,2
5543 Id : 311112, {_}: divide ?1506721 (multiply ?1506722 ?1506721) =>= inverse ?1506722 [1506722, 1506721] by Demod 311111 with 310837 at 3
5544 Id : 311867, {_}: ?12297 =<= multiply (inverse (divide ?12299 ?12297)) ?12299 [12299, 12297] by Demod 311866 with 311112 at 1,3
5545 Id : 311868, {_}: ?12297 =<= multiply (divide ?12297 ?12299) ?12299 [12299, 12297] by Demod 311867 with 311017 at 1,3
5546 Id : 31329, {_}: inverse (inverse (inverse (divide (divide ?147825 (divide ?147822 (divide ?147826 ?147827))) (divide ?147828 ?147822)))) =>= inverse (divide (divide ?147825 (divide ?147827 ?147826)) ?147828) [147828, 147827, 147826, 147822, 147825] by Demod 31180 with 4 at 1,2,1,1,1,1,2
5547 Id : 31603, {_}: multiply ?149797 (inverse (inverse (divide (divide ?149792 (divide ?149793 (divide ?149794 ?149795))) (divide ?149796 ?149793)))) =>= divide ?149797 (inverse (divide (divide ?149792 (divide ?149795 ?149794)) ?149796)) [149796, 149795, 149794, 149793, 149792, 149797] by Super 6 with 31329 at 2,3
5548 Id : 33302, {_}: multiply ?159935 (inverse (inverse (divide (divide ?159936 (divide ?159937 (divide ?159938 ?159939))) (divide ?159940 ?159937)))) =>= multiply ?159935 (divide (divide ?159936 (divide ?159939 ?159938)) ?159940) [159940, 159939, 159938, 159937, 159936, 159935] by Demod 31603 with 6 at 3
5549 Id : 33303, {_}: multiply ?159946 (inverse (inverse (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943))) =>= multiply ?159946 (divide (divide ?159947 (divide ?159949 ?159948)) (inverse (divide ?159942 (divide ?159943 (divide ?159944 ?159945))))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Super 33302 with 4 at 2,1,1,2,2
5550 Id : 33719, {_}: multiply ?159946 (inverse (inverse (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943))) =>= multiply ?159946 (multiply (divide ?159947 (divide ?159949 ?159948)) (divide ?159942 (divide ?159943 (divide ?159944 ?159945)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 33303 with 6 at 2,3
5551 Id : 311080, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =<= multiply ?159946 (multiply (divide ?159947 (divide ?159949 ?159948)) (divide ?159942 (divide ?159943 (divide ?159944 ?159945)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 33719 with 310837 at 2,2
5552 Id : 158025, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =<= inverse (inverse (inverse (divide (inverse (divide ?892783 (divide ?892778 (divide ?892780 ?892779)))) (divide ?892782 ?892781)))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 157660 with 10 at 1,2
5553 Id : 300347, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =<= inverse (inverse (inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 158025 with 299719 at 3
5554 Id : 309517, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =>= inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 300347 with 305044 at 3
5555 Id : 311023, {_}: divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =<= inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 309517 with 310837 at 2
5556 Id : 311024, {_}: divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =>= multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 311023 with 310837 at 3
5557 Id : 311478, {_}: divide (divide ?892782 ?892781) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =<= multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))) [892780, 892779, 892783, 892778, 892781, 892782] by Demod 311024 with 311017 at 1,2
5558 Id : 311484, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =?= multiply ?159946 (divide (divide ?159947 (divide ?159949 ?159948)) (divide ?159943 (divide ?159942 (divide ?159945 ?159944)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 311080 with 311478 at 2,3
5559 Id : 31729, {_}: inverse (inverse (inverse (divide (divide ?150997 ?150994) (divide ?150999 (inverse (divide ?150998 (divide ?150994 (divide ?150995 ?150996)))))))) =>= inverse (divide (divide ?150997 (divide ?150998 (divide ?150996 ?150995))) ?150999) [150996, 150995, 150998, 150999, 150994, 150997] by Super 31662 with 4 at 2,1,1,1,1,2
5560 Id : 36383, {_}: inverse (inverse (inverse (divide (divide ?176720 ?176721) (multiply ?176722 (divide ?176723 (divide ?176721 (divide ?176724 ?176725))))))) =>= inverse (divide (divide ?176720 (divide ?176723 (divide ?176725 ?176724))) ?176722) [176725, 176724, 176723, 176722, 176721, 176720] by Demod 31729 with 6 at 2,1,1,1,2
5561 Id : 36463, {_}: inverse (inverse (inverse (divide ?177473 (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479))))))) =>= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177479, 177478, 177472, 177474, 177475, 177477, 177476, 177473] by Super 36383 with 4 at 1,1,1,1,2
5562 Id : 309587, {_}: inverse (inverse (divide (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)))) ?177473)) =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177479, 177478, 177472, 177474, 177475, 177477, 177476] by Demod 36463 with 309508 at 2
5563 Id : 311007, {_}: divide (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)))) ?177473 =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177479, 177478, 177472, 177474, 177475, 177477, 177476] by Demod 309587 with 310837 at 2
5564 Id : 178159, {_}: inverse (inverse (divide (divide (inverse (divide ?1018695 ?1018696)) (divide ?1018692 ?1018697)) ?1018698)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1018697 ?1018692) ?1018698)) (divide ?1018696 ?1018695)))) [1018698, 1018697, 1018692, 1018696, 1018695] by Demod 177759 with 4 at 1,2,1,1,1,2
5565 Id : 178479, {_}: multiply ?1021991 (inverse (inverse (divide (inverse (divide (divide ?1021989 ?1021988) ?1021990)) (divide ?1021987 ?1021986)))) =>= divide ?1021991 (inverse (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990))) [1021986, 1021987, 1021990, 1021988, 1021989, 1021991] by Super 6 with 178159 at 2,3
5566 Id : 178887, {_}: multiply ?1021991 (inverse (inverse (divide (inverse (divide (divide ?1021989 ?1021988) ?1021990)) (divide ?1021987 ?1021986)))) =>= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021986, 1021987, 1021990, 1021988, 1021989, 1021991] by Demod 178479 with 6 at 3
5567 Id : 299293, {_}: multiply ?1021991 (inverse (inverse (inverse (divide (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989)) ?1021990)))) =>= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021990, 1021989, 1021988, 1021986, 1021987, 1021991] by Demod 178887 with 299272 at 2,2
5568 Id : 309531, {_}: multiply ?1021991 (inverse (inverse (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))))) =<= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 299293 with 309508 at 2,2
5569 Id : 311175, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =<= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 309531 with 310837 at 2,2
5570 Id : 311300, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =<= divide ?1021991 (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 311175 with 311292 at 3
5571 Id : 311471, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =>= divide ?1021991 (divide (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989)) ?1021990) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 311300 with 311017 at 1,1,2,3
5572 Id : 312117, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 311007 with 311471 at 1,2
5573 Id : 312118, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= divide ?177476 (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312117 with 311017 at 3
5574 Id : 312119, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= divide ?177476 (inverse (multiply (divide ?177477 (divide ?177479 ?177478)) (divide ?177472 (divide ?177473 (divide ?177474 ?177475))))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312118 with 311604 at 2,3
5575 Id : 312120, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= multiply ?177476 (multiply (divide ?177477 (divide ?177479 ?177478)) (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312119 with 6 at 3
5576 Id : 312121, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= multiply ?177476 (divide (divide ?177477 (divide ?177479 ?177478)) (divide ?177473 (divide ?177472 (divide ?177475 ?177474)))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312120 with 311478 at 2,3
5577 Id : 312122, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =>= divide (divide ?159946 (divide (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949)) ?159947)) ?159943 [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 311484 with 312121 at 3
5578 Id : 26, {_}: divide (inverse (divide ?127 ?128)) (divide (divide ?129 (multiply ?130 ?126)) ?127) =>= inverse (divide ?129 (divide ?128 (divide (inverse ?126) ?130))) [126, 130, 129, 128, 127] by Super 23 with 6 at 2,1,2,2
5579 Id : 673, {_}: inverse (divide ?2882 (divide (divide ?2883 (divide (multiply ?2884 ?2885) ?2882)) (divide (inverse ?2885) ?2884))) =>= ?2883 [2885, 2884, 2883, 2882] by Super 4 with 26 at 2
5580 Id : 1528, {_}: inverse (divide ?6677 (divide (divide ?6678 (divide (multiply (inverse ?6679) ?6680) ?6677)) (multiply (inverse ?6680) ?6679))) =>= ?6678 [6680, 6679, 6678, 6677] by Super 673 with 6 at 2,2,1,2
5581 Id : 1549, {_}: inverse (inverse (divide ?6831 (divide (inverse ?6830) (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833))))) =>= ?6831 [6832, 6833, 6830, 6831] by Super 1528 with 32 at 1,2
5582 Id : 311073, {_}: divide ?6831 (divide (inverse ?6830) (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833))) =>= ?6831 [6832, 6833, 6830, 6831] by Demod 1549 with 310837 at 2
5583 Id : 311743, {_}: divide ?6831 (inverse (multiply (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833)) ?6830)) =>= ?6831 [6830, 6832, 6833, 6831] by Demod 311073 with 311604 at 2,2
5584 Id : 311744, {_}: divide ?6831 (inverse (multiply (inverse (multiply (multiply (inverse ?6832) ?6833) (multiply (multiply (inverse ?6833) ?6832) ?6830))) ?6830)) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311743 with 311604 at 1,1,2,2
5585 Id : 311850, {_}: multiply ?6831 (multiply (inverse (multiply (multiply (inverse ?6832) ?6833) (multiply (multiply (inverse ?6833) ?6832) ?6830))) ?6830) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311744 with 6 at 2
5586 Id : 179801, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1031802) ?1031803)) (divide ?1031804 ?1031805)) ?1031801)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1031805 ?1031804) (inverse ?1031801))) (multiply ?1031803 ?1031802)))) [1031801, 1031805, 1031804, 1031803, 1031802] by Super 179540 with 6 at 1,1,2
5587 Id : 182767, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1047817) ?1047818)) (divide ?1047819 ?1047820)) ?1047821)) =>= inverse (inverse (inverse (divide (inverse (multiply (divide ?1047820 ?1047819) ?1047821)) (multiply ?1047818 ?1047817)))) [1047821, 1047820, 1047819, 1047818, 1047817] by Demod 179801 with 6 at 1,1,1,1,1,3
5588 Id : 190010, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1087858) ?1087859)) (multiply ?1087860 ?1087861)) ?1087862)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide (inverse ?1087861) ?1087860) ?1087862)) (multiply ?1087859 ?1087858)))) [1087862, 1087861, 1087860, 1087859, 1087858] by Super 182767 with 6 at 2,1,1,1,2
5589 Id : 190267, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1090617) ?1090618)) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =>= inverse (inverse (inverse (divide (inverse (multiply (multiply (inverse ?1090619) ?1090616) ?1090620)) (multiply ?1090618 ?1090617)))) [1090620, 1090619, 1090616, 1090618, 1090617] by Super 190010 with 6 at 1,1,1,1,1,1,3
5590 Id : 182806, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1048196) ?1048197)) (multiply ?1048198 ?1048195)) ?1048199)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide (inverse ?1048195) ?1048198) ?1048199)) (multiply ?1048197 ?1048196)))) [1048199, 1048195, 1048198, 1048197, 1048196] by Super 182767 with 6 at 2,1,1,1,2
5591 Id : 490, {_}: divide (inverse (divide (inverse ?2255) (divide ?2256 (multiply ?2257 ?2254)))) (multiply (divide (inverse ?2254) ?2257) ?2255) =>= ?2256 [2254, 2257, 2256, 2255] by Super 466 with 6 at 2,2,1,1,2
5592 Id : 277455, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =<= inverse (inverse (inverse (inverse (divide (inverse ?1506563) (divide ?1506564 (multiply ?1506565 ?1506566)))))) [1506564, 1506563, 1506565, 1506566] by Super 277437 with 490 at 2,1,1,2
5593 Id : 299269, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =>= inverse (inverse (inverse (divide (divide ?1506564 (multiply ?1506565 ?1506566)) (inverse ?1506563)))) [1506564, 1506563, 1506565, 1506566] by Demod 277455 with 298855 at 3
5594 Id : 299304, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =>= inverse (inverse (inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563))) [1506564, 1506563, 1506565, 1506566] by Demod 299269 with 6 at 1,1,1,3
5595 Id : 299306, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1048196) ?1048197)) (multiply ?1048198 ?1048195)) ?1048199)) =>= inverse (inverse (inverse (inverse (multiply (divide (multiply ?1048197 ?1048196) (multiply ?1048198 ?1048195)) ?1048199)))) [1048199, 1048195, 1048198, 1048197, 1048196] by Demod 182806 with 299304 at 1,3
5596 Id : 299307, {_}: inverse (inverse (inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)))) =<= inverse (inverse (inverse (divide (inverse (multiply (multiply (inverse ?1090619) ?1090616) ?1090620)) (multiply ?1090618 ?1090617)))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 190267 with 299306 at 2
5597 Id : 300335, {_}: inverse (inverse (inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)))) =<= inverse (inverse (inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 299307 with 299719 at 3
5598 Id : 309523, {_}: inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =<= inverse (inverse (inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 300335 with 305044 at 2
5599 Id : 309524, {_}: inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =<= inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 309523 with 305044 at 3
5600 Id : 311029, {_}: multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620 =<= inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 309524 with 310837 at 2
5601 Id : 311030, {_}: multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620 =<= multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 311029 with 310837 at 3
5602 Id : 311851, {_}: multiply ?6831 (multiply (inverse (multiply (divide (multiply (inverse ?6832) ?6833) (multiply (inverse ?6832) ?6833)) ?6830)) ?6830) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311850 with 311030 at 1,1,2,2
5603 Id : 692, {_}: inverse (inverse (divide ?3016 (divide (inverse ?3015) (divide (inverse (multiply (divide (inverse ?3018) ?3017) ?3015)) (multiply ?3017 ?3018))))) =>= ?3016 [3017, 3018, 3015, 3016] by Super 673 with 32 at 1,2
5604 Id : 277278, {_}: inverse (inverse (inverse (inverse ?1505137))) =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Super 692 with 276834 at 2
5605 Id : 309511, {_}: inverse (inverse ?1505137) =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Demod 277278 with 305044 at 2
5606 Id : 311129, {_}: ?1505137 =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Demod 309511 with 310837 at 2
5607 Id : 311117, {_}: divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564 =<= inverse (inverse (inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563))) [1506564, 1506563, 1506565, 1506566] by Demod 299304 with 310837 at 2
5608 Id : 311118, {_}: divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564 =>= inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563) [1506564, 1506563, 1506565, 1506566] by Demod 311117 with 310837 at 3
5609 Id : 311205, {_}: ?1505137 =<= inverse (inverse (multiply (divide (multiply ?1505139 ?1505138) (multiply ?1505139 ?1505138)) ?1505137)) [1505138, 1505139, 1505137] by Demod 311129 with 311118 at 1,3
5610 Id : 311206, {_}: ?1505137 =<= multiply (divide (multiply ?1505139 ?1505138) (multiply ?1505139 ?1505138)) ?1505137 [1505138, 1505139, 1505137] by Demod 311205 with 310837 at 3
5611 Id : 311852, {_}: multiply ?6831 (multiply (inverse ?6830) ?6830) =>= ?6831 [6830, 6831] by Demod 311851 with 311206 at 1,1,2,2
5612 Id : 312318, {_}: multiply ?1630838 (multiply ?1630837 (inverse ?1630837)) =>= ?1630838 [1630837, 1630838] by Super 311852 with 310837 at 1,2,2
5613 Id : 312456, {_}: multiply ?1630838 (divide ?1630837 ?1630837) =>= ?1630838 [1630837, 1630838] by Demod 312318 with 311292 at 2,2
5614 Id : 312737, {_}: divide (divide ?1631485 (divide (divide (divide (divide ?1631486 ?1631487) ?1631488) (divide (divide ?1631486 ?1631487) ?1631488)) ?1631489)) ?1631489 =>= ?1631485 [1631489, 1631488, 1631487, 1631486, 1631485] by Super 312121 with 312456 at 3
5615 Id : 164905, {_}: inverse (inverse (divide (inverse (divide ?939850 (divide ?939851 ?939852))) (divide ?939849 (divide ?939850 (divide ?939851 ?939852))))) =>= inverse (inverse (inverse ?939849)) [939849, 939852, 939851, 939850] by Super 164761 with 4 at 1,1,1,3
5616 Id : 276099, {_}: inverse (inverse (inverse ?1499672)) =<= inverse (divide (inverse (divide (divide ?1499671 ?1499670) ?1499672)) (divide ?1499670 ?1499671)) [1499670, 1499671, 1499672] by Super 345 with 164905 at 2
5617 Id : 311033, {_}: inverse ?1499672 =<= inverse (divide (inverse (divide (divide ?1499671 ?1499670) ?1499672)) (divide ?1499670 ?1499671)) [1499670, 1499671, 1499672] by Demod 276099 with 310837 at 2
5618 Id : 309603, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =>= inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))) [1506464, 1506463, 1506465, 1506466] by Demod 299272 with 309508 at 3
5619 Id : 311134, {_}: divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464 =<= inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))) [1506464, 1506463, 1506465, 1506466] by Demod 309603 with 310837 at 2
5620 Id : 311135, {_}: divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464 =>= divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)) [1506464, 1506463, 1506465, 1506466] by Demod 311134 with 310837 at 3
5621 Id : 311365, {_}: inverse ?1499672 =<= inverse (divide ?1499672 (divide (divide ?1499670 ?1499671) (divide ?1499670 ?1499671))) [1499671, 1499670, 1499672] by Demod 311033 with 311135 at 1,3
5622 Id : 311372, {_}: inverse ?1499672 =<= divide (divide (divide ?1499670 ?1499671) (divide ?1499670 ?1499671)) ?1499672 [1499671, 1499670, 1499672] by Demod 311365 with 311017 at 3
5623 Id : 313817, {_}: divide (divide ?1631485 (inverse ?1631489)) ?1631489 =>= ?1631485 [1631489, 1631485] by Demod 312737 with 311372 at 2,1,2
5624 Id : 313818, {_}: divide (multiply ?1631485 ?1631489) ?1631489 =>= ?1631485 [1631489, 1631485] by Demod 313817 with 6 at 1,2
5625 Id : 317392, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =<= divide (divide ?1642981 (divide (divide (divide (divide ?1642982 ?1642983) ?1642984) (divide ?1642985 ?1642986)) (multiply ?1642980 (divide (divide (divide ?1642982 ?1642983) ?1642984) (divide ?1642985 ?1642986))))) ?1642987 [1642986, 1642985, 1642984, 1642983, 1642982, 1642987, 1642980, 1642981] by Super 312122 with 313818 at 1,2,2
5626 Id : 318522, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =<= divide (divide ?1642981 (inverse ?1642980)) ?1642987 [1642987, 1642980, 1642981] by Demod 317392 with 311112 at 2,1,3
5627 Id : 318523, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =>= divide (multiply ?1642981 ?1642980) ?1642987 [1642987, 1642980, 1642981] by Demod 318522 with 6 at 1,3
5628 Id : 311394, {_}: divide (divide ?1506463 (divide ?1506466 ?1506465)) ?1506464 =?= divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)) [1506464, 1506465, 1506466, 1506463] by Demod 311135 with 311017 at 1,2
5629 Id : 277640, {_}: inverse ?1508034 =<= inverse (inverse (inverse (divide ?1508034 (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035))))) [1508036, 1508035, 1508034] by Super 277437 with 339 at 1,2
5630 Id : 309536, {_}: inverse ?1508034 =<= inverse (inverse (divide (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035)) ?1508034)) [1508036, 1508035, 1508034] by Demod 277640 with 309508 at 3
5631 Id : 310975, {_}: inverse ?1508034 =<= divide (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035)) ?1508034 [1508036, 1508035, 1508034] by Demod 309536 with 310837 at 3
5632 Id : 312719, {_}: inverse ?1631352 =<= divide (divide ?1631351 ?1631351) ?1631352 [1631351, 1631352] by Super 310975 with 312456 at 1,3
5633 Id : 314397, {_}: divide (divide ?1637990 (divide ?1637991 ?1637992)) (divide ?1637989 ?1637989) =>= divide ?1637990 (inverse (divide ?1637992 ?1637991)) [1637989, 1637992, 1637991, 1637990] by Super 311394 with 312719 at 2,3
5634 Id : 311378, {_}: divide ?3302 (divide ?3301 (divide (divide ?3301 (multiply ?3304 ?3303)) (divide (inverse ?3303) ?3304))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 311071 with 311017 at 1,2,2,2
5635 Id : 312063, {_}: divide ?3302 (divide ?3301 (divide (divide ?3301 (multiply ?3304 ?3303)) (inverse (multiply ?3304 ?3303)))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 311378 with 311604 at 2,2,2,2
5636 Id : 312064, {_}: divide ?3302 (divide ?3301 (multiply (divide ?3301 (multiply ?3304 ?3303)) (multiply ?3304 ?3303))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 312063 with 6 at 2,2,2
5637 Id : 312065, {_}: divide ?3302 (divide ?3301 ?3301) =>= ?3302 [3301, 3302] by Demod 312064 with 311868 at 2,2,2
5638 Id : 314879, {_}: divide ?1637990 (divide ?1637991 ?1637992) =<= divide ?1637990 (inverse (divide ?1637992 ?1637991)) [1637992, 1637991, 1637990] by Demod 314397 with 312065 at 2
5639 Id : 314880, {_}: divide ?1637990 (divide ?1637991 ?1637992) =<= multiply ?1637990 (divide ?1637992 ?1637991) [1637992, 1637991, 1637990] by Demod 314879 with 6 at 3
5640 Id : 320415, {_}: divide ?1642981 (divide ?1642987 ?1642980) =?= divide (multiply ?1642981 ?1642980) ?1642987 [1642980, 1642987, 1642981] by Demod 318523 with 314880 at 2
5641 Id : 343753, {_}: multiply ?1701701 ?1701702 =<= multiply (divide ?1701701 (divide ?1701703 ?1701702)) ?1701703 [1701703, 1701702, 1701701] by Super 311868 with 320415 at 1,3
5642 Id : 311818, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (inverse (multiply ?259 ?260))) ?258 [260, 259, 258, 256, 257] by Demod 311594 with 311604 at 2,1,3
5643 Id : 311820, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (multiply ?257 (multiply ?259 ?260)) ?258 [260, 259, 258, 256, 257] by Demod 311818 with 6 at 1,3
5644 Id : 317517, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =?= divide (multiply ?1643886 (multiply ?1643888 ?1643889)) (multiply ?1643885 (multiply ?1643888 ?1643889)) [1643889, 1643888, 1643885, 1643887, 1643886] by Super 311820 with 313818 at 1,2,2
5645 Id : 32072, {_}: inverse (inverse (inverse (divide (divide ?152561 (divide ?152562 (multiply ?152563 ?152564))) (divide ?152565 ?152562)))) =>= inverse (divide (divide ?152561 (divide (inverse ?152564) ?152563)) ?152565) [152565, 152564, 152563, 152562, 152561] by Super 31662 with 6 at 2,2,1,1,1,1,2
5646 Id : 691, {_}: inverse (inverse (divide ?3011 (divide ?3010 (divide (inverse (divide (divide (inverse ?3013) ?3012) ?3010)) (multiply ?3012 ?3013))))) =>= ?3011 [3012, 3013, 3010, 3011] by Super 673 with 10 at 1,2
5647 Id : 32186, {_}: inverse (divide ?153559 (divide (divide (inverse (divide (divide (inverse ?153557) ?153558) ?153562)) (multiply ?153558 ?153557)) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153562, 153558, 153557, 153559] by Super 32072 with 691 at 1,2
5648 Id : 311187, {_}: inverse (divide ?153559 (divide (divide ?153562 (divide (multiply ?153558 ?153557) (divide ?153558 (inverse ?153557)))) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153557, 153558, 153562, 153559] by Demod 32186 with 311135 at 1,2,1,2
5649 Id : 311196, {_}: inverse (divide ?153559 (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153557, 153558, 153562, 153559] by Demod 311187 with 6 at 2,2,1,2,1,2
5650 Id : 311391, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311196 with 311017 at 2
5651 Id : 311392, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (divide ?153559 (divide (inverse ?153561) ?153560)) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311391 with 311017 at 3
5652 Id : 312039, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (divide ?153559 (inverse (multiply ?153560 ?153561))) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311392 with 311604 at 2,2,3
5653 Id : 312040, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (multiply ?153559 (multiply ?153560 ?153561)) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 312039 with 6 at 2,3
5654 Id : 312075, {_}: divide (divide ?153562 (multiply ?153560 ?153561)) ?153559 =?= divide ?153562 (multiply ?153559 (multiply ?153560 ?153561)) [153559, 153561, 153560, 153562] by Demod 312040 with 312065 at 1,1,2
5655 Id : 318365, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =?= divide (divide (multiply ?1643886 (multiply ?1643888 ?1643889)) (multiply ?1643888 ?1643889)) ?1643885 [1643889, 1643888, 1643885, 1643887, 1643886] by Demod 317517 with 312075 at 3
5656 Id : 318366, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =>= divide ?1643886 ?1643885 [1643885, 1643887, 1643886] by Demod 318365 with 313818 at 1,3
5657 Id : 343774, {_}: multiply ?1701846 (multiply ?1701845 ?1701844) =<= multiply (divide ?1701846 (divide ?1701843 ?1701845)) (multiply ?1701843 ?1701844) [1701843, 1701844, 1701845, 1701846] by Super 343753 with 318366 at 2,1,3
5658 Id : 178704, {_}: inverse (inverse (divide (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) (inverse ?1024392))) =>= inverse (inverse (inverse (divide (inverse (multiply (divide ?1024396 ?1024395) ?1024392)) (divide ?1024394 ?1024393)))) [1024392, 1024396, 1024395, 1024394, 1024393] by Super 178625 with 6 at 1,1,1,1,1,3
5659 Id : 179107, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide ?1024396 ?1024395) ?1024392)) (divide ?1024394 ?1024393)))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 178704 with 6 at 1,1,2
5660 Id : 300345, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =<= inverse (inverse (inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 179107 with 299719 at 3
5661 Id : 309518, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =>= inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 300345 with 305044 at 3
5662 Id : 311123, {_}: multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392 =<= inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 309518 with 310837 at 2
5663 Id : 311124, {_}: multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392 =>= multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 311123 with 310837 at 3
5664 Id : 311459, {_}: multiply (divide (divide ?1024394 ?1024393) (divide ?1024395 ?1024396)) ?1024392 =?= multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392) [1024392, 1024396, 1024395, 1024393, 1024394] by Demod 311124 with 311017 at 1,1,2
5665 Id : 314145, {_}: multiply (divide (divide ?1636195 ?1636196) (inverse ?1636193)) ?1636197 =<= multiply (divide ?1636195 ?1636196) (multiply (divide ?1636193 (divide ?1636194 ?1636194)) ?1636197) [1636194, 1636197, 1636193, 1636196, 1636195] by Super 311459 with 312719 at 2,1,2
5666 Id : 315602, {_}: multiply (multiply (divide ?1636195 ?1636196) ?1636193) ?1636197 =<= multiply (divide ?1636195 ?1636196) (multiply (divide ?1636193 (divide ?1636194 ?1636194)) ?1636197) [1636194, 1636197, 1636193, 1636196, 1636195] by Demod 314145 with 6 at 1,2
5667 Id : 315603, {_}: multiply (multiply (divide ?1636195 ?1636196) ?1636193) ?1636197 =>= multiply (divide ?1636195 ?1636196) (multiply ?1636193 ?1636197) [1636197, 1636193, 1636196, 1636195] by Demod 315602 with 312065 at 1,2,3
5668 Id : 320945, {_}: multiply ?1653480 ?1653482 =<= multiply (divide ?1653480 (divide ?1653481 ?1653482)) ?1653481 [1653481, 1653482, 1653480] by Super 311868 with 320415 at 1,3
5669 Id : 343542, {_}: multiply (multiply ?1699948 ?1699949) ?1699951 =<= multiply (divide ?1699948 (divide ?1699950 ?1699949)) (multiply ?1699950 ?1699951) [1699950, 1699951, 1699949, 1699948] by Super 315603 with 320945 at 1,2
5670 Id : 394401, {_}: multiply ?1701846 (multiply ?1701845 ?1701844) =?= multiply (multiply ?1701846 ?1701845) ?1701844 [1701844, 1701845, 1701846] by Demod 343774 with 343542 at 3
5671 Id : 395259, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 394401 at 2
5672 Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
5673 % SZS output end CNFRefutation for GRP471-1.p
5683 prove_these_axioms_3 is 94
5687 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
5691 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
5693 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
5694 [8, 7] by multiply ?7 ?8
5697 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5698 [] by prove_these_axioms_3
5699 Found proof, 10.893625s
5700 % SZS status Unsatisfiable for GRP477-1.p
5701 % SZS output start CNFRefutation for GRP477-1.p
5702 Id : 6, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8
5703 Id : 7, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13
5704 Id : 4, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
5705 Id : 9, {_}: divide (inverse (divide (divide (divide ?26 ?27) (divide ?23 ?22)) ?25)) (divide ?27 ?26) =?= inverse (divide (divide (divide ?22 ?23) ?24) (divide ?25 ?24)) [24, 25, 22, 23, 27, 26] by Super 7 with 4 at 2,1,1,2
5706 Id : 8947, {_}: inverse (divide (divide (divide ?66899 ?66900) ?66901) (divide (divide ?66902 (divide ?66900 ?66899)) ?66901)) =>= ?66902 [66902, 66901, 66900, 66899] by Super 4 with 9 at 2
5707 Id : 9487, {_}: inverse (divide (divide (divide (inverse ?70062) ?70063) ?70064) (divide (divide ?70065 (multiply ?70063 ?70062)) ?70064)) =>= ?70065 [70065, 70064, 70063, 70062] by Super 8947 with 6 at 2,1,2,1,2
5708 Id : 13, {_}: divide (inverse (divide (divide (divide ?48 ?49) (inverse ?47)) (multiply ?46 ?47))) (divide ?49 ?48) =>= ?46 [46, 47, 49, 48] by Super 4 with 6 at 2,1,1,2
5709 Id : 23, {_}: divide (inverse (divide (multiply (divide ?88 ?89) ?90) (multiply ?91 ?90))) (divide ?89 ?88) =>= ?91 [91, 90, 89, 88] by Demod 13 with 6 at 1,1,1,2
5710 Id : 27, {_}: divide (inverse (divide (multiply ?115 ?116) (multiply ?117 ?116))) (divide (divide ?113 ?112) (inverse (divide (divide (divide ?112 ?113) ?114) (divide ?115 ?114)))) =>= ?117 [114, 112, 113, 117, 116, 115] by Super 23 with 4 at 1,1,1,1,2
5711 Id : 35, {_}: divide (inverse (divide (multiply ?115 ?116) (multiply ?117 ?116))) (multiply (divide ?113 ?112) (divide (divide (divide ?112 ?113) ?114) (divide ?115 ?114))) =>= ?117 [114, 112, 113, 117, 116, 115] by Demod 27 with 6 at 2,2
5712 Id : 9506, {_}: inverse (divide (divide (divide (inverse (divide (divide (divide ?70226 ?70225) ?70227) (divide ?70222 ?70227))) (divide ?70225 ?70226)) ?70228) (divide ?70224 ?70228)) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70224, 70228, 70222, 70227, 70225, 70226] by Super 9487 with 35 at 1,2,1,2
5713 Id : 9604, {_}: inverse (divide (divide ?70222 ?70228) (divide ?70224 ?70228)) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70224, 70228, 70222] by Demod 9506 with 4 at 1,1,1,2
5714 Id : 27713, {_}: divide (divide (inverse (divide (divide (divide ?169617 ?169618) (divide ?169619 ?169620)) ?169621)) (divide ?169618 ?169617)) (divide ?169619 ?169620) =>= ?169621 [169621, 169620, 169619, 169618, 169617] by Super 4 with 9 at 1,2
5715 Id : 27714, {_}: divide (divide (inverse (divide (divide (divide ?169627 ?169628) (divide (inverse (divide (divide (divide ?169623 ?169624) ?169625) (divide ?169626 ?169625))) (divide ?169624 ?169623))) ?169629)) (divide ?169628 ?169627)) ?169626 =>= ?169629 [169629, 169626, 169625, 169624, 169623, 169628, 169627] by Super 27713 with 4 at 2,2
5716 Id : 28344, {_}: divide (divide (inverse (divide (divide (divide ?173215 ?173216) ?173217) ?173218)) (divide ?173216 ?173215)) ?173217 =>= ?173218 [173218, 173217, 173216, 173215] by Demod 27714 with 4 at 2,1,1,1,1,2
5717 Id : 28449, {_}: divide (divide (inverse (multiply (divide (divide ?174106 ?174107) ?174108) ?174105)) (divide ?174107 ?174106)) ?174108 =>= inverse ?174105 [174105, 174108, 174107, 174106] by Super 28344 with 6 at 1,1,1,2
5718 Id : 28805, {_}: multiply (divide (inverse (multiply (divide (divide ?175142 ?175143) (inverse ?175145)) ?175144)) (divide ?175143 ?175142)) ?175145 =>= inverse ?175144 [175144, 175145, 175143, 175142] by Super 6 with 28449 at 3
5719 Id : 29852, {_}: multiply (divide (inverse (multiply (multiply (divide ?180549 ?180550) ?180551) ?180552)) (divide ?180550 ?180549)) ?180551 =>= inverse ?180552 [180552, 180551, 180550, 180549] by Demod 28805 with 6 at 1,1,1,1,2
5720 Id : 33202, {_}: multiply (divide (inverse (multiply (multiply (divide (inverse ?199058) ?199059) ?199060) ?199061)) (multiply ?199059 ?199058)) ?199060 =>= inverse ?199061 [199061, 199060, 199059, 199058] by Super 29852 with 6 at 2,1,2
5721 Id : 33304, {_}: multiply (divide (inverse (multiply (multiply (multiply (inverse ?199942) ?199941) ?199943) ?199944)) (multiply (inverse ?199941) ?199942)) ?199943 =>= inverse ?199944 [199944, 199943, 199941, 199942] by Super 33202 with 6 at 1,1,1,1,1,2
5722 Id : 43, {_}: divide (inverse (divide (divide (divide (inverse ?171) ?172) ?173) (divide ?174 ?173))) (multiply ?172 ?171) =>= ?174 [174, 173, 172, 171] by Super 4 with 6 at 2,2
5723 Id : 48, {_}: divide (inverse (divide (divide ?205 ?206) (divide ?207 ?206))) (multiply (divide ?203 ?202) (divide (divide (divide ?202 ?203) ?204) (divide ?205 ?204))) =>= ?207 [204, 202, 203, 207, 206, 205] by Super 43 with 4 at 1,1,1,1,2
5724 Id : 8271, {_}: inverse (divide (divide (divide ?62998 ?62997) ?62999) (divide (divide ?63000 (divide ?62997 ?62998)) ?62999)) =>= ?63000 [63000, 62999, 62997, 62998] by Super 4 with 9 at 2
5725 Id : 8914, {_}: divide ?66588 (multiply (divide ?66589 ?66590) (divide (divide (divide ?66590 ?66589) ?66591) (divide (divide ?66585 ?66586) ?66591))) =>= divide ?66588 (divide ?66586 ?66585) [66586, 66585, 66591, 66590, 66589, 66588] by Super 48 with 8271 at 1,2
5726 Id : 27904, {_}: divide (divide (inverse (divide (divide (divide ?171441 ?171442) (divide ?171443 ?171444)) (divide ?171440 ?171439))) (divide ?171442 ?171441)) (divide ?171443 ?171444) =?= multiply (divide ?171436 ?171437) (divide (divide (divide ?171437 ?171436) ?171438) (divide (divide ?171439 ?171440) ?171438)) [171438, 171437, 171436, 171439, 171440, 171444, 171443, 171442, 171441] by Super 27713 with 8914 at 1,1,1,2
5727 Id : 8270, {_}: divide (divide (inverse (divide (divide (divide ?62988 ?62989) (divide ?62990 ?62991)) ?62992)) (divide ?62989 ?62988)) (divide ?62990 ?62991) =>= ?62992 [62992, 62991, 62990, 62989, 62988] by Super 4 with 9 at 1,2
5728 Id : 28135, {_}: divide ?171440 ?171439 =<= multiply (divide ?171436 ?171437) (divide (divide (divide ?171437 ?171436) ?171438) (divide (divide ?171439 ?171440) ?171438)) [171438, 171437, 171436, 171439, 171440] by Demod 27904 with 8270 at 2
5729 Id : 18, {_}: divide (inverse (divide (multiply (divide ?48 ?49) ?47) (multiply ?46 ?47))) (divide ?49 ?48) =>= ?46 [46, 47, 49, 48] by Demod 13 with 6 at 1,1,1,2
5730 Id : 22, {_}: divide (inverse (divide (divide ?84 ?85) (divide ?86 ?85))) (divide (divide ?82 ?81) (inverse (divide (multiply (divide ?81 ?82) ?83) (multiply ?84 ?83)))) =>= ?86 [83, 81, 82, 86, 85, 84] by Super 4 with 18 at 1,1,1,1,2
5731 Id : 32, {_}: divide (inverse (divide (divide ?84 ?85) (divide ?86 ?85))) (multiply (divide ?82 ?81) (divide (multiply (divide ?81 ?82) ?83) (multiply ?84 ?83))) =>= ?86 [83, 81, 82, 86, 85, 84] by Demod 22 with 6 at 2,2
5732 Id : 8902, {_}: divide ?66500 (multiply (divide ?66501 ?66502) (divide (multiply (divide ?66502 ?66501) ?66503) (multiply (divide ?66497 ?66498) ?66503))) =>= divide ?66500 (divide ?66498 ?66497) [66498, 66497, 66503, 66502, 66501, 66500] by Super 32 with 8271 at 1,2
5733 Id : 27903, {_}: divide (divide (inverse (divide (divide (divide ?171431 ?171432) (divide ?171433 ?171434)) (divide ?171430 ?171429))) (divide ?171432 ?171431)) (divide ?171433 ?171434) =?= multiply (divide ?171426 ?171427) (divide (multiply (divide ?171427 ?171426) ?171428) (multiply (divide ?171429 ?171430) ?171428)) [171428, 171427, 171426, 171429, 171430, 171434, 171433, 171432, 171431] by Super 27713 with 8902 at 1,1,1,2
5734 Id : 28134, {_}: divide ?171430 ?171429 =<= multiply (divide ?171426 ?171427) (divide (multiply (divide ?171427 ?171426) ?171428) (multiply (divide ?171429 ?171430) ?171428)) [171428, 171427, 171426, 171429, 171430] by Demod 27903 with 8270 at 2
5735 Id : 34242, {_}: divide (divide (inverse (divide ?204167 ?204168)) (divide ?204171 ?204170)) ?204172 =<= inverse (divide (multiply (divide ?204172 (divide ?204170 ?204171)) ?204169) (multiply (divide ?204168 ?204167) ?204169)) [204169, 204172, 204170, 204171, 204168, 204167] by Super 28449 with 28134 at 1,1,1,2
5736 Id : 34778, {_}: divide (divide (divide (inverse (divide ?206532 ?206533)) (divide ?206534 ?206535)) ?206536) (divide (divide ?206535 ?206534) ?206536) =>= divide ?206533 ?206532 [206536, 206535, 206534, 206533, 206532] by Super 18 with 34242 at 1,2
5737 Id : 54527, {_}: divide ?300655 ?300656 =<= multiply (divide (divide ?300655 ?300656) (inverse (divide ?300653 ?300654))) (divide ?300654 ?300653) [300654, 300653, 300656, 300655] by Super 28135 with 34778 at 2,3
5738 Id : 55213, {_}: divide ?304381 ?304382 =<= multiply (multiply (divide ?304381 ?304382) (divide ?304383 ?304384)) (divide ?304384 ?304383) [304384, 304383, 304382, 304381] by Demod 54527 with 6 at 1,3
5739 Id : 55316, {_}: divide (inverse (divide (divide (divide ?305230 ?305231) ?305232) (divide ?305233 ?305232))) (divide ?305231 ?305230) =?= multiply (multiply ?305233 (divide ?305234 ?305235)) (divide ?305235 ?305234) [305235, 305234, 305233, 305232, 305231, 305230] by Super 55213 with 4 at 1,1,3
5740 Id : 55555, {_}: ?305233 =<= multiply (multiply ?305233 (divide ?305234 ?305235)) (divide ?305235 ?305234) [305235, 305234, 305233] by Demod 55316 with 4 at 2
5741 Id : 27948, {_}: divide (divide (inverse (divide (divide (divide ?169627 ?169628) ?169626) ?169629)) (divide ?169628 ?169627)) ?169626 =>= ?169629 [169629, 169626, 169628, 169627] by Demod 27714 with 4 at 2,1,1,1,1,2
5742 Id : 28234, {_}: multiply (divide (inverse (divide (divide (divide ?172298 ?172299) (inverse ?172301)) ?172300)) (divide ?172299 ?172298)) ?172301 =>= ?172300 [172300, 172301, 172299, 172298] by Super 6 with 27948 at 3
5743 Id : 28487, {_}: multiply (divide (inverse (divide (multiply (divide ?172298 ?172299) ?172301) ?172300)) (divide ?172299 ?172298)) ?172301 =>= ?172300 [172300, 172301, 172299, 172298] by Demod 28234 with 6 at 1,1,1,1,2
5744 Id : 9011, {_}: inverse (divide (divide (divide ?67439 ?67440) (inverse ?67438)) (multiply (divide ?67441 (divide ?67440 ?67439)) ?67438)) =>= ?67441 [67441, 67438, 67440, 67439] by Super 8947 with 6 at 2,1,2
5745 Id : 9220, {_}: inverse (divide (multiply (divide ?68482 ?68483) ?68484) (multiply (divide ?68485 (divide ?68483 ?68482)) ?68484)) =>= ?68485 [68485, 68484, 68483, 68482] by Demod 9011 with 6 at 1,1,2
5746 Id : 9262, {_}: inverse (divide (multiply (divide (inverse ?68840) ?68841) ?68842) (multiply (divide ?68843 (multiply ?68841 ?68840)) ?68842)) =>= ?68843 [68843, 68842, 68841, 68840] by Super 9220 with 6 at 2,1,2,1,2
5747 Id : 34818, {_}: inverse (divide (divide (divide ?206982 (divide ?206981 ?206980)) ?206984) (divide (divide ?206979 ?206978) ?206984)) =>= divide (divide (inverse (divide ?206978 ?206979)) (divide ?206980 ?206981)) ?206982 [206978, 206979, 206984, 206980, 206981, 206982] by Super 9604 with 34242 at 3
5748 Id : 54516, {_}: inverse (divide ?300558 ?300557) =<= divide (divide (inverse (divide ?300559 ?300560)) (divide ?300560 ?300559)) (inverse (divide ?300557 ?300558)) [300560, 300559, 300557, 300558] by Super 34818 with 34778 at 1,2
5749 Id : 54778, {_}: inverse (divide ?300558 ?300557) =<= multiply (divide (inverse (divide ?300559 ?300560)) (divide ?300560 ?300559)) (divide ?300557 ?300558) [300560, 300559, 300557, 300558] by Demod 54516 with 6 at 3
5750 Id : 58787, {_}: inverse (divide (inverse (divide ?321392 ?321393)) (multiply (divide ?321396 (multiply (divide ?321395 ?321394) (divide ?321394 ?321395))) (divide ?321393 ?321392))) =>= ?321396 [321394, 321395, 321396, 321393, 321392] by Super 9262 with 54778 at 1,1,2
5751 Id : 12, {_}: divide (inverse (divide (divide (divide (inverse ?42) ?41) ?43) (divide ?44 ?43))) (multiply ?41 ?42) =>= ?44 [44, 43, 41, 42] by Super 4 with 6 at 2,2
5752 Id : 54402, {_}: divide (inverse (divide ?299508 ?299507)) (multiply (divide ?299509 ?299510) (divide ?299507 ?299508)) =>= divide ?299510 ?299509 [299510, 299509, 299507, 299508] by Super 12 with 34778 at 1,1,2
5753 Id : 59136, {_}: inverse (divide (multiply (divide ?321395 ?321394) (divide ?321394 ?321395)) ?321396) =>= ?321396 [321396, 321394, 321395] by Demod 58787 with 54402 at 1,2
5754 Id : 59503, {_}: multiply (divide ?323772 (divide ?323771 ?323770)) (divide ?323771 ?323770) =>= ?323772 [323770, 323771, 323772] by Super 28487 with 59136 at 1,1,2
5755 Id : 60069, {_}: divide ?327147 (divide ?327148 ?327149) =<= multiply ?327147 (divide ?327149 ?327148) [327149, 327148, 327147] by Super 55555 with 59503 at 1,3
5756 Id : 60669, {_}: multiply (divide (inverse (divide (multiply (multiply (inverse ?329868) ?329869) ?329870) (divide ?329866 ?329867))) (multiply (inverse ?329869) ?329868)) ?329870 =>= inverse (divide ?329867 ?329866) [329867, 329866, 329870, 329869, 329868] by Super 33304 with 60069 at 1,1,1,2
5757 Id : 29399, {_}: multiply (divide (inverse (divide (multiply (divide ?178179 ?178180) ?178181) ?178182)) (divide ?178180 ?178179)) ?178181 =>= ?178182 [178182, 178181, 178180, 178179] by Demod 28234 with 6 at 1,1,1,1,2
5758 Id : 32341, {_}: multiply (divide (inverse (divide (multiply (divide (inverse ?194066) ?194067) ?194068) ?194069)) (multiply ?194067 ?194066)) ?194068 =>= ?194069 [194069, 194068, 194067, 194066] by Super 29399 with 6 at 2,1,2
5759 Id : 32441, {_}: multiply (divide (inverse (divide (multiply (multiply (inverse ?194936) ?194935) ?194937) ?194938)) (multiply (inverse ?194935) ?194936)) ?194937 =>= ?194938 [194938, 194937, 194935, 194936] by Super 32341 with 6 at 1,1,1,1,1,2
5760 Id : 61017, {_}: divide ?329866 ?329867 =<= inverse (divide ?329867 ?329866) [329867, 329866] by Demod 60669 with 32441 at 2
5761 Id : 61512, {_}: divide (divide ?70224 ?70228) (divide ?70222 ?70228) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70222, 70228, 70224] by Demod 9604 with 61017 at 2
5762 Id : 61513, {_}: divide (divide ?70224 ?70228) (divide ?70222 ?70228) =?= divide (multiply ?70224 ?70223) (multiply ?70222 ?70223) [70223, 70222, 70228, 70224] by Demod 61512 with 61017 at 3
5763 Id : 60072, {_}: multiply (divide ?327160 (divide ?327161 ?327162)) (divide ?327161 ?327162) =>= ?327160 [327162, 327161, 327160] by Super 28487 with 59136 at 1,1,2
5764 Id : 60073, {_}: multiply (divide ?327168 (divide (inverse (divide (divide (divide ?327164 ?327165) ?327166) (divide ?327167 ?327166))) (divide ?327165 ?327164))) ?327167 =>= ?327168 [327167, 327166, 327165, 327164, 327168] by Super 60072 with 4 at 2,2
5765 Id : 64649, {_}: multiply (divide ?338211 ?338212) ?338212 =>= ?338211 [338212, 338211] by Demod 60073 with 4 at 2,1,2
5766 Id : 61711, {_}: divide ?332019 ?332020 =<= inverse (divide ?332020 ?332019) [332020, 332019] by Demod 60669 with 32441 at 2
5767 Id : 61786, {_}: divide (inverse ?332481) ?332482 =>= inverse (multiply ?332482 ?332481) [332482, 332481] by Super 61711 with 6 at 1,3
5768 Id : 64688, {_}: multiply (inverse (multiply ?338450 ?338449)) ?338450 =>= inverse ?338449 [338449, 338450] by Super 64649 with 61786 at 1,2
5769 Id : 70472, {_}: divide (divide ?351323 ?351324) (divide (inverse (multiply ?351321 ?351322)) ?351324) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Super 61513 with 64688 at 2,3
5770 Id : 70841, {_}: divide (divide ?351323 ?351324) (inverse (multiply ?351324 (multiply ?351321 ?351322))) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Demod 70472 with 61786 at 2,2
5771 Id : 70842, {_}: multiply (divide ?351323 ?351324) (multiply ?351324 (multiply ?351321 ?351322)) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Demod 70841 with 6 at 2
5772 Id : 70843, {_}: multiply (divide ?351323 ?351324) (multiply ?351324 (multiply ?351321 ?351322)) =>= multiply (multiply ?351323 ?351321) ?351322 [351322, 351321, 351324, 351323] by Demod 70842 with 6 at 3
5773 Id : 67, {_}: divide (inverse (divide (divide (multiply ?287 ?288) ?289) (divide ?290 ?289))) (divide (inverse ?288) ?287) =>= ?290 [290, 289, 288, 287] by Super 4 with 6 at 1,1,1,1,2
5774 Id : 14, {_}: divide (inverse (divide (divide (multiply ?51 ?52) ?53) (divide ?54 ?53))) (divide (inverse ?52) ?51) =>= ?54 [54, 53, 52, 51] by Super 4 with 6 at 1,1,1,1,2
5775 Id : 70, {_}: divide (inverse (divide (divide (multiply (divide (inverse ?307) ?306) (divide (divide (multiply ?306 ?307) ?308) (divide ?309 ?308))) ?310) (divide ?311 ?310))) ?309 =>= ?311 [311, 310, 309, 308, 306, 307] by Super 67 with 14 at 2,2
5776 Id : 60413, {_}: divide (inverse (divide (divide (divide (divide (inverse ?307) ?306) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310) (divide ?311 ?310))) ?309 =>= ?311 [311, 310, 308, 309, 306, 307] by Demod 70 with 60069 at 1,1,1,1,2
5777 Id : 61462, {_}: divide (divide (divide ?311 ?310) (divide (divide (divide (inverse ?307) ?306) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310)) ?309 =>= ?311 [308, 309, 306, 307, 310, 311] by Demod 60413 with 61017 at 1,2
5778 Id : 62183, {_}: divide (divide (divide ?311 ?310) (divide (divide (inverse (multiply ?306 ?307)) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310)) ?309 =>= ?311 [308, 309, 307, 306, 310, 311] by Demod 61462 with 61786 at 1,1,2,1,2
5779 Id : 62184, {_}: divide (divide (divide ?311 ?310) (divide (inverse (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307))) ?310)) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62183 with 61786 at 1,2,1,2
5780 Id : 62185, {_}: divide (divide (divide ?311 ?310) (inverse (multiply ?310 (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307))))) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62184 with 61786 at 2,1,2
5781 Id : 62194, {_}: divide (multiply (divide ?311 ?310) (multiply ?310 (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307)))) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62185 with 6 at 1,2
5782 Id : 61520, {_}: divide (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (divide (inverse ?52) ?51) =>= ?54 [52, 51, 53, 54] by Demod 14 with 61017 at 1,2
5783 Id : 62166, {_}: divide (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (inverse (multiply ?51 ?52)) =>= ?54 [52, 51, 53, 54] by Demod 61520 with 61786 at 2,2
5784 Id : 62205, {_}: multiply (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (multiply ?51 ?52) =>= ?54 [52, 51, 53, 54] by Demod 62166 with 6 at 2
5785 Id : 62206, {_}: divide (multiply (divide ?311 ?310) (multiply ?310 ?309)) ?309 =>= ?311 [309, 310, 311] by Demod 62194 with 62205 at 2,2,1,2
5786 Id : 64698, {_}: multiply ?338511 ?338513 =<= multiply (divide ?338511 ?338512) (multiply ?338512 ?338513) [338512, 338513, 338511] by Super 64649 with 62206 at 1,2
5787 Id : 88169, {_}: multiply ?351323 (multiply ?351321 ?351322) =?= multiply (multiply ?351323 ?351321) ?351322 [351322, 351321, 351323] by Demod 70843 with 64698 at 2
5788 Id : 88454, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 88169 at 2
5789 Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
5790 % SZS output end CNFRefutation for GRP477-1.p
5798 prove_these_axioms_2 is 94
5806 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
5807 (multiply (inverse (multiply ?4 ?5))
5810 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
5814 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
5817 multiply (multiply (inverse b2) b2) a2 =>= a2
5818 [] by prove_these_axioms_2
5819 Last chance: 1246132826.23
5820 Last chance: all is indexed 1246132846.24
5821 Last chance: failed over 100 goal 1246132846.24
5822 FAILURE in 0 iterations
5823 % SZS status Timeout for GRP506-1.p
5831 prove_these_axioms_4 is 95
5839 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
5840 (multiply (inverse (multiply ?4 ?5))
5843 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
5847 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
5849 Id : 2, {_}: multiply a b =>= multiply b a [] by prove_these_axioms_4
5850 Last chance: 1246133118.1
5851 Last chance: all is indexed 1246133138.1
5852 Last chance: failed over 100 goal 1246133138.1
5853 FAILURE in 0 iterations
5854 % SZS status Timeout for GRP508-1.p
5861 prove_normal_axioms_1 is 96
5865 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
5867 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
5871 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
5874 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
5875 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
5876 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
5879 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
5881 Id : 2, {_}: meet a a =>= a [] by prove_normal_axioms_1
5882 Found proof, 13.508368s
5883 % SZS status Unsatisfiable for LAT080-1.p
5884 % SZS output start CNFRefutation for LAT080-1.p
5885 Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
5886 Id : 5, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16
5887 Id : 39, {_}: join (meet (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290) (meet (join (meet ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))) (meet ?289 (join ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))))) (join (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290)) =>= join (meet ?288 ?289) (meet ?289 (join ?288 ?289)) [292, 291, 290, 289, 288, 287] by Super 5 with 4 at 1,2,1,2,2
5888 Id : 42, {_}: join (meet (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 318, 317, 323] by Super 39 with 4 at 2,2,2,1,2,2,2
5889 Id : 126, {_}: join (meet (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 42 with 4 at 2,1,1,1,2
5890 Id : 127, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 126 with 4 at 1,2,1,1,2
5891 Id : 128, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 127 with 4 at 2,2,2,1,1,2
5892 Id : 129, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 128 with 4 at 2,1,1,2,1,1,2,2
5893 Id : 130, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 129 with 4 at 1,2,1,2,1,1,2,2
5894 Id : 131, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 130 with 4 at 2,2,1,1,2,2
5895 Id : 132, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 131 with 4 at 2,1,1,2,2,2,1,2,2
5896 Id : 133, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 132 with 4 at 1,2,1,2,2,2,1,2,2
5897 Id : 134, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 133 with 4 at 2,2,2,2,1,2,2
5898 Id : 135, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 134 with 4 at 2,1,1,2,2,2
5899 Id : 136, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324)) =?= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 135 with 4 at 1,2,1,2,2,2
5900 Id : 714, {_}: join (meet (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383) (meet (join (meet ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)) (meet (join (meet ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)) (meet (join (meet ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)) (meet ?1390 (join ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)))) (join ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)))) (join ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)))) (join (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383)) =>= ?1382 [1390, 1389, 1388, 1387, 1386, 1385, 1384, 1383, 1382, 1381] by Demod 136 with 4 at 3
5901 Id : 1147, {_}: join (meet (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512) (meet ?2511 (join (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512)) =>= ?2511 [2512, 2511, 2510] by Super 714 with 4 at 1,2,2
5902 Id : 748, {_}: join (meet (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913) (meet ?1912 (join (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913)) =>= ?1912 [1913, 1912, 1916] by Super 714 with 4 at 1,2,2
5903 Id : 1164, {_}: join (meet (join (meet (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643) (meet ?2643 (join (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643))) ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643, 2642] by Super 1147 with 748 at 1,2,2,2
5904 Id : 1544, {_}: join (meet ?2643 ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643] by Demod 1164 with 748 at 1,1,2
5905 Id : 13, {_}: join (meet (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113) (meet (join (meet ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))) (meet ?107 (join ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))))) (join (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113)) =>= join (meet ?106 ?107) (meet ?107 (join ?106 ?107)) [115, 114, 113, 107, 106, 112] by Super 5 with 4 at 1,2,1,2,2
5906 Id : 1092, {_}: join (meet (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2039, 2038, 2040] by Super 13 with 748 at 2,2,2,1,2,2,2
5907 Id : 1218, {_}: join (meet (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1092 with 748 at 2,1,1,1,2
5908 Id : 1219, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1218 with 748 at 1,2,1,1,2
5909 Id : 1220, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1219 with 748 at 2,2,2,1,1,2
5910 Id : 1221, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1220 with 748 at 2,1,1,2,1,1,2,2
5911 Id : 1222, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1221 with 748 at 1,2,1,2,1,1,2,2
5912 Id : 1223, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1222 with 748 at 2,2,1,1,2,2
5913 Id : 1224, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1223 with 748 at 2,1,1,2,2,2,1,2,2
5914 Id : 1225, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1224 with 748 at 1,2,1,2,2,2,1,2,2
5915 Id : 1226, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1225 with 748 at 2,2,2,2,1,2,2
5916 Id : 1227, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1226 with 748 at 2,1,1,2,2,2
5917 Id : 1228, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =?= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1227 with 748 at 1,2,1,2,2,2
5918 Id : 2531, {_}: join (meet (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436) (meet (join (meet ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)) (meet ?4435 (join ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)))) (join (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436)) =>= ?4435 [4438, 4437, 4436, 4435, 4434] by Demod 1228 with 748 at 3
5919 Id : 2540, {_}: join (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))))) ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4516, 4515, 4514, 4513, 4512, 4511, 4510, 4509] by Super 2531 with 4 at 1,2,2,2
5920 Id : 2926, {_}: join (meet ?4510 ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4514, 4513, 4512, 4511, 4516, 4509, 4515, 4510] by Demod 2540 with 4 at 1,1,2
5921 Id : 2927, {_}: join (meet ?4510 ?4515) (meet ?4510 (join ?4510 ?4515)) =?= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4515, 4510] by Demod 2926 with 4 at 1,2,2
5922 Id : 2928, {_}: ?4510 =<= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4510] by Demod 2927 with 1544 at 2
5923 Id : 4152, {_}: ?6409 =<= join (meet ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409)) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6413, 6412, 6411, 6410, 6409] by Super 1544 with 2928 at 2
5924 Id : 1229, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2043, 2042, 2041, 2039, 2040] by Demod 1228 with 748 at 3
5925 Id : 2544, {_}: join (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))))) ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4552, 4551, 4550, 4549, 4548, 4547] by Super 2531 with 1229 at 1,2,2,2
5926 Id : 2938, {_}: join (meet ?4548 ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4550, 4549, 4552, 4547, 4551, 4548] by Demod 2544 with 1229 at 1,1,2
5927 Id : 2939, {_}: join (meet ?4548 ?4551) (meet ?4548 (join ?4548 ?4551)) =?= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4551, 4548] by Demod 2938 with 1229 at 1,2,2
5928 Id : 2940, {_}: ?4548 =<= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4548] by Demod 2939 with 1544 at 2
5929 Id : 2998, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet ?2039 (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2041, 2039, 2040] by Demod 1229 with 2940 at 1,2,2
5930 Id : 4435, {_}: join (meet ?7069 ?7068) (meet ?7068 (join ?7069 ?7068)) =>= ?7068 [7068, 7069] by Super 2998 with 4152 at 2
5931 Id : 4973, {_}: ?7997 =<= meet (meet (join ?7998 (join ?7997 ?7999)) (join ?8000 ?7997)) ?7997 [8000, 7999, 7998, 7997] by Super 4152 with 4435 at 3
5932 Id : 7418, {_}: meet ?10627 ?10628 =<= meet (meet (join ?10629 ?10627) (join ?10630 (meet ?10627 ?10628))) (meet ?10627 ?10628) [10630, 10629, 10628, 10627] by Super 4973 with 1544 at 2,1,1,3
5933 Id : 3035, {_}: ?5143 =<= join (meet ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143)) (meet ?5143 (join ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143))) [5146, 5145, 5144, 5143] by Demod 2939 with 1544 at 2
5934 Id : 3039, {_}: ?5175 =<= join (meet ?5174 (join (join (meet ?5175 ?5175) (meet ?5175 (join ?5175 ?5175))) ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Super 3035 with 1544 at 1,2,2,2,3
5935 Id : 3217, {_}: ?5175 =<= join (meet ?5174 (join ?5175 ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Demod 3039 with 1544 at 1,2,1,3
5936 Id : 4899, {_}: ?7757 =<= meet (meet (join ?7758 (join ?7757 ?7759)) (join ?7760 ?7757)) ?7757 [7760, 7759, 7758, 7757] by Super 4152 with 4435 at 3
5937 Id : 4939, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6412, 6411, 6410, 6413, 6409] by Demod 4152 with 4899 at 2,1,3
5938 Id : 4940, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 ?6409)) [6413, 6409] by Demod 4939 with 4899 at 2,2,2,3
5939 Id : 4941, {_}: ?7815 =<= join (meet ?7815 ?7815) (join ?7815 ?7815) [7815] by Super 4940 with 4899 at 2,3
5940 Id : 5068, {_}: ?8129 =<= join (meet (meet ?8129 ?8129) (join ?8129 ?8129)) (meet ?8129 ?8129) [8129] by Super 3217 with 4941 at 2,2,3
5941 Id : 5072, {_}: ?8141 =<= meet (meet ?8141 (join ?8142 ?8141)) ?8141 [8142, 8141] by Super 4899 with 4941 at 1,1,3
5942 Id : 5084, {_}: join ?8151 (meet ?8151 (join (meet ?8151 (join ?8152 ?8151)) ?8151)) =>= ?8151 [8152, 8151] by Super 4435 with 5072 at 1,2
5943 Id : 5705, {_}: ?8954 =<= meet (meet (join ?8955 ?8954) (join ?8956 ?8954)) ?8954 [8956, 8955, 8954] by Super 4899 with 5084 at 2,1,1,3
5944 Id : 5955, {_}: join ?9293 ?9293 =<= meet (meet (join ?9294 (join ?9293 ?9293)) ?9293) (join ?9293 ?9293) [9294, 9293] by Super 5705 with 4941 at 2,1,3
5945 Id : 5957, {_}: join ?9299 ?9299 =<= meet (meet ?9299 ?9299) (join ?9299 ?9299) [9299] by Super 5955 with 4941 at 1,1,3
5946 Id : 6022, {_}: ?8129 =<= join (join ?8129 ?8129) (meet ?8129 ?8129) [8129] by Demod 5068 with 5957 at 1,3
5947 Id : 7628, {_}: meet ?11050 ?11050 =<= meet (meet (join ?11051 ?11050) ?11050) (meet ?11050 ?11050) [11051, 11050] by Super 7418 with 6022 at 2,1,3
5948 Id : 6024, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) (join (meet ?9306 ?9306) (join ?9306 ?9306))) =>= join ?9306 ?9306 [9306] by Super 4435 with 5957 at 1,2
5949 Id : 6144, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) ?9306) =>= join ?9306 ?9306 [9306] by Demod 6024 with 4941 at 2,2,2
5950 Id : 6187, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Super 5084 with 6144 at 2,1,2,2,2
5951 Id : 5117, {_}: ?8275 =<= meet (meet ?8275 (join ?8276 ?8275)) ?8275 [8276, 8275] by Super 4899 with 4941 at 1,1,3
5952 Id : 5128, {_}: join ?8312 ?8312 =<= meet (meet (join ?8312 ?8312) ?8312) (join ?8312 ?8312) [8312] by Super 5117 with 4941 at 2,1,3
5953 Id : 6199, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (join ?9444 ?9444) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6187 with 5128 at 1,2,2,2
5954 Id : 6200, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6199 with 6144 at 2,2,2
5955 Id : 6201, {_}: join (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6200 with 5128 at 2,2
5956 Id : 6718, {_}: ?10018 =<= meet (meet (meet (join ?10018 ?10018) ?10018) (join ?10019 ?10018)) ?10018 [10019, 10018] by Super 4899 with 6201 at 1,1,3
5957 Id : 6736, {_}: ?10071 =<= meet (join ?10071 ?10071) ?10071 [10071] by Super 6718 with 5128 at 1,3
5958 Id : 7650, {_}: meet ?11113 ?11113 =<= meet ?11113 (meet ?11113 ?11113) [11113] by Super 7628 with 6736 at 1,3
5959 Id : 7731, {_}: join (meet ?11160 ?11160) (meet ?11160 (join ?11160 (meet ?11160 ?11160))) =>= ?11160 [11160] by Super 1544 with 7650 at 1,2
5960 Id : 6841, {_}: join ?10124 (meet (join ?10124 ?10124) (join (join ?10124 ?10124) ?10124)) =>= join ?10124 ?10124 [10124] by Super 1544 with 6736 at 1,2
5961 Id : 6817, {_}: join (join ?9306 ?9306) ?9306 =>= join ?9306 ?9306 [9306] by Demod 6144 with 6736 at 2,2
5962 Id : 6906, {_}: join ?10124 (meet (join ?10124 ?10124) (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6841 with 6817 at 2,2,2
5963 Id : 1656, {_}: join (meet ?3234 ?3235) (meet ?3234 (join ?3234 ?3235)) =>= ?3234 [3235, 3234] by Demod 1164 with 748 at 1,1,2
5964 Id : 1661, {_}: join (meet (meet ?3267 ?3268) (meet ?3267 (join ?3267 ?3268))) (meet (meet ?3267 ?3268) ?3267) =>= meet ?3267 ?3268 [3268, 3267] by Super 1656 with 1544 at 2,2,2
5965 Id : 8992, {_}: meet ?12671 (join ?12672 ?12672) =<= meet (meet (join ?12673 ?12671) ?12672) (meet ?12671 (join ?12672 ?12672)) [12673, 12672, 12671] by Super 7418 with 4940 at 2,1,3
5966 Id : 6822, {_}: join ?9444 (join ?9444 ?9444) =<= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6201 with 6736 at 1,2
5967 Id : 6823, {_}: join ?9444 (join ?9444 ?9444) =>= ?9444 [9444] by Demod 6822 with 6736 at 3
5968 Id : 9646, {_}: meet (join ?13551 ?13551) (join ?13552 ?13552) =<= meet (meet ?13551 ?13552) (meet (join ?13551 ?13551) (join ?13552 ?13552)) [13552, 13551] by Super 8992 with 6823 at 1,1,3
5969 Id : 9670, {_}: meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624)) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Super 9646 with 7650 at 1,3
5970 Id : 6333, {_}: meet ?9575 ?9575 =<= meet (meet (join ?9576 (meet ?9575 ?9575)) ?9575) (meet ?9575 ?9575) [9576, 9575] by Super 5705 with 5068 at 2,1,3
5971 Id : 6336, {_}: meet ?9583 ?9583 =<= meet (meet ?9583 ?9583) (meet ?9583 ?9583) [9583] by Super 6333 with 6022 at 1,1,3
5972 Id : 6405, {_}: meet ?9659 ?9659 =<= join (join (meet ?9659 ?9659) (meet ?9659 ?9659)) (meet ?9659 ?9659) [9659] by Super 6022 with 6336 at 2,3
5973 Id : 7013, {_}: meet ?9659 ?9659 =<= join (meet ?9659 ?9659) (meet ?9659 ?9659) [9659] by Demod 6405 with 6817 at 3
5974 Id : 9768, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Demod 9670 with 7013 at 2,2
5975 Id : 9769, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (meet ?13624 ?13624)) [13624] by Demod 9768 with 7013 at 2,2,3
5976 Id : 10286, {_}: join (meet (meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Super 1661 with 9769 at 1,2,2
5977 Id : 10416, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10286 with 9769 at 1,1,2
5978 Id : 7044, {_}: meet ?10282 ?10282 =<= join (meet (meet ?10282 ?10282) (meet ?10282 ?10282)) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Super 4940 with 7013 at 2,2,3
5979 Id : 7086, {_}: meet ?10282 ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7044 with 6336 at 1,3
5980 Id : 10417, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10416 with 7086 at 2,2,1,2
5981 Id : 10418, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10417 with 6336 at 2,1,2
5982 Id : 7467, {_}: meet ?10854 ?10854 =<= meet (meet (join ?10855 ?10854) (meet ?10854 ?10854)) (meet ?10854 ?10854) [10855, 10854] by Super 7418 with 7013 at 2,1,3
5983 Id : 10419, {_}: join (meet ?14243 ?14243) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10418 with 7467 at 1,2
5984 Id : 10420, {_}: meet ?14243 ?14243 =<= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10419 with 7086 at 2
5985 Id : 10421, {_}: meet ?14243 ?14243 =<= meet (join ?14243 ?14243) (meet ?14243 ?14243) [14243] by Demod 10420 with 9769 at 3
5986 Id : 10483, {_}: join (meet (meet (join ?14359 ?14359) (meet ?14359 ?14359)) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Super 1661 with 10421 at 1,2,2
5987 Id : 10517, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10483 with 10421 at 1,1,2
5988 Id : 10518, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) ?14359)) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10517 with 6022 at 2,2,1,2
5989 Id : 10519, {_}: join (meet (meet ?14359 ?14359) ?14359) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10518 with 6736 at 2,1,2
5990 Id : 10520, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10519 with 5957 at 2,2
5991 Id : 10521, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet ?14359 ?14359 [14359] by Demod 10520 with 10421 at 3
5992 Id : 10992, {_}: join (meet (meet (meet ?14539 ?14539) ?14539) (join ?14539 ?14539)) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Super 4435 with 10521 at 2,2,2
5993 Id : 8999, {_}: meet (meet ?12702 ?12702) (join ?12702 ?12702) =<= meet (meet (join ?12703 (meet ?12702 ?12702)) ?12702) (join ?12702 ?12702) [12703, 12702] by Super 8992 with 5957 at 2,3
5994 Id : 10037, {_}: join ?14089 ?14089 =<= meet (meet (join ?14090 (meet ?14089 ?14089)) ?14089) (join ?14089 ?14089) [14090, 14089] by Demod 8999 with 5957 at 2
5995 Id : 10046, {_}: join ?14111 ?14111 =<= meet (meet (meet ?14111 ?14111) ?14111) (join ?14111 ?14111) [14111] by Super 10037 with 7013 at 1,1,3
5996 Id : 11120, {_}: join (join ?14539 ?14539) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Demod 10992 with 10046 at 1,2
5997 Id : 11121, {_}: join (join ?14539 ?14539) (meet ?14539 ?14539) =>= join ?14539 ?14539 [14539] by Demod 11120 with 10421 at 2,2
5998 Id : 11122, {_}: ?14539 =<= join ?14539 ?14539 [14539] by Demod 11121 with 6022 at 2
5999 Id : 11192, {_}: join ?10124 (meet ?10124 (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6906 with 11122 at 1,2,2
6000 Id : 11193, {_}: join ?10124 (meet ?10124 ?10124) =>= join ?10124 ?10124 [10124] by Demod 11192 with 11122 at 2,2,2
6001 Id : 11194, {_}: join ?10124 (meet ?10124 ?10124) =>= ?10124 [10124] by Demod 11193 with 11122 at 3
6002 Id : 11206, {_}: join (meet ?11160 ?11160) (meet ?11160 ?11160) =>= ?11160 [11160] by Demod 7731 with 11194 at 2,2,2
6003 Id : 11207, {_}: meet ?11160 ?11160 =>= ?11160 [11160] by Demod 11206 with 11122 at 2
6004 Id : 11456, {_}: a === a [] by Demod 2 with 11207 at 2
6005 Id : 2, {_}: meet a a =>= a [] by prove_normal_axioms_1
6006 % SZS output end CNFRefutation for LAT080-1.p
6014 prove_normal_axioms_8 is 94
6018 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
6020 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
6024 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
6027 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
6028 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
6029 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
6032 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
6034 Id : 2, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8
6035 Found proof, 13.702259s
6036 % SZS status Unsatisfiable for LAT087-1.p
6037 % SZS output start CNFRefutation for LAT087-1.p
6038 Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
6039 Id : 5, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16
6040 Id : 39, {_}: join (meet (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290) (meet (join (meet ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))) (meet ?289 (join ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))))) (join (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290)) =>= join (meet ?288 ?289) (meet ?289 (join ?288 ?289)) [292, 291, 290, 289, 288, 287] by Super 5 with 4 at 1,2,1,2,2
6041 Id : 42, {_}: join (meet (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 318, 317, 323] by Super 39 with 4 at 2,2,2,1,2,2,2
6042 Id : 126, {_}: join (meet (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 42 with 4 at 2,1,1,1,2
6043 Id : 127, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 126 with 4 at 1,2,1,1,2
6044 Id : 128, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 127 with 4 at 2,2,2,1,1,2
6045 Id : 129, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 128 with 4 at 2,1,1,2,1,1,2,2
6046 Id : 130, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 129 with 4 at 1,2,1,2,1,1,2,2
6047 Id : 131, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 130 with 4 at 2,2,1,1,2,2
6048 Id : 132, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 131 with 4 at 2,1,1,2,2,2,1,2,2
6049 Id : 133, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 132 with 4 at 1,2,1,2,2,2,1,2,2
6050 Id : 134, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 133 with 4 at 2,2,2,2,1,2,2
6051 Id : 135, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 134 with 4 at 2,1,1,2,2,2
6052 Id : 136, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324)) =?= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 135 with 4 at 1,2,1,2,2,2
6053 Id : 714, {_}: join (meet (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383) (meet (join (meet ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)) (meet (join (meet ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)) (meet (join (meet ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)) (meet ?1390 (join ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)))) (join ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)))) (join ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)))) (join (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383)) =>= ?1382 [1390, 1389, 1388, 1387, 1386, 1385, 1384, 1383, 1382, 1381] by Demod 136 with 4 at 3
6054 Id : 1147, {_}: join (meet (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512) (meet ?2511 (join (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512)) =>= ?2511 [2512, 2511, 2510] by Super 714 with 4 at 1,2,2
6055 Id : 748, {_}: join (meet (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913) (meet ?1912 (join (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913)) =>= ?1912 [1913, 1912, 1916] by Super 714 with 4 at 1,2,2
6056 Id : 1164, {_}: join (meet (join (meet (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643) (meet ?2643 (join (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643))) ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643, 2642] by Super 1147 with 748 at 1,2,2,2
6057 Id : 1544, {_}: join (meet ?2643 ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643] by Demod 1164 with 748 at 1,1,2
6058 Id : 13, {_}: join (meet (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113) (meet (join (meet ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))) (meet ?107 (join ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))))) (join (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113)) =>= join (meet ?106 ?107) (meet ?107 (join ?106 ?107)) [115, 114, 113, 107, 106, 112] by Super 5 with 4 at 1,2,1,2,2
6059 Id : 1092, {_}: join (meet (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2039, 2038, 2040] by Super 13 with 748 at 2,2,2,1,2,2,2
6060 Id : 1218, {_}: join (meet (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1092 with 748 at 2,1,1,1,2
6061 Id : 1219, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1218 with 748 at 1,2,1,1,2
6062 Id : 1220, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1219 with 748 at 2,2,2,1,1,2
6063 Id : 1221, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1220 with 748 at 2,1,1,2,1,1,2,2
6064 Id : 1222, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1221 with 748 at 1,2,1,2,1,1,2,2
6065 Id : 1223, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1222 with 748 at 2,2,1,1,2,2
6066 Id : 1224, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1223 with 748 at 2,1,1,2,2,2,1,2,2
6067 Id : 1225, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1224 with 748 at 1,2,1,2,2,2,1,2,2
6068 Id : 1226, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1225 with 748 at 2,2,2,2,1,2,2
6069 Id : 1227, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1226 with 748 at 2,1,1,2,2,2
6070 Id : 1228, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =?= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1227 with 748 at 1,2,1,2,2,2
6071 Id : 2531, {_}: join (meet (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436) (meet (join (meet ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)) (meet ?4435 (join ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)))) (join (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436)) =>= ?4435 [4438, 4437, 4436, 4435, 4434] by Demod 1228 with 748 at 3
6072 Id : 1229, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2043, 2042, 2041, 2039, 2040] by Demod 1228 with 748 at 3
6073 Id : 2544, {_}: join (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))))) ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4552, 4551, 4550, 4549, 4548, 4547] by Super 2531 with 1229 at 1,2,2,2
6074 Id : 2938, {_}: join (meet ?4548 ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4550, 4549, 4552, 4547, 4551, 4548] by Demod 2544 with 1229 at 1,1,2
6075 Id : 2939, {_}: join (meet ?4548 ?4551) (meet ?4548 (join ?4548 ?4551)) =?= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4551, 4548] by Demod 2938 with 1229 at 1,2,2
6076 Id : 2940, {_}: ?4548 =<= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4548] by Demod 2939 with 1544 at 2
6077 Id : 2998, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet ?2039 (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2041, 2039, 2040] by Demod 1229 with 2940 at 1,2,2
6078 Id : 2540, {_}: join (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))))) ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4516, 4515, 4514, 4513, 4512, 4511, 4510, 4509] by Super 2531 with 4 at 1,2,2,2
6079 Id : 2926, {_}: join (meet ?4510 ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4514, 4513, 4512, 4511, 4516, 4509, 4515, 4510] by Demod 2540 with 4 at 1,1,2
6080 Id : 2927, {_}: join (meet ?4510 ?4515) (meet ?4510 (join ?4510 ?4515)) =?= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4515, 4510] by Demod 2926 with 4 at 1,2,2
6081 Id : 2928, {_}: ?4510 =<= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4510] by Demod 2927 with 1544 at 2
6082 Id : 4152, {_}: ?6409 =<= join (meet ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409)) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6413, 6412, 6411, 6410, 6409] by Super 1544 with 2928 at 2
6083 Id : 4435, {_}: join (meet ?7069 ?7068) (meet ?7068 (join ?7069 ?7068)) =>= ?7068 [7068, 7069] by Super 2998 with 4152 at 2
6084 Id : 1656, {_}: join (meet ?3234 ?3235) (meet ?3234 (join ?3234 ?3235)) =>= ?3234 [3235, 3234] by Demod 1164 with 748 at 1,1,2
6085 Id : 1661, {_}: join (meet (meet ?3267 ?3268) (meet ?3267 (join ?3267 ?3268))) (meet (meet ?3267 ?3268) ?3267) =>= meet ?3267 ?3268 [3268, 3267] by Super 1656 with 1544 at 2,2,2
6086 Id : 4973, {_}: ?7997 =<= meet (meet (join ?7998 (join ?7997 ?7999)) (join ?8000 ?7997)) ?7997 [8000, 7999, 7998, 7997] by Super 4152 with 4435 at 3
6087 Id : 7418, {_}: meet ?10627 ?10628 =<= meet (meet (join ?10629 ?10627) (join ?10630 (meet ?10627 ?10628))) (meet ?10627 ?10628) [10630, 10629, 10628, 10627] by Super 4973 with 1544 at 2,1,1,3
6088 Id : 4899, {_}: ?7757 =<= meet (meet (join ?7758 (join ?7757 ?7759)) (join ?7760 ?7757)) ?7757 [7760, 7759, 7758, 7757] by Super 4152 with 4435 at 3
6089 Id : 4939, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6412, 6411, 6410, 6413, 6409] by Demod 4152 with 4899 at 2,1,3
6090 Id : 4940, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 ?6409)) [6413, 6409] by Demod 4939 with 4899 at 2,2,2,3
6091 Id : 8992, {_}: meet ?12671 (join ?12672 ?12672) =<= meet (meet (join ?12673 ?12671) ?12672) (meet ?12671 (join ?12672 ?12672)) [12673, 12672, 12671] by Super 7418 with 4940 at 2,1,3
6092 Id : 4941, {_}: ?7815 =<= join (meet ?7815 ?7815) (join ?7815 ?7815) [7815] by Super 4940 with 4899 at 2,3
6093 Id : 5072, {_}: ?8141 =<= meet (meet ?8141 (join ?8142 ?8141)) ?8141 [8142, 8141] by Super 4899 with 4941 at 1,1,3
6094 Id : 5084, {_}: join ?8151 (meet ?8151 (join (meet ?8151 (join ?8152 ?8151)) ?8151)) =>= ?8151 [8152, 8151] by Super 4435 with 5072 at 1,2
6095 Id : 5705, {_}: ?8954 =<= meet (meet (join ?8955 ?8954) (join ?8956 ?8954)) ?8954 [8956, 8955, 8954] by Super 4899 with 5084 at 2,1,1,3
6096 Id : 5955, {_}: join ?9293 ?9293 =<= meet (meet (join ?9294 (join ?9293 ?9293)) ?9293) (join ?9293 ?9293) [9294, 9293] by Super 5705 with 4941 at 2,1,3
6097 Id : 5957, {_}: join ?9299 ?9299 =<= meet (meet ?9299 ?9299) (join ?9299 ?9299) [9299] by Super 5955 with 4941 at 1,1,3
6098 Id : 6024, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) (join (meet ?9306 ?9306) (join ?9306 ?9306))) =>= join ?9306 ?9306 [9306] by Super 4435 with 5957 at 1,2
6099 Id : 6144, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) ?9306) =>= join ?9306 ?9306 [9306] by Demod 6024 with 4941 at 2,2,2
6100 Id : 6187, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Super 5084 with 6144 at 2,1,2,2,2
6101 Id : 5117, {_}: ?8275 =<= meet (meet ?8275 (join ?8276 ?8275)) ?8275 [8276, 8275] by Super 4899 with 4941 at 1,1,3
6102 Id : 5128, {_}: join ?8312 ?8312 =<= meet (meet (join ?8312 ?8312) ?8312) (join ?8312 ?8312) [8312] by Super 5117 with 4941 at 2,1,3
6103 Id : 6199, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (join ?9444 ?9444) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6187 with 5128 at 1,2,2,2
6104 Id : 6200, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6199 with 6144 at 2,2,2
6105 Id : 6201, {_}: join (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6200 with 5128 at 2,2
6106 Id : 6718, {_}: ?10018 =<= meet (meet (meet (join ?10018 ?10018) ?10018) (join ?10019 ?10018)) ?10018 [10019, 10018] by Super 4899 with 6201 at 1,1,3
6107 Id : 6736, {_}: ?10071 =<= meet (join ?10071 ?10071) ?10071 [10071] by Super 6718 with 5128 at 1,3
6108 Id : 6822, {_}: join ?9444 (join ?9444 ?9444) =<= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6201 with 6736 at 1,2
6109 Id : 6823, {_}: join ?9444 (join ?9444 ?9444) =>= ?9444 [9444] by Demod 6822 with 6736 at 3
6110 Id : 9646, {_}: meet (join ?13551 ?13551) (join ?13552 ?13552) =<= meet (meet ?13551 ?13552) (meet (join ?13551 ?13551) (join ?13552 ?13552)) [13552, 13551] by Super 8992 with 6823 at 1,1,3
6111 Id : 3035, {_}: ?5143 =<= join (meet ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143)) (meet ?5143 (join ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143))) [5146, 5145, 5144, 5143] by Demod 2939 with 1544 at 2
6112 Id : 3039, {_}: ?5175 =<= join (meet ?5174 (join (join (meet ?5175 ?5175) (meet ?5175 (join ?5175 ?5175))) ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Super 3035 with 1544 at 1,2,2,2,3
6113 Id : 3217, {_}: ?5175 =<= join (meet ?5174 (join ?5175 ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Demod 3039 with 1544 at 1,2,1,3
6114 Id : 5068, {_}: ?8129 =<= join (meet (meet ?8129 ?8129) (join ?8129 ?8129)) (meet ?8129 ?8129) [8129] by Super 3217 with 4941 at 2,2,3
6115 Id : 6022, {_}: ?8129 =<= join (join ?8129 ?8129) (meet ?8129 ?8129) [8129] by Demod 5068 with 5957 at 1,3
6116 Id : 7628, {_}: meet ?11050 ?11050 =<= meet (meet (join ?11051 ?11050) ?11050) (meet ?11050 ?11050) [11051, 11050] by Super 7418 with 6022 at 2,1,3
6117 Id : 7650, {_}: meet ?11113 ?11113 =<= meet ?11113 (meet ?11113 ?11113) [11113] by Super 7628 with 6736 at 1,3
6118 Id : 9670, {_}: meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624)) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Super 9646 with 7650 at 1,3
6119 Id : 6333, {_}: meet ?9575 ?9575 =<= meet (meet (join ?9576 (meet ?9575 ?9575)) ?9575) (meet ?9575 ?9575) [9576, 9575] by Super 5705 with 5068 at 2,1,3
6120 Id : 6336, {_}: meet ?9583 ?9583 =<= meet (meet ?9583 ?9583) (meet ?9583 ?9583) [9583] by Super 6333 with 6022 at 1,1,3
6121 Id : 6405, {_}: meet ?9659 ?9659 =<= join (join (meet ?9659 ?9659) (meet ?9659 ?9659)) (meet ?9659 ?9659) [9659] by Super 6022 with 6336 at 2,3
6122 Id : 6817, {_}: join (join ?9306 ?9306) ?9306 =>= join ?9306 ?9306 [9306] by Demod 6144 with 6736 at 2,2
6123 Id : 7013, {_}: meet ?9659 ?9659 =<= join (meet ?9659 ?9659) (meet ?9659 ?9659) [9659] by Demod 6405 with 6817 at 3
6124 Id : 9768, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Demod 9670 with 7013 at 2,2
6125 Id : 9769, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (meet ?13624 ?13624)) [13624] by Demod 9768 with 7013 at 2,2,3
6126 Id : 10286, {_}: join (meet (meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Super 1661 with 9769 at 1,2,2
6127 Id : 10416, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10286 with 9769 at 1,1,2
6128 Id : 7044, {_}: meet ?10282 ?10282 =<= join (meet (meet ?10282 ?10282) (meet ?10282 ?10282)) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Super 4940 with 7013 at 2,2,3
6129 Id : 7086, {_}: meet ?10282 ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7044 with 6336 at 1,3
6130 Id : 10417, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10416 with 7086 at 2,2,1,2
6131 Id : 10418, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10417 with 6336 at 2,1,2
6132 Id : 7467, {_}: meet ?10854 ?10854 =<= meet (meet (join ?10855 ?10854) (meet ?10854 ?10854)) (meet ?10854 ?10854) [10855, 10854] by Super 7418 with 7013 at 2,1,3
6133 Id : 10419, {_}: join (meet ?14243 ?14243) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10418 with 7467 at 1,2
6134 Id : 10420, {_}: meet ?14243 ?14243 =<= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10419 with 7086 at 2
6135 Id : 10421, {_}: meet ?14243 ?14243 =<= meet (join ?14243 ?14243) (meet ?14243 ?14243) [14243] by Demod 10420 with 9769 at 3
6136 Id : 10483, {_}: join (meet (meet (join ?14359 ?14359) (meet ?14359 ?14359)) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Super 1661 with 10421 at 1,2,2
6137 Id : 10517, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10483 with 10421 at 1,1,2
6138 Id : 10518, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) ?14359)) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10517 with 6022 at 2,2,1,2
6139 Id : 10519, {_}: join (meet (meet ?14359 ?14359) ?14359) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10518 with 6736 at 2,1,2
6140 Id : 10520, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10519 with 5957 at 2,2
6141 Id : 10521, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet ?14359 ?14359 [14359] by Demod 10520 with 10421 at 3
6142 Id : 10992, {_}: join (meet (meet (meet ?14539 ?14539) ?14539) (join ?14539 ?14539)) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Super 4435 with 10521 at 2,2,2
6143 Id : 8999, {_}: meet (meet ?12702 ?12702) (join ?12702 ?12702) =<= meet (meet (join ?12703 (meet ?12702 ?12702)) ?12702) (join ?12702 ?12702) [12703, 12702] by Super 8992 with 5957 at 2,3
6144 Id : 10037, {_}: join ?14089 ?14089 =<= meet (meet (join ?14090 (meet ?14089 ?14089)) ?14089) (join ?14089 ?14089) [14090, 14089] by Demod 8999 with 5957 at 2
6145 Id : 10046, {_}: join ?14111 ?14111 =<= meet (meet (meet ?14111 ?14111) ?14111) (join ?14111 ?14111) [14111] by Super 10037 with 7013 at 1,1,3
6146 Id : 11120, {_}: join (join ?14539 ?14539) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Demod 10992 with 10046 at 1,2
6147 Id : 11121, {_}: join (join ?14539 ?14539) (meet ?14539 ?14539) =>= join ?14539 ?14539 [14539] by Demod 11120 with 10421 at 2,2
6148 Id : 11122, {_}: ?14539 =<= join ?14539 ?14539 [14539] by Demod 11121 with 6022 at 2
6149 Id : 11280, {_}: ?14616 =<= join (meet (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616) (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) (meet ?14616 (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) [14618, 14617, 14616] by Super 2940 with 11122 at 2,2,3
6150 Id : 7731, {_}: join (meet ?11160 ?11160) (meet ?11160 (join ?11160 (meet ?11160 ?11160))) =>= ?11160 [11160] by Super 1544 with 7650 at 1,2
6151 Id : 6841, {_}: join ?10124 (meet (join ?10124 ?10124) (join (join ?10124 ?10124) ?10124)) =>= join ?10124 ?10124 [10124] by Super 1544 with 6736 at 1,2
6152 Id : 6906, {_}: join ?10124 (meet (join ?10124 ?10124) (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6841 with 6817 at 2,2,2
6153 Id : 11192, {_}: join ?10124 (meet ?10124 (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6906 with 11122 at 1,2,2
6154 Id : 11193, {_}: join ?10124 (meet ?10124 ?10124) =>= join ?10124 ?10124 [10124] by Demod 11192 with 11122 at 2,2,2
6155 Id : 11194, {_}: join ?10124 (meet ?10124 ?10124) =>= ?10124 [10124] by Demod 11193 with 11122 at 3
6156 Id : 11206, {_}: join (meet ?11160 ?11160) (meet ?11160 ?11160) =>= ?11160 [11160] by Demod 7731 with 11194 at 2,2,2
6157 Id : 11207, {_}: meet ?11160 ?11160 =>= ?11160 [11160] by Demod 11206 with 11122 at 2
6158 Id : 11417, {_}: ?14616 =<= join (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616) (meet ?14616 (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) [14618, 14617, 14616] by Demod 11280 with 11207 at 1,3
6159 Id : 11210, {_}: ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7086 with 11207 at 2
6160 Id : 11211, {_}: ?10282 =<= join ?10282 (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 11210 with 11207 at 1,3
6161 Id : 11212, {_}: ?10282 =<= join ?10282 (meet ?10283 ?10282) [10283, 10282] by Demod 11211 with 11207 at 2,2,3
6162 Id : 12052, {_}: ?15606 =<= join (join (meet ?15607 ?15606) (meet ?15606 ?15608)) ?15606 [15608, 15607, 15606] by Demod 11417 with 11212 at 3
6163 Id : 12070, {_}: ?15688 =<= join (join ?15688 (meet ?15688 ?15689)) ?15688 [15689, 15688] by Super 12052 with 11207 at 1,1,3
6164 Id : 12545, {_}: join (meet (join ?16137 (meet ?16137 ?16138)) ?16137) (meet (join ?16137 (meet ?16137 ?16138)) ?16137) =>= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Super 1544 with 12070 at 2,2,2
6165 Id : 12628, {_}: meet (join ?16137 (meet ?16137 ?16138)) ?16137 =>= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Demod 12545 with 11122 at 2
6166 Id : 11515, {_}: ?14875 =<= meet (meet (join ?14876 (join ?14875 ?14877)) ?14875) ?14875 [14877, 14876, 14875] by Super 4899 with 11122 at 2,1,3
6167 Id : 11529, {_}: ?14934 =<= meet (meet (join ?14934 ?14935) ?14934) ?14934 [14935, 14934] by Super 11515 with 11122 at 1,1,3
6168 Id : 12090, {_}: ?15773 =<= join (meet ?15774 ?15773) ?15773 [15774, 15773] by Super 12052 with 11212 at 1,3
6169 Id : 12194, {_}: join (meet (meet ?15862 ?15861) ?15861) (meet (meet ?15862 ?15861) ?15861) =>= meet ?15862 ?15861 [15861, 15862] by Super 1544 with 12090 at 2,2,2
6170 Id : 12248, {_}: meet (meet ?15862 ?15861) ?15861 =>= meet ?15862 ?15861 [15861, 15862] by Demod 12194 with 11122 at 2
6171 Id : 12318, {_}: ?14934 =<= meet (join ?14934 ?14935) ?14934 [14935, 14934] by Demod 11529 with 12248 at 3
6172 Id : 12629, {_}: ?16137 =<= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Demod 12628 with 12318 at 2
6173 Id : 12769, {_}: a === a [] by Demod 2 with 12629 at 2
6174 Id : 2, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8
6175 % SZS output end CNFRefutation for LAT087-1.p
6183 prove_wal_axioms_2 is 95
6187 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
6189 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
6191 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
6193 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
6194 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
6195 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
6198 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
6200 Id : 2, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2
6201 Found proof, 13.254951s
6202 % SZS status Unsatisfiable for LAT093-1.p
6203 % SZS output start CNFRefutation for LAT093-1.p
6204 Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
6205 Id : 5, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14
6206 Id : 33, {_}: join (meet (join (meet ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))) (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) (join ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))))) ?218) (meet (join (meet ?215 (join (join (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) ?219) (meet ?220 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (meet ?217 (join ?215 (join (join (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) ?219) (meet ?220 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))))) (join (join (meet ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))) (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) (join ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))))) ?218)) =>= join (meet ?216 ?217) (meet ?217 (join ?216 ?217)) [220, 219, 218, 217, 216, 215] by Super 5 with 4 at 1,2,1,2,2
6207 Id : 36, {_}: join (meet (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 245, 244, 249] by Super 33 with 4 at 2,2,2,1,2,2,2
6208 Id : 118, {_}: join (meet (join (meet ?249 ?245) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 244, 245, 249] by Demod 36 with 4 at 2,1,1,1,2
6209 Id : 119, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 244, 245, 249] by Demod 118 with 4 at 1,2,1,1,2
6210 Id : 120, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 248, 247, 246, 244, 250, 245, 249] by Demod 119 with 4 at 2,2,2,1,1,2
6211 Id : 121, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 120 with 4 at 1,1,1,2,1,1,2,2
6212 Id : 122, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 121 with 4 at 2,2,1,2,1,1,2,2
6213 Id : 123, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 122 with 4 at 2,2,1,1,2,2
6214 Id : 124, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 123 with 4 at 1,1,1,2,2,2,1,2,2
6215 Id : 125, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 124 with 4 at 2,2,1,2,2,2,1,2,2
6216 Id : 126, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 125 with 4 at 2,2,2,2,1,2,2
6217 Id : 127, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 ?245) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 126 with 4 at 2,1,1,2,2,2
6218 Id : 128, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250)) =?= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 127 with 4 at 1,2,1,2,2,2
6219 Id : 704, {_}: join (meet (join (meet ?1213 ?1214) (meet ?1214 (join ?1213 ?1214))) ?1215) (meet (join (meet ?1213 (join (join (meet ?1214 ?1216) (meet ?1217 ?1214)) ?1214)) (meet (join (meet ?1218 (join (join (meet ?1214 ?1219) (meet ?1220 ?1214)) ?1214)) (meet (join (meet ?1214 (meet (meet (join ?1214 ?1219) (join ?1220 ?1214)) ?1214)) (meet ?1221 (join ?1214 (meet (meet (join ?1214 ?1219) (join ?1220 ?1214)) ?1214)))) (join ?1218 (join (join (meet ?1214 ?1219) (meet ?1220 ?1214)) ?1214)))) (join ?1213 (join (join (meet ?1214 ?1216) (meet ?1217 ?1214)) ?1214)))) (join (join (meet ?1213 ?1214) (meet ?1214 (join ?1213 ?1214))) ?1215)) =>= ?1214 [1221, 1220, 1219, 1218, 1217, 1216, 1215, 1214, 1213] by Demod 128 with 4 at 3
6220 Id : 1103, {_}: join (meet (join (meet (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032) (meet ?2032 (join (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032))) ?2033) (meet ?2032 (join (join (meet (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032) (meet ?2032 (join (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032))) ?2033)) =>= ?2032 [2033, 2032, 2031] by Super 704 with 4 at 1,2,2
6221 Id : 726, {_}: join (meet (join (meet (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532) (meet ?1532 (join (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532))) ?1533) (meet ?1532 (join (join (meet (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532) (meet ?1532 (join (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532))) ?1533)) =>= ?1532 [1533, 1532, 1536] by Super 704 with 4 at 1,2,2
6222 Id : 1120, {_}: join (meet (join (meet (join (meet (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156) (meet ?2156 (join (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156))) ?2156) (meet ?2156 (join (join (meet (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156) (meet ?2156 (join (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156))) ?2156))) ?2157) (meet ?2156 (join ?2156 ?2157)) =>= ?2156 [2157, 2156, 2155] by Super 1103 with 726 at 1,2,2,2
6223 Id : 1492, {_}: join (meet ?2156 ?2157) (meet ?2156 (join ?2156 ?2157)) =>= ?2156 [2157, 2156] by Demod 1120 with 726 at 1,1,2
6224 Id : 12, {_}: join (meet (join (meet ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))) (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) (join ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))))) ?87) (meet (join (meet ?86 (join (join (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) ?88) (meet ?89 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (meet ?82 (join ?86 (join (join (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) ?88) (meet ?89 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))))) (join (join (meet ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))) (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) (join ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))))) ?87)) =>= join (meet ?81 ?82) (meet ?82 (join ?81 ?82)) [89, 88, 87, 82, 81, 86] by Super 5 with 4 at 1,2,1,2,2
6225 Id : 1056, {_}: join (meet (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1647, 1646, 1648] by Super 12 with 726 at 2,2,2,1,2,2,2
6226 Id : 1168, {_}: join (meet (join (meet ?1648 ?1647) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1646, 1647, 1648] by Demod 1056 with 726 at 2,1,1,1,2
6227 Id : 1169, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1646, 1647, 1648] by Demod 1168 with 726 at 1,2,1,1,2
6228 Id : 1170, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1646, 1649, 1647, 1648] by Demod 1169 with 726 at 2,2,2,1,1,2
6229 Id : 1171, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1170 with 726 at 1,1,1,2,1,1,2,2
6230 Id : 1172, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1171 with 726 at 2,2,1,2,1,1,2,2
6231 Id : 1173, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1172 with 726 at 2,2,1,1,2,2
6232 Id : 1174, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1173 with 726 at 1,1,1,2,2,2,1,2,2
6233 Id : 1175, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1174 with 726 at 2,2,1,2,2,2,1,2,2
6234 Id : 1176, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1175 with 726 at 2,2,2,2,1,2,2
6235 Id : 1177, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1176 with 726 at 2,1,1,2,2,2
6236 Id : 1178, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =?= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1177 with 726 at 1,2,1,2,2,2
6237 Id : 1179, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =>= ?1647 [1651, 1650, 1649, 1647, 1648] by Demod 1178 with 726 at 3
6238 Id : 2457, {_}: join (meet (join (meet ?3744 ?3745) (meet ?3745 (join ?3744 ?3745))) ?3746) (meet (join (meet ?3744 (join (join (meet ?3745 ?3747) (meet ?3748 ?3745)) ?3745)) (meet ?3745 (join ?3744 (join (join (meet ?3745 ?3747) (meet ?3748 ?3745)) ?3745)))) (join (join (meet ?3744 ?3745) (meet ?3745 (join ?3744 ?3745))) ?3746)) =>= ?3745 [3748, 3747, 3746, 3745, 3744] by Demod 1178 with 726 at 3
6239 Id : 2470, {_}: join (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))))))) ?3857) (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))))) (join ?3854 ?3857)) =>= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3859, 3858, 3857, 3856, 3855, 3854, 3853] by Super 2457 with 1179 at 1,2,2,2
6240 Id : 2846, {_}: join (meet ?3854 ?3857) (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))))) (join ?3854 ?3857)) =>= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3859, 3858, 3856, 3855, 3853, 3857, 3854] by Demod 2470 with 1179 at 1,1,2
6241 Id : 2847, {_}: join (meet ?3854 ?3857) (meet ?3854 (join ?3854 ?3857)) =?= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3856, 3855, 3853, 3857, 3854] by Demod 2846 with 1179 at 1,2,2
6242 Id : 2848, {_}: ?3854 =<= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3856, 3855, 3853, 3854] by Demod 2847 with 1492 at 2
6243 Id : 2894, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet ?1647 (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =>= ?1647 [1649, 1647, 1648] by Demod 1179 with 2848 at 1,2,2
6244 Id : 2466, {_}: join (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))))))) ?3822) (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))))) (join ?3818 ?3822)) =>= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3824, 3823, 3822, 3821, 3820, 3819, 3818, 3817] by Super 2457 with 4 at 1,2,2,2
6245 Id : 2834, {_}: join (meet ?3818 ?3822) (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))))) (join ?3818 ?3822)) =>= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3824, 3823, 3821, 3820, 3819, 3817, 3822, 3818] by Demod 2466 with 4 at 1,1,2
6246 Id : 2835, {_}: join (meet ?3818 ?3822) (meet ?3818 (join ?3818 ?3822)) =?= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3821, 3820, 3819, 3817, 3822, 3818] by Demod 2834 with 4 at 1,2,2
6247 Id : 2836, {_}: ?3818 =<= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3821, 3820, 3819, 3817, 3818] by Demod 2835 with 1492 at 2
6248 Id : 3353, {_}: ?4683 =<= join (meet ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683)) (meet ?4686 (join ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683))) [4686, 4685, 4684, 4683] by Super 2894 with 2836 at 2
6249 Id : 3629, {_}: join (meet ?5382 ?5381) (meet ?5381 (join ?5382 ?5381)) =>= ?5381 [5381, 5382] by Super 2894 with 3353 at 2
6250 Id : 4066, {_}: ?5811 =<= meet (meet (join ?5811 ?5812) (join ?5813 ?5811)) ?5811 [5813, 5812, 5811] by Super 3353 with 3629 at 3
6251 Id : 4517, {_}: meet ?6536 ?6537 =<= meet (meet ?6537 (join ?6538 (meet ?6536 ?6537))) (meet ?6536 ?6537) [6538, 6537, 6536] by Super 4066 with 3629 at 1,1,3
6252 Id : 4020, {_}: ?5649 =<= meet (meet (join ?5649 ?5650) (join ?5651 ?5649)) ?5649 [5651, 5650, 5649] by Super 3353 with 3629 at 3
6253 Id : 4518, {_}: meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542 =<= meet (meet ?6542 (join ?6543 (meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542))) ?6542 [6543, 6541, 6540, 6542] by Super 4517 with 4020 at 2,3
6254 Id : 4585, {_}: ?6542 =<= meet (meet ?6542 (join ?6543 (meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542))) ?6542 [6541, 6540, 6543, 6542] by Demod 4518 with 4020 at 2
6255 Id : 4586, {_}: ?6542 =<= meet (meet ?6542 (join ?6543 ?6542)) ?6542 [6543, 6542] by Demod 4585 with 4020 at 2,2,1,3
6256 Id : 1596, {_}: join (meet ?2660 ?2661) (meet ?2660 (join ?2660 ?2661)) =>= ?2660 [2661, 2660] by Demod 1120 with 726 at 1,1,2
6257 Id : 1601, {_}: join (meet (meet ?2691 ?2692) (meet ?2691 (join ?2691 ?2692))) (meet (meet ?2691 ?2692) ?2691) =>= meet ?2691 ?2692 [2692, 2691] by Super 1596 with 1492 at 2,2,2
6258 Id : 4161, {_}: meet ?6000 ?6001 =<= meet (meet ?6000 (join ?6002 (meet ?6000 ?6001))) (meet ?6000 ?6001) [6002, 6001, 6000] by Super 4066 with 1492 at 1,1,3
6259 Id : 4166, {_}: meet ?6025 (join ?6025 ?6024) =<= meet (meet ?6025 ?6025) (meet ?6025 (join ?6025 ?6024)) [6024, 6025] by Super 4161 with 1492 at 2,1,3
6260 Id : 4239, {_}: join (meet ?6108 (join ?6108 ?6108)) (meet (meet ?6108 ?6108) ?6108) =>= meet ?6108 ?6108 [6108] by Super 1601 with 4166 at 1,2
6261 Id : 1974, {_}: join (meet (meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900))) (meet (meet ?2899 ?2900) ?2899)) (meet (meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900))) (meet ?2899 ?2900)) =>= meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900)) [2900, 2899] by Super 1492 with 1601 at 2,2,2
6262 Id : 4530, {_}: meet ?6595 (join ?6595 ?6594) =<= meet (meet (join ?6595 ?6594) ?6595) (meet ?6595 (join ?6595 ?6594)) [6594, 6595] by Super 4517 with 1492 at 2,1,3
6263 Id : 4634, {_}: join ?6728 (meet ?6728 (join (meet ?6728 (join ?6729 ?6728)) ?6728)) =>= ?6728 [6729, 6728] by Super 3629 with 4586 at 1,2
6264 Id : 5854, {_}: meet ?8039 (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) =<= meet (meet (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) ?8039) (meet ?8039 ?8039) [8040, 8039] by Super 4530 with 4634 at 2,2,3
6265 Id : 5885, {_}: meet ?8039 ?8039 =<= meet (meet (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) ?8039) (meet ?8039 ?8039) [8040, 8039] by Demod 5854 with 4634 at 2,2
6266 Id : 5886, {_}: meet ?8039 ?8039 =<= meet (meet ?8039 ?8039) (meet ?8039 ?8039) [8039] by Demod 5885 with 4634 at 1,1,3
6267 Id : 5940, {_}: join (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Super 1974 with 5886 at 2,2,2
6268 Id : 6002, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 5940 with 4166 at 1,1,2
6269 Id : 6003, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6002 with 5886 at 1,2,1,2
6270 Id : 6004, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet ?8123 ?8123)) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6003 with 5886 at 2,1,2
6271 Id : 6005, {_}: join (meet ?8123 ?8123) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6004 with 4586 at 1,2
6272 Id : 6006, {_}: join (meet ?8123 ?8123) (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet ?8123 ?8123)) =<= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6005 with 4166 at 1,2,2
6273 Id : 6007, {_}: join (meet ?8123 ?8123) (meet ?8123 ?8123) =<= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6006 with 4586 at 2,2
6274 Id : 6008, {_}: join (meet ?8123 ?8123) (meet ?8123 ?8123) =<= meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)) [8123] by Demod 6007 with 4166 at 3
6275 Id : 7068, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet (meet (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355)) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Super 4239 with 6008 at 1,2
6276 Id : 7098, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet (meet ?9355 ?9355) (meet ?9355 ?9355)) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Demod 7068 with 5886 at 1,2,2
6277 Id : 7099, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Demod 7098 with 5886 at 2,2
6278 Id : 7100, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355) =>= meet ?9355 ?9355 [9355] by Demod 7099 with 5886 at 3
6279 Id : 7401, {_}: meet ?9521 ?9521 =<= meet (meet (join (meet ?9521 ?9521) ?9522) (meet ?9521 ?9521)) (meet ?9521 ?9521) [9522, 9521] by Super 4020 with 7100 at 2,1,3
6280 Id : 13724, {_}: join (meet ?15407 ?15407) (meet (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (join (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (meet ?15407 ?15407))) =>= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Super 1492 with 7401 at 1,2
6281 Id : 4041, {_}: ?4683 =<= join (meet ?4683 ?4683) (meet ?4686 (join ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683))) [4685, 4684, 4686, 4683] by Demod 3353 with 4020 at 2,1,3
6282 Id : 4042, {_}: ?4683 =<= join (meet ?4683 ?4683) (meet ?4686 (join ?4683 ?4683)) [4686, 4683] by Demod 4041 with 4020 at 2,2,2,3
6283 Id : 4536, {_}: meet ?6617 (join ?6616 ?6616) =<= meet (meet (join ?6616 ?6616) ?6616) (meet ?6617 (join ?6616 ?6616)) [6616, 6617] by Super 4517 with 4042 at 2,1,3
6284 Id : 7400, {_}: join (meet (join (meet ?9519 ?9519) (meet ?9519 ?9519)) (meet ?9519 ?9519)) (meet (meet ?9519 ?9519) (meet ?9519 ?9519)) =>= meet ?9519 ?9519 [9519] by Super 3629 with 7100 at 2,2,2
6285 Id : 7034, {_}: meet ?9263 ?9263 =<= meet (join (meet ?9263 ?9263) (meet ?9263 ?9263)) (meet ?9263 ?9263) [9263] by Super 4586 with 6008 at 1,3
6286 Id : 7430, {_}: join (meet ?9519 ?9519) (meet (meet ?9519 ?9519) (meet ?9519 ?9519)) =>= meet ?9519 ?9519 [9519] by Demod 7400 with 7034 at 1,2
6287 Id : 7431, {_}: join (meet ?9519 ?9519) (meet ?9519 ?9519) =>= meet ?9519 ?9519 [9519] by Demod 7430 with 5886 at 2,2
6288 Id : 7539, {_}: meet ?9566 (join (meet ?9565 ?9565) (meet ?9565 ?9565)) =<= meet (meet (join (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Super 4536 with 7431 at 2,2,3
6289 Id : 7732, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet (join (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7539 with 7431 at 2,2
6290 Id : 7733, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7732 with 7431 at 1,1,3
6291 Id : 7734, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet ?9565 ?9565) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7733 with 5886 at 1,3
6292 Id : 7988, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet (meet ?9922 ?9922) (join (meet ?9922 ?9922) (meet ?9921 (meet ?9922 ?9922)))) =>= meet ?9922 ?9922 [9922, 9921] by Super 1492 with 7734 at 1,2
6293 Id : 7550, {_}: meet ?9591 ?9591 =<= join (meet (meet ?9591 ?9591) (meet ?9591 ?9591)) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Super 4042 with 7431 at 2,2,3
6294 Id : 7707, {_}: meet ?9591 ?9591 =<= join (meet ?9591 ?9591) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 7550 with 5886 at 1,3
6295 Id : 8067, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet (meet ?9922 ?9922) (meet ?9922 ?9922)) =>= meet ?9922 ?9922 [9922, 9921] by Demod 7988 with 7707 at 2,2,2
6296 Id : 8068, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet ?9922 ?9922) =>= meet ?9922 ?9922 [9922, 9921] by Demod 8067 with 5886 at 2,2
6297 Id : 13909, {_}: join (meet ?15407 ?15407) (meet (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (meet ?15407 ?15407)) =>= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13724 with 8068 at 2,2,2
6298 Id : 13910, {_}: meet ?15407 ?15407 =<= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13909 with 7707 at 2
6299 Id : 5848, {_}: join (meet ?8021 (meet ?8021 (join (meet ?8021 (join ?8022 ?8021)) ?8021))) (meet ?8021 ?8021) =>= ?8021 [8022, 8021] by Super 1492 with 4634 at 2,2,2
6300 Id : 4640, {_}: ?6750 =<= meet (meet ?6750 (join ?6751 ?6750)) ?6750 [6751, 6750] by Demod 4585 with 4020 at 2,2,1,3
6301 Id : 4645, {_}: meet ?6768 (join ?6767 ?6768) =<= meet (meet (meet ?6768 (join ?6767 ?6768)) ?6768) (meet ?6768 (join ?6767 ?6768)) [6767, 6768] by Super 4640 with 3629 at 2,1,3
6302 Id : 4708, {_}: meet ?6768 (join ?6767 ?6768) =<= meet ?6768 (meet ?6768 (join ?6767 ?6768)) [6767, 6768] by Demod 4645 with 4586 at 1,3
6303 Id : 5910, {_}: join (meet ?8021 (join (meet ?8021 (join ?8022 ?8021)) ?8021)) (meet ?8021 ?8021) =>= ?8021 [8022, 8021] by Demod 5848 with 4708 at 1,2
6304 Id : 9401, {_}: meet (meet ?11248 ?11249) ?11248 =<= meet (meet (meet ?11248 ?11249) (meet ?11248 ?11249)) (meet (meet ?11248 ?11249) ?11248) [11249, 11248] by Super 4161 with 1601 at 2,1,3
6305 Id : 9402, {_}: meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Super 9401 with 4020 at 1,2,3
6306 Id : 9552, {_}: meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Demod 9402 with 4020 at 1,2
6307 Id : 9553, {_}: meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet ?11253 (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Demod 9552 with 4020 at 1,1,3
6308 Id : 18238, {_}: meet ?19914 (meet (join ?19914 ?19915) (join ?19916 ?19914)) =<= meet (meet ?19914 ?19914) (meet ?19914 (meet (join ?19914 ?19915) (join ?19916 ?19914))) [19916, 19915, 19914] by Demod 9553 with 4020 at 2,1,3
6309 Id : 11581, {_}: meet ?13378 (join ?13379 ?13379) =<= meet (meet (meet ?13378 (join ?13379 ?13379)) ?13379) (meet ?13378 (join ?13379 ?13379)) [13379, 13378] by Super 4640 with 4042 at 2,1,3
6310 Id : 11600, {_}: meet (join ?13442 ?13441) (join ?13442 ?13442) =<= meet ?13442 (meet (join ?13442 ?13441) (join ?13442 ?13442)) [13441, 13442] by Super 11581 with 4020 at 1,3
6311 Id : 18285, {_}: meet ?20107 (meet (join ?20107 ?20106) (join ?20107 ?20107)) =<= meet (meet ?20107 ?20107) (meet (join ?20107 ?20106) (join ?20107 ?20107)) [20106, 20107] by Super 18238 with 11600 at 2,3
6312 Id : 18491, {_}: meet (join ?20107 ?20106) (join ?20107 ?20107) =<= meet (meet ?20107 ?20107) (meet (join ?20107 ?20106) (join ?20107 ?20107)) [20106, 20107] by Demod 18285 with 11600 at 2
6313 Id : 18514, {_}: join (meet (join ?20180 ?20181) (join ?20180 ?20180)) (meet (meet (join ?20180 ?20181) (join ?20180 ?20180)) (join (meet ?20180 ?20180) (meet (join ?20180 ?20181) (join ?20180 ?20180)))) =>= meet (join ?20180 ?20181) (join ?20180 ?20180) [20181, 20180] by Super 3629 with 18491 at 1,2
6314 Id : 18667, {_}: join (meet (join ?20180 ?20181) (join ?20180 ?20180)) (meet (meet (join ?20180 ?20181) (join ?20180 ?20180)) ?20180) =>= meet (join ?20180 ?20181) (join ?20180 ?20180) [20181, 20180] by Demod 18514 with 4042 at 2,2,2
6315 Id : 18856, {_}: join (meet (join ?20559 ?20560) (join ?20559 ?20559)) ?20559 =>= meet (join ?20559 ?20560) (join ?20559 ?20559) [20560, 20559] by Demod 18667 with 4020 at 2,2
6316 Id : 4044, {_}: join ?5696 (meet ?5696 (join (meet (join ?5696 ?5697) (join ?5698 ?5696)) ?5696)) =>= ?5696 [5698, 5697, 5696] by Super 3629 with 4020 at 1,2
6317 Id : 18864, {_}: join (meet ?20588 (join ?20588 ?20588)) ?20588 =<= meet (join ?20588 (meet ?20588 (join (meet (join ?20588 ?20586) (join ?20587 ?20588)) ?20588))) (join ?20588 ?20588) [20587, 20586, 20588] by Super 18856 with 4044 at 1,1,2
6318 Id : 19017, {_}: join (meet ?20588 (join ?20588 ?20588)) ?20588 =>= meet ?20588 (join ?20588 ?20588) [20588] by Demod 18864 with 4044 at 1,3
6319 Id : 19112, {_}: join (meet ?20758 (meet ?20758 (join ?20758 ?20758))) (meet ?20758 ?20758) =>= ?20758 [20758] by Super 5910 with 19017 at 2,1,2
6320 Id : 19134, {_}: join (meet ?20758 (join ?20758 ?20758)) (meet ?20758 ?20758) =>= ?20758 [20758] by Demod 19112 with 4708 at 1,2
6321 Id : 12695, {_}: ?14373 =<= join (meet ?14375 (join (join (meet ?14373 (join (meet ?14373 (join ?14374 ?14373)) ?14373)) (meet ?14373 ?14373)) ?14373)) (meet ?14373 (join ?14375 (join ?14373 ?14373))) [14374, 14375, 14373] by Super 2848 with 5910 at 1,2,2,2,3
6322 Id : 12774, {_}: ?14373 =<= join (meet ?14375 (join ?14373 ?14373)) (meet ?14373 (join ?14375 (join ?14373 ?14373))) [14375, 14373] by Demod 12695 with 5910 at 1,2,1,3
6323 Id : 23235, {_}: join ?23859 ?23859 =>= ?23859 [23859] by Super 4042 with 12774 at 3
6324 Id : 23429, {_}: join (meet ?20758 ?20758) (meet ?20758 ?20758) =>= ?20758 [20758] by Demod 19134 with 23235 at 2,1,2
6325 Id : 23430, {_}: meet ?20758 ?20758 =>= ?20758 [20758] by Demod 23429 with 23235 at 2
6326 Id : 23444, {_}: ?15407 =<= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13910 with 23430 at 2
6327 Id : 23445, {_}: ?15407 =<= meet (join ?15407 ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 23444 with 23430 at 1,1,3
6328 Id : 23446, {_}: ?15407 =<= meet (join ?15407 ?15408) ?15407 [15408, 15407] by Demod 23445 with 23430 at 2,3
6329 Id : 23618, {_}: ?24079 =<= join (meet (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079) (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) (meet ?24079 (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) [24081, 24080, 24079] by Super 2848 with 23235 at 2,2,3
6330 Id : 23720, {_}: ?24079 =<= join (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079) (meet ?24079 (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) [24081, 24080, 24079] by Demod 23618 with 23430 at 1,3
6331 Id : 23476, {_}: ?9591 =<= join (meet ?9591 ?9591) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 7707 with 23430 at 2
6332 Id : 23477, {_}: ?9591 =<= join ?9591 (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 23476 with 23430 at 1,3
6333 Id : 23478, {_}: ?9591 =<= join ?9591 (meet ?9592 ?9591) [9592, 9591] by Demod 23477 with 23430 at 2,2,3
6334 Id : 23792, {_}: ?24251 =<= join (join (meet ?24251 ?24252) (meet ?24253 ?24251)) ?24251 [24253, 24252, 24251] by Demod 23720 with 23478 at 3
6335 Id : 23793, {_}: ?24256 =<= join (join (meet ?24256 ?24255) ?24256) ?24256 [24255, 24256] by Super 23792 with 23430 at 2,1,3
6336 Id : 23892, {_}: join (meet ?24386 ?24387) ?24386 =<= meet ?24386 (join (meet ?24386 ?24387) ?24386) [24387, 24386] by Super 23446 with 23793 at 1,3
6337 Id : 24037, {_}: ?24612 =<= meet (join (meet ?24612 ?24613) ?24612) ?24612 [24613, 24612] by Super 4586 with 23892 at 1,3
6338 Id : 23902, {_}: join (meet (join (meet ?24420 ?24421) ?24420) ?24420) (meet (join (meet ?24420 ?24421) ?24420) ?24420) =>= join (meet ?24420 ?24421) ?24420 [24421, 24420] by Super 1492 with 23793 at 2,2,2
6339 Id : 23961, {_}: meet (join (meet ?24420 ?24421) ?24420) ?24420 =>= join (meet ?24420 ?24421) ?24420 [24421, 24420] by Demod 23902 with 23235 at 2
6340 Id : 24344, {_}: ?24612 =<= join (meet ?24612 ?24613) ?24612 [24613, 24612] by Demod 24037 with 23961 at 3
6341 Id : 24361, {_}: join (meet (meet ?24861 ?24862) ?24861) (meet (meet ?24861 ?24862) ?24861) =>= meet ?24861 ?24862 [24862, 24861] by Super 1492 with 24344 at 2,2,2
6342 Id : 24421, {_}: meet (meet ?24861 ?24862) ?24861 =>= meet ?24861 ?24862 [24862, 24861] by Demod 24361 with 23235 at 2
6343 Id : 4078, {_}: meet ?5865 ?5866 =<= meet (meet ?5866 (join ?5867 (meet ?5865 ?5866))) (meet ?5865 ?5866) [5867, 5866, 5865] by Super 4066 with 3629 at 1,1,3
6344 Id : 24583, {_}: ?25104 =<= join ?25104 (meet ?25104 ?25105) [25105, 25104] by Super 23478 with 24421 at 2,3
6345 Id : 24726, {_}: meet ?25313 ?25314 =<= meet (meet ?25314 ?25313) (meet ?25313 ?25314) [25314, 25313] by Super 4078 with 24583 at 2,1,3
6346 Id : 24889, {_}: meet (meet ?25590 ?25591) (meet ?25591 ?25590) =?= meet (meet ?25591 ?25590) (meet ?25590 ?25591) [25591, 25590] by Super 24421 with 24726 at 1,2
6347 Id : 24922, {_}: meet ?25591 ?25590 =<= meet (meet ?25591 ?25590) (meet ?25590 ?25591) [25590, 25591] by Demod 24889 with 24726 at 2
6348 Id : 24923, {_}: meet ?25591 ?25590 =?= meet ?25590 ?25591 [25590, 25591] by Demod 24922 with 24726 at 3
6349 Id : 25184, {_}: meet a b === meet a b [] by Demod 2 with 24923 at 2
6350 Id : 2, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2
6351 % SZS output end CNFRefutation for LAT093-1.p
6358 associativity_of_join is 85
6359 associativity_of_meet is 86
6362 commutativity_of_join is 87
6363 commutativity_of_meet is 88
6365 idempotence_of_join is 91
6366 idempotence_of_meet is 92
6371 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6372 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6373 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6374 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6376 meet ?12 ?13 =?= meet ?13 ?12
6377 [13, 12] by commutativity_of_meet ?12 ?13
6379 join ?15 ?16 =?= join ?16 ?15
6380 [16, 15] by commutativity_of_join ?15 ?16
6382 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6383 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6385 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6386 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6388 meet ?26 (join ?27 (meet ?26 ?28))
6392 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))))
6393 [28, 27, 26] by equation_H7 ?26 ?27 ?28
6396 meet a (join b (meet a c))
6398 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
6400 Last chance: 1246133454.3
6401 Last chance: all is indexed 1246133474.31
6402 Last chance: failed over 100 goal 1246133474.31
6403 FAILURE in 0 iterations
6404 % SZS status Timeout for LAT138-1.p
6411 associativity_of_join is 85
6412 associativity_of_meet is 86
6415 commutativity_of_join is 87
6416 commutativity_of_meet is 88
6418 idempotence_of_join is 91
6419 idempotence_of_meet is 92
6424 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6425 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6426 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6427 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6429 meet ?12 ?13 =?= meet ?13 ?12
6430 [13, 12] by commutativity_of_meet ?12 ?13
6432 join ?15 ?16 =?= join ?16 ?15
6433 [16, 15] by commutativity_of_join ?15 ?16
6435 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6436 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6438 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6439 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6441 join (meet ?26 ?27) (meet ?26 ?28)
6444 (join (meet ?27 (join ?26 (meet ?27 ?28)))
6445 (meet ?28 (join ?26 ?27)))
6446 [28, 27, 26] by equation_H21 ?26 ?27 ?28
6449 meet a (join b (meet a c))
6451 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
6453 Last chance: 1246133746.97
6454 Last chance: all is indexed 1246133766.97
6455 Last chance: failed over 100 goal 1246133766.98
6456 FAILURE in 0 iterations
6457 % SZS status Timeout for LAT140-1.p
6464 associativity_of_join is 84
6465 associativity_of_meet is 85
6468 commutativity_of_join is 86
6469 commutativity_of_meet is 87
6472 idempotence_of_join is 90
6473 idempotence_of_meet is 91
6478 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6479 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6480 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6481 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6483 meet ?12 ?13 =?= meet ?13 ?12
6484 [13, 12] by commutativity_of_meet ?12 ?13
6486 join ?15 ?16 =?= join ?16 ?15
6487 [16, 15] by commutativity_of_join ?15 ?16
6489 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6490 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6492 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6493 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6495 meet ?26 (join ?27 (meet ?28 ?29))
6497 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
6498 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
6501 meet a (join b (meet a (meet c d)))
6503 meet a (join b (meet c (meet d (join a (meet b d)))))
6505 Last chance: 1246134039.87
6506 Last chance: all is indexed 1246134059.87
6507 Last chance: failed over 100 goal 1246134059.88
6508 FAILURE in 0 iterations
6509 % SZS status Timeout for LAT146-1.p
6516 associativity_of_join is 85
6517 associativity_of_meet is 86
6520 commutativity_of_join is 87
6521 commutativity_of_meet is 88
6523 idempotence_of_join is 91
6524 idempotence_of_meet is 92
6529 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6530 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6531 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6532 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6534 meet ?12 ?13 =?= meet ?13 ?12
6535 [13, 12] by commutativity_of_meet ?12 ?13
6537 join ?15 ?16 =?= join ?16 ?15
6538 [16, 15] by commutativity_of_join ?15 ?16
6540 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6541 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6543 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6544 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6546 meet ?26 (join ?27 (meet ?28 ?29))
6548 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
6549 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
6552 meet a (join b (meet a c))
6554 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
6556 Last chance: 1246134333.91
6557 Last chance: all is indexed 1246134353.91
6558 Last chance: failed over 100 goal 1246134353.91
6559 FAILURE in 0 iterations
6560 % SZS status Timeout for LAT148-1.p
6567 associativity_of_join is 85
6568 associativity_of_meet is 86
6571 commutativity_of_join is 87
6572 commutativity_of_meet is 88
6574 idempotence_of_join is 91
6575 idempotence_of_meet is 92
6580 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6581 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6582 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6583 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6585 meet ?12 ?13 =?= meet ?13 ?12
6586 [13, 12] by commutativity_of_meet ?12 ?13
6588 join ?15 ?16 =?= join ?16 ?15
6589 [16, 15] by commutativity_of_join ?15 ?16
6591 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6592 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6594 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6595 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6597 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
6599 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27)))))
6600 [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29
6603 meet a (join b (meet a c))
6605 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
6607 Last chance: 1246134627.27
6608 Last chance: all is indexed 1246134647.28
6609 Last chance: failed over 100 goal 1246134647.28
6610 FAILURE in 0 iterations
6611 % SZS status Timeout for LAT152-1.p
6618 associativity_of_join is 85
6619 associativity_of_meet is 86
6622 commutativity_of_join is 87
6623 commutativity_of_meet is 88
6625 idempotence_of_join is 91
6626 idempotence_of_meet is 92
6631 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6632 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6633 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6634 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6636 meet ?12 ?13 =?= meet ?13 ?12
6637 [13, 12] by commutativity_of_meet ?12 ?13
6639 join ?15 ?16 =?= join ?16 ?15
6640 [16, 15] by commutativity_of_join ?15 ?16
6642 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6643 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6645 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6646 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6648 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
6650 meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29))))
6651 [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29
6654 meet a (join b (meet a c))
6656 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
6658 Last chance: 1246134920.07
6659 Last chance: all is indexed 1246134940.08
6660 Last chance: failed over 100 goal 1246134940.08
6661 FAILURE in 0 iterations
6662 % SZS status Timeout for LAT156-1.p
6669 associativity_of_join is 85
6670 associativity_of_meet is 86
6673 commutativity_of_join is 87
6674 commutativity_of_meet is 88
6676 idempotence_of_join is 91
6677 idempotence_of_meet is 92
6682 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6683 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6684 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6685 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6687 meet ?12 ?13 =?= meet ?13 ?12
6688 [13, 12] by commutativity_of_meet ?12 ?13
6690 join ?15 ?16 =?= join ?16 ?15
6691 [16, 15] by commutativity_of_join ?15 ?16
6693 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6694 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6696 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6697 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6699 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
6701 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
6702 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
6705 meet a (join b (meet a c))
6707 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
6709 Last chance: 1246135214.14
6710 Last chance: all is indexed 1246135234.14
6711 Last chance: failed over 100 goal 1246135234.14
6712 FAILURE in 0 iterations
6713 % SZS status Timeout for LAT159-1.p
6720 associativity_of_join is 85
6721 associativity_of_meet is 86
6724 commutativity_of_join is 87
6725 commutativity_of_meet is 88
6727 idempotence_of_join is 91
6728 idempotence_of_meet is 92
6733 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6734 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6735 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6736 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6738 meet ?12 ?13 =?= meet ?13 ?12
6739 [13, 12] by commutativity_of_meet ?12 ?13
6741 join ?15 ?16 =?= join ?16 ?15
6742 [16, 15] by commutativity_of_join ?15 ?16
6744 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6745 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6747 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6748 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6750 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
6752 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
6753 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
6756 meet a (join b (meet a c))
6758 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
6760 Last chance: 1246135504.86
6761 Last chance: all is indexed 1246135524.86
6762 Last chance: failed over 100 goal 1246135524.86
6763 FAILURE in 0 iterations
6764 % SZS status Timeout for LAT164-1.p
6771 associativity_of_join is 84
6772 associativity_of_meet is 85
6775 commutativity_of_join is 86
6776 commutativity_of_meet is 87
6779 idempotence_of_join is 90
6780 idempotence_of_meet is 91
6785 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6786 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6787 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6788 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6790 meet ?12 ?13 =?= meet ?13 ?12
6791 [13, 12] by commutativity_of_meet ?12 ?13
6793 join ?15 ?16 =?= join ?16 ?15
6794 [16, 15] by commutativity_of_join ?15 ?16
6796 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6797 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6799 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6800 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6802 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
6804 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
6805 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
6808 meet a (join b (meet c (join b d)))
6810 meet a (join b (meet c (join d (meet a (meet b c)))))
6812 Last chance: 1246135795.06
6813 Last chance: all is indexed 1246135815.06
6814 Last chance: failed over 100 goal 1246135815.06
6815 FAILURE in 0 iterations
6816 % SZS status Timeout for LAT165-1.p
6823 associativity_of_join is 84
6824 associativity_of_meet is 85
6827 commutativity_of_join is 86
6828 commutativity_of_meet is 87
6831 idempotence_of_join is 90
6832 idempotence_of_meet is 91
6837 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6838 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6839 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6840 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6842 meet ?12 ?13 =?= meet ?13 ?12
6843 [13, 12] by commutativity_of_meet ?12 ?13
6845 join ?15 ?16 =?= join ?16 ?15
6846 [16, 15] by commutativity_of_join ?15 ?16
6848 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6849 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6851 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6852 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6854 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
6856 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28)))))
6857 [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29
6860 meet a (join b (meet c (join b d)))
6862 meet a (join b (meet c (join d (meet b (join a d)))))
6864 Last chance: 1246136085.64
6865 Last chance: all is indexed 1246136105.64
6866 Last chance: failed over 100 goal 1246136105.64
6867 FAILURE in 0 iterations
6868 % SZS status Timeout for LAT166-1.p
6875 associativity_of_join is 85
6876 associativity_of_meet is 86
6879 commutativity_of_join is 87
6880 commutativity_of_meet is 88
6881 equation_H21_dual is 84
6882 idempotence_of_join is 91
6883 idempotence_of_meet is 92
6888 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6889 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6890 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6891 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6893 meet ?12 ?13 =?= meet ?13 ?12
6894 [13, 12] by commutativity_of_meet ?12 ?13
6896 join ?15 ?16 =?= join ?16 ?15
6897 [16, 15] by commutativity_of_join ?15 ?16
6899 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6900 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6902 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6903 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6905 meet (join ?26 ?27) (join ?26 ?28)
6908 (meet (join ?27 (meet ?26 (join ?27 ?28)))
6909 (join ?28 (meet ?26 ?27)))
6910 [28, 27, 26] by equation_H21_dual ?26 ?27 ?28
6915 meet a (join b (meet (join a b) (join c (meet a b))))
6917 Last chance: 1246136377.63
6918 Last chance: all is indexed 1246136397.63
6919 Last chance: failed over 100 goal 1246136397.63
6920 FAILURE in 0 iterations
6921 % SZS status Timeout for LAT169-1.p
6928 associativity_of_join is 85
6929 associativity_of_meet is 86
6932 commutativity_of_join is 87
6933 commutativity_of_meet is 88
6934 equation_H49_dual is 84
6935 idempotence_of_join is 91
6936 idempotence_of_meet is 92
6941 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6942 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6943 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6944 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6946 meet ?12 ?13 =?= meet ?13 ?12
6947 [13, 12] by commutativity_of_meet ?12 ?13
6949 join ?15 ?16 =?= join ?16 ?15
6950 [16, 15] by commutativity_of_join ?15 ?16
6952 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
6953 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
6955 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
6956 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
6958 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
6960 join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29))))
6961 [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29
6966 meet a (join b (meet (join a b) (join c (meet a b))))
6968 Last chance: 1246136669.04
6969 Last chance: all is indexed 1246136689.04
6970 Last chance: failed over 100 goal 1246136689.04
6971 FAILURE in 0 iterations
6972 % SZS status Timeout for LAT170-1.p
6979 associativity_of_join is 84
6980 associativity_of_meet is 85
6983 commutativity_of_join is 86
6984 commutativity_of_meet is 87
6986 equation_H76_dual is 83
6987 idempotence_of_join is 90
6988 idempotence_of_meet is 91
6993 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
6994 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
6995 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
6996 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
6998 meet ?12 ?13 =?= meet ?13 ?12
6999 [13, 12] by commutativity_of_meet ?12 ?13
7001 join ?15 ?16 =?= join ?16 ?15
7002 [16, 15] by commutativity_of_join ?15 ?16
7004 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
7005 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
7007 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
7008 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
7010 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
7012 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
7013 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
7016 meet a (join b (meet c (join a d)))
7018 meet a (join b (meet c (join d (meet c (join a b)))))
7020 Last chance: 1246136959.2
7021 Last chance: all is indexed 1246136979.21
7022 Last chance: failed over 100 goal 1246136979.26
7023 FAILURE in 0 iterations
7024 % SZS status Timeout for LAT173-1.p
7031 associativity_of_join is 84
7032 associativity_of_meet is 85
7035 commutativity_of_join is 86
7036 commutativity_of_meet is 87
7038 equation_H79_dual is 83
7039 idempotence_of_join is 90
7040 idempotence_of_meet is 91
7045 Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
7046 Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
7047 Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
7048 Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
7050 meet ?12 ?13 =?= meet ?13 ?12
7051 [13, 12] by commutativity_of_meet ?12 ?13
7053 join ?15 ?16 =?= join ?16 ?15
7054 [16, 15] by commutativity_of_join ?15 ?16
7056 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
7057 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
7059 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
7060 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
7062 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
7064 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
7065 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
7068 meet a (join b (meet a (meet c d)))
7070 meet a (join b (meet c (join (meet a d) (meet b d))))
7072 Last chance: 1246137255.78
7073 Last chance: all is indexed 1246137275.78
7074 Last chance: failed over 100 goal 1246137275.78
7075 FAILURE in 0 iterations
7076 % SZS status Timeout for LAT175-1.p
7081 a_times_b_is_c is 80
7083 additive_identity is 93
7084 additive_inverse is 89
7085 associativity_for_addition is 86
7086 associativity_for_multiplication is 84
7089 commutativity_for_addition is 85
7092 left_additive_identity is 91
7093 left_additive_inverse is 88
7095 prove_commutativity is 94
7096 right_additive_identity is 90
7097 right_additive_inverse is 87
7100 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7102 add ?4 additive_identity =>= ?4
7103 [4] by right_additive_identity ?4
7105 add (additive_inverse ?6) ?6 =>= additive_identity
7106 [6] by left_additive_inverse ?6
7108 add ?8 (additive_inverse ?8) =>= additive_identity
7109 [8] by right_additive_inverse ?8
7111 add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12
7112 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
7114 add ?14 ?15 =?= add ?15 ?14
7115 [15, 14] by commutativity_for_addition ?14 ?15
7117 multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19
7118 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
7120 multiply ?21 (add ?22 ?23)
7122 add (multiply ?21 ?22) (multiply ?21 ?23)
7123 [23, 22, 21] by distribute1 ?21 ?22 ?23
7125 multiply (add ?25 ?26) ?27
7127 add (multiply ?25 ?27) (multiply ?26 ?27)
7128 [27, 26, 25] by distribute2 ?25 ?26 ?27
7129 Id : 22, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29
7130 Id : 24, {_}: multiply a b =>= c [] by a_times_b_is_c
7132 Id : 2, {_}: multiply b a =>= c [] by prove_commutativity
7133 Last chance: 1246137545.94
7134 Last chance: all is indexed 1246137565.94
7135 Last chance: failed over 100 goal 1246137565.94
7136 FAILURE in 0 iterations
7137 % SZS status Timeout for RNG009-7.p
7142 additive_identity is 91
7143 additive_inverse is 85
7144 additive_inverse_additive_inverse is 82
7145 associativity_for_addition is 78
7147 commutativity_for_addition is 79
7151 left_additive_identity is 90
7152 left_additive_inverse is 84
7153 left_alternative is 76
7154 left_multiplicative_zero is 87
7156 prove_linearised_form1 is 92
7157 right_additive_identity is 89
7158 right_additive_inverse is 83
7159 right_alternative is 77
7160 right_multiplicative_zero is 86
7166 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7168 add ?4 additive_identity =>= ?4
7169 [4] by right_additive_identity ?4
7171 multiply additive_identity ?6 =>= additive_identity
7172 [6] by left_multiplicative_zero ?6
7174 multiply ?8 additive_identity =>= additive_identity
7175 [8] by right_multiplicative_zero ?8
7177 add (additive_inverse ?10) ?10 =>= additive_identity
7178 [10] by left_additive_inverse ?10
7180 add ?12 (additive_inverse ?12) =>= additive_identity
7181 [12] by right_additive_inverse ?12
7183 additive_inverse (additive_inverse ?14) =>= ?14
7184 [14] by additive_inverse_additive_inverse ?14
7186 multiply ?16 (add ?17 ?18)
7188 add (multiply ?16 ?17) (multiply ?16 ?18)
7189 [18, 17, 16] by distribute1 ?16 ?17 ?18
7191 multiply (add ?20 ?21) ?22
7193 add (multiply ?20 ?22) (multiply ?21 ?22)
7194 [22, 21, 20] by distribute2 ?20 ?21 ?22
7196 add ?24 ?25 =?= add ?25 ?24
7197 [25, 24] by commutativity_for_addition ?24 ?25
7199 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
7200 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
7202 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
7203 [32, 31] by right_alternative ?31 ?32
7205 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
7206 [35, 34] by left_alternative ?34 ?35
7208 associator ?37 ?38 ?39
7210 add (multiply (multiply ?37 ?38) ?39)
7211 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
7212 [39, 38, 37] by associator ?37 ?38 ?39
7216 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
7217 [42, 41] by commutator ?41 ?42
7220 associator x y (add u v)
7222 add (associator x y u) (associator x y v)
7223 [] by prove_linearised_form1
7224 Last chance: 1246137836.07
7225 Last chance: all is indexed 1246137856.07
7226 Last chance: failed over 100 goal 1246137856.07
7227 FAILURE in 0 iterations
7228 % SZS status Timeout for RNG019-6.p
7233 additive_identity is 91
7234 additive_inverse is 85
7235 additive_inverse_additive_inverse is 82
7236 associativity_for_addition is 78
7238 commutativity_for_addition is 79
7242 distributivity_of_difference1 is 71
7243 distributivity_of_difference2 is 70
7244 distributivity_of_difference3 is 69
7245 distributivity_of_difference4 is 68
7246 inverse_product1 is 73
7247 inverse_product2 is 72
7248 left_additive_identity is 90
7249 left_additive_inverse is 84
7250 left_alternative is 76
7251 left_multiplicative_zero is 87
7253 product_of_inverses is 74
7254 prove_linearised_form1 is 92
7255 right_additive_identity is 89
7256 right_additive_inverse is 83
7257 right_alternative is 77
7258 right_multiplicative_zero is 86
7264 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7266 add ?4 additive_identity =>= ?4
7267 [4] by right_additive_identity ?4
7269 multiply additive_identity ?6 =>= additive_identity
7270 [6] by left_multiplicative_zero ?6
7272 multiply ?8 additive_identity =>= additive_identity
7273 [8] by right_multiplicative_zero ?8
7275 add (additive_inverse ?10) ?10 =>= additive_identity
7276 [10] by left_additive_inverse ?10
7278 add ?12 (additive_inverse ?12) =>= additive_identity
7279 [12] by right_additive_inverse ?12
7281 additive_inverse (additive_inverse ?14) =>= ?14
7282 [14] by additive_inverse_additive_inverse ?14
7284 multiply ?16 (add ?17 ?18)
7286 add (multiply ?16 ?17) (multiply ?16 ?18)
7287 [18, 17, 16] by distribute1 ?16 ?17 ?18
7289 multiply (add ?20 ?21) ?22
7291 add (multiply ?20 ?22) (multiply ?21 ?22)
7292 [22, 21, 20] by distribute2 ?20 ?21 ?22
7294 add ?24 ?25 =?= add ?25 ?24
7295 [25, 24] by commutativity_for_addition ?24 ?25
7297 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
7298 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
7300 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
7301 [32, 31] by right_alternative ?31 ?32
7303 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
7304 [35, 34] by left_alternative ?34 ?35
7306 associator ?37 ?38 ?39
7308 add (multiply (multiply ?37 ?38) ?39)
7309 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
7310 [39, 38, 37] by associator ?37 ?38 ?39
7314 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
7315 [42, 41] by commutator ?41 ?42
7317 multiply (additive_inverse ?44) (additive_inverse ?45)
7320 [45, 44] by product_of_inverses ?44 ?45
7322 multiply (additive_inverse ?47) ?48
7324 additive_inverse (multiply ?47 ?48)
7325 [48, 47] by inverse_product1 ?47 ?48
7327 multiply ?50 (additive_inverse ?51)
7329 additive_inverse (multiply ?50 ?51)
7330 [51, 50] by inverse_product2 ?50 ?51
7332 multiply ?53 (add ?54 (additive_inverse ?55))
7334 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
7335 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
7337 multiply (add ?57 (additive_inverse ?58)) ?59
7339 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
7340 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
7342 multiply (additive_inverse ?61) (add ?62 ?63)
7344 add (additive_inverse (multiply ?61 ?62))
7345 (additive_inverse (multiply ?61 ?63))
7346 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
7348 multiply (add ?65 ?66) (additive_inverse ?67)
7350 add (additive_inverse (multiply ?65 ?67))
7351 (additive_inverse (multiply ?66 ?67))
7352 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
7355 associator x y (add u v)
7357 add (associator x y u) (associator x y v)
7358 [] by prove_linearised_form1
7359 Last chance: 1246138127.54
7360 Last chance: all is indexed 1246138147.55
7361 Last chance: failed over 100 goal 1246138147.55
7362 FAILURE in 0 iterations
7363 % SZS status Timeout for RNG019-7.p
7368 additive_identity is 91
7369 additive_inverse is 85
7370 additive_inverse_additive_inverse is 82
7371 associativity_for_addition is 78
7373 commutativity_for_addition is 79
7377 left_additive_identity is 90
7378 left_additive_inverse is 84
7379 left_alternative is 76
7380 left_multiplicative_zero is 87
7382 prove_linearised_form2 is 92
7383 right_additive_identity is 89
7384 right_additive_inverse is 83
7385 right_alternative is 77
7386 right_multiplicative_zero is 86
7392 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7394 add ?4 additive_identity =>= ?4
7395 [4] by right_additive_identity ?4
7397 multiply additive_identity ?6 =>= additive_identity
7398 [6] by left_multiplicative_zero ?6
7400 multiply ?8 additive_identity =>= additive_identity
7401 [8] by right_multiplicative_zero ?8
7403 add (additive_inverse ?10) ?10 =>= additive_identity
7404 [10] by left_additive_inverse ?10
7406 add ?12 (additive_inverse ?12) =>= additive_identity
7407 [12] by right_additive_inverse ?12
7409 additive_inverse (additive_inverse ?14) =>= ?14
7410 [14] by additive_inverse_additive_inverse ?14
7412 multiply ?16 (add ?17 ?18)
7414 add (multiply ?16 ?17) (multiply ?16 ?18)
7415 [18, 17, 16] by distribute1 ?16 ?17 ?18
7417 multiply (add ?20 ?21) ?22
7419 add (multiply ?20 ?22) (multiply ?21 ?22)
7420 [22, 21, 20] by distribute2 ?20 ?21 ?22
7422 add ?24 ?25 =?= add ?25 ?24
7423 [25, 24] by commutativity_for_addition ?24 ?25
7425 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
7426 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
7428 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
7429 [32, 31] by right_alternative ?31 ?32
7431 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
7432 [35, 34] by left_alternative ?34 ?35
7434 associator ?37 ?38 ?39
7436 add (multiply (multiply ?37 ?38) ?39)
7437 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
7438 [39, 38, 37] by associator ?37 ?38 ?39
7442 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
7443 [42, 41] by commutator ?41 ?42
7446 associator x (add u v) y
7448 add (associator x u y) (associator x v y)
7449 [] by prove_linearised_form2
7450 Last chance: 1246138417.94
7451 Last chance: all is indexed 1246138437.94
7452 Last chance: failed over 100 goal 1246138437.94
7453 FAILURE in 0 iterations
7454 % SZS status Timeout for RNG020-6.p
7460 additive_identity is 90
7461 additive_inverse is 91
7462 additive_inverse_additive_inverse is 82
7463 associativity_for_addition is 78
7467 commutativity_for_addition is 79
7472 left_additive_identity is 88
7473 left_additive_inverse is 84
7474 left_alternative is 76
7475 left_multiplicative_zero is 86
7477 prove_teichmuller_identity is 89
7478 right_additive_identity is 87
7479 right_additive_inverse is 83
7480 right_alternative is 77
7481 right_multiplicative_zero is 85
7483 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7485 add ?4 additive_identity =>= ?4
7486 [4] by right_additive_identity ?4
7488 multiply additive_identity ?6 =>= additive_identity
7489 [6] by left_multiplicative_zero ?6
7491 multiply ?8 additive_identity =>= additive_identity
7492 [8] by right_multiplicative_zero ?8
7494 add (additive_inverse ?10) ?10 =>= additive_identity
7495 [10] by left_additive_inverse ?10
7497 add ?12 (additive_inverse ?12) =>= additive_identity
7498 [12] by right_additive_inverse ?12
7500 additive_inverse (additive_inverse ?14) =>= ?14
7501 [14] by additive_inverse_additive_inverse ?14
7503 multiply ?16 (add ?17 ?18)
7505 add (multiply ?16 ?17) (multiply ?16 ?18)
7506 [18, 17, 16] by distribute1 ?16 ?17 ?18
7508 multiply (add ?20 ?21) ?22
7510 add (multiply ?20 ?22) (multiply ?21 ?22)
7511 [22, 21, 20] by distribute2 ?20 ?21 ?22
7513 add ?24 ?25 =?= add ?25 ?24
7514 [25, 24] by commutativity_for_addition ?24 ?25
7516 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
7517 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
7519 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
7520 [32, 31] by right_alternative ?31 ?32
7522 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
7523 [35, 34] by left_alternative ?34 ?35
7525 associator ?37 ?38 ?39
7527 add (multiply (multiply ?37 ?38) ?39)
7528 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
7529 [39, 38, 37] by associator ?37 ?38 ?39
7533 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
7534 [42, 41] by commutator ?41 ?42
7538 (add (associator (multiply a b) c d)
7539 (associator a b (multiply c d)))
7542 (add (associator a (multiply b c) d)
7543 (multiply a (associator b c d)))
7544 (multiply (associator a b c) d)))
7547 [] by prove_teichmuller_identity
7548 Last chance: 1246138709.57
7549 Last chance: all is indexed 1246138729.58
7550 Last chance: failed over 100 goal 1246138729.58
7551 FAILURE in 0 iterations
7552 % SZS status Timeout for RNG026-6.p
7557 additive_identity is 93
7558 additive_inverse is 87
7559 additive_inverse_additive_inverse is 84
7560 associativity_for_addition is 80
7562 commutativity_for_addition is 81
7569 distributivity_of_difference1 is 72
7570 distributivity_of_difference2 is 71
7571 distributivity_of_difference3 is 70
7572 distributivity_of_difference4 is 69
7573 inverse_product1 is 74
7574 inverse_product2 is 73
7575 left_additive_identity is 91
7576 left_additive_inverse is 86
7577 left_alternative is 78
7578 left_multiplicative_zero is 89
7580 product_of_inverses is 75
7581 prove_right_moufang is 94
7582 right_additive_identity is 90
7583 right_additive_inverse is 85
7584 right_alternative is 79
7585 right_multiplicative_zero is 88
7587 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7589 add ?4 additive_identity =>= ?4
7590 [4] by right_additive_identity ?4
7592 multiply additive_identity ?6 =>= additive_identity
7593 [6] by left_multiplicative_zero ?6
7595 multiply ?8 additive_identity =>= additive_identity
7596 [8] by right_multiplicative_zero ?8
7598 add (additive_inverse ?10) ?10 =>= additive_identity
7599 [10] by left_additive_inverse ?10
7601 add ?12 (additive_inverse ?12) =>= additive_identity
7602 [12] by right_additive_inverse ?12
7604 additive_inverse (additive_inverse ?14) =>= ?14
7605 [14] by additive_inverse_additive_inverse ?14
7607 multiply ?16 (add ?17 ?18)
7609 add (multiply ?16 ?17) (multiply ?16 ?18)
7610 [18, 17, 16] by distribute1 ?16 ?17 ?18
7612 multiply (add ?20 ?21) ?22
7614 add (multiply ?20 ?22) (multiply ?21 ?22)
7615 [22, 21, 20] by distribute2 ?20 ?21 ?22
7617 add ?24 ?25 =?= add ?25 ?24
7618 [25, 24] by commutativity_for_addition ?24 ?25
7620 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
7621 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
7623 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
7624 [32, 31] by right_alternative ?31 ?32
7626 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
7627 [35, 34] by left_alternative ?34 ?35
7629 associator ?37 ?38 ?39
7631 add (multiply (multiply ?37 ?38) ?39)
7632 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
7633 [39, 38, 37] by associator ?37 ?38 ?39
7637 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
7638 [42, 41] by commutator ?41 ?42
7640 multiply (additive_inverse ?44) (additive_inverse ?45)
7643 [45, 44] by product_of_inverses ?44 ?45
7645 multiply (additive_inverse ?47) ?48
7647 additive_inverse (multiply ?47 ?48)
7648 [48, 47] by inverse_product1 ?47 ?48
7650 multiply ?50 (additive_inverse ?51)
7652 additive_inverse (multiply ?50 ?51)
7653 [51, 50] by inverse_product2 ?50 ?51
7655 multiply ?53 (add ?54 (additive_inverse ?55))
7657 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
7658 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
7660 multiply (add ?57 (additive_inverse ?58)) ?59
7662 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
7663 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
7665 multiply (additive_inverse ?61) (add ?62 ?63)
7667 add (additive_inverse (multiply ?61 ?62))
7668 (additive_inverse (multiply ?61 ?63))
7669 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
7671 multiply (add ?65 ?66) (additive_inverse ?67)
7673 add (additive_inverse (multiply ?65 ?67))
7674 (additive_inverse (multiply ?66 ?67))
7675 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
7678 multiply cz (multiply cx (multiply cy cx))
7680 multiply (multiply (multiply cz cx) cy) cx
7681 [] by prove_right_moufang
7682 Last chance: 1246139002.01
7683 Last chance: all is indexed 1246139022.02
7684 Last chance: failed over 100 goal 1246139022.02
7685 FAILURE in 0 iterations
7686 % SZS status Timeout for RNG027-7.p
7691 additive_identity is 92
7692 additive_inverse is 86
7693 additive_inverse_additive_inverse is 83
7694 associativity_for_addition is 79
7696 commutativity_for_addition is 80
7700 distributivity_of_difference1 is 72
7701 distributivity_of_difference2 is 71
7702 distributivity_of_difference3 is 70
7703 distributivity_of_difference4 is 69
7704 inverse_product1 is 74
7705 inverse_product2 is 73
7706 left_additive_identity is 90
7707 left_additive_inverse is 85
7708 left_alternative is 77
7709 left_multiplicative_zero is 88
7711 product_of_inverses is 75
7712 prove_left_moufang is 93
7713 right_additive_identity is 89
7714 right_additive_inverse is 84
7715 right_alternative is 78
7716 right_multiplicative_zero is 87
7721 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7723 add ?4 additive_identity =>= ?4
7724 [4] by right_additive_identity ?4
7726 multiply additive_identity ?6 =>= additive_identity
7727 [6] by left_multiplicative_zero ?6
7729 multiply ?8 additive_identity =>= additive_identity
7730 [8] by right_multiplicative_zero ?8
7732 add (additive_inverse ?10) ?10 =>= additive_identity
7733 [10] by left_additive_inverse ?10
7735 add ?12 (additive_inverse ?12) =>= additive_identity
7736 [12] by right_additive_inverse ?12
7738 additive_inverse (additive_inverse ?14) =>= ?14
7739 [14] by additive_inverse_additive_inverse ?14
7741 multiply ?16 (add ?17 ?18)
7743 add (multiply ?16 ?17) (multiply ?16 ?18)
7744 [18, 17, 16] by distribute1 ?16 ?17 ?18
7746 multiply (add ?20 ?21) ?22
7748 add (multiply ?20 ?22) (multiply ?21 ?22)
7749 [22, 21, 20] by distribute2 ?20 ?21 ?22
7751 add ?24 ?25 =?= add ?25 ?24
7752 [25, 24] by commutativity_for_addition ?24 ?25
7754 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
7755 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
7757 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
7758 [32, 31] by right_alternative ?31 ?32
7760 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
7761 [35, 34] by left_alternative ?34 ?35
7763 associator ?37 ?38 ?39
7765 add (multiply (multiply ?37 ?38) ?39)
7766 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
7767 [39, 38, 37] by associator ?37 ?38 ?39
7771 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
7772 [42, 41] by commutator ?41 ?42
7774 multiply (additive_inverse ?44) (additive_inverse ?45)
7777 [45, 44] by product_of_inverses ?44 ?45
7779 multiply (additive_inverse ?47) ?48
7781 additive_inverse (multiply ?47 ?48)
7782 [48, 47] by inverse_product1 ?47 ?48
7784 multiply ?50 (additive_inverse ?51)
7786 additive_inverse (multiply ?50 ?51)
7787 [51, 50] by inverse_product2 ?50 ?51
7789 multiply ?53 (add ?54 (additive_inverse ?55))
7791 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
7792 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
7794 multiply (add ?57 (additive_inverse ?58)) ?59
7796 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
7797 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
7799 multiply (additive_inverse ?61) (add ?62 ?63)
7801 add (additive_inverse (multiply ?61 ?62))
7802 (additive_inverse (multiply ?61 ?63))
7803 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
7805 multiply (add ?65 ?66) (additive_inverse ?67)
7807 add (additive_inverse (multiply ?65 ?67))
7808 (additive_inverse (multiply ?66 ?67))
7809 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
7812 associator x (multiply y x) z =<= multiply x (associator x y z)
7813 [] by prove_left_moufang
7814 Last chance: 1246139292.16
7815 Last chance: all is indexed 1246139312.16
7816 Last chance: failed over 100 goal 1246139312.16
7817 FAILURE in 0 iterations
7818 % SZS status Timeout for RNG028-9.p
7823 additive_identity is 93
7824 additive_inverse is 87
7825 additive_inverse_additive_inverse is 84
7826 associativity_for_addition is 80
7828 commutativity_for_addition is 81
7832 distributivity_of_difference1 is 72
7833 distributivity_of_difference2 is 71
7834 distributivity_of_difference3 is 70
7835 distributivity_of_difference4 is 69
7836 inverse_product1 is 74
7837 inverse_product2 is 73
7838 left_additive_identity is 91
7839 left_additive_inverse is 86
7840 left_alternative is 78
7841 left_multiplicative_zero is 89
7843 product_of_inverses is 75
7844 prove_middle_moufang is 94
7845 right_additive_identity is 90
7846 right_additive_inverse is 85
7847 right_alternative is 79
7848 right_multiplicative_zero is 88
7853 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7855 add ?4 additive_identity =>= ?4
7856 [4] by right_additive_identity ?4
7858 multiply additive_identity ?6 =>= additive_identity
7859 [6] by left_multiplicative_zero ?6
7861 multiply ?8 additive_identity =>= additive_identity
7862 [8] by right_multiplicative_zero ?8
7864 add (additive_inverse ?10) ?10 =>= additive_identity
7865 [10] by left_additive_inverse ?10
7867 add ?12 (additive_inverse ?12) =>= additive_identity
7868 [12] by right_additive_inverse ?12
7870 additive_inverse (additive_inverse ?14) =>= ?14
7871 [14] by additive_inverse_additive_inverse ?14
7873 multiply ?16 (add ?17 ?18)
7875 add (multiply ?16 ?17) (multiply ?16 ?18)
7876 [18, 17, 16] by distribute1 ?16 ?17 ?18
7878 multiply (add ?20 ?21) ?22
7880 add (multiply ?20 ?22) (multiply ?21 ?22)
7881 [22, 21, 20] by distribute2 ?20 ?21 ?22
7883 add ?24 ?25 =?= add ?25 ?24
7884 [25, 24] by commutativity_for_addition ?24 ?25
7886 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
7887 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
7889 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
7890 [32, 31] by right_alternative ?31 ?32
7892 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
7893 [35, 34] by left_alternative ?34 ?35
7895 associator ?37 ?38 ?39
7897 add (multiply (multiply ?37 ?38) ?39)
7898 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
7899 [39, 38, 37] by associator ?37 ?38 ?39
7903 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
7904 [42, 41] by commutator ?41 ?42
7906 multiply (additive_inverse ?44) (additive_inverse ?45)
7909 [45, 44] by product_of_inverses ?44 ?45
7911 multiply (additive_inverse ?47) ?48
7913 additive_inverse (multiply ?47 ?48)
7914 [48, 47] by inverse_product1 ?47 ?48
7916 multiply ?50 (additive_inverse ?51)
7918 additive_inverse (multiply ?50 ?51)
7919 [51, 50] by inverse_product2 ?50 ?51
7921 multiply ?53 (add ?54 (additive_inverse ?55))
7923 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
7924 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
7926 multiply (add ?57 (additive_inverse ?58)) ?59
7928 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
7929 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
7931 multiply (additive_inverse ?61) (add ?62 ?63)
7933 add (additive_inverse (multiply ?61 ?62))
7934 (additive_inverse (multiply ?61 ?63))
7935 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
7937 multiply (add ?65 ?66) (additive_inverse ?67)
7939 add (additive_inverse (multiply ?65 ?67))
7940 (additive_inverse (multiply ?66 ?67))
7941 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
7944 multiply (multiply x y) (multiply z x)
7946 multiply (multiply x (multiply y z)) x
7947 [] by prove_middle_moufang
7948 Last chance: 1246139582.69
7949 Last chance: all is indexed 1246139602.7
7950 Last chance: failed over 100 goal 1246139602.7
7951 FAILURE in 0 iterations
7952 % SZS status Timeout for RNG029-7.p
7957 a_times_b_is_c is 80
7959 additive_identity is 93
7960 additive_inverse is 89
7961 associativity_for_addition is 86
7962 associativity_for_multiplication is 84
7965 commutativity_for_addition is 85
7968 left_additive_identity is 91
7969 left_additive_inverse is 88
7971 prove_commutativity is 94
7972 right_additive_identity is 90
7973 right_additive_inverse is 87
7974 x_fourthed_is_x is 81
7976 Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
7978 add ?4 additive_identity =>= ?4
7979 [4] by right_additive_identity ?4
7981 add (additive_inverse ?6) ?6 =>= additive_identity
7982 [6] by left_additive_inverse ?6
7984 add ?8 (additive_inverse ?8) =>= additive_identity
7985 [8] by right_additive_inverse ?8
7987 add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12
7988 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
7990 add ?14 ?15 =?= add ?15 ?14
7991 [15, 14] by commutativity_for_addition ?14 ?15
7993 multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19
7994 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
7996 multiply ?21 (add ?22 ?23)
7998 add (multiply ?21 ?22) (multiply ?21 ?23)
7999 [23, 22, 21] by distribute1 ?21 ?22 ?23
8001 multiply (add ?25 ?26) ?27
8003 add (multiply ?25 ?27) (multiply ?26 ?27)
8004 [27, 26, 25] by distribute2 ?25 ?26 ?27
8006 multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29
8007 [29] by x_fourthed_is_x ?29
8008 Id : 24, {_}: multiply a b =>= c [] by a_times_b_is_c
8010 Id : 2, {_}: multiply b a =>= c [] by prove_commutativity
8011 Last chance: 1246139872.91
8012 Last chance: all is indexed 1246139892.92
8013 Last chance: failed over 100 goal 1246139892.92
8014 FAILURE in 0 iterations
8015 % SZS status Timeout for RNG035-7.p
8022 associativity_of_add is 92
8025 commutativity_of_add is 93
8028 prove_huntingtons_axiom is 94
8031 Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
8033 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
8034 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
8036 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
8039 [10, 9] by robbins_axiom ?9 ?10
8040 Id : 10, {_}: add c d =>= d [] by absorbtion
8043 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
8046 [] by prove_huntingtons_axiom
8047 Last chance: 1246140169.53
8048 Last chance: all is indexed 1246140189.53
8049 Last chance: failed over 100 goal 1246140189.53
8050 FAILURE in 0 iterations
8051 % SZS status Timeout for ROB006-1.p
8057 associativity_of_add is 95
8059 commutativity_of_add is 96
8062 prove_idempotence is 97
8065 Id : 4, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
8067 add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8)
8068 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
8070 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
8073 [11, 10] by robbins_axiom ?10 ?11
8074 Id : 10, {_}: add c d =>= d [] by absorbtion
8076 Id : 2, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
8077 Last chance: 1246140468.26
8078 Last chance: all is indexed 1246140488.26
8079 Last chance: failed over 100 goal 1246140489.49
8080 FAILURE in 0 iterations
8081 % SZS status Timeout for ROB006-2.p