1 CLASH, statistics insufficient
2 CLASH, statistics insufficient
4 22279: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
6 multiply ?5 ?6 =?= multiply ?6 ?5
7 [6, 5] by commutativity_of_multiply ?5 ?6
9 add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10)
10 [10, 9, 8] by distributivity1 ?8 ?9 ?10
12 add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14)
13 [14, 13, 12] by distributivity2 ?12 ?13 ?14
15 multiply (add ?16 ?17) ?18
17 add (multiply ?16 ?18) (multiply ?17 ?18)
18 [18, 17, 16] by distributivity3 ?16 ?17 ?18
20 multiply ?20 (add ?21 ?22)
22 add (multiply ?20 ?21) (multiply ?20 ?22)
23 [22, 21, 20] by distributivity4 ?20 ?21 ?22
25 add ?24 (inverse ?24) =>= multiplicative_identity
26 [24] by additive_inverse1 ?24
28 add (inverse ?26) ?26 =>= multiplicative_identity
29 [26] by additive_inverse2 ?26
31 multiply ?28 (inverse ?28) =>= additive_identity
32 [28] by multiplicative_inverse1 ?28
34 multiply (inverse ?30) ?30 =>= additive_identity
35 [30] by multiplicative_inverse2 ?30
37 multiply ?32 multiplicative_identity =>= ?32
38 [32] by multiplicative_id1 ?32
40 multiply multiplicative_identity ?34 =>= ?34
41 [34] by multiplicative_id2 ?34
42 22279: Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36
43 22279: Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38
46 multiply a (multiply b c) =<= multiply (multiply a b) c
47 [] by prove_associativity
54 22279: multiplicative_identity 4 0 0
55 22279: additive_identity 4 0 0
57 22279: add 16 2 0 multiply
58 22279: multiply 20 2 4 0,2add
59 CLASH, statistics insufficient
61 22280: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
63 multiply ?5 ?6 =?= multiply ?6 ?5
64 [6, 5] by commutativity_of_multiply ?5 ?6
66 add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10)
67 [10, 9, 8] by distributivity1 ?8 ?9 ?10
69 add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14)
70 [14, 13, 12] by distributivity2 ?12 ?13 ?14
72 multiply (add ?16 ?17) ?18
74 add (multiply ?16 ?18) (multiply ?17 ?18)
75 [18, 17, 16] by distributivity3 ?16 ?17 ?18
77 multiply ?20 (add ?21 ?22)
79 add (multiply ?20 ?21) (multiply ?20 ?22)
80 [22, 21, 20] by distributivity4 ?20 ?21 ?22
82 add ?24 (inverse ?24) =>= multiplicative_identity
83 [24] by additive_inverse1 ?24
85 add (inverse ?26) ?26 =>= multiplicative_identity
86 [26] by additive_inverse2 ?26
88 multiply ?28 (inverse ?28) =>= additive_identity
89 [28] by multiplicative_inverse1 ?28
91 multiply (inverse ?30) ?30 =>= additive_identity
92 [30] by multiplicative_inverse2 ?30
94 multiply ?32 multiplicative_identity =>= ?32
95 [32] by multiplicative_id1 ?32
97 multiply multiplicative_identity ?34 =>= ?34
98 [34] by multiplicative_id2 ?34
99 22280: Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36
100 22280: Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38
103 multiply a (multiply b c) =<= multiply (multiply a b) c
104 [] by prove_associativity
111 22280: multiplicative_identity 4 0 0
112 22280: additive_identity 4 0 0
114 22280: add 16 2 0 multiply
115 22280: multiply 20 2 4 0,2add
117 22278: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
119 multiply ?5 ?6 =?= multiply ?6 ?5
120 [6, 5] by commutativity_of_multiply ?5 ?6
122 add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10)
123 [10, 9, 8] by distributivity1 ?8 ?9 ?10
125 add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14)
126 [14, 13, 12] by distributivity2 ?12 ?13 ?14
128 multiply (add ?16 ?17) ?18
130 add (multiply ?16 ?18) (multiply ?17 ?18)
131 [18, 17, 16] by distributivity3 ?16 ?17 ?18
133 multiply ?20 (add ?21 ?22)
135 add (multiply ?20 ?21) (multiply ?20 ?22)
136 [22, 21, 20] by distributivity4 ?20 ?21 ?22
138 add ?24 (inverse ?24) =>= multiplicative_identity
139 [24] by additive_inverse1 ?24
141 add (inverse ?26) ?26 =>= multiplicative_identity
142 [26] by additive_inverse2 ?26
144 multiply ?28 (inverse ?28) =>= additive_identity
145 [28] by multiplicative_inverse1 ?28
147 multiply (inverse ?30) ?30 =>= additive_identity
148 [30] by multiplicative_inverse2 ?30
150 multiply ?32 multiplicative_identity =>= ?32
151 [32] by multiplicative_id1 ?32
153 multiply multiplicative_identity ?34 =>= ?34
154 [34] by multiplicative_id2 ?34
155 22278: Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36
156 22278: Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38
159 multiply a (multiply b c) =<= multiply (multiply a b) c
160 [] by prove_associativity
167 22278: multiplicative_identity 4 0 0
168 22278: additive_identity 4 0 0
170 22278: add 16 2 0 multiply
171 22278: multiply 20 2 4 0,2add
174 Found proof, 16.771241s
175 % SZS status Unsatisfiable for BOO007-2.p
176 % SZS output start CNFRefutation for BOO007-2.p
177 Id : 12, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32
178 Id : 7, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22
179 Id : 15, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38
180 Id : 14, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36
181 Id : 10, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28
182 Id : 13, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34
183 Id : 8, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24
184 Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
185 Id : 31, {_}: add (multiply ?78 ?79) ?80 =<= multiply (add ?78 ?80) (add ?79 ?80) [80, 79, 78] by distributivity1 ?78 ?79 ?80
186 Id : 5, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14
187 Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6
188 Id : 6, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18
189 Id : 4, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10
190 Id : 65, {_}: add (multiply ?156 (multiply ?157 ?158)) (multiply ?159 ?158) =<= multiply (add ?156 (multiply ?159 ?158)) (multiply (add ?157 ?159) ?158) [159, 158, 157, 156] by Super 4 with 6 at 2,3
191 Id : 46, {_}: multiply (add ?110 ?111) (add ?110 ?112) =>= add ?110 (multiply ?112 ?111) [112, 111, 110] by Super 3 with 5 at 3
192 Id : 58, {_}: add ?110 (multiply ?111 ?112) =?= add ?110 (multiply ?112 ?111) [112, 111, 110] by Demod 46 with 5 at 2
193 Id : 32, {_}: add (multiply ?82 ?83) ?84 =<= multiply (add ?82 ?84) (add ?84 ?83) [84, 83, 82] by Super 31 with 2 at 2,3
194 Id : 121, {_}: add ?333 (multiply (inverse ?333) ?334) =>= multiply multiplicative_identity (add ?333 ?334) [334, 333] by Super 5 with 8 at 1,3
195 Id : 2169, {_}: add ?2910 (multiply (inverse ?2910) ?2911) =>= add ?2910 ?2911 [2911, 2910] by Demod 121 with 13 at 3
196 Id : 2179, {_}: add ?2938 additive_identity =<= add ?2938 (inverse (inverse ?2938)) [2938] by Super 2169 with 10 at 2,2
197 Id : 2230, {_}: ?2938 =<= add ?2938 (inverse (inverse ?2938)) [2938] by Demod 2179 with 14 at 2
198 Id : 2429, {_}: add (multiply ?3159 (inverse (inverse ?3160))) ?3160 =>= multiply (add ?3159 ?3160) ?3160 [3160, 3159] by Super 32 with 2230 at 2,3
199 Id : 2455, {_}: add ?3160 (multiply ?3159 (inverse (inverse ?3160))) =>= multiply (add ?3159 ?3160) ?3160 [3159, 3160] by Demod 2429 with 2 at 2
200 Id : 2456, {_}: add ?3160 (multiply ?3159 (inverse (inverse ?3160))) =>= multiply ?3160 (add ?3159 ?3160) [3159, 3160] by Demod 2455 with 3 at 3
201 Id : 248, {_}: add (multiply additive_identity ?467) ?468 =<= multiply ?468 (add ?467 ?468) [468, 467] by Super 4 with 15 at 1,3
202 Id : 2457, {_}: add ?3160 (multiply ?3159 (inverse (inverse ?3160))) =>= add (multiply additive_identity ?3159) ?3160 [3159, 3160] by Demod 2456 with 248 at 3
203 Id : 120, {_}: add ?330 (multiply ?331 (inverse ?330)) =>= multiply (add ?330 ?331) multiplicative_identity [331, 330] by Super 5 with 8 at 2,3
204 Id : 124, {_}: add ?330 (multiply ?331 (inverse ?330)) =>= multiply multiplicative_identity (add ?330 ?331) [331, 330] by Demod 120 with 3 at 3
205 Id : 3170, {_}: add ?330 (multiply ?331 (inverse ?330)) =>= add ?330 ?331 [331, 330] by Demod 124 with 13 at 3
206 Id : 144, {_}: multiply ?347 (add (inverse ?347) ?348) =>= add additive_identity (multiply ?347 ?348) [348, 347] by Super 7 with 10 at 1,3
207 Id : 3378, {_}: multiply ?4138 (add (inverse ?4138) ?4139) =>= multiply ?4138 ?4139 [4139, 4138] by Demod 144 with 15 at 3
208 Id : 3399, {_}: multiply ?4195 (inverse ?4195) =<= multiply ?4195 (inverse (inverse (inverse ?4195))) [4195] by Super 3378 with 2230 at 2,2
209 Id : 3488, {_}: additive_identity =<= multiply ?4195 (inverse (inverse (inverse ?4195))) [4195] by Demod 3399 with 10 at 2
210 Id : 3900, {_}: add (inverse (inverse ?4844)) additive_identity =?= add (inverse (inverse ?4844)) ?4844 [4844] by Super 3170 with 3488 at 2,2
211 Id : 3924, {_}: add additive_identity (inverse (inverse ?4844)) =<= add (inverse (inverse ?4844)) ?4844 [4844] by Demod 3900 with 2 at 2
212 Id : 3925, {_}: add additive_identity (inverse (inverse ?4844)) =?= add ?4844 (inverse (inverse ?4844)) [4844] by Demod 3924 with 2 at 3
213 Id : 3926, {_}: inverse (inverse ?4844) =<= add ?4844 (inverse (inverse ?4844)) [4844] by Demod 3925 with 15 at 2
214 Id : 3927, {_}: inverse (inverse ?4844) =>= ?4844 [4844] by Demod 3926 with 2230 at 3
215 Id : 6845, {_}: add ?3160 (multiply ?3159 ?3160) =?= add (multiply additive_identity ?3159) ?3160 [3159, 3160] by Demod 2457 with 3927 at 2,2,2
216 Id : 1130, {_}: add (multiply additive_identity ?1671) ?1672 =<= multiply ?1672 (add ?1671 ?1672) [1672, 1671] by Super 4 with 15 at 1,3
217 Id : 1134, {_}: add (multiply additive_identity ?1683) (inverse ?1683) =>= multiply (inverse ?1683) multiplicative_identity [1683] by Super 1130 with 8 at 2,3
218 Id : 1186, {_}: add (inverse ?1683) (multiply additive_identity ?1683) =>= multiply (inverse ?1683) multiplicative_identity [1683] by Demod 1134 with 2 at 2
219 Id : 1187, {_}: add (inverse ?1683) (multiply additive_identity ?1683) =>= multiply multiplicative_identity (inverse ?1683) [1683] by Demod 1186 with 3 at 3
220 Id : 1188, {_}: add (inverse ?1683) (multiply additive_identity ?1683) =>= inverse ?1683 [1683] by Demod 1187 with 13 at 3
221 Id : 3360, {_}: multiply ?347 (add (inverse ?347) ?348) =>= multiply ?347 ?348 [348, 347] by Demod 144 with 15 at 3
222 Id : 3364, {_}: add (inverse (add (inverse additive_identity) ?4095)) (multiply additive_identity ?4095) =>= inverse (add (inverse additive_identity) ?4095) [4095] by Super 1188 with 3360 at 2,2
223 Id : 3442, {_}: add (multiply additive_identity ?4095) (inverse (add (inverse additive_identity) ?4095)) =>= inverse (add (inverse additive_identity) ?4095) [4095] by Demod 3364 with 2 at 2
224 Id : 249, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 8 with 15 at 2
225 Id : 3443, {_}: add (multiply additive_identity ?4095) (inverse (add (inverse additive_identity) ?4095)) =>= inverse (add multiplicative_identity ?4095) [4095] by Demod 3442 with 249 at 1,1,3
226 Id : 3444, {_}: add (multiply additive_identity ?4095) (inverse (add multiplicative_identity ?4095)) =>= inverse (add multiplicative_identity ?4095) [4095] by Demod 3443 with 249 at 1,1,2,2
227 Id : 2180, {_}: add ?2940 (inverse ?2940) =>= add ?2940 multiplicative_identity [2940] by Super 2169 with 12 at 2,2
228 Id : 2231, {_}: multiplicative_identity =<= add ?2940 multiplicative_identity [2940] by Demod 2180 with 8 at 2
229 Id : 2263, {_}: add multiplicative_identity ?3015 =>= multiplicative_identity [3015] by Super 2 with 2231 at 3
230 Id : 3445, {_}: add (multiply additive_identity ?4095) (inverse (add multiplicative_identity ?4095)) =>= inverse multiplicative_identity [4095] by Demod 3444 with 2263 at 1,3
231 Id : 3446, {_}: add (multiply additive_identity ?4095) (inverse multiplicative_identity) =>= inverse multiplicative_identity [4095] by Demod 3445 with 2263 at 1,2,2
232 Id : 191, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 10 with 13 at 2
233 Id : 3447, {_}: add (multiply additive_identity ?4095) (inverse multiplicative_identity) =>= additive_identity [4095] by Demod 3446 with 191 at 3
234 Id : 3448, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?4095) =>= additive_identity [4095] by Demod 3447 with 2 at 2
235 Id : 3449, {_}: add additive_identity (multiply additive_identity ?4095) =>= additive_identity [4095] by Demod 3448 with 191 at 1,2
236 Id : 3450, {_}: multiply additive_identity ?4095 =>= additive_identity [4095] by Demod 3449 with 15 at 2
237 Id : 6846, {_}: add ?3160 (multiply ?3159 ?3160) =>= add additive_identity ?3160 [3159, 3160] by Demod 6845 with 3450 at 1,3
238 Id : 6847, {_}: add ?3160 (multiply ?3159 ?3160) =>= ?3160 [3159, 3160] by Demod 6846 with 15 at 3
239 Id : 6852, {_}: add ?8316 (multiply ?8316 ?8317) =>= ?8316 [8317, 8316] by Super 58 with 6847 at 3
240 Id : 7003, {_}: add (multiply ?8541 (multiply ?8542 ?8543)) (multiply ?8541 ?8543) =>= multiply ?8541 (multiply (add ?8542 ?8541) ?8543) [8543, 8542, 8541] by Super 65 with 6852 at 1,3
241 Id : 7114, {_}: add (multiply ?8541 ?8543) (multiply ?8541 (multiply ?8542 ?8543)) =>= multiply ?8541 (multiply (add ?8542 ?8541) ?8543) [8542, 8543, 8541] by Demod 7003 with 2 at 2
242 Id : 7115, {_}: multiply ?8541 (add ?8543 (multiply ?8542 ?8543)) =?= multiply ?8541 (multiply (add ?8542 ?8541) ?8543) [8542, 8543, 8541] by Demod 7114 with 7 at 2
243 Id : 21444, {_}: multiply ?30534 ?30535 =<= multiply ?30534 (multiply (add ?30536 ?30534) ?30535) [30536, 30535, 30534] by Demod 7115 with 6847 at 2,2
244 Id : 21466, {_}: multiply (multiply ?30625 ?30626) ?30627 =<= multiply (multiply ?30625 ?30626) (multiply ?30626 ?30627) [30627, 30626, 30625] by Super 21444 with 6847 at 1,2,3
245 Id : 147, {_}: multiply (add ?355 ?356) (inverse ?355) =>= add additive_identity (multiply ?356 (inverse ?355)) [356, 355] by Super 6 with 10 at 1,3
246 Id : 152, {_}: multiply (inverse ?355) (add ?355 ?356) =>= add additive_identity (multiply ?356 (inverse ?355)) [356, 355] by Demod 147 with 3 at 2
247 Id : 4375, {_}: multiply (inverse ?355) (add ?355 ?356) =>= multiply ?356 (inverse ?355) [356, 355] by Demod 152 with 15 at 3
248 Id : 532, {_}: add (multiply ?866 ?867) ?868 =<= multiply (add ?866 ?868) (add ?868 ?867) [868, 867, 866] by Super 31 with 2 at 2,3
249 Id : 547, {_}: add (multiply ?925 ?926) (inverse ?925) =?= multiply multiplicative_identity (add (inverse ?925) ?926) [926, 925] by Super 532 with 8 at 1,3
250 Id : 583, {_}: add (inverse ?925) (multiply ?925 ?926) =?= multiply multiplicative_identity (add (inverse ?925) ?926) [926, 925] by Demod 547 with 2 at 2
251 Id : 584, {_}: add (inverse ?925) (multiply ?925 ?926) =>= add (inverse ?925) ?926 [926, 925] by Demod 583 with 13 at 3
252 Id : 4646, {_}: multiply (inverse (inverse ?5719)) (add (inverse ?5719) ?5720) =>= multiply (multiply ?5719 ?5720) (inverse (inverse ?5719)) [5720, 5719] by Super 4375 with 584 at 2,2
253 Id : 4685, {_}: multiply ?5720 (inverse (inverse ?5719)) =<= multiply (multiply ?5719 ?5720) (inverse (inverse ?5719)) [5719, 5720] by Demod 4646 with 4375 at 2
254 Id : 4686, {_}: multiply ?5720 (inverse (inverse ?5719)) =<= multiply (inverse (inverse ?5719)) (multiply ?5719 ?5720) [5719, 5720] by Demod 4685 with 3 at 3
255 Id : 4687, {_}: multiply ?5720 ?5719 =<= multiply (inverse (inverse ?5719)) (multiply ?5719 ?5720) [5719, 5720] by Demod 4686 with 3927 at 2,2
256 Id : 4688, {_}: multiply ?5720 ?5719 =<= multiply ?5719 (multiply ?5719 ?5720) [5719, 5720] by Demod 4687 with 3927 at 1,3
257 Id : 21467, {_}: multiply (multiply ?30629 ?30630) ?30631 =<= multiply (multiply ?30629 ?30630) (multiply ?30629 ?30631) [30631, 30630, 30629] by Super 21444 with 6852 at 1,2,3
258 Id : 36399, {_}: multiply (multiply ?58815 ?58816) (multiply ?58815 ?58817) =<= multiply (multiply ?58815 ?58817) (multiply (multiply ?58815 ?58817) ?58816) [58817, 58816, 58815] by Super 4688 with 21467 at 2,3
259 Id : 36627, {_}: multiply (multiply ?58815 ?58816) ?58817 =<= multiply (multiply ?58815 ?58817) (multiply (multiply ?58815 ?58817) ?58816) [58817, 58816, 58815] by Demod 36399 with 21467 at 2
260 Id : 36628, {_}: multiply (multiply ?58815 ?58816) ?58817 =>= multiply ?58816 (multiply ?58815 ?58817) [58817, 58816, 58815] by Demod 36627 with 4688 at 3
261 Id : 36893, {_}: multiply ?30626 (multiply ?30625 ?30627) =<= multiply (multiply ?30625 ?30626) (multiply ?30626 ?30627) [30627, 30625, 30626] by Demod 21466 with 36628 at 2
262 Id : 36894, {_}: multiply ?30626 (multiply ?30625 ?30627) =<= multiply ?30626 (multiply ?30625 (multiply ?30626 ?30627)) [30627, 30625, 30626] by Demod 36893 with 36628 at 3
263 Id : 3522, {_}: add additive_identity ?468 =<= multiply ?468 (add ?467 ?468) [467, 468] by Demod 248 with 3450 at 1,2
264 Id : 3543, {_}: ?468 =<= multiply ?468 (add ?467 ?468) [467, 468] by Demod 3522 with 15 at 2
265 Id : 7020, {_}: add (multiply ?8599 (multiply ?8600 ?8601)) ?8600 =>= multiply (add ?8599 ?8600) ?8600 [8601, 8600, 8599] by Super 32 with 6852 at 2,3
266 Id : 7087, {_}: add ?8600 (multiply ?8599 (multiply ?8600 ?8601)) =>= multiply (add ?8599 ?8600) ?8600 [8601, 8599, 8600] by Demod 7020 with 2 at 2
267 Id : 7088, {_}: add ?8600 (multiply ?8599 (multiply ?8600 ?8601)) =>= multiply ?8600 (add ?8599 ?8600) [8601, 8599, 8600] by Demod 7087 with 3 at 3
268 Id : 7089, {_}: add ?8600 (multiply ?8599 (multiply ?8600 ?8601)) =>= ?8600 [8601, 8599, 8600] by Demod 7088 with 3543 at 3
269 Id : 20142, {_}: multiply ?27776 (multiply ?27777 ?27778) =<= multiply (multiply ?27776 (multiply ?27777 ?27778)) ?27777 [27778, 27777, 27776] by Super 3543 with 7089 at 2,3
270 Id : 20329, {_}: multiply ?27776 (multiply ?27777 ?27778) =<= multiply ?27777 (multiply ?27776 (multiply ?27777 ?27778)) [27778, 27777, 27776] by Demod 20142 with 3 at 3
271 Id : 36895, {_}: multiply ?30626 (multiply ?30625 ?30627) =?= multiply ?30625 (multiply ?30626 ?30627) [30627, 30625, 30626] by Demod 36894 with 20329 at 3
272 Id : 34, {_}: add (multiply ?90 ?91) ?92 =<= multiply (add ?92 ?90) (add ?91 ?92) [92, 91, 90] by Super 31 with 2 at 1,3
273 Id : 6868, {_}: add (multiply (multiply ?8366 ?8367) ?8368) ?8367 =>= multiply ?8367 (add ?8368 ?8367) [8368, 8367, 8366] by Super 34 with 6847 at 1,3
274 Id : 6940, {_}: add ?8367 (multiply (multiply ?8366 ?8367) ?8368) =>= multiply ?8367 (add ?8368 ?8367) [8368, 8366, 8367] by Demod 6868 with 2 at 2
275 Id : 6941, {_}: add ?8367 (multiply (multiply ?8366 ?8367) ?8368) =>= ?8367 [8368, 8366, 8367] by Demod 6940 with 3543 at 3
276 Id : 19816, {_}: multiply (multiply ?27180 ?27181) ?27182 =<= multiply (multiply (multiply ?27180 ?27181) ?27182) ?27181 [27182, 27181, 27180] by Super 3543 with 6941 at 2,3
277 Id : 19977, {_}: multiply (multiply ?27180 ?27181) ?27182 =<= multiply ?27181 (multiply (multiply ?27180 ?27181) ?27182) [27182, 27181, 27180] by Demod 19816 with 3 at 3
278 Id : 36891, {_}: multiply ?27181 (multiply ?27180 ?27182) =<= multiply ?27181 (multiply (multiply ?27180 ?27181) ?27182) [27182, 27180, 27181] by Demod 19977 with 36628 at 2
279 Id : 36892, {_}: multiply ?27181 (multiply ?27180 ?27182) =<= multiply ?27181 (multiply ?27181 (multiply ?27180 ?27182)) [27182, 27180, 27181] by Demod 36891 with 36628 at 2,3
280 Id : 36900, {_}: multiply ?27181 (multiply ?27180 ?27182) =?= multiply (multiply ?27180 ?27182) ?27181 [27182, 27180, 27181] by Demod 36892 with 4688 at 3
281 Id : 36901, {_}: multiply ?27181 (multiply ?27180 ?27182) =?= multiply ?27182 (multiply ?27180 ?27181) [27182, 27180, 27181] by Demod 36900 with 36628 at 3
282 Id : 37364, {_}: multiply c (multiply b a) =?= multiply c (multiply b a) [] by Demod 37363 with 3 at 2,2
283 Id : 37363, {_}: multiply c (multiply a b) =?= multiply c (multiply b a) [] by Demod 37362 with 3 at 2,3
284 Id : 37362, {_}: multiply c (multiply a b) =?= multiply c (multiply a b) [] by Demod 37361 with 36901 at 2
285 Id : 37361, {_}: multiply b (multiply a c) =>= multiply c (multiply a b) [] by Demod 37360 with 3 at 3
286 Id : 37360, {_}: multiply b (multiply a c) =<= multiply (multiply a b) c [] by Demod 1 with 36895 at 2
287 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity
288 % SZS output end CNFRefutation for BOO007-2.p
289 22279: solved BOO007-2.p in 8.384524 using kbo
290 22279: status Unsatisfiable for BOO007-2.p
291 CLASH, statistics insufficient
293 22287: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
295 multiply ?5 ?6 =?= multiply ?6 ?5
296 [6, 5] by commutativity_of_multiply ?5 ?6
298 add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10)
299 [10, 9, 8] by distributivity1 ?8 ?9 ?10
301 multiply ?12 (add ?13 ?14)
303 add (multiply ?12 ?13) (multiply ?12 ?14)
304 [14, 13, 12] by distributivity2 ?12 ?13 ?14
305 22287: Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16
307 multiply ?18 multiplicative_identity =>= ?18
308 [18] by multiplicative_id1 ?18
310 add ?20 (inverse ?20) =>= multiplicative_identity
311 [20] by additive_inverse1 ?20
313 multiply ?22 (inverse ?22) =>= additive_identity
314 [22] by multiplicative_inverse1 ?22
317 multiply a (multiply b c) =<= multiply (multiply a b) c
318 [] by prove_associativity
322 22287: additive_identity 2 0 0
323 22287: multiplicative_identity 2 0 0
328 22287: add 9 2 0 multiply
329 22287: multiply 13 2 4 0,2add
330 CLASH, statistics insufficient
332 22288: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
334 multiply ?5 ?6 =?= multiply ?6 ?5
335 [6, 5] by commutativity_of_multiply ?5 ?6
337 add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10)
338 [10, 9, 8] by distributivity1 ?8 ?9 ?10
340 multiply ?12 (add ?13 ?14)
342 add (multiply ?12 ?13) (multiply ?12 ?14)
343 [14, 13, 12] by distributivity2 ?12 ?13 ?14
344 22288: Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16
346 multiply ?18 multiplicative_identity =>= ?18
347 [18] by multiplicative_id1 ?18
349 add ?20 (inverse ?20) =>= multiplicative_identity
350 [20] by additive_inverse1 ?20
352 multiply ?22 (inverse ?22) =>= additive_identity
353 [22] by multiplicative_inverse1 ?22
356 multiply a (multiply b c) =<= multiply (multiply a b) c
357 [] by prove_associativity
361 22288: additive_identity 2 0 0
362 22288: multiplicative_identity 2 0 0
367 22288: add 9 2 0 multiply
368 22288: multiply 13 2 4 0,2add
369 CLASH, statistics insufficient
371 22289: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
373 multiply ?5 ?6 =?= multiply ?6 ?5
374 [6, 5] by commutativity_of_multiply ?5 ?6
376 add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10)
377 [10, 9, 8] by distributivity1 ?8 ?9 ?10
379 multiply ?12 (add ?13 ?14)
381 add (multiply ?12 ?13) (multiply ?12 ?14)
382 [14, 13, 12] by distributivity2 ?12 ?13 ?14
383 22289: Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16
385 multiply ?18 multiplicative_identity =>= ?18
386 [18] by multiplicative_id1 ?18
388 add ?20 (inverse ?20) =>= multiplicative_identity
389 [20] by additive_inverse1 ?20
391 multiply ?22 (inverse ?22) =>= additive_identity
392 [22] by multiplicative_inverse1 ?22
395 multiply a (multiply b c) =<= multiply (multiply a b) c
396 [] by prove_associativity
400 22289: additive_identity 2 0 0
401 22289: multiplicative_identity 2 0 0
406 22289: add 9 2 0 multiply
407 22289: multiply 13 2 4 0,2add
410 Found proof, 23.744275s
411 % SZS status Unsatisfiable for BOO007-4.p
412 % SZS output start CNFRefutation for BOO007-4.p
413 Id : 44, {_}: multiply ?112 (add ?113 ?114) =<= add (multiply ?112 ?113) (multiply ?112 ?114) [114, 113, 112] by distributivity2 ?112 ?113 ?114
414 Id : 4, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10
415 Id : 9, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22
416 Id : 5, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14
417 Id : 7, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18
418 Id : 3, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6
419 Id : 8, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20
420 Id : 6, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16
421 Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
422 Id : 25, {_}: add ?62 (multiply ?63 ?64) =<= multiply (add ?62 ?63) (add ?62 ?64) [64, 63, 62] by distributivity1 ?62 ?63 ?64
423 Id : 516, {_}: add ?742 (multiply ?743 ?744) =<= multiply (add ?742 ?743) (add ?744 ?742) [744, 743, 742] by Super 25 with 2 at 2,3
424 Id : 530, {_}: add ?796 (multiply additive_identity ?797) =<= multiply ?796 (add ?797 ?796) [797, 796] by Super 516 with 6 at 1,3
425 Id : 1019, {_}: add ?1448 (multiply additive_identity ?1449) =<= multiply ?1448 (add ?1449 ?1448) [1449, 1448] by Super 516 with 6 at 1,3
426 Id : 1024, {_}: add (inverse ?1462) (multiply additive_identity ?1462) =>= multiply (inverse ?1462) multiplicative_identity [1462] by Super 1019 with 8 at 2,3
427 Id : 1064, {_}: add (inverse ?1462) (multiply additive_identity ?1462) =>= multiply multiplicative_identity (inverse ?1462) [1462] by Demod 1024 with 3 at 3
428 Id : 75, {_}: multiply multiplicative_identity ?178 =>= ?178 [178] by Super 3 with 7 at 3
429 Id : 1065, {_}: add (inverse ?1462) (multiply additive_identity ?1462) =>= inverse ?1462 [1462] by Demod 1064 with 75 at 3
430 Id : 97, {_}: multiply ?204 (add (inverse ?204) ?205) =>= add additive_identity (multiply ?204 ?205) [205, 204] by Super 5 with 9 at 1,3
431 Id : 63, {_}: add additive_identity ?160 =>= ?160 [160] by Super 2 with 6 at 3
432 Id : 2714, {_}: multiply ?204 (add (inverse ?204) ?205) =>= multiply ?204 ?205 [205, 204] by Demod 97 with 63 at 3
433 Id : 2718, {_}: add (inverse (add (inverse additive_identity) ?3390)) (multiply additive_identity ?3390) =>= inverse (add (inverse additive_identity) ?3390) [3390] by Super 1065 with 2714 at 2,2
434 Id : 2791, {_}: add (multiply additive_identity ?3390) (inverse (add (inverse additive_identity) ?3390)) =>= inverse (add (inverse additive_identity) ?3390) [3390] by Demod 2718 with 2 at 2
435 Id : 184, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 8 with 63 at 2
436 Id : 2792, {_}: add (multiply additive_identity ?3390) (inverse (add (inverse additive_identity) ?3390)) =>= inverse (add multiplicative_identity ?3390) [3390] by Demod 2791 with 184 at 1,1,3
437 Id : 2793, {_}: add (multiply additive_identity ?3390) (inverse (add multiplicative_identity ?3390)) =>= inverse (add multiplicative_identity ?3390) [3390] by Demod 2792 with 184 at 1,1,2,2
438 Id : 86, {_}: add ?193 (multiply (inverse ?193) ?194) =>= multiply multiplicative_identity (add ?193 ?194) [194, 193] by Super 4 with 8 at 1,3
439 Id : 1836, {_}: add ?2310 (multiply (inverse ?2310) ?2311) =>= add ?2310 ?2311 [2311, 2310] by Demod 86 with 75 at 3
440 Id : 1846, {_}: add ?2338 (inverse ?2338) =>= add ?2338 multiplicative_identity [2338] by Super 1836 with 7 at 2,2
441 Id : 1890, {_}: multiplicative_identity =<= add ?2338 multiplicative_identity [2338] by Demod 1846 with 8 at 2
442 Id : 1917, {_}: add multiplicative_identity ?2407 =>= multiplicative_identity [2407] by Super 2 with 1890 at 3
443 Id : 2794, {_}: add (multiply additive_identity ?3390) (inverse (add multiplicative_identity ?3390)) =>= inverse multiplicative_identity [3390] by Demod 2793 with 1917 at 1,3
444 Id : 2795, {_}: add (multiply additive_identity ?3390) (inverse multiplicative_identity) =>= inverse multiplicative_identity [3390] by Demod 2794 with 1917 at 1,2,2
445 Id : 476, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 9 with 75 at 2
446 Id : 2796, {_}: add (multiply additive_identity ?3390) (inverse multiplicative_identity) =>= additive_identity [3390] by Demod 2795 with 476 at 3
447 Id : 2797, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?3390) =>= additive_identity [3390] by Demod 2796 with 2 at 2
448 Id : 2798, {_}: add additive_identity (multiply additive_identity ?3390) =>= additive_identity [3390] by Demod 2797 with 476 at 1,2
449 Id : 2799, {_}: multiply additive_identity ?3390 =>= additive_identity [3390] by Demod 2798 with 63 at 2
450 Id : 2854, {_}: add ?796 additive_identity =<= multiply ?796 (add ?797 ?796) [797, 796] by Demod 530 with 2799 at 2,2
451 Id : 2870, {_}: ?796 =<= multiply ?796 (add ?797 ?796) [797, 796] by Demod 2854 with 6 at 2
452 Id : 2113, {_}: add (multiply ?2595 ?2596) (multiply ?2597 (multiply ?2595 ?2598)) =<= multiply (add (multiply ?2595 ?2596) ?2597) (multiply ?2595 (add ?2596 ?2598)) [2598, 2597, 2596, 2595] by Super 4 with 5 at 2,3
453 Id : 2126, {_}: add (multiply ?2655 multiplicative_identity) (multiply ?2656 (multiply ?2655 ?2657)) =?= multiply (add (multiply ?2655 multiplicative_identity) ?2656) (multiply ?2655 multiplicative_identity) [2657, 2656, 2655] by Super 2113 with 1917 at 2,2,3
454 Id : 2201, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =?= multiply (add (multiply ?2655 multiplicative_identity) ?2656) (multiply ?2655 multiplicative_identity) [2657, 2656, 2655] by Demod 2126 with 7 at 1,2
455 Id : 2202, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =?= multiply (multiply ?2655 multiplicative_identity) (add (multiply ?2655 multiplicative_identity) ?2656) [2657, 2656, 2655] by Demod 2201 with 3 at 3
456 Id : 62, {_}: add ?157 (multiply additive_identity ?158) =<= multiply ?157 (add ?157 ?158) [158, 157] by Super 4 with 6 at 1,3
457 Id : 2203, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =?= add (multiply ?2655 multiplicative_identity) (multiply additive_identity ?2656) [2657, 2656, 2655] by Demod 2202 with 62 at 3
458 Id : 2204, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =>= add ?2655 (multiply additive_identity ?2656) [2657, 2656, 2655] by Demod 2203 with 7 at 1,3
459 Id : 12654, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =>= add ?2655 additive_identity [2657, 2656, 2655] by Demod 2204 with 2799 at 2,3
460 Id : 12655, {_}: add ?2655 (multiply ?2656 (multiply ?2655 ?2657)) =>= ?2655 [2657, 2656, 2655] by Demod 12654 with 6 at 3
461 Id : 12666, {_}: multiply ?15534 (multiply ?15535 ?15536) =<= multiply (multiply ?15534 (multiply ?15535 ?15536)) ?15535 [15536, 15535, 15534] by Super 2870 with 12655 at 2,3
462 Id : 21339, {_}: multiply ?30912 (multiply ?30913 ?30914) =<= multiply ?30913 (multiply ?30912 (multiply ?30913 ?30914)) [30914, 30913, 30912] by Demod 12666 with 3 at 3
463 Id : 21342, {_}: multiply ?30924 (multiply ?30925 ?30926) =<= multiply ?30925 (multiply ?30924 (multiply ?30926 ?30925)) [30926, 30925, 30924] by Super 21339 with 3 at 2,2,3
464 Id : 28, {_}: add ?74 (multiply ?75 ?76) =<= multiply (add ?75 ?74) (add ?74 ?76) [76, 75, 74] by Super 25 with 2 at 1,3
465 Id : 4808, {_}: multiply ?5796 (add ?5797 ?5798) =<= add (multiply ?5796 ?5797) (multiply ?5798 ?5796) [5798, 5797, 5796] by Super 44 with 3 at 2,3
466 Id : 4837, {_}: multiply ?5913 (add multiplicative_identity ?5914) =?= add ?5913 (multiply ?5914 ?5913) [5914, 5913] by Super 4808 with 7 at 1,3
467 Id : 4917, {_}: multiply ?5913 multiplicative_identity =<= add ?5913 (multiply ?5914 ?5913) [5914, 5913] by Demod 4837 with 1917 at 2,2
468 Id : 4918, {_}: ?5913 =<= add ?5913 (multiply ?5914 ?5913) [5914, 5913] by Demod 4917 with 7 at 2
469 Id : 5091, {_}: add ?6286 (multiply ?6287 (multiply ?6288 ?6286)) =>= multiply (add ?6287 ?6286) ?6286 [6288, 6287, 6286] by Super 28 with 4918 at 2,3
470 Id : 5151, {_}: add ?6286 (multiply ?6287 (multiply ?6288 ?6286)) =>= multiply ?6286 (add ?6287 ?6286) [6288, 6287, 6286] by Demod 5091 with 3 at 3
471 Id : 5152, {_}: add ?6286 (multiply ?6287 (multiply ?6288 ?6286)) =>= ?6286 [6288, 6287, 6286] by Demod 5151 with 2870 at 3
472 Id : 19536, {_}: multiply ?27546 (multiply ?27547 ?27548) =<= multiply (multiply ?27546 (multiply ?27547 ?27548)) ?27548 [27548, 27547, 27546] by Super 2870 with 5152 at 2,3
473 Id : 19689, {_}: multiply ?27546 (multiply ?27547 ?27548) =<= multiply ?27548 (multiply ?27546 (multiply ?27547 ?27548)) [27548, 27547, 27546] by Demod 19536 with 3 at 3
474 Id : 31289, {_}: multiply ?30924 (multiply ?30925 ?30926) =?= multiply ?30924 (multiply ?30926 ?30925) [30926, 30925, 30924] by Demod 21342 with 19689 at 3
475 Id : 521, {_}: add (inverse ?761) (multiply ?762 ?761) =?= multiply (add (inverse ?761) ?762) multiplicative_identity [762, 761] by Super 516 with 8 at 2,3
476 Id : 550, {_}: add (inverse ?761) (multiply ?762 ?761) =?= multiply multiplicative_identity (add (inverse ?761) ?762) [762, 761] by Demod 521 with 3 at 3
477 Id : 551, {_}: add (inverse ?761) (multiply ?762 ?761) =>= add (inverse ?761) ?762 [762, 761] by Demod 550 with 75 at 3
478 Id : 3740, {_}: multiply ?4638 (add (inverse ?4638) ?4639) =>= multiply ?4638 (multiply ?4639 ?4638) [4639, 4638] by Super 2714 with 551 at 2,2
479 Id : 3782, {_}: multiply ?4638 ?4639 =<= multiply ?4638 (multiply ?4639 ?4638) [4639, 4638] by Demod 3740 with 2714 at 2
480 Id : 3863, {_}: multiply ?4768 (add ?4769 (multiply ?4770 ?4768)) =>= add (multiply ?4768 ?4769) (multiply ?4768 ?4770) [4770, 4769, 4768] by Super 5 with 3782 at 2,3
481 Id : 15840, {_}: multiply ?20984 (add ?20985 (multiply ?20986 ?20984)) =>= multiply ?20984 (add ?20985 ?20986) [20986, 20985, 20984] by Demod 3863 with 5 at 3
482 Id : 15903, {_}: multiply ?21234 (multiply ?21235 (add ?21236 ?21234)) =?= multiply ?21234 (add (multiply ?21235 ?21236) ?21235) [21236, 21235, 21234] by Super 15840 with 5 at 2,2
483 Id : 16059, {_}: multiply ?21234 (multiply ?21235 (add ?21236 ?21234)) =?= multiply ?21234 (add ?21235 (multiply ?21235 ?21236)) [21236, 21235, 21234] by Demod 15903 with 2 at 2,3
484 Id : 4814, {_}: multiply ?5818 (add ?5819 multiplicative_identity) =?= add (multiply ?5818 ?5819) ?5818 [5819, 5818] by Super 4808 with 75 at 2,3
485 Id : 4891, {_}: multiply ?5818 multiplicative_identity =<= add (multiply ?5818 ?5819) ?5818 [5819, 5818] by Demod 4814 with 1890 at 2,2
486 Id : 4892, {_}: multiply ?5818 multiplicative_identity =<= add ?5818 (multiply ?5818 ?5819) [5819, 5818] by Demod 4891 with 2 at 3
487 Id : 4893, {_}: ?5818 =<= add ?5818 (multiply ?5818 ?5819) [5819, 5818] by Demod 4892 with 7 at 2
488 Id : 26804, {_}: multiply ?40743 (multiply ?40744 (add ?40745 ?40743)) =>= multiply ?40743 ?40744 [40745, 40744, 40743] by Demod 16059 with 4893 at 2,3
489 Id : 26854, {_}: multiply (multiply ?40962 ?40963) (multiply ?40964 ?40962) =>= multiply (multiply ?40962 ?40963) ?40964 [40964, 40963, 40962] by Super 26804 with 4893 at 2,2,2
490 Id : 38294, {_}: multiply (multiply ?63621 ?63622) (multiply ?63621 ?63623) =>= multiply (multiply ?63621 ?63622) ?63623 [63623, 63622, 63621] by Super 31289 with 26854 at 3
491 Id : 26855, {_}: multiply (multiply ?40966 ?40967) (multiply ?40968 ?40967) =>= multiply (multiply ?40966 ?40967) ?40968 [40968, 40967, 40966] by Super 26804 with 4918 at 2,2,2
492 Id : 38958, {_}: multiply (multiply ?65058 ?65059) (multiply ?65059 ?65060) =>= multiply (multiply ?65058 ?65059) ?65060 [65060, 65059, 65058] by Super 31289 with 26855 at 3
493 Id : 38330, {_}: multiply (multiply ?63784 ?63785) (multiply ?63785 ?63786) =>= multiply (multiply ?63785 ?63786) ?63784 [63786, 63785, 63784] by Super 3 with 26854 at 3
494 Id : 46713, {_}: multiply (multiply ?65059 ?65060) ?65058 =?= multiply (multiply ?65058 ?65059) ?65060 [65058, 65060, 65059] by Demod 38958 with 38330 at 2
495 Id : 46797, {_}: multiply ?81775 (multiply ?81776 ?81777) =<= multiply (multiply ?81775 ?81776) ?81777 [81777, 81776, 81775] by Super 3 with 46713 at 3
496 Id : 47389, {_}: multiply ?63621 (multiply ?63622 (multiply ?63621 ?63623)) =>= multiply (multiply ?63621 ?63622) ?63623 [63623, 63622, 63621] by Demod 38294 with 46797 at 2
497 Id : 47390, {_}: multiply ?63621 (multiply ?63622 (multiply ?63621 ?63623)) =>= multiply ?63621 (multiply ?63622 ?63623) [63623, 63622, 63621] by Demod 47389 with 46797 at 3
498 Id : 12809, {_}: multiply ?15534 (multiply ?15535 ?15536) =<= multiply ?15535 (multiply ?15534 (multiply ?15535 ?15536)) [15536, 15535, 15534] by Demod 12666 with 3 at 3
499 Id : 47391, {_}: multiply ?63622 (multiply ?63621 ?63623) =?= multiply ?63621 (multiply ?63622 ?63623) [63623, 63621, 63622] by Demod 47390 with 12809 at 2
500 Id : 47371, {_}: multiply ?40962 (multiply ?40963 (multiply ?40964 ?40962)) =>= multiply (multiply ?40962 ?40963) ?40964 [40964, 40963, 40962] by Demod 26854 with 46797 at 2
501 Id : 47372, {_}: multiply ?40962 (multiply ?40963 (multiply ?40964 ?40962)) =>= multiply ?40962 (multiply ?40963 ?40964) [40964, 40963, 40962] by Demod 47371 with 46797 at 3
502 Id : 47409, {_}: multiply ?40963 (multiply ?40964 ?40962) =?= multiply ?40962 (multiply ?40963 ?40964) [40962, 40964, 40963] by Demod 47372 with 19689 at 2
503 Id : 47847, {_}: multiply c (multiply b a) =?= multiply c (multiply b a) [] by Demod 47846 with 3 at 2,3
504 Id : 47846, {_}: multiply c (multiply b a) =?= multiply c (multiply a b) [] by Demod 47845 with 47409 at 2
505 Id : 47845, {_}: multiply b (multiply a c) =>= multiply c (multiply a b) [] by Demod 47844 with 3 at 3
506 Id : 47844, {_}: multiply b (multiply a c) =<= multiply (multiply a b) c [] by Demod 1 with 47391 at 2
507 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity
508 % SZS output end CNFRefutation for BOO007-4.p
509 22288: solved BOO007-4.p in 11.836739 using kbo
510 22288: status Unsatisfiable for BOO007-4.p
511 CLASH, statistics insufficient
514 add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2))
516 multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2))
517 [4, 3, 2] by distributivity ?2 ?3 ?4
519 add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6
520 [8, 7, 6] by l1 ?6 ?7 ?8
522 add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11
523 [12, 11, 10] by l3 ?10 ?11 ?12
525 multiply (add ?14 (inverse ?14)) ?15 =>= ?15
526 [15, 14] by property3 ?14 ?15
528 multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17
529 [19, 18, 17] by l2 ?17 ?18 ?19
531 multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22
532 [23, 22, 21] by l4 ?21 ?22 ?23
534 add (multiply ?25 (inverse ?25)) ?26 =>= ?26
535 [26, 25] by property3_dual ?25 ?26
536 22303: Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28
538 multiply ?30 (inverse ?30) =>= n0
539 [30] by multiplicative_inverse ?30
541 add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34)
542 [34, 33, 32] by associativity_of_add ?32 ?33 ?34
544 multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38)
545 [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38
548 multiply a (add b c) =<= add (multiply b a) (multiply c a)
549 [] by prove_multiply_add_property
559 22303: add 21 2 2 0,2,2multiply
560 22303: multiply 22 2 3 0,2add
561 CLASH, statistics insufficient
564 add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2))
566 multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2))
567 [4, 3, 2] by distributivity ?2 ?3 ?4
569 add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6
570 [8, 7, 6] by l1 ?6 ?7 ?8
572 add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11
573 [12, 11, 10] by l3 ?10 ?11 ?12
575 multiply (add ?14 (inverse ?14)) ?15 =>= ?15
576 [15, 14] by property3 ?14 ?15
578 multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17
579 [19, 18, 17] by l2 ?17 ?18 ?19
581 multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22
582 [23, 22, 21] by l4 ?21 ?22 ?23
584 add (multiply ?25 (inverse ?25)) ?26 =>= ?26
585 [26, 25] by property3_dual ?25 ?26
586 22304: Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28
588 multiply ?30 (inverse ?30) =>= n0
589 [30] by multiplicative_inverse ?30
591 add (add ?32 ?33) ?34 =>= add ?32 (add ?33 ?34)
592 [34, 33, 32] by associativity_of_add ?32 ?33 ?34
594 multiply (multiply ?36 ?37) ?38 =>= multiply ?36 (multiply ?37 ?38)
595 [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38
596 CLASH, statistics insufficient
599 add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2))
601 multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2))
602 [4, 3, 2] by distributivity ?2 ?3 ?4
604 add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6
605 [8, 7, 6] by l1 ?6 ?7 ?8
607 add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11
608 [12, 11, 10] by l3 ?10 ?11 ?12
610 multiply (add ?14 (inverse ?14)) ?15 =>= ?15
611 [15, 14] by property3 ?14 ?15
613 multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17
614 [19, 18, 17] by l2 ?17 ?18 ?19
616 multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22
617 [23, 22, 21] by l4 ?21 ?22 ?23
619 add (multiply ?25 (inverse ?25)) ?26 =>= ?26
620 [26, 25] by property3_dual ?25 ?26
621 22305: Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28
623 multiply ?30 (inverse ?30) =>= n0
624 [30] by multiplicative_inverse ?30
626 add (add ?32 ?33) ?34 =>= add ?32 (add ?33 ?34)
627 [34, 33, 32] by associativity_of_add ?32 ?33 ?34
629 multiply (multiply ?36 ?37) ?38 =>= multiply ?36 (multiply ?37 ?38)
630 [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38
633 multiply a (add b c) =<= add (multiply b a) (multiply c a)
634 [] by prove_multiply_add_property
644 22305: add 21 2 2 0,2,2multiply
645 22305: multiply 22 2 3 0,2add
648 multiply a (add b c) =<= add (multiply b a) (multiply c a)
649 [] by prove_multiply_add_property
659 22304: add 21 2 2 0,2,2multiply
660 22304: multiply 22 2 3 0,2add
663 Found proof, 45.037592s
664 % SZS status Unsatisfiable for BOO031-1.p
665 % SZS output start CNFRefutation for BOO031-1.p
666 Id : 7, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23
667 Id : 10, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30
668 Id : 8, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26
669 Id : 12, {_}: multiply (multiply ?36 ?37) ?38 =>= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38
670 Id : 52, {_}: multiply (multiply (add ?189 ?190) (add ?190 ?191)) ?190 =>= ?190 [191, 190, 189] by l4 ?189 ?190 ?191
671 Id : 9, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28
672 Id : 5, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15
673 Id : 2, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4
674 Id : 18, {_}: add (add (multiply ?58 ?59) (multiply ?59 ?60)) ?59 =>= ?59 [60, 59, 58] by l3 ?58 ?59 ?60
675 Id : 11, {_}: add (add ?32 ?33) ?34 =>= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34
676 Id : 4, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12
677 Id : 37, {_}: multiply ?128 (add ?129 (add ?128 ?130)) =>= ?128 [130, 129, 128] by l2 ?128 ?129 ?130
678 Id : 6, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19
679 Id : 3, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8
680 Id : 35, {_}: add ?121 (multiply ?122 ?121) =>= ?121 [122, 121] by Super 3 with 6 at 2,2,2
681 Id : 42, {_}: multiply ?149 (add ?149 ?150) =>= ?149 [150, 149] by Super 37 with 4 at 2,2
682 Id : 1579, {_}: add (add ?2436 ?2437) ?2436 =>= add ?2436 ?2437 [2437, 2436] by Super 35 with 42 at 2,2
683 Id : 1609, {_}: add ?2436 (add ?2437 ?2436) =>= add ?2436 ?2437 [2437, 2436] by Demod 1579 with 11 at 2
684 Id : 19, {_}: add (multiply ?62 ?63) ?63 =>= ?63 [63, 62] by Super 18 with 3 at 1,2
685 Id : 39, {_}: multiply ?137 (add ?138 ?137) =>= ?137 [138, 137] by Super 37 with 3 at 2,2,2
686 Id : 1363, {_}: add ?2089 (add ?2090 ?2089) =>= add ?2090 ?2089 [2090, 2089] by Super 19 with 39 at 1,2
687 Id : 2844, {_}: add ?2437 ?2436 =?= add ?2436 ?2437 [2436, 2437] by Demod 1609 with 1363 at 2
688 Id : 32, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) (add (multiply ?109 ?107) ?107) =<= multiply (add (add ?106 (add ?107 ?108)) ?109) (multiply (add ?109 ?107) (add ?107 (add ?106 (add ?107 ?108)))) [109, 108, 107, 106] by Super 2 with 6 at 2,2,2
689 Id : 5786, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) (add ?107 (multiply ?109 ?107)) =<= multiply (add (add ?106 (add ?107 ?108)) ?109) (multiply (add ?109 ?107) (add ?107 (add ?106 (add ?107 ?108)))) [109, 108, 107, 106] by Demod 32 with 2844 at 2,2
690 Id : 5787, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) (add ?107 (multiply ?109 ?107)) =<= multiply (add ?106 (add (add ?107 ?108) ?109)) (multiply (add ?109 ?107) (add ?107 (add ?106 (add ?107 ?108)))) [109, 108, 107, 106] by Demod 5786 with 11 at 1,3
691 Id : 1088, {_}: add (multiply ?1721 ?1722) ?1722 =>= ?1722 [1722, 1721] by Super 18 with 3 at 1,2
692 Id : 1091, {_}: add ?1730 (add ?1731 (add ?1730 ?1732)) =>= add ?1731 (add ?1730 ?1732) [1732, 1731, 1730] by Super 1088 with 6 at 1,2
693 Id : 5788, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) (add ?107 (multiply ?109 ?107)) =<= multiply (add ?106 (add (add ?107 ?108) ?109)) (multiply (add ?109 ?107) (add ?106 (add ?107 ?108))) [109, 108, 107, 106] by Demod 5787 with 1091 at 2,2,3
694 Id : 5789, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) ?107 =<= multiply (add ?106 (add (add ?107 ?108) ?109)) (multiply (add ?109 ?107) (add ?106 (add ?107 ?108))) [109, 108, 107, 106] by Demod 5788 with 35 at 2,2
695 Id : 5790, {_}: add (multiply (add ?106 (add ?107 ?108)) ?109) ?107 =<= multiply (add ?106 (add ?107 (add ?108 ?109))) (multiply (add ?109 ?107) (add ?106 (add ?107 ?108))) [109, 108, 107, 106] by Demod 5789 with 11 at 2,1,3
696 Id : 5814, {_}: add ?7785 (multiply (add ?7786 (add ?7785 ?7787)) ?7788) =<= multiply (add ?7786 (add ?7785 (add ?7787 ?7788))) (multiply (add ?7788 ?7785) (add ?7786 (add ?7785 ?7787))) [7788, 7787, 7786, 7785] by Demod 5790 with 2844 at 2
697 Id : 79, {_}: multiply n1 ?15 =>= ?15 [15] by Demod 5 with 9 at 1,2
698 Id : 1095, {_}: add ?1743 ?1743 =>= ?1743 [1743] by Super 1088 with 79 at 1,2
699 Id : 5853, {_}: add ?7982 (multiply (add (add ?7982 ?7983) (add ?7982 ?7983)) ?7984) =<= multiply (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984))) (multiply (add ?7984 ?7982) (add ?7982 ?7983)) [7984, 7983, 7982] by Super 5814 with 1095 at 2,2,3
700 Id : 6183, {_}: add ?7982 (multiply (add ?7982 (add ?7983 (add ?7982 ?7983))) ?7984) =<= multiply (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984))) (multiply (add ?7984 ?7982) (add ?7982 ?7983)) [7984, 7983, 7982] by Demod 5853 with 11 at 1,2,2
701 Id : 1663, {_}: multiply (add ?2570 ?2571) ?2571 =>= ?2571 [2571, 2570] by Super 52 with 6 at 1,2
702 Id : 1673, {_}: multiply ?2601 (multiply ?2602 ?2601) =>= multiply ?2602 ?2601 [2602, 2601] by Super 1663 with 35 at 1,2
703 Id : 1365, {_}: multiply ?2095 (add ?2096 ?2095) =>= ?2095 [2096, 2095] by Super 37 with 3 at 2,2,2
704 Id : 22, {_}: add ?71 (multiply ?71 ?72) =>= ?71 [72, 71] by Super 3 with 5 at 2,2
705 Id : 1374, {_}: multiply (multiply ?2123 ?2124) ?2123 =>= multiply ?2123 ?2124 [2124, 2123] by Super 1365 with 22 at 2,2
706 Id : 1408, {_}: multiply ?2123 (multiply ?2124 ?2123) =>= multiply ?2123 ?2124 [2124, 2123] by Demod 1374 with 12 at 2
707 Id : 2987, {_}: multiply ?2601 ?2602 =?= multiply ?2602 ?2601 [2602, 2601] by Demod 1673 with 1408 at 2
708 Id : 6184, {_}: add ?7982 (multiply (add ?7982 (add ?7983 (add ?7982 ?7983))) ?7984) =<= multiply (multiply (add ?7984 ?7982) (add ?7982 ?7983)) (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984))) [7984, 7983, 7982] by Demod 6183 with 2987 at 3
709 Id : 6185, {_}: add ?7982 (multiply (add ?7983 (add ?7982 ?7983)) ?7984) =<= multiply (multiply (add ?7984 ?7982) (add ?7982 ?7983)) (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984))) [7984, 7983, 7982] by Demod 6184 with 1091 at 1,2,2
710 Id : 6186, {_}: add ?7982 (multiply (add ?7983 (add ?7982 ?7983)) ?7984) =<= multiply (add ?7984 ?7982) (multiply (add ?7982 ?7983) (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984)))) [7984, 7983, 7982] by Demod 6185 with 12 at 3
711 Id : 6187, {_}: add ?7982 (multiply (add ?7982 ?7983) ?7984) =<= multiply (add ?7984 ?7982) (multiply (add ?7982 ?7983) (add (add ?7982 ?7983) (add ?7982 (add ?7983 ?7984)))) [7984, 7983, 7982] by Demod 6186 with 1363 at 1,2,2
712 Id : 13074, {_}: add ?18195 (multiply (add ?18195 ?18196) ?18197) =>= multiply (add ?18197 ?18195) (add ?18195 ?18196) [18197, 18196, 18195] by Demod 6187 with 42 at 2,3
713 Id : 16401, {_}: add ?22734 (multiply (add ?22735 ?22734) ?22736) =>= multiply (add ?22736 ?22734) (add ?22734 ?22735) [22736, 22735, 22734] by Super 13074 with 2844 at 1,2,2
714 Id : 18162, {_}: add ?24925 (multiply ?24926 (add ?24927 ?24925)) =>= multiply (add ?24926 ?24925) (add ?24925 ?24927) [24927, 24926, 24925] by Super 16401 with 2987 at 2,2
715 Id : 18171, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =<= multiply (add ?24965 (multiply ?24963 ?24964)) (add (multiply ?24963 ?24964) ?24964) [24965, 24964, 24963] by Super 18162 with 35 at 2,2,2
716 Id : 18379, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =<= multiply (add ?24965 (multiply ?24963 ?24964)) (add ?24964 (multiply ?24963 ?24964)) [24965, 24964, 24963] by Demod 18171 with 2844 at 2,3
717 Id : 18380, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =>= multiply (add ?24965 (multiply ?24963 ?24964)) ?24964 [24965, 24964, 24963] by Demod 18379 with 35 at 2,3
718 Id : 18381, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =>= multiply ?24964 (add ?24965 (multiply ?24963 ?24964)) [24965, 24964, 24963] by Demod 18380 with 2987 at 3
719 Id : 1575, {_}: multiply ?2421 ?2422 =<= multiply ?2421 (multiply (add ?2421 ?2423) ?2422) [2423, 2422, 2421] by Super 12 with 42 at 1,2
720 Id : 16456, {_}: add ?22968 (multiply ?22969 (add ?22970 ?22968)) =>= multiply (add ?22969 ?22968) (add ?22968 ?22970) [22970, 22969, 22968] by Super 16401 with 2987 at 2,2
721 Id : 1247, {_}: add ?1879 ?1880 =<= add ?1879 (add (multiply ?1879 ?1881) ?1880) [1881, 1880, 1879] by Super 11 with 22 at 1,2
722 Id : 6619, {_}: multiply (multiply ?8607 ?8608) (add ?8607 ?8609) =>= multiply ?8607 ?8608 [8609, 8608, 8607] by Super 6 with 1247 at 2,2
723 Id : 6763, {_}: multiply ?8607 (multiply ?8608 (add ?8607 ?8609)) =>= multiply ?8607 ?8608 [8609, 8608, 8607] by Demod 6619 with 12 at 2
724 Id : 65, {_}: add (multiply ?237 ?238) (multiply (inverse ?238) ?237) =<= multiply (add ?237 ?238) (multiply (add ?238 (inverse ?238)) (add (inverse ?238) ?237)) [238, 237] by Super 2 with 8 at 2,2
725 Id : 76, {_}: add (multiply ?237 ?238) (multiply (inverse ?238) ?237) =>= multiply (add ?237 ?238) (add (inverse ?238) ?237) [238, 237] by Demod 65 with 5 at 2,3
726 Id : 18170, {_}: add (multiply ?24959 ?24960) (multiply ?24961 ?24959) =<= multiply (add ?24961 (multiply ?24959 ?24960)) (add (multiply ?24959 ?24960) ?24959) [24961, 24960, 24959] by Super 18162 with 22 at 2,2,2
727 Id : 18376, {_}: add (multiply ?24959 ?24960) (multiply ?24961 ?24959) =<= multiply (add ?24961 (multiply ?24959 ?24960)) (add ?24959 (multiply ?24959 ?24960)) [24961, 24960, 24959] by Demod 18170 with 2844 at 2,3
728 Id : 18377, {_}: add (multiply ?24959 ?24960) (multiply ?24961 ?24959) =>= multiply (add ?24961 (multiply ?24959 ?24960)) ?24959 [24961, 24960, 24959] by Demod 18376 with 22 at 2,3
729 Id : 18378, {_}: add (multiply ?24959 ?24960) (multiply ?24961 ?24959) =>= multiply ?24959 (add ?24961 (multiply ?24959 ?24960)) [24961, 24960, 24959] by Demod 18377 with 2987 at 3
730 Id : 22657, {_}: multiply ?237 (add (inverse ?238) (multiply ?237 ?238)) =<= multiply (add ?237 ?238) (add (inverse ?238) ?237) [238, 237] by Demod 76 with 18378 at 2
731 Id : 22699, {_}: multiply (inverse ?30910) (multiply ?30911 (add (inverse ?30910) (multiply ?30911 ?30910))) =>= multiply (inverse ?30910) (add ?30911 ?30910) [30911, 30910] by Super 6763 with 22657 at 2,2
732 Id : 22814, {_}: multiply (inverse ?30910) ?30911 =<= multiply (inverse ?30910) (add ?30911 ?30910) [30911, 30910] by Demod 22699 with 6763 at 2
733 Id : 23609, {_}: add ?31619 (multiply (inverse ?31619) ?31620) =<= multiply (add (inverse ?31619) ?31619) (add ?31619 ?31620) [31620, 31619] by Super 16456 with 22814 at 2,2
734 Id : 23775, {_}: add ?31619 (multiply (inverse ?31619) ?31620) =<= multiply (add ?31619 (inverse ?31619)) (add ?31619 ?31620) [31620, 31619] by Demod 23609 with 2844 at 1,3
735 Id : 23776, {_}: add ?31619 (multiply (inverse ?31619) ?31620) =>= multiply n1 (add ?31619 ?31620) [31620, 31619] by Demod 23775 with 9 at 1,3
736 Id : 24286, {_}: add ?32553 (multiply (inverse ?32553) ?32554) =>= add ?32553 ?32554 [32554, 32553] by Demod 23776 with 79 at 3
737 Id : 13130, {_}: add ?18432 (multiply ?18433 (add ?18432 ?18434)) =>= multiply (add ?18433 ?18432) (add ?18432 ?18434) [18434, 18433, 18432] by Super 13074 with 2987 at 2,2
738 Id : 22705, {_}: multiply ?30931 (add (inverse ?30932) (multiply ?30931 ?30932)) =<= multiply (add ?30931 ?30932) (add (inverse ?30932) ?30931) [30932, 30931] by Demod 76 with 18378 at 2
739 Id : 22751, {_}: multiply ?31084 (add (inverse (inverse ?31084)) (multiply ?31084 (inverse ?31084))) =>= multiply n1 (add (inverse (inverse ?31084)) ?31084) [31084] by Super 22705 with 9 at 1,3
740 Id : 23065, {_}: multiply ?31084 (add (inverse (inverse ?31084)) n0) =?= multiply n1 (add (inverse (inverse ?31084)) ?31084) [31084] by Demod 22751 with 10 at 2,2,2
741 Id : 23066, {_}: multiply ?31084 (add (inverse (inverse ?31084)) n0) =>= add (inverse (inverse ?31084)) ?31084 [31084] by Demod 23065 with 79 at 3
742 Id : 130, {_}: multiply (add ?21 ?22) (multiply (add ?22 ?23) ?22) =>= ?22 [23, 22, 21] by Demod 7 with 12 at 2
743 Id : 89, {_}: n0 =<= inverse n1 [] by Super 79 with 10 at 2
744 Id : 360, {_}: add n1 n0 =>= n1 [] by Super 9 with 89 at 2,2
745 Id : 382, {_}: multiply n1 (multiply (add n0 ?765) n0) =>= n0 [765] by Super 130 with 360 at 1,2
746 Id : 422, {_}: multiply (add n0 ?765) n0 =>= n0 [765] by Demod 382 with 79 at 2
747 Id : 88, {_}: add n0 ?26 =>= ?26 [26] by Demod 8 with 10 at 1,2
748 Id : 423, {_}: multiply ?765 n0 =>= n0 [765] by Demod 422 with 88 at 1,2
749 Id : 831, {_}: add ?1448 (multiply ?1449 n0) =>= ?1448 [1449, 1448] by Super 3 with 423 at 2,2,2
750 Id : 867, {_}: add ?1448 n0 =>= ?1448 [1448] by Demod 831 with 423 at 2,2
751 Id : 23067, {_}: multiply ?31084 (inverse (inverse ?31084)) =<= add (inverse (inverse ?31084)) ?31084 [31084] by Demod 23066 with 867 at 2,2
752 Id : 23068, {_}: multiply ?31084 (inverse (inverse ?31084)) =<= add ?31084 (inverse (inverse ?31084)) [31084] by Demod 23067 with 2844 at 3
753 Id : 23215, {_}: add ?31334 (multiply ?31335 (multiply ?31334 (inverse (inverse ?31334)))) =>= multiply (add ?31335 ?31334) (add ?31334 (inverse (inverse ?31334))) [31335, 31334] by Super 13130 with 23068 at 2,2,2
754 Id : 23280, {_}: ?31334 =<= multiply (add ?31335 ?31334) (add ?31334 (inverse (inverse ?31334))) [31335, 31334] by Demod 23215 with 3 at 2
755 Id : 23281, {_}: ?31334 =<= multiply (add ?31335 ?31334) (multiply ?31334 (inverse (inverse ?31334))) [31335, 31334] by Demod 23280 with 23068 at 2,3
756 Id : 2547, {_}: multiply (multiply ?3698 ?3699) ?3700 =<= multiply ?3698 (multiply (multiply ?3699 ?3698) ?3700) [3700, 3699, 3698] by Super 12 with 1408 at 1,2
757 Id : 2578, {_}: multiply ?3698 (multiply ?3699 ?3700) =<= multiply ?3698 (multiply (multiply ?3699 ?3698) ?3700) [3700, 3699, 3698] by Demod 2547 with 12 at 2
758 Id : 2579, {_}: multiply ?3698 (multiply ?3699 ?3700) =<= multiply ?3698 (multiply ?3699 (multiply ?3698 ?3700)) [3700, 3699, 3698] by Demod 2578 with 12 at 2,3
759 Id : 1667, {_}: multiply ?2583 (multiply ?2584 (multiply ?2583 ?2585)) =>= multiply ?2584 (multiply ?2583 ?2585) [2585, 2584, 2583] by Super 1663 with 3 at 1,2
760 Id : 12236, {_}: multiply ?3698 (multiply ?3699 ?3700) =?= multiply ?3699 (multiply ?3698 ?3700) [3700, 3699, 3698] by Demod 2579 with 1667 at 3
761 Id : 23282, {_}: ?31334 =<= multiply ?31334 (multiply (add ?31335 ?31334) (inverse (inverse ?31334))) [31335, 31334] by Demod 23281 with 12236 at 3
762 Id : 1360, {_}: multiply ?2077 ?2078 =<= multiply ?2077 (multiply (add ?2079 ?2077) ?2078) [2079, 2078, 2077] by Super 12 with 39 at 1,2
763 Id : 23283, {_}: ?31334 =<= multiply ?31334 (inverse (inverse ?31334)) [31334] by Demod 23282 with 1360 at 3
764 Id : 23386, {_}: add (inverse (inverse ?31435)) ?31435 =>= inverse (inverse ?31435) [31435] by Super 35 with 23283 at 2,2
765 Id : 23494, {_}: add ?31435 (inverse (inverse ?31435)) =>= inverse (inverse ?31435) [31435] by Demod 23386 with 2844 at 2
766 Id : 23374, {_}: ?31084 =<= add ?31084 (inverse (inverse ?31084)) [31084] by Demod 23068 with 23283 at 2
767 Id : 23495, {_}: ?31435 =<= inverse (inverse ?31435) [31435] by Demod 23494 with 23374 at 2
768 Id : 24293, {_}: add (inverse ?32572) (multiply ?32572 ?32573) =>= add (inverse ?32572) ?32573 [32573, 32572] by Super 24286 with 23495 at 1,2,2
769 Id : 23619, {_}: multiply (multiply (inverse ?31653) ?31654) ?31655 =<= multiply (inverse ?31653) (multiply (add ?31654 ?31653) ?31655) [31655, 31654, 31653] by Super 12 with 22814 at 1,2
770 Id : 23754, {_}: multiply (inverse ?31653) (multiply ?31654 ?31655) =<= multiply (inverse ?31653) (multiply (add ?31654 ?31653) ?31655) [31655, 31654, 31653] by Demod 23619 with 12 at 2
771 Id : 77768, {_}: add (inverse (inverse ?103133)) (multiply (inverse ?103133) (multiply ?103134 ?103135)) =>= add (inverse (inverse ?103133)) (multiply (add ?103134 ?103133) ?103135) [103135, 103134, 103133] by Super 24293 with 23754 at 2,2
772 Id : 78028, {_}: add (inverse (inverse ?103133)) (multiply ?103134 ?103135) =<= add (inverse (inverse ?103133)) (multiply (add ?103134 ?103133) ?103135) [103135, 103134, 103133] by Demod 77768 with 24293 at 2
773 Id : 78029, {_}: add (inverse (inverse ?103133)) (multiply ?103134 ?103135) =?= add ?103133 (multiply (add ?103134 ?103133) ?103135) [103135, 103134, 103133] by Demod 78028 with 23495 at 1,3
774 Id : 78030, {_}: add ?103133 (multiply ?103134 ?103135) =<= add ?103133 (multiply (add ?103134 ?103133) ?103135) [103135, 103134, 103133] by Demod 78029 with 23495 at 1,2
775 Id : 13094, {_}: add ?18275 (multiply (add ?18276 ?18275) ?18277) =>= multiply (add ?18277 ?18275) (add ?18275 ?18276) [18277, 18276, 18275] by Super 13074 with 2844 at 1,2,2
776 Id : 78031, {_}: add ?103133 (multiply ?103134 ?103135) =<= multiply (add ?103135 ?103133) (add ?103133 ?103134) [103135, 103134, 103133] by Demod 78030 with 13094 at 3
777 Id : 78812, {_}: multiply ?104288 (add ?104289 ?104290) =<= multiply ?104288 (add ?104289 (multiply ?104290 ?104288)) [104290, 104289, 104288] by Super 1575 with 78031 at 2,3
778 Id : 80954, {_}: add (multiply ?24963 ?24964) (multiply ?24965 ?24964) =>= multiply ?24964 (add ?24965 ?24963) [24965, 24964, 24963] by Demod 18381 with 78812 at 3
779 Id : 81595, {_}: multiply a (add c b) =?= multiply a (add c b) [] by Demod 81594 with 2844 at 2,3
780 Id : 81594, {_}: multiply a (add c b) =?= multiply a (add b c) [] by Demod 81593 with 80954 at 3
781 Id : 81593, {_}: multiply a (add c b) =<= add (multiply c a) (multiply b a) [] by Demod 81592 with 2844 at 3
782 Id : 81592, {_}: multiply a (add c b) =<= add (multiply b a) (multiply c a) [] by Demod 1 with 2844 at 2,2
783 Id : 1, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property
784 % SZS output end CNFRefutation for BOO031-1.p
785 22304: solved BOO031-1.p in 22.545408 using kbo
786 22304: status Unsatisfiable for BOO031-1.p
787 NO CLASH, using fixed ground order
791 (add (inverse (add (inverse (add ?2 ?3)) ?4))
793 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
796 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
798 22316: Id : 1, {_}: add b a =<= add a b [] by huntinton_1
806 NO CLASH, using fixed ground order
810 (add (inverse (add (inverse (add ?2 ?3)) ?4))
812 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
815 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
817 22317: Id : 1, {_}: add b a =<= add a b [] by huntinton_1
825 NO CLASH, using fixed ground order
829 (add (inverse (add (inverse (add ?2 ?3)) ?4))
831 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
834 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
836 22318: Id : 1, {_}: add b a =<= add a b [] by huntinton_1
846 Found proof, 10.385052s
847 % SZS status Unsatisfiable for BOO072-1.p
848 % SZS output start CNFRefutation for BOO072-1.p
849 Id : 3, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10
850 Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
851 Id : 15, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?74)) ?75)) ?74)) ?76)) (inverse ?74))) ?74) =>= inverse ?74 [76, 75, 74] by Super 3 with 2 at 2,1,2
852 Id : 20, {_}: inverse (add (inverse (add ?104 (inverse ?104))) ?104) =>= inverse ?104 [104] by Super 15 with 2 at 1,1,1,1,2
853 Id : 99, {_}: inverse (add (inverse ?355) (inverse (add ?355 (inverse (add (inverse ?355) (inverse (add ?355 ?356))))))) =>= ?355 [356, 355] by Super 2 with 20 at 1,1,2
854 Id : 136, {_}: inverse (add (inverse (add (inverse (add ?450 ?451)) ?452)) (inverse (add ?450 ?452))) =>= ?452 [452, 451, 450] by Super 2 with 99 at 2,1,2,1,2
855 Id : 536, {_}: inverse (add (inverse (add (inverse (add ?1808 ?1809)) ?1810)) (inverse (add ?1808 ?1810))) =>= ?1810 [1810, 1809, 1808] by Super 2 with 99 at 2,1,2,1,2
856 Id : 550, {_}: inverse (add (inverse (add ?1882 ?1883)) (inverse (add (inverse ?1882) ?1883))) =>= ?1883 [1883, 1882] by Super 536 with 99 at 1,1,1,1,2
857 Id : 724, {_}: inverse (add ?2517 (inverse (add ?2518 (inverse (add (inverse ?2518) ?2517))))) =>= inverse (add (inverse ?2518) ?2517) [2518, 2517] by Super 136 with 550 at 1,1,2
858 Id : 1584, {_}: inverse (add (inverse ?4978) (inverse (add ?4978 (inverse (add (inverse ?4978) (inverse ?4978)))))) =>= ?4978 [4978] by Super 99 with 724 at 2,1,2,1,2
859 Id : 1652, {_}: inverse (add (inverse ?4978) (inverse ?4978)) =>= ?4978 [4978] by Demod 1584 with 724 at 2
860 Id : 763, {_}: inverse (add (inverse (add ?2736 ?2737)) (inverse (add (inverse ?2736) ?2737))) =>= ?2737 [2737, 2736] by Super 536 with 99 at 1,1,1,1,2
861 Id : 144, {_}: inverse (add (inverse ?482) (inverse (add ?482 (inverse (add (inverse ?482) (inverse (add ?482 ?483))))))) =>= ?482 [483, 482] by Super 2 with 20 at 1,1,2
862 Id : 155, {_}: inverse (add (inverse ?528) (inverse (add ?528 ?528))) =>= ?528 [528] by Super 144 with 99 at 2,1,2,1,2
863 Id : 782, {_}: inverse (add (inverse (add ?2830 (inverse (add ?2830 ?2830)))) ?2830) =>= inverse (add ?2830 ?2830) [2830] by Super 763 with 155 at 2,1,2
864 Id : 871, {_}: inverse (add (inverse (add ?3076 ?3076)) (inverse (add ?3076 ?3076))) =>= ?3076 [3076] by Super 136 with 782 at 1,1,2
865 Id : 1724, {_}: add ?3076 ?3076 =>= ?3076 [3076] by Demod 871 with 1652 at 2
866 Id : 1754, {_}: inverse (inverse ?5284) =>= ?5284 [5284] by Demod 1652 with 1724 at 1,2
867 Id : 1761, {_}: inverse ?5314 =<= add (inverse (add ?5315 ?5314)) (inverse (add (inverse ?5315) ?5314)) [5315, 5314] by Super 1754 with 550 at 1,2
868 Id : 1733, {_}: inverse (inverse ?4978) =>= ?4978 [4978] by Demod 1652 with 1724 at 1,2
869 Id : 6, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?26)) ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Super 3 with 2 at 2,1,2
870 Id : 1734, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?26 ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Demod 6 with 1733 at 1,1,1,1,1,1,1,1,1,1,2
871 Id : 921, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse (add ?3102 ?3102))))) =>= inverse (add ?3102 ?3102) [3102] by Super 136 with 871 at 1,1,2
872 Id : 1725, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse ?3102)))) =>= inverse (add ?3102 ?3102) [3102] by Demod 921 with 1724 at 1,2,1,2,1,2
873 Id : 1726, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse ?3102)))) =>= inverse ?3102 [3102] by Demod 1725 with 1724 at 1,3
874 Id : 1763, {_}: inverse (inverse ?5320) =<= add ?5320 (inverse (add ?5320 (inverse ?5320))) [5320] by Super 1754 with 1726 at 1,2
875 Id : 1786, {_}: ?5320 =<= add ?5320 (inverse (add ?5320 (inverse ?5320))) [5320] by Demod 1763 with 1733 at 2
876 Id : 2715, {_}: inverse (add (inverse (add (inverse ?7389) (inverse (inverse ?7389)))) (inverse (add ?7389 (inverse (inverse ?7389))))) =>= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Super 724 with 1786 at 1,2,1,2,1,2
877 Id : 2755, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 (inverse (inverse ?7389))))) =>= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Demod 2715 with 1733 at 2,1,1,1,2
878 Id : 2756, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 ?7389))) =?= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Demod 2755 with 1733 at 2,1,2,1,2
879 Id : 2757, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 ?7389))) =>= inverse (inverse ?7389) [7389] by Demod 2756 with 1786 at 1,3
880 Id : 2758, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse ?7389)) =>= inverse (inverse ?7389) [7389] by Demod 2757 with 1724 at 1,2,1,2
881 Id : 2759, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse ?7389)) =>= ?7389 [7389] by Demod 2758 with 1733 at 3
882 Id : 2920, {_}: inverse ?7714 =<= add (inverse (add (inverse ?7714) ?7714)) (inverse ?7714) [7714] by Super 1733 with 2759 at 1,2
883 Id : 3142, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?8118)) ?8119)) (inverse (inverse ?8118)))) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Super 1734 with 2920 at 1,1,1,1,1,1,1,2
884 Id : 3172, {_}: inverse (add (inverse (add (inverse (add ?8118 ?8119)) (inverse (inverse ?8118)))) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Demod 3142 with 1733 at 1,1,1,1,1,1,2
885 Id : 3173, {_}: inverse (add (inverse (add (inverse (add ?8118 ?8119)) ?8118)) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Demod 3172 with 1733 at 2,1,1,1,2
886 Id : 8100, {_}: inverse (add (inverse (add (inverse (add ?15581 ?15582)) ?15581)) (inverse ?15581)) =>= ?15581 [15582, 15581] by Demod 3173 with 1733 at 3
887 Id : 8144, {_}: inverse (add ?15759 (inverse (inverse (add ?15760 ?15759)))) =>= inverse (add ?15760 ?15759) [15760, 15759] by Super 8100 with 136 at 1,1,2
888 Id : 8459, {_}: inverse (add ?16264 (add ?16265 ?16264)) =>= inverse (add ?16265 ?16264) [16265, 16264] by Demod 8144 with 1733 at 2,1,2
889 Id : 1749, {_}: inverse (add (inverse (add (inverse ?5262) ?5263)) (inverse (add ?5262 ?5263))) =>= ?5263 [5263, 5262] by Super 550 with 1733 at 1,1,2,1,2
890 Id : 5602, {_}: inverse ?11750 =<= add (inverse (add (inverse ?11751) ?11750)) (inverse (add ?11751 ?11750)) [11751, 11750] by Super 1733 with 1749 at 1,2
891 Id : 8468, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =<= inverse (add (inverse (add (inverse ?16285) ?16286)) (inverse (add ?16285 ?16286))) [16286, 16285] by Super 8459 with 5602 at 2,1,2
892 Id : 8598, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =>= inverse (inverse ?16286) [16286, 16285] by Demod 8468 with 5602 at 1,3
893 Id : 8599, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =>= ?16286 [16286, 16285] by Demod 8598 with 1733 at 3
894 Id : 8791, {_}: inverse ?16774 =<= add (inverse (add ?16775 ?16774)) (inverse ?16774) [16775, 16774] by Super 1733 with 8599 at 1,2
895 Id : 10568, {_}: inverse (add (inverse (inverse ?20566)) (inverse (add ?20567 (inverse ?20566)))) =>= inverse ?20566 [20567, 20566] by Super 136 with 8791 at 1,1,1,2
896 Id : 10805, {_}: inverse (add ?20566 (inverse (add ?20567 (inverse ?20566)))) =>= inverse ?20566 [20567, 20566] by Demod 10568 with 1733 at 1,1,2
897 Id : 11153, {_}: inverse (inverse ?21486) =<= add ?21486 (inverse (add ?21487 (inverse ?21486))) [21487, 21486] by Super 1733 with 10805 at 1,2
898 Id : 11260, {_}: ?21486 =<= add ?21486 (inverse (add ?21487 (inverse ?21486))) [21487, 21486] by Demod 11153 with 1733 at 2
899 Id : 12127, {_}: inverse (inverse (add ?22871 (inverse (inverse ?22872)))) =<= add (inverse (add ?22872 (inverse (add ?22871 (inverse (inverse ?22872)))))) (inverse (inverse ?22872)) [22872, 22871] by Super 1761 with 11260 at 1,2,3
900 Id : 12312, {_}: add ?22871 (inverse (inverse ?22872)) =<= add (inverse (add ?22872 (inverse (add ?22871 (inverse (inverse ?22872)))))) (inverse (inverse ?22872)) [22872, 22871] by Demod 12127 with 1733 at 2
901 Id : 12313, {_}: add ?22871 (inverse (inverse ?22872)) =<= add (inverse (add ?22872 (inverse (add ?22871 ?22872)))) (inverse (inverse ?22872)) [22872, 22871] by Demod 12312 with 1733 at 2,1,2,1,1,3
902 Id : 12314, {_}: add ?22871 (inverse (inverse ?22872)) =<= add (inverse (add ?22872 (inverse (add ?22871 ?22872)))) ?22872 [22872, 22871] by Demod 12313 with 1733 at 2,3
903 Id : 12315, {_}: add ?22871 ?22872 =<= add (inverse (add ?22872 (inverse (add ?22871 ?22872)))) ?22872 [22872, 22871] by Demod 12314 with 1733 at 2,2
904 Id : 12, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58))))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Super 2 with 6 at 2,1,2
905 Id : 3710, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58))))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Demod 12 with 1733 at 1,1,1,1,1,1,1,1,1,1,1,1,1,1,2
906 Id : 3711, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (add (inverse ?57) (inverse (add ?57 ?58))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Demod 3710 with 1733 at 2,1,1,1,1,1,1,1,2
907 Id : 3712, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (add (inverse ?57) (inverse (add ?57 ?58))))) ?61)) ?57)) (add (inverse ?57) (inverse (add ?57 ?58)))) =>= ?57 [61, 60, 59, 58, 57] by Demod 3711 with 1733 at 2,1,2
908 Id : 10590, {_}: inverse (add (inverse (inverse ?20667)) (add (inverse (inverse ?20667)) (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Super 3712 with 8791 at 1,1,1,2
909 Id : 10753, {_}: inverse (add ?20667 (add (inverse (inverse ?20667)) (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Demod 10590 with 1733 at 1,1,2
910 Id : 10754, {_}: inverse (add ?20667 (add ?20667 (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Demod 10753 with 1733 at 1,2,1,2
911 Id : 15430, {_}: inverse (inverse ?28103) =<= add ?28103 (add ?28103 (inverse (add (inverse ?28103) ?28104))) [28104, 28103] by Super 1733 with 10754 at 1,2
912 Id : 15735, {_}: ?28103 =<= add ?28103 (add ?28103 (inverse (add (inverse ?28103) ?28104))) [28104, 28103] by Demod 15430 with 1733 at 2
913 Id : 1762, {_}: inverse (inverse (add (inverse ?5317) ?5318)) =<= add ?5318 (inverse (add ?5317 (inverse (add (inverse ?5317) ?5318)))) [5318, 5317] by Super 1754 with 724 at 1,2
914 Id : 1785, {_}: add (inverse ?5317) ?5318 =<= add ?5318 (inverse (add ?5317 (inverse (add (inverse ?5317) ?5318)))) [5318, 5317] by Demod 1762 with 1733 at 2
915 Id : 11176, {_}: inverse (add ?21600 (inverse (add ?21601 (inverse ?21600)))) =>= inverse ?21600 [21601, 21600] by Demod 10568 with 1733 at 1,1,2
916 Id : 11183, {_}: inverse (add (inverse ?21642) (inverse (add ?21643 ?21642))) =>= inverse (inverse ?21642) [21643, 21642] by Super 11176 with 1733 at 2,1,2,1,2
917 Id : 11564, {_}: inverse (add (inverse ?21642) (inverse (add ?21643 ?21642))) =>= ?21642 [21643, 21642] by Demod 11183 with 1733 at 3
918 Id : 13294, {_}: inverse ?24726 =<= add (inverse ?24726) (inverse (add ?24727 ?24726)) [24727, 24726] by Super 1733 with 11564 at 1,2
919 Id : 13313, {_}: inverse (add (inverse ?24792) (inverse (add ?24792 ?24793))) =<= add (inverse (add (inverse ?24792) (inverse (add ?24792 ?24793)))) ?24792 [24793, 24792] by Super 13294 with 3712 at 2,3
920 Id : 16466, {_}: add (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661)))) ?29660 =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (inverse (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))))))) [29661, 29660] by Super 1785 with 13313 at 1,2,1,2,3
921 Id : 16829, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (inverse (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))))))) [29661, 29660] by Demod 16466 with 13313 at 2
922 Id : 16830, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (add (inverse ?29660) (inverse (add ?29660 ?29661))))) [29661, 29660] by Demod 16829 with 1733 at 2,1,2,3
923 Id : 16831, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661)))) [29661, 29660] by Demod 16830 with 1724 at 1,2,3
924 Id : 17624, {_}: ?31105 =<= add ?31105 (inverse (add (inverse ?31105) (inverse (add ?31105 ?31106)))) [31106, 31105] by Super 15735 with 16831 at 2,3
925 Id : 17680, {_}: ?31105 =<= inverse (add (inverse ?31105) (inverse (add ?31105 ?31106))) [31106, 31105] by Demod 17624 with 16831 at 3
926 Id : 18257, {_}: add ?31431 ?31432 =<= add (add ?31431 ?31432) ?31431 [31432, 31431] by Super 11260 with 17680 at 2,3
927 Id : 18514, {_}: add (add ?31834 ?31835) ?31834 =<= add (inverse (add ?31834 (inverse (add ?31834 ?31835)))) ?31834 [31835, 31834] by Super 12315 with 18257 at 1,2,1,1,3
928 Id : 19938, {_}: add ?34185 ?34186 =<= add (inverse (add ?34185 (inverse (add ?34185 ?34186)))) ?34185 [34186, 34185] by Demod 18514 with 18257 at 2
929 Id : 8365, {_}: inverse (add ?15759 (add ?15760 ?15759)) =>= inverse (add ?15760 ?15759) [15760, 15759] by Demod 8144 with 1733 at 2,1,2
930 Id : 8391, {_}: inverse (inverse (add ?15887 ?15888)) =<= add ?15888 (add ?15887 ?15888) [15888, 15887] by Super 1733 with 8365 at 1,2
931 Id : 8543, {_}: add ?15887 ?15888 =<= add ?15888 (add ?15887 ?15888) [15888, 15887] by Demod 8391 with 1733 at 2
932 Id : 15853, {_}: add ?28715 (add ?28715 (inverse (add (inverse ?28715) ?28716))) =?= add (add ?28715 (inverse (add (inverse ?28715) ?28716))) ?28715 [28716, 28715] by Super 8543 with 15735 at 2,3
933 Id : 16108, {_}: ?28715 =<= add (add ?28715 (inverse (add (inverse ?28715) ?28716))) ?28715 [28716, 28715] by Demod 15853 with 15735 at 2
934 Id : 18478, {_}: ?28715 =<= add ?28715 (inverse (add (inverse ?28715) ?28716)) [28716, 28715] by Demod 16108 with 18257 at 3
935 Id : 18480, {_}: add (inverse ?5317) ?5318 =?= add ?5318 (inverse ?5317) [5318, 5317] by Demod 1785 with 18478 at 1,2,3
936 Id : 20385, {_}: add ?34911 ?34912 =<= add (inverse (add (inverse (add ?34911 ?34912)) ?34911)) ?34911 [34912, 34911] by Super 19938 with 18480 at 1,1,3
937 Id : 20390, {_}: add ?34925 (add ?34926 ?34925) =<= add (inverse (add (inverse (add ?34926 ?34925)) ?34925)) ?34925 [34926, 34925] by Super 20385 with 8543 at 1,1,1,1,3
938 Id : 20500, {_}: add ?34926 ?34925 =<= add (inverse (add (inverse (add ?34926 ?34925)) ?34925)) ?34925 [34925, 34926] by Demod 20390 with 8543 at 2
939 Id : 5906, {_}: inverse (add (inverse (inverse ?12265)) (inverse (add (inverse ?12266) (inverse (add ?12266 ?12265))))) =>= inverse (add ?12266 ?12265) [12266, 12265] by Super 136 with 5602 at 1,1,1,2
940 Id : 6067, {_}: inverse (add ?12265 (inverse (add (inverse ?12266) (inverse (add ?12266 ?12265))))) =>= inverse (add ?12266 ?12265) [12266, 12265] by Demod 5906 with 1733 at 1,1,2
941 Id : 15857, {_}: add (inverse ?28730) (add (inverse ?28730) (inverse (add (inverse (inverse ?28730)) ?28731))) =<= add (add (inverse ?28730) (inverse (add (inverse (inverse ?28730)) ?28731))) (inverse (add ?28730 (inverse (inverse ?28730)))) [28731, 28730] by Super 1785 with 15735 at 1,2,1,2,3
942 Id : 16100, {_}: inverse ?28730 =<= add (add (inverse ?28730) (inverse (add (inverse (inverse ?28730)) ?28731))) (inverse (add ?28730 (inverse (inverse ?28730)))) [28731, 28730] by Demod 15857 with 15735 at 2
943 Id : 16101, {_}: inverse ?28730 =<= add (add (inverse ?28730) (inverse (add ?28730 ?28731))) (inverse (add ?28730 (inverse (inverse ?28730)))) [28731, 28730] by Demod 16100 with 1733 at 1,1,2,1,3
944 Id : 16102, {_}: inverse ?28730 =<= add (add (inverse ?28730) (inverse (add ?28730 ?28731))) (inverse (add ?28730 ?28730)) [28731, 28730] by Demod 16101 with 1733 at 2,1,2,3
945 Id : 16103, {_}: inverse ?28730 =<= add (add (inverse ?28730) (inverse (add ?28730 ?28731))) (inverse ?28730) [28731, 28730] by Demod 16102 with 1724 at 1,2,3
946 Id : 18477, {_}: inverse ?28730 =<= add (inverse ?28730) (inverse (add ?28730 ?28731)) [28731, 28730] by Demod 16103 with 18257 at 3
947 Id : 21222, {_}: inverse (add ?12265 (inverse (inverse ?12266))) =>= inverse (add ?12266 ?12265) [12266, 12265] by Demod 6067 with 18477 at 1,2,1,2
948 Id : 21223, {_}: inverse (add ?12265 ?12266) =?= inverse (add ?12266 ?12265) [12266, 12265] by Demod 21222 with 1733 at 2,1,2
949 Id : 21386, {_}: add ?36951 ?36952 =<= add (inverse (add (inverse (add ?36952 ?36951)) ?36952)) ?36952 [36952, 36951] by Super 20500 with 21223 at 1,1,1,3
950 Id : 19969, {_}: add ?34289 ?34290 =<= add (inverse (add (inverse (add ?34289 ?34290)) ?34289)) ?34289 [34290, 34289] by Super 19938 with 18480 at 1,1,3
951 Id : 21454, {_}: add ?36951 ?36952 =?= add ?36952 ?36951 [36952, 36951] by Demod 21386 with 19969 at 3
952 Id : 21981, {_}: add b a === add b a [] by Demod 1 with 21454 at 3
953 Id : 1, {_}: add b a =<= add a b [] by huntinton_1
954 % SZS output end CNFRefutation for BOO072-1.p
955 22316: solved BOO072-1.p in 10.380648 using nrkbo
956 22316: status Unsatisfiable for BOO072-1.p
957 NO CLASH, using fixed ground order
961 (add (inverse (add (inverse (add ?2 ?3)) ?4))
963 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
966 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
968 22328: Id : 1, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2
976 22328: add 10 2 4 0,2
977 NO CLASH, using fixed ground order
981 (add (inverse (add (inverse (add ?2 ?3)) ?4))
983 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
986 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
988 22329: Id : 1, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2
996 22329: add 10 2 4 0,2
997 NO CLASH, using fixed ground order
1001 (add (inverse (add (inverse (add ?2 ?3)) ?4))
1003 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
1006 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
1008 22330: Id : 1, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2
1012 22330: a 2 0 2 1,1,2
1013 22330: b 2 0 2 2,1,2
1015 22330: inverse 7 1 0
1016 22330: add 10 2 4 0,2
1017 % SZS status Timeout for BOO073-1.p
1018 NO CLASH, using fixed ground order
1022 (add (inverse (add (inverse (add ?2 ?3)) ?4))
1024 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
1027 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
1030 add (inverse (add (inverse a) b))
1031 (inverse (add (inverse a) (inverse b)))
1038 22390: b 2 0 2 2,1,1,2
1039 22390: a 3 0 3 1,1,1,1,2
1040 22390: inverse 12 1 5 0,1,2
1041 22390: add 9 2 3 0,2
1042 NO CLASH, using fixed ground order
1046 (add (inverse (add (inverse (add ?2 ?3)) ?4))
1048 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
1051 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
1054 add (inverse (add (inverse a) b))
1055 (inverse (add (inverse a) (inverse b)))
1062 22391: b 2 0 2 2,1,1,2
1063 22391: a 3 0 3 1,1,1,1,2
1064 22391: inverse 12 1 5 0,1,2
1065 22391: add 9 2 3 0,2
1066 NO CLASH, using fixed ground order
1070 (add (inverse (add (inverse (add ?2 ?3)) ?4))
1072 (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5)))))))
1075 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
1078 add (inverse (add (inverse a) b))
1079 (inverse (add (inverse a) (inverse b)))
1086 22392: b 2 0 2 2,1,1,2
1087 22392: a 3 0 3 1,1,1,1,2
1088 22392: inverse 12 1 5 0,1,2
1089 22392: add 9 2 3 0,2
1092 Found proof, 9.195802s
1093 % SZS status Unsatisfiable for BOO074-1.p
1094 % SZS output start CNFRefutation for BOO074-1.p
1095 Id : 3, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10
1096 Id : 2, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5
1097 Id : 15, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?74)) ?75)) ?74)) ?76)) (inverse ?74))) ?74) =>= inverse ?74 [76, 75, 74] by Super 3 with 2 at 2,1,2
1098 Id : 20, {_}: inverse (add (inverse (add ?104 (inverse ?104))) ?104) =>= inverse ?104 [104] by Super 15 with 2 at 1,1,1,1,2
1099 Id : 99, {_}: inverse (add (inverse ?355) (inverse (add ?355 (inverse (add (inverse ?355) (inverse (add ?355 ?356))))))) =>= ?355 [356, 355] by Super 2 with 20 at 1,1,2
1100 Id : 136, {_}: inverse (add (inverse (add (inverse (add ?450 ?451)) ?452)) (inverse (add ?450 ?452))) =>= ?452 [452, 451, 450] by Super 2 with 99 at 2,1,2,1,2
1101 Id : 536, {_}: inverse (add (inverse (add (inverse (add ?1808 ?1809)) ?1810)) (inverse (add ?1808 ?1810))) =>= ?1810 [1810, 1809, 1808] by Super 2 with 99 at 2,1,2,1,2
1102 Id : 550, {_}: inverse (add (inverse (add ?1882 ?1883)) (inverse (add (inverse ?1882) ?1883))) =>= ?1883 [1883, 1882] by Super 536 with 99 at 1,1,1,1,2
1103 Id : 724, {_}: inverse (add ?2517 (inverse (add ?2518 (inverse (add (inverse ?2518) ?2517))))) =>= inverse (add (inverse ?2518) ?2517) [2518, 2517] by Super 136 with 550 at 1,1,2
1104 Id : 1584, {_}: inverse (add (inverse ?4978) (inverse (add ?4978 (inverse (add (inverse ?4978) (inverse ?4978)))))) =>= ?4978 [4978] by Super 99 with 724 at 2,1,2,1,2
1105 Id : 1652, {_}: inverse (add (inverse ?4978) (inverse ?4978)) =>= ?4978 [4978] by Demod 1584 with 724 at 2
1106 Id : 763, {_}: inverse (add (inverse (add ?2736 ?2737)) (inverse (add (inverse ?2736) ?2737))) =>= ?2737 [2737, 2736] by Super 536 with 99 at 1,1,1,1,2
1107 Id : 144, {_}: inverse (add (inverse ?482) (inverse (add ?482 (inverse (add (inverse ?482) (inverse (add ?482 ?483))))))) =>= ?482 [483, 482] by Super 2 with 20 at 1,1,2
1108 Id : 155, {_}: inverse (add (inverse ?528) (inverse (add ?528 ?528))) =>= ?528 [528] by Super 144 with 99 at 2,1,2,1,2
1109 Id : 782, {_}: inverse (add (inverse (add ?2830 (inverse (add ?2830 ?2830)))) ?2830) =>= inverse (add ?2830 ?2830) [2830] by Super 763 with 155 at 2,1,2
1110 Id : 871, {_}: inverse (add (inverse (add ?3076 ?3076)) (inverse (add ?3076 ?3076))) =>= ?3076 [3076] by Super 136 with 782 at 1,1,2
1111 Id : 1724, {_}: add ?3076 ?3076 =>= ?3076 [3076] by Demod 871 with 1652 at 2
1112 Id : 1754, {_}: inverse (inverse ?5284) =>= ?5284 [5284] by Demod 1652 with 1724 at 1,2
1113 Id : 1762, {_}: inverse (inverse (add (inverse ?5317) ?5318)) =<= add ?5318 (inverse (add ?5317 (inverse (add (inverse ?5317) ?5318)))) [5318, 5317] by Super 1754 with 724 at 1,2
1114 Id : 1733, {_}: inverse (inverse ?4978) =>= ?4978 [4978] by Demod 1652 with 1724 at 1,2
1115 Id : 1785, {_}: add (inverse ?5317) ?5318 =<= add ?5318 (inverse (add ?5317 (inverse (add (inverse ?5317) ?5318)))) [5318, 5317] by Demod 1762 with 1733 at 2
1116 Id : 6, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?26)) ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Super 3 with 2 at 2,1,2
1117 Id : 1734, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?26 ?27)) ?26)) ?28)) (inverse ?26))) ?26) =>= inverse ?26 [28, 27, 26] by Demod 6 with 1733 at 1,1,1,1,1,1,1,1,1,1,2
1118 Id : 921, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse (add ?3102 ?3102))))) =>= inverse (add ?3102 ?3102) [3102] by Super 136 with 871 at 1,1,2
1119 Id : 1725, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse ?3102)))) =>= inverse (add ?3102 ?3102) [3102] by Demod 921 with 1724 at 1,2,1,2,1,2
1120 Id : 1726, {_}: inverse (add ?3102 (inverse (add ?3102 (inverse ?3102)))) =>= inverse ?3102 [3102] by Demod 1725 with 1724 at 1,3
1121 Id : 1763, {_}: inverse (inverse ?5320) =<= add ?5320 (inverse (add ?5320 (inverse ?5320))) [5320] by Super 1754 with 1726 at 1,2
1122 Id : 1786, {_}: ?5320 =<= add ?5320 (inverse (add ?5320 (inverse ?5320))) [5320] by Demod 1763 with 1733 at 2
1123 Id : 2715, {_}: inverse (add (inverse (add (inverse ?7389) (inverse (inverse ?7389)))) (inverse (add ?7389 (inverse (inverse ?7389))))) =>= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Super 724 with 1786 at 1,2,1,2,1,2
1124 Id : 2755, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 (inverse (inverse ?7389))))) =>= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Demod 2715 with 1733 at 2,1,1,1,2
1125 Id : 2756, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 ?7389))) =?= inverse (add (inverse ?7389) (inverse (add (inverse ?7389) (inverse (inverse ?7389))))) [7389] by Demod 2755 with 1733 at 2,1,2,1,2
1126 Id : 2757, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse (add ?7389 ?7389))) =>= inverse (inverse ?7389) [7389] by Demod 2756 with 1786 at 1,3
1127 Id : 2758, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse ?7389)) =>= inverse (inverse ?7389) [7389] by Demod 2757 with 1724 at 1,2,1,2
1128 Id : 2759, {_}: inverse (add (inverse (add (inverse ?7389) ?7389)) (inverse ?7389)) =>= ?7389 [7389] by Demod 2758 with 1733 at 3
1129 Id : 2920, {_}: inverse ?7714 =<= add (inverse (add (inverse ?7714) ?7714)) (inverse ?7714) [7714] by Super 1733 with 2759 at 1,2
1130 Id : 3142, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?8118)) ?8119)) (inverse (inverse ?8118)))) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Super 1734 with 2920 at 1,1,1,1,1,1,1,2
1131 Id : 3172, {_}: inverse (add (inverse (add (inverse (add ?8118 ?8119)) (inverse (inverse ?8118)))) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Demod 3142 with 1733 at 1,1,1,1,1,1,2
1132 Id : 3173, {_}: inverse (add (inverse (add (inverse (add ?8118 ?8119)) ?8118)) (inverse ?8118)) =>= inverse (inverse ?8118) [8119, 8118] by Demod 3172 with 1733 at 2,1,1,1,2
1133 Id : 8100, {_}: inverse (add (inverse (add (inverse (add ?15581 ?15582)) ?15581)) (inverse ?15581)) =>= ?15581 [15582, 15581] by Demod 3173 with 1733 at 3
1134 Id : 8144, {_}: inverse (add ?15759 (inverse (inverse (add ?15760 ?15759)))) =>= inverse (add ?15760 ?15759) [15760, 15759] by Super 8100 with 136 at 1,1,2
1135 Id : 8365, {_}: inverse (add ?15759 (add ?15760 ?15759)) =>= inverse (add ?15760 ?15759) [15760, 15759] by Demod 8144 with 1733 at 2,1,2
1136 Id : 8391, {_}: inverse (inverse (add ?15887 ?15888)) =<= add ?15888 (add ?15887 ?15888) [15888, 15887] by Super 1733 with 8365 at 1,2
1137 Id : 8543, {_}: add ?15887 ?15888 =<= add ?15888 (add ?15887 ?15888) [15888, 15887] by Demod 8391 with 1733 at 2
1138 Id : 12, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58))))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Super 2 with 6 at 2,1,2
1139 Id : 3710, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58))))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Demod 12 with 1733 at 1,1,1,1,1,1,1,1,1,1,1,1,1,1,2
1140 Id : 3711, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (add (inverse ?57) (inverse (add ?57 ?58))))) ?61)) ?57)) (inverse (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) =>= ?57 [61, 60, 59, 58, 57] by Demod 3710 with 1733 at 2,1,1,1,1,1,1,1,2
1141 Id : 3712, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse ?57) (inverse (add ?57 ?58)))) ?59)) (inverse (add (inverse ?57) (inverse (add ?57 ?58)))))) ?60)) (add (inverse ?57) (inverse (add ?57 ?58))))) ?61)) ?57)) (add (inverse ?57) (inverse (add ?57 ?58)))) =>= ?57 [61, 60, 59, 58, 57] by Demod 3711 with 1733 at 2,1,2
1142 Id : 8459, {_}: inverse (add ?16264 (add ?16265 ?16264)) =>= inverse (add ?16265 ?16264) [16265, 16264] by Demod 8144 with 1733 at 2,1,2
1143 Id : 1749, {_}: inverse (add (inverse (add (inverse ?5262) ?5263)) (inverse (add ?5262 ?5263))) =>= ?5263 [5263, 5262] by Super 550 with 1733 at 1,1,2,1,2
1144 Id : 5602, {_}: inverse ?11750 =<= add (inverse (add (inverse ?11751) ?11750)) (inverse (add ?11751 ?11750)) [11751, 11750] by Super 1733 with 1749 at 1,2
1145 Id : 8468, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =<= inverse (add (inverse (add (inverse ?16285) ?16286)) (inverse (add ?16285 ?16286))) [16286, 16285] by Super 8459 with 5602 at 2,1,2
1146 Id : 8598, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =>= inverse (inverse ?16286) [16286, 16285] by Demod 8468 with 5602 at 1,3
1147 Id : 8599, {_}: inverse (add (inverse (add ?16285 ?16286)) (inverse ?16286)) =>= ?16286 [16286, 16285] by Demod 8598 with 1733 at 3
1148 Id : 8791, {_}: inverse ?16774 =<= add (inverse (add ?16775 ?16774)) (inverse ?16774) [16775, 16774] by Super 1733 with 8599 at 1,2
1149 Id : 10590, {_}: inverse (add (inverse (inverse ?20667)) (add (inverse (inverse ?20667)) (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Super 3712 with 8791 at 1,1,1,2
1150 Id : 10753, {_}: inverse (add ?20667 (add (inverse (inverse ?20667)) (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Demod 10590 with 1733 at 1,1,2
1151 Id : 10754, {_}: inverse (add ?20667 (add ?20667 (inverse (add (inverse ?20667) ?20668)))) =>= inverse ?20667 [20668, 20667] by Demod 10753 with 1733 at 1,2,1,2
1152 Id : 15430, {_}: inverse (inverse ?28103) =<= add ?28103 (add ?28103 (inverse (add (inverse ?28103) ?28104))) [28104, 28103] by Super 1733 with 10754 at 1,2
1153 Id : 15735, {_}: ?28103 =<= add ?28103 (add ?28103 (inverse (add (inverse ?28103) ?28104))) [28104, 28103] by Demod 15430 with 1733 at 2
1154 Id : 15853, {_}: add ?28715 (add ?28715 (inverse (add (inverse ?28715) ?28716))) =?= add (add ?28715 (inverse (add (inverse ?28715) ?28716))) ?28715 [28716, 28715] by Super 8543 with 15735 at 2,3
1155 Id : 16108, {_}: ?28715 =<= add (add ?28715 (inverse (add (inverse ?28715) ?28716))) ?28715 [28716, 28715] by Demod 15853 with 15735 at 2
1156 Id : 10568, {_}: inverse (add (inverse (inverse ?20566)) (inverse (add ?20567 (inverse ?20566)))) =>= inverse ?20566 [20567, 20566] by Super 136 with 8791 at 1,1,1,2
1157 Id : 10805, {_}: inverse (add ?20566 (inverse (add ?20567 (inverse ?20566)))) =>= inverse ?20566 [20567, 20566] by Demod 10568 with 1733 at 1,1,2
1158 Id : 11153, {_}: inverse (inverse ?21486) =<= add ?21486 (inverse (add ?21487 (inverse ?21486))) [21487, 21486] by Super 1733 with 10805 at 1,2
1159 Id : 11260, {_}: ?21486 =<= add ?21486 (inverse (add ?21487 (inverse ?21486))) [21487, 21486] by Demod 11153 with 1733 at 2
1160 Id : 11176, {_}: inverse (add ?21600 (inverse (add ?21601 (inverse ?21600)))) =>= inverse ?21600 [21601, 21600] by Demod 10568 with 1733 at 1,1,2
1161 Id : 11183, {_}: inverse (add (inverse ?21642) (inverse (add ?21643 ?21642))) =>= inverse (inverse ?21642) [21643, 21642] by Super 11176 with 1733 at 2,1,2,1,2
1162 Id : 11564, {_}: inverse (add (inverse ?21642) (inverse (add ?21643 ?21642))) =>= ?21642 [21643, 21642] by Demod 11183 with 1733 at 3
1163 Id : 13294, {_}: inverse ?24726 =<= add (inverse ?24726) (inverse (add ?24727 ?24726)) [24727, 24726] by Super 1733 with 11564 at 1,2
1164 Id : 13313, {_}: inverse (add (inverse ?24792) (inverse (add ?24792 ?24793))) =<= add (inverse (add (inverse ?24792) (inverse (add ?24792 ?24793)))) ?24792 [24793, 24792] by Super 13294 with 3712 at 2,3
1165 Id : 16466, {_}: add (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661)))) ?29660 =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (inverse (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))))))) [29661, 29660] by Super 1785 with 13313 at 1,2,1,2,3
1166 Id : 16829, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (inverse (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))))))) [29661, 29660] by Demod 16466 with 13313 at 2
1167 Id : 16830, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (add (inverse ?29660) (inverse (add ?29660 ?29661))) (add (inverse ?29660) (inverse (add ?29660 ?29661))))) [29661, 29660] by Demod 16829 with 1733 at 2,1,2,3
1168 Id : 16831, {_}: inverse (add (inverse ?29660) (inverse (add ?29660 ?29661))) =<= add ?29660 (inverse (add (inverse ?29660) (inverse (add ?29660 ?29661)))) [29661, 29660] by Demod 16830 with 1724 at 1,2,3
1169 Id : 17624, {_}: ?31105 =<= add ?31105 (inverse (add (inverse ?31105) (inverse (add ?31105 ?31106)))) [31106, 31105] by Super 15735 with 16831 at 2,3
1170 Id : 17680, {_}: ?31105 =<= inverse (add (inverse ?31105) (inverse (add ?31105 ?31106))) [31106, 31105] by Demod 17624 with 16831 at 3
1171 Id : 18257, {_}: add ?31431 ?31432 =<= add (add ?31431 ?31432) ?31431 [31432, 31431] by Super 11260 with 17680 at 2,3
1172 Id : 18478, {_}: ?28715 =<= add ?28715 (inverse (add (inverse ?28715) ?28716)) [28716, 28715] by Demod 16108 with 18257 at 3
1173 Id : 18480, {_}: add (inverse ?5317) ?5318 =?= add ?5318 (inverse ?5317) [5318, 5317] by Demod 1785 with 18478 at 1,2,3
1174 Id : 1761, {_}: inverse ?5314 =<= add (inverse (add ?5315 ?5314)) (inverse (add (inverse ?5315) ?5314)) [5315, 5314] by Super 1754 with 550 at 1,2
1175 Id : 18617, {_}: a === a [] by Demod 18616 with 1733 at 2
1176 Id : 18616, {_}: inverse (inverse a) =>= a [] by Demod 18615 with 1761 at 2
1177 Id : 18615, {_}: add (inverse (add b (inverse a))) (inverse (add (inverse b) (inverse a))) =>= a [] by Demod 18614 with 18480 at 1,2,2
1178 Id : 18614, {_}: add (inverse (add b (inverse a))) (inverse (add (inverse a) (inverse b))) =>= a [] by Demod 1 with 18480 at 1,1,2
1179 Id : 1, {_}: add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b))) =>= a [] by huntinton_3
1180 % SZS output end CNFRefutation for BOO074-1.p
1181 22390: solved BOO074-1.p in 9.212575 using nrkbo
1182 22390: status Unsatisfiable for BOO074-1.p
1183 NO CLASH, using fixed ground order
1186 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1187 [4, 3, 2] by b_definition ?2 ?3 ?4
1189 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1190 [7, 6] by w_definition ?6 ?7
1194 apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b))
1195 [] by strong_fixed_point
1198 apply strong_fixed_point fixed_pt
1200 apply fixed_pt (apply strong_fixed_point fixed_pt)
1201 [] by prove_strong_fixed_point
1205 22397: strong_fixed_point 3 0 2 1,2
1206 22397: fixed_pt 3 0 3 2,2
1209 22397: apply 19 2 3 0,2
1210 NO CLASH, using fixed ground order
1213 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1214 [4, 3, 2] by b_definition ?2 ?3 ?4
1216 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1217 [7, 6] by w_definition ?6 ?7
1221 apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b))
1222 [] by strong_fixed_point
1225 apply strong_fixed_point fixed_pt
1227 apply fixed_pt (apply strong_fixed_point fixed_pt)
1228 [] by prove_strong_fixed_point
1232 22398: strong_fixed_point 3 0 2 1,2
1233 22398: fixed_pt 3 0 3 2,2
1236 22398: apply 19 2 3 0,2
1237 NO CLASH, using fixed ground order
1240 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1241 [4, 3, 2] by b_definition ?2 ?3 ?4
1243 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1244 [7, 6] by w_definition ?6 ?7
1248 apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b))
1249 [] by strong_fixed_point
1252 apply strong_fixed_point fixed_pt
1254 apply fixed_pt (apply strong_fixed_point fixed_pt)
1255 [] by prove_strong_fixed_point
1259 22399: strong_fixed_point 3 0 2 1,2
1260 22399: fixed_pt 3 0 3 2,2
1263 22399: apply 19 2 3 0,2
1264 % SZS status Timeout for COL003-12.p
1265 NO CLASH, using fixed ground order
1268 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1269 [4, 3, 2] by b_definition ?2 ?3 ?4
1271 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1272 [7, 6] by w_definition ?6 ?7
1278 (apply (apply b (apply (apply b (apply w w)) (apply b w))) b)) b
1279 [] by strong_fixed_point
1282 apply strong_fixed_point fixed_pt
1284 apply fixed_pt (apply strong_fixed_point fixed_pt)
1285 [] by prove_strong_fixed_point
1289 22420: strong_fixed_point 3 0 2 1,2
1290 22420: fixed_pt 3 0 3 2,2
1293 22420: apply 20 2 3 0,2
1294 NO CLASH, using fixed ground order
1297 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1298 [4, 3, 2] by b_definition ?2 ?3 ?4
1300 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1301 [7, 6] by w_definition ?6 ?7
1307 (apply (apply b (apply (apply b (apply w w)) (apply b w))) b)) b
1308 [] by strong_fixed_point
1311 apply strong_fixed_point fixed_pt
1313 apply fixed_pt (apply strong_fixed_point fixed_pt)
1314 [] by prove_strong_fixed_point
1318 22421: strong_fixed_point 3 0 2 1,2
1319 22421: fixed_pt 3 0 3 2,2
1322 22421: apply 20 2 3 0,2
1323 NO CLASH, using fixed ground order
1326 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1327 [4, 3, 2] by b_definition ?2 ?3 ?4
1329 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1330 [7, 6] by w_definition ?6 ?7
1336 (apply (apply b (apply (apply b (apply w w)) (apply b w))) b)) b
1337 [] by strong_fixed_point
1340 apply strong_fixed_point fixed_pt
1342 apply fixed_pt (apply strong_fixed_point fixed_pt)
1343 [] by prove_strong_fixed_point
1347 22422: strong_fixed_point 3 0 2 1,2
1348 22422: fixed_pt 3 0 3 2,2
1351 22422: apply 20 2 3 0,2
1352 % SZS status Timeout for COL003-17.p
1353 NO CLASH, using fixed ground order
1356 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1357 [4, 3, 2] by b_definition ?2 ?3 ?4
1359 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1360 [7, 6] by w_definition ?6 ?7
1364 apply (apply b (apply (apply b (apply w w)) (apply b w)))
1365 (apply (apply b b) b)
1366 [] by strong_fixed_point
1369 apply strong_fixed_point fixed_pt
1371 apply fixed_pt (apply strong_fixed_point fixed_pt)
1372 [] by prove_strong_fixed_point
1376 22445: strong_fixed_point 3 0 2 1,2
1377 22445: fixed_pt 3 0 3 2,2
1380 22445: apply 20 2 3 0,2
1381 NO CLASH, using fixed ground order
1384 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1385 [4, 3, 2] by b_definition ?2 ?3 ?4
1387 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1388 [7, 6] by w_definition ?6 ?7
1392 apply (apply b (apply (apply b (apply w w)) (apply b w)))
1393 (apply (apply b b) b)
1394 [] by strong_fixed_point
1397 apply strong_fixed_point fixed_pt
1399 apply fixed_pt (apply strong_fixed_point fixed_pt)
1400 [] by prove_strong_fixed_point
1404 22446: strong_fixed_point 3 0 2 1,2
1405 22446: fixed_pt 3 0 3 2,2
1408 22446: apply 20 2 3 0,2
1409 NO CLASH, using fixed ground order
1412 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1413 [4, 3, 2] by b_definition ?2 ?3 ?4
1415 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1416 [7, 6] by w_definition ?6 ?7
1420 apply (apply b (apply (apply b (apply w w)) (apply b w)))
1421 (apply (apply b b) b)
1422 [] by strong_fixed_point
1425 apply strong_fixed_point fixed_pt
1427 apply fixed_pt (apply strong_fixed_point fixed_pt)
1428 [] by prove_strong_fixed_point
1432 22447: strong_fixed_point 3 0 2 1,2
1433 22447: fixed_pt 3 0 3 2,2
1436 22447: apply 20 2 3 0,2
1437 % SZS status Timeout for COL003-18.p
1438 NO CLASH, using fixed ground order
1441 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1442 [4, 3, 2] by b_definition ?2 ?3 ?4
1444 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1445 [7, 6] by w_definition ?6 ?7
1451 (apply (apply b (apply w w)) (apply (apply b (apply b w)) b))) b
1452 [] by strong_fixed_point
1455 apply strong_fixed_point fixed_pt
1457 apply fixed_pt (apply strong_fixed_point fixed_pt)
1458 [] by prove_strong_fixed_point
1462 22471: strong_fixed_point 3 0 2 1,2
1463 22471: fixed_pt 3 0 3 2,2
1466 22471: apply 20 2 3 0,2
1467 NO CLASH, using fixed ground order
1470 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1471 [4, 3, 2] by b_definition ?2 ?3 ?4
1473 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1474 [7, 6] by w_definition ?6 ?7
1480 (apply (apply b (apply w w)) (apply (apply b (apply b w)) b))) b
1481 [] by strong_fixed_point
1484 apply strong_fixed_point fixed_pt
1486 apply fixed_pt (apply strong_fixed_point fixed_pt)
1487 [] by prove_strong_fixed_point
1491 22472: strong_fixed_point 3 0 2 1,2
1492 22472: fixed_pt 3 0 3 2,2
1495 22472: apply 20 2 3 0,2
1496 NO CLASH, using fixed ground order
1499 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
1500 [4, 3, 2] by b_definition ?2 ?3 ?4
1502 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
1503 [7, 6] by w_definition ?6 ?7
1509 (apply (apply b (apply w w)) (apply (apply b (apply b w)) b))) b
1510 [] by strong_fixed_point
1513 apply strong_fixed_point fixed_pt
1515 apply fixed_pt (apply strong_fixed_point fixed_pt)
1516 [] by prove_strong_fixed_point
1520 22473: strong_fixed_point 3 0 2 1,2
1521 22473: fixed_pt 3 0 3 2,2
1524 22473: apply 20 2 3 0,2
1525 % SZS status Timeout for COL003-19.p
1526 CLASH, statistics insufficient
1529 apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4)
1530 [4, 3] by o_definition ?3 ?4
1532 apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7)
1533 [8, 7, 6] by q1_definition ?6 ?7 ?8
1535 22495: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1
1541 22495: combinator 1 0 1 1,3
1542 22495: apply 10 2 1 0,3
1543 CLASH, statistics insufficient
1546 apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4)
1547 [4, 3] by o_definition ?3 ?4
1549 apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7)
1550 [8, 7, 6] by q1_definition ?6 ?7 ?8
1552 22496: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1
1558 22496: combinator 1 0 1 1,3
1559 22496: apply 10 2 1 0,3
1560 CLASH, statistics insufficient
1563 apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4)
1564 [4, 3] by o_definition ?3 ?4
1566 apply (apply (apply q1 ?6) ?7) ?8 =?= apply ?6 (apply ?8 ?7)
1567 [8, 7, 6] by q1_definition ?6 ?7 ?8
1569 22497: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1
1575 22497: combinator 1 0 1 1,3
1576 22497: apply 10 2 1 0,3
1577 % SZS status Timeout for COL011-1.p
1578 CLASH, statistics insufficient
1581 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1582 [5, 4, 3] by b_definition ?3 ?4 ?5
1583 22518: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1585 apply (apply t ?9) ?10 =>= apply ?10 ?9
1586 [10, 9] by t_definition ?9 ?10
1589 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1590 [1] by prove_fixed_point ?1
1597 22518: f 3 1 3 0,2,2
1598 22518: apply 13 2 3 0,2
1599 CLASH, statistics insufficient
1602 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1603 [5, 4, 3] by b_definition ?3 ?4 ?5
1604 22519: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1606 apply (apply t ?9) ?10 =>= apply ?10 ?9
1607 [10, 9] by t_definition ?9 ?10
1610 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1611 [1] by prove_fixed_point ?1
1618 22519: f 3 1 3 0,2,2
1619 22519: apply 13 2 3 0,2
1620 CLASH, statistics insufficient
1623 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1624 [5, 4, 3] by b_definition ?3 ?4 ?5
1625 22520: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1627 apply (apply t ?9) ?10 =?= apply ?10 ?9
1628 [10, 9] by t_definition ?9 ?10
1631 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1632 [1] by prove_fixed_point ?1
1639 22520: f 3 1 3 0,2,2
1640 22520: apply 13 2 3 0,2
1644 Found proof, 0.520019s
1645 % SZS status Unsatisfiable for COL034-1.p
1646 % SZS output start CNFRefutation for COL034-1.p
1647 Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1648 Id : 4, {_}: apply (apply t ?9) ?10 =>= apply ?10 ?9 [10, 9] by t_definition ?9 ?10
1649 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1650 Id : 11, {_}: apply m (apply (apply b ?29) ?30) =<= apply ?29 (apply ?30 (apply (apply b ?29) ?30)) [30, 29] by Super 2 with 3 at 2
1651 Id : 2545, {_}: apply (f (apply (apply b m) (apply (apply b (apply t m)) b))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply b (apply t m)) b)))) m)) === apply (f (apply (apply b m) (apply (apply b (apply t m)) b))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply b (apply t m)) b)))) m)) [] by Super 2544 with 11 at 2
1652 Id : 2544, {_}: apply ?1974 (apply (apply ?1976 (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976)))) ?1975) =<= apply (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976))) (apply ?1974 (apply (apply ?1976 (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976)))) ?1975)) [1975, 1976, 1974] by Demod 2294 with 4 at 2,2
1653 Id : 2294, {_}: apply ?1974 (apply (apply t ?1975) (apply ?1976 (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976))))) =<= apply (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976))) (apply ?1974 (apply (apply ?1976 (f (apply (apply b ?1974) (apply (apply b (apply t ?1975)) ?1976)))) ?1975)) [1976, 1975, 1974] by Super 53 with 4 at 2,2,3
1654 Id : 53, {_}: apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80))))) =<= apply (f (apply (apply b ?78) (apply (apply b ?79) ?80))) (apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80)))))) [80, 79, 78] by Demod 39 with 2 at 2,2
1655 Id : 39, {_}: apply ?78 (apply (apply (apply b ?79) ?80) (f (apply (apply b ?78) (apply (apply b ?79) ?80)))) =<= apply (f (apply (apply b ?78) (apply (apply b ?79) ?80))) (apply ?78 (apply ?79 (apply ?80 (f (apply (apply b ?78) (apply (apply b ?79) ?80)))))) [80, 79, 78] by Super 8 with 2 at 2,2,3
1656 Id : 8, {_}: apply ?20 (apply ?21 (f (apply (apply b ?20) ?21))) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Demod 7 with 2 at 2
1657 Id : 7, {_}: apply (apply (apply b ?20) ?21) (f (apply (apply b ?20) ?21)) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Super 1 with 2 at 2,3
1658 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1
1659 % SZS output end CNFRefutation for COL034-1.p
1660 22518: solved COL034-1.p in 0.528032 using nrkbo
1661 22518: status Unsatisfiable for COL034-1.p
1662 CLASH, statistics insufficient
1665 apply (apply (apply s ?3) ?4) ?5
1667 apply (apply ?3 ?5) (apply ?4 ?5)
1668 [5, 4, 3] by s_definition ?3 ?4 ?5
1670 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
1671 [9, 8, 7] by b_definition ?7 ?8 ?9
1673 apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12
1674 [13, 12, 11] by c_definition ?11 ?12 ?13
1677 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1678 [1] by prove_fixed_point ?1
1685 22525: f 3 1 3 0,2,2
1686 22525: apply 19 2 3 0,2
1687 CLASH, statistics insufficient
1690 apply (apply (apply s ?3) ?4) ?5
1692 apply (apply ?3 ?5) (apply ?4 ?5)
1693 [5, 4, 3] by s_definition ?3 ?4 ?5
1695 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
1696 [9, 8, 7] by b_definition ?7 ?8 ?9
1698 apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12
1699 [13, 12, 11] by c_definition ?11 ?12 ?13
1702 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1703 [1] by prove_fixed_point ?1
1710 22526: f 3 1 3 0,2,2
1711 22526: apply 19 2 3 0,2
1712 CLASH, statistics insufficient
1715 apply (apply (apply s ?3) ?4) ?5
1717 apply (apply ?3 ?5) (apply ?4 ?5)
1718 [5, 4, 3] by s_definition ?3 ?4 ?5
1720 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
1721 [9, 8, 7] by b_definition ?7 ?8 ?9
1723 apply (apply (apply c ?11) ?12) ?13 =?= apply (apply ?11 ?13) ?12
1724 [13, 12, 11] by c_definition ?11 ?12 ?13
1727 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1728 [1] by prove_fixed_point ?1
1735 22527: f 3 1 3 0,2,2
1736 22527: apply 19 2 3 0,2
1737 % SZS status Timeout for COL037-1.p
1738 CLASH, statistics insufficient
1741 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1742 [5, 4, 3] by b_definition ?3 ?4 ?5
1743 22551: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1745 apply (apply (apply c ?9) ?10) ?11 =>= apply (apply ?9 ?11) ?10
1746 [11, 10, 9] by c_definition ?9 ?10 ?11
1749 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1750 [1] by prove_fixed_point ?1
1757 22551: f 3 1 3 0,2,2
1758 22551: apply 15 2 3 0,2
1759 CLASH, statistics insufficient
1762 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1763 [5, 4, 3] by b_definition ?3 ?4 ?5
1764 22552: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1766 apply (apply (apply c ?9) ?10) ?11 =>= apply (apply ?9 ?11) ?10
1767 [11, 10, 9] by c_definition ?9 ?10 ?11
1770 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1771 [1] by prove_fixed_point ?1
1778 22552: f 3 1 3 0,2,2
1779 22552: apply 15 2 3 0,2
1780 CLASH, statistics insufficient
1783 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1784 [5, 4, 3] by b_definition ?3 ?4 ?5
1785 22553: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1787 apply (apply (apply c ?9) ?10) ?11 =?= apply (apply ?9 ?11) ?10
1788 [11, 10, 9] by c_definition ?9 ?10 ?11
1791 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1792 [1] by prove_fixed_point ?1
1799 22553: f 3 1 3 0,2,2
1800 22553: apply 15 2 3 0,2
1804 Found proof, 1.136025s
1805 % SZS status Unsatisfiable for COL041-1.p
1806 % SZS output start CNFRefutation for COL041-1.p
1807 Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
1808 Id : 4, {_}: apply (apply (apply c ?9) ?10) ?11 =>= apply (apply ?9 ?11) ?10 [11, 10, 9] by c_definition ?9 ?10 ?11
1809 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1810 Id : 11, {_}: apply m (apply (apply b ?30) ?31) =<= apply ?30 (apply ?31 (apply (apply b ?30) ?31)) [31, 30] by Super 2 with 3 at 2
1811 Id : 4380, {_}: apply (f (apply (apply b m) (apply (apply c b) m))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply c b) m)))) m)) === apply (f (apply (apply b m) (apply (apply c b) m))) (apply m (apply (apply b (f (apply (apply b m) (apply (apply c b) m)))) m)) [] by Super 53 with 11 at 2
1812 Id : 53, {_}: apply ?91 (apply (apply ?92 (f (apply (apply b ?91) (apply (apply c ?92) ?93)))) ?93) =<= apply (f (apply (apply b ?91) (apply (apply c ?92) ?93))) (apply ?91 (apply (apply ?92 (f (apply (apply b ?91) (apply (apply c ?92) ?93)))) ?93)) [93, 92, 91] by Demod 39 with 4 at 2,2
1813 Id : 39, {_}: apply ?91 (apply (apply (apply c ?92) ?93) (f (apply (apply b ?91) (apply (apply c ?92) ?93)))) =<= apply (f (apply (apply b ?91) (apply (apply c ?92) ?93))) (apply ?91 (apply (apply ?92 (f (apply (apply b ?91) (apply (apply c ?92) ?93)))) ?93)) [93, 92, 91] by Super 8 with 4 at 2,2,3
1814 Id : 8, {_}: apply ?21 (apply ?22 (f (apply (apply b ?21) ?22))) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Demod 7 with 2 at 2
1815 Id : 7, {_}: apply (apply (apply b ?21) ?22) (f (apply (apply b ?21) ?22)) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Super 1 with 2 at 2,3
1816 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1
1817 % SZS output end CNFRefutation for COL041-1.p
1818 22551: solved COL041-1.p in 1.14407 using nrkbo
1819 22551: status Unsatisfiable for COL041-1.p
1820 CLASH, statistics insufficient
1823 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1824 [5, 4, 3] by b_definition ?3 ?4 ?5
1826 apply (apply (apply n ?7) ?8) ?9
1828 apply (apply (apply ?7 ?9) ?8) ?9
1829 [9, 8, 7] by n_definition ?7 ?8 ?9
1832 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1833 [1] by prove_fixed_point ?1
1839 22558: f 3 1 3 0,2,2
1840 22558: apply 14 2 3 0,2
1841 CLASH, statistics insufficient
1844 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1845 [5, 4, 3] by b_definition ?3 ?4 ?5
1847 apply (apply (apply n ?7) ?8) ?9
1849 apply (apply (apply ?7 ?9) ?8) ?9
1850 [9, 8, 7] by n_definition ?7 ?8 ?9
1853 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1854 [1] by prove_fixed_point ?1
1860 22559: f 3 1 3 0,2,2
1861 22559: apply 14 2 3 0,2
1862 CLASH, statistics insufficient
1865 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1866 [5, 4, 3] by b_definition ?3 ?4 ?5
1868 apply (apply (apply n ?7) ?8) ?9
1870 apply (apply (apply ?7 ?9) ?8) ?9
1871 [9, 8, 7] by n_definition ?7 ?8 ?9
1874 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1875 [1] by prove_fixed_point ?1
1881 22560: f 3 1 3 0,2,2
1882 22560: apply 14 2 3 0,2
1886 Found proof, 25.425976s
1887 % SZS status Unsatisfiable for COL044-1.p
1888 % SZS output start CNFRefutation for COL044-1.p
1889 Id : 4, {_}: apply (apply (apply b ?11) ?12) ?13 =>= apply ?11 (apply ?12 ?13) [13, 12, 11] by b_definition ?11 ?12 ?13
1890 Id : 3, {_}: apply (apply (apply n ?7) ?8) ?9 =?= apply (apply (apply ?7 ?9) ?8) ?9 [9, 8, 7] by n_definition ?7 ?8 ?9
1891 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1892 Id : 8, {_}: apply (apply (apply n b) ?22) ?23 =?= apply ?23 (apply ?22 ?23) [23, 22] by Super 2 with 3 at 2
1893 Id : 5, {_}: apply ?15 (apply ?16 ?17) =?= apply ?15 (apply ?16 ?17) [17, 16, 15] by Super 4 with 2 at 2
1894 Id : 83, {_}: apply (apply (apply (apply n b) ?260) (apply b ?261)) ?262 =?= apply ?261 (apply (apply ?260 (apply b ?261)) ?262) [262, 261, 260] by Super 2 with 8 at 1,2
1895 Id : 24939, {_}: apply (apply (apply n b) (apply (apply (apply n (apply n b)) (apply b (apply n b))) (apply n (apply n b)))) (f (apply (apply (apply (apply n b) (apply n (apply n b))) (apply b (apply n b))) (apply n (apply n b)))) =?= apply (apply (apply n b) (apply (apply (apply n (apply n b)) (apply b (apply n b))) (apply n (apply n b)))) (f (apply (apply (apply (apply n b) (apply n (apply n b))) (apply b (apply n b))) (apply n (apply n b)))) [] by Super 24245 with 83 at 1,2
1896 Id : 24245, {_}: apply (apply (apply (apply ?35313 ?35314) ?35315) ?35314) (f (apply (apply (apply ?35313 ?35314) ?35315) ?35314)) =?= apply (apply (apply n b) (apply (apply (apply n ?35313) ?35315) ?35314)) (f (apply (apply (apply ?35313 ?35314) ?35315) ?35314)) [35315, 35314, 35313] by Super 153 with 3 at 2,1,3
1897 Id : 153, {_}: apply (apply ?460 ?461) (f (apply ?460 ?461)) =<= apply (apply (apply n b) (apply ?460 ?461)) (f (apply ?460 ?461)) [461, 460] by Super 115 with 5 at 1,3
1898 Id : 115, {_}: apply ?375 (f ?375) =<= apply (apply (apply n b) ?375) (f ?375) [375] by Super 1 with 8 at 3
1899 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1
1900 % SZS output end CNFRefutation for COL044-1.p
1901 22559: solved COL044-1.p in 12.720795 using kbo
1902 22559: status Unsatisfiable for COL044-1.p
1903 CLASH, statistics insufficient
1906 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1907 [5, 4, 3] by b_definition ?3 ?4 ?5
1908 CLASH, statistics insufficient
1911 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1912 [5, 4, 3] by b_definition ?3 ?4 ?5
1914 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
1915 [8, 7] by w_definition ?7 ?8
1916 22571: Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10
1919 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1920 [1] by prove_strong_fixed_point ?1
1927 22571: f 3 1 3 0,2,2
1928 22571: apply 14 2 3 0,2
1929 CLASH, statistics insufficient
1932 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
1933 [5, 4, 3] by b_definition ?3 ?4 ?5
1935 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
1936 [8, 7] by w_definition ?7 ?8
1937 22572: Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10
1940 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1941 [1] by prove_strong_fixed_point ?1
1948 22572: f 3 1 3 0,2,2
1949 22572: apply 14 2 3 0,2
1951 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
1952 [8, 7] by w_definition ?7 ?8
1953 22570: Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10
1956 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
1957 [1] by prove_strong_fixed_point ?1
1964 22570: f 3 1 3 0,2,2
1965 22570: apply 14 2 3 0,2
1969 Found proof, 12.496351s
1970 % SZS status Unsatisfiable for COL049-1.p
1971 % SZS output start CNFRefutation for COL049-1.p
1972 Id : 3, {_}: apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 [8, 7] by w_definition ?7 ?8
1973 Id : 4, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10
1974 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
1975 Id : 226, {_}: apply (apply w (apply b ?378)) ?379 =?= apply ?378 (apply ?379 ?379) [379, 378] by Super 2 with 3 at 2
1976 Id : 231, {_}: apply (apply w (apply b ?393)) ?394 =>= apply ?393 (apply m ?394) [394, 393] by Super 226 with 4 at 2,3
1977 Id : 289, {_}: apply m (apply w (apply b ?503)) =<= apply ?503 (apply m (apply w (apply b ?503))) [503] by Super 4 with 231 at 3
1978 Id : 15983, {_}: apply (f (apply (apply b m) (apply (apply b w) b))) (apply m (apply w (apply b (f (apply (apply b m) (apply (apply b w) b)))))) === apply (f (apply (apply b m) (apply (apply b w) b))) (apply m (apply w (apply b (f (apply (apply b m) (apply (apply b w) b)))))) [] by Super 72 with 289 at 2
1979 Id : 72, {_}: apply ?123 (apply ?124 (apply ?125 (f (apply (apply b ?123) (apply (apply b ?124) ?125))))) =<= apply (f (apply (apply b ?123) (apply (apply b ?124) ?125))) (apply ?123 (apply ?124 (apply ?125 (f (apply (apply b ?123) (apply (apply b ?124) ?125)))))) [125, 124, 123] by Demod 59 with 2 at 2,2
1980 Id : 59, {_}: apply ?123 (apply (apply (apply b ?124) ?125) (f (apply (apply b ?123) (apply (apply b ?124) ?125)))) =<= apply (f (apply (apply b ?123) (apply (apply b ?124) ?125))) (apply ?123 (apply ?124 (apply ?125 (f (apply (apply b ?123) (apply (apply b ?124) ?125)))))) [125, 124, 123] by Super 8 with 2 at 2,2,3
1981 Id : 8, {_}: apply ?20 (apply ?21 (f (apply (apply b ?20) ?21))) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Demod 7 with 2 at 2
1982 Id : 7, {_}: apply (apply (apply b ?20) ?21) (f (apply (apply b ?20) ?21)) =<= apply (f (apply (apply b ?20) ?21)) (apply ?20 (apply ?21 (f (apply (apply b ?20) ?21)))) [21, 20] by Super 1 with 2 at 2,3
1983 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1
1984 % SZS output end CNFRefutation for COL049-1.p
1985 22570: solved COL049-1.p in 6.296392 using nrkbo
1986 22570: status Unsatisfiable for COL049-1.p
1987 CLASH, statistics insufficient
1990 apply (apply (apply s ?3) ?4) ?5
1992 apply (apply ?3 ?5) (apply ?4 ?5)
1993 [5, 4, 3] by s_definition ?3 ?4 ?5
1995 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
1996 [9, 8, 7] by b_definition ?7 ?8 ?9
1998 apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12
1999 [13, 12, 11] by c_definition ?11 ?12 ?13
2000 22586: Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15
2003 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
2004 [1] by prove_strong_fixed_point ?1
2012 22586: f 3 1 3 0,2,2
2013 22586: apply 20 2 3 0,2
2014 CLASH, statistics insufficient
2017 apply (apply (apply s ?3) ?4) ?5
2019 apply (apply ?3 ?5) (apply ?4 ?5)
2020 [5, 4, 3] by s_definition ?3 ?4 ?5
2022 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
2023 [9, 8, 7] by b_definition ?7 ?8 ?9
2025 apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12
2026 [13, 12, 11] by c_definition ?11 ?12 ?13
2027 22587: Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15
2030 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
2031 [1] by prove_strong_fixed_point ?1
2039 22587: f 3 1 3 0,2,2
2040 22587: apply 20 2 3 0,2
2041 CLASH, statistics insufficient
2044 apply (apply (apply s ?3) ?4) ?5
2046 apply (apply ?3 ?5) (apply ?4 ?5)
2047 [5, 4, 3] by s_definition ?3 ?4 ?5
2049 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
2050 [9, 8, 7] by b_definition ?7 ?8 ?9
2052 apply (apply (apply c ?11) ?12) ?13 =?= apply (apply ?11 ?13) ?12
2053 [13, 12, 11] by c_definition ?11 ?12 ?13
2054 22588: Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15
2057 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
2058 [1] by prove_strong_fixed_point ?1
2066 22588: f 3 1 3 0,2,2
2067 22588: apply 20 2 3 0,2
2071 Found proof, 2.121776s
2072 % SZS status Unsatisfiable for COL057-1.p
2073 % SZS output start CNFRefutation for COL057-1.p
2074 Id : 3, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9
2075 Id : 5, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15
2076 Id : 2, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5
2077 Id : 37, {_}: apply (apply (apply s i) ?141) ?142 =?= apply ?142 (apply ?141 ?142) [142, 141] by Super 2 with 5 at 1,3
2078 Id : 16, {_}: apply (apply (apply s (apply b ?64)) ?65) ?66 =?= apply ?64 (apply ?66 (apply ?65 ?66)) [66, 65, 64] by Super 2 with 3 at 3
2079 Id : 9068, {_}: apply (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i)) (f (apply (apply (apply s (apply b (apply s i))) i) (apply i (apply (apply s (apply b (apply s i))) i)))) === apply (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i)) (f (apply (apply (apply s (apply b (apply s i))) i) (apply i (apply (apply s (apply b (apply s i))) i)))) [] by Super 9059 with 5 at 2,1,2
2080 Id : 9059, {_}: apply (apply ?16932 (apply ?16933 ?16932)) (f (apply ?16932 (apply ?16933 ?16932))) =?= apply (apply (apply (apply s (apply b (apply s i))) ?16933) ?16932) (f (apply ?16932 (apply ?16933 ?16932))) [16933, 16932] by Super 9058 with 16 at 1,3
2081 Id : 9058, {_}: apply ?16930 (f ?16930) =<= apply (apply (apply s i) ?16930) (f ?16930) [16930] by Super 1 with 37 at 3
2082 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1
2083 % SZS output end CNFRefutation for COL057-1.p
2084 22586: solved COL057-1.p in 2.124132 using nrkbo
2085 22586: status Unsatisfiable for COL057-1.p
2086 NO CLASH, using fixed ground order
2093 (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4)))
2094 ?5) (inverse (multiply ?3 ?5))))
2097 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5
2100 multiply a (multiply b c) =<= multiply (multiply a b) c
2101 [] by prove_associativity
2106 22593: b 2 0 2 1,2,2
2107 22593: c 2 0 2 2,2,2
2108 22593: inverse 5 1 0
2109 22593: multiply 10 2 4 0,2
2110 NO CLASH, using fixed ground order
2117 (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4)))
2118 ?5) (inverse (multiply ?3 ?5))))
2121 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5
2124 multiply a (multiply b c) =<= multiply (multiply a b) c
2125 [] by prove_associativity
2130 22594: b 2 0 2 1,2,2
2131 22594: c 2 0 2 2,2,2
2132 22594: inverse 5 1 0
2133 22594: multiply 10 2 4 0,2
2134 NO CLASH, using fixed ground order
2141 (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4)))
2142 ?5) (inverse (multiply ?3 ?5))))
2145 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5
2148 multiply a (multiply b c) =<= multiply (multiply a b) c
2149 [] by prove_associativity
2154 22595: b 2 0 2 1,2,2
2155 22595: c 2 0 2 2,2,2
2156 22595: inverse 5 1 0
2157 22595: multiply 10 2 4 0,2
2160 Found proof, 23.394494s
2161 % SZS status Unsatisfiable for GRP014-1.p
2162 % SZS output start CNFRefutation for GRP014-1.p
2163 Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5
2164 Id : 3, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by group_axiom ?7 ?8 ?9 ?10
2165 Id : 6, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Super 3 with 2 at 1,1,2,2
2166 Id : 5, {_}: multiply ?19 (inverse (multiply (multiply (inverse (multiply (inverse ?20) ?21)) ?22) (inverse (multiply ?20 ?22)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24) (inverse (multiply ?23 ?24))) [24, 23, 22, 21, 20, 19] by Super 3 with 2 at 2,1,1,1,1,2,2
2167 Id : 28, {_}: multiply (inverse ?215) (multiply ?215 (inverse (multiply (multiply (inverse (multiply (inverse ?216) ?217)) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 217, 216, 215] by Super 2 with 5 at 2,2
2168 Id : 29, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?220) (multiply (inverse (inverse ?221)) (multiply (inverse ?221) ?222)))) ?223) (inverse (multiply ?220 ?223))) =>= ?222 [223, 222, 221, 220] by Super 2 with 5 at 2
2169 Id : 287, {_}: multiply (inverse ?2293) (multiply ?2293 ?2294) =?= multiply (inverse (inverse ?2295)) (multiply (inverse ?2295) ?2294) [2295, 2294, 2293] by Super 28 with 29 at 2,2,2
2170 Id : 136, {_}: multiply (inverse ?1148) (multiply ?1148 ?1149) =?= multiply (inverse (inverse ?1150)) (multiply (inverse ?1150) ?1149) [1150, 1149, 1148] by Super 28 with 29 at 2,2,2
2171 Id : 301, {_}: multiply (inverse ?2384) (multiply ?2384 ?2385) =?= multiply (inverse ?2386) (multiply ?2386 ?2385) [2386, 2385, 2384] by Super 287 with 136 at 3
2172 Id : 356, {_}: multiply (inverse ?2583) (multiply ?2583 (inverse (multiply (multiply (inverse (multiply (inverse ?2584) (multiply ?2584 ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585, 2584, 2583] by Super 28 with 301 at 1,1,1,1,2,2,2
2173 Id : 679, {_}: multiply ?5168 (inverse (multiply (multiply (inverse (multiply (inverse ?5169) (multiply ?5169 ?5170))) ?5171) (inverse (multiply (inverse ?5168) ?5171)))) =>= ?5170 [5171, 5170, 5169, 5168] by Super 2 with 301 at 1,1,1,1,2,2
2174 Id : 2910, {_}: multiply ?23936 (inverse (multiply (multiply (inverse (multiply (inverse ?23937) (multiply ?23937 ?23938))) (multiply ?23936 ?23939)) (inverse (multiply (inverse ?23940) (multiply ?23940 ?23939))))) =>= ?23938 [23940, 23939, 23938, 23937, 23936] by Super 679 with 301 at 1,2,1,2,2
2175 Id : 2996, {_}: multiply (multiply (inverse ?24702) (multiply ?24702 ?24703)) (inverse (multiply ?24704 (inverse (multiply (inverse ?24705) (multiply ?24705 (inverse (multiply (multiply (inverse (multiply (inverse ?24706) ?24704)) ?24707) (inverse (multiply ?24706 ?24707))))))))) =>= ?24703 [24707, 24706, 24705, 24704, 24703, 24702] by Super 2910 with 28 at 1,1,2,2
2176 Id : 3034, {_}: multiply (multiply (inverse ?24702) (multiply ?24702 ?24703)) (inverse (multiply ?24704 (inverse ?24704))) =>= ?24703 [24704, 24703, 24702] by Demod 2996 with 28 at 1,2,1,2,2
2177 Id : 3426, {_}: multiply (inverse (multiply (inverse ?29536) (multiply ?29536 ?29537))) ?29537 =?= multiply (inverse (multiply (inverse ?29538) (multiply ?29538 ?29539))) ?29539 [29539, 29538, 29537, 29536] by Super 356 with 3034 at 2,2
2178 Id : 3726, {_}: multiply (inverse (inverse (multiply (inverse ?31745) (multiply ?31745 (inverse (multiply (multiply (inverse (multiply (inverse ?31746) ?31747)) ?31748) (inverse (multiply ?31746 ?31748)))))))) (multiply (inverse (multiply (inverse ?31749) (multiply ?31749 ?31750))) ?31750) =>= ?31747 [31750, 31749, 31748, 31747, 31746, 31745] by Super 28 with 3426 at 2,2
2179 Id : 3919, {_}: multiply (inverse (inverse ?31747)) (multiply (inverse (multiply (inverse ?31749) (multiply ?31749 ?31750))) ?31750) =>= ?31747 [31750, 31749, 31747] by Demod 3726 with 28 at 1,1,1,2
2180 Id : 91, {_}: multiply (inverse ?821) (multiply ?821 (inverse (multiply (multiply (inverse (multiply (inverse ?822) ?823)) ?824) (inverse (multiply ?822 ?824))))) =>= ?823 [824, 823, 822, 821] by Super 2 with 5 at 2,2
2181 Id : 107, {_}: multiply (inverse ?949) (multiply ?949 (multiply ?950 (inverse (multiply (multiply (inverse (multiply (inverse ?951) ?952)) ?953) (inverse (multiply ?951 ?953)))))) =>= multiply (inverse (inverse ?950)) ?952 [953, 952, 951, 950, 949] by Super 91 with 5 at 2,2,2
2182 Id : 3966, {_}: multiply (inverse (inverse (inverse ?33635))) ?33635 =?= multiply (inverse (inverse (inverse (multiply (inverse ?33636) (multiply ?33636 (inverse (multiply (multiply (inverse (multiply (inverse ?33637) ?33638)) ?33639) (inverse (multiply ?33637 ?33639))))))))) ?33638 [33639, 33638, 33637, 33636, 33635] by Super 107 with 3919 at 2,2
2183 Id : 4117, {_}: multiply (inverse (inverse (inverse ?33635))) ?33635 =?= multiply (inverse (inverse (inverse ?33638))) ?33638 [33638, 33635] by Demod 3966 with 28 at 1,1,1,1,3
2184 Id : 4346, {_}: multiply (inverse (inverse ?35898)) (multiply (inverse (multiply (inverse (inverse (inverse (inverse ?35899)))) (multiply (inverse (inverse (inverse ?35900))) ?35900))) ?35899) =>= ?35898 [35900, 35899, 35898] by Super 3919 with 4117 at 2,1,1,2,2
2185 Id : 3965, {_}: multiply (inverse ?33628) (multiply ?33628 (multiply ?33629 (inverse (multiply (multiply (inverse ?33630) ?33631) (inverse (multiply (inverse ?33630) ?33631)))))) =?= multiply (inverse (inverse ?33629)) (multiply (inverse (multiply (inverse ?33632) (multiply ?33632 ?33633))) ?33633) [33633, 33632, 33631, 33630, 33629, 33628] by Super 107 with 3919 at 1,1,1,1,2,2,2,2
2186 Id : 6632, {_}: multiply (inverse ?52916) (multiply ?52916 (multiply ?52917 (inverse (multiply (multiply (inverse ?52918) ?52919) (inverse (multiply (inverse ?52918) ?52919)))))) =>= ?52917 [52919, 52918, 52917, 52916] by Demod 3965 with 3919 at 3
2187 Id : 6641, {_}: multiply (inverse ?52992) (multiply ?52992 (multiply ?52993 (inverse (multiply (multiply (inverse ?52994) (inverse (multiply (multiply (inverse (multiply (inverse ?52995) (multiply (inverse (inverse ?52994)) ?52996))) ?52997) (inverse (multiply ?52995 ?52997))))) (inverse ?52996))))) =>= ?52993 [52997, 52996, 52995, 52994, 52993, 52992] by Super 6632 with 2 at 1,2,1,2,2,2,2
2188 Id : 6773, {_}: multiply (inverse ?52992) (multiply ?52992 (multiply ?52993 (inverse (multiply ?52996 (inverse ?52996))))) =>= ?52993 [52996, 52993, 52992] by Demod 6641 with 2 at 1,1,2,2,2,2
2189 Id : 6832, {_}: multiply (inverse (inverse ?53817)) (multiply (inverse ?53818) (multiply ?53818 (inverse (multiply ?53819 (inverse ?53819))))) =>= ?53817 [53819, 53818, 53817] by Super 4346 with 6773 at 1,1,2,2
2190 Id : 4, {_}: multiply ?12 (inverse (multiply (multiply (inverse (multiply (inverse ?13) (multiply (inverse ?12) ?14))) (inverse (multiply (multiply (inverse (multiply (inverse ?15) (multiply (inverse ?13) ?16))) ?17) (inverse (multiply ?15 ?17))))) (inverse ?16))) =>= ?14 [17, 16, 15, 14, 13, 12] by Super 3 with 2 at 1,2,1,2,2
2191 Id : 9, {_}: multiply ?44 (inverse (multiply (multiply (inverse (multiply (inverse ?45) ?46)) ?47) (inverse (multiply ?45 ?47)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?48) (multiply (inverse (inverse ?44)) ?46))) (inverse (multiply (multiply (inverse (multiply (inverse ?49) (multiply (inverse ?48) ?50))) ?51) (inverse (multiply ?49 ?51))))) (inverse ?50)) [51, 50, 49, 48, 47, 46, 45, 44] by Super 2 with 4 at 2,1,1,1,1,2,2
2192 Id : 7754, {_}: multiply ?63171 (inverse (multiply (multiply (inverse (multiply (inverse ?63172) (multiply (inverse ?63171) (inverse (multiply ?63173 (inverse ?63173)))))) ?63174) (inverse (multiply ?63172 ?63174)))) =?= inverse (multiply (multiply (inverse ?63175) (inverse (multiply (multiply (inverse (multiply (inverse ?63176) (multiply (inverse (inverse ?63175)) ?63177))) ?63178) (inverse (multiply ?63176 ?63178))))) (inverse ?63177)) [63178, 63177, 63176, 63175, 63174, 63173, 63172, 63171] by Super 9 with 6832 at 1,1,1,1,3
2193 Id : 7872, {_}: inverse (multiply ?63173 (inverse ?63173)) =?= inverse (multiply (multiply (inverse ?63175) (inverse (multiply (multiply (inverse (multiply (inverse ?63176) (multiply (inverse (inverse ?63175)) ?63177))) ?63178) (inverse (multiply ?63176 ?63178))))) (inverse ?63177)) [63178, 63177, 63176, 63175, 63173] by Demod 7754 with 2 at 2
2194 Id : 7873, {_}: inverse (multiply ?63173 (inverse ?63173)) =?= inverse (multiply ?63177 (inverse ?63177)) [63177, 63173] by Demod 7872 with 2 at 1,1,3
2195 Id : 8249, {_}: multiply (inverse (inverse (multiply ?66459 (inverse ?66459)))) (multiply (inverse ?66460) (multiply ?66460 (inverse (multiply ?66461 (inverse ?66461))))) =?= multiply ?66462 (inverse ?66462) [66462, 66461, 66460, 66459] by Super 6832 with 7873 at 1,1,2
2196 Id : 8282, {_}: multiply ?66459 (inverse ?66459) =?= multiply ?66462 (inverse ?66462) [66462, 66459] by Demod 8249 with 6832 at 2
2197 Id : 8520, {_}: multiply (multiply (inverse ?67970) (multiply ?67971 (inverse ?67971))) (inverse (multiply ?67972 (inverse ?67972))) =>= inverse ?67970 [67972, 67971, 67970] by Super 3034 with 8282 at 2,1,2
2198 Id : 380, {_}: multiply ?2743 (inverse (multiply (multiply (inverse ?2744) (multiply ?2744 ?2745)) (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745))))) =>= ?2747 [2747, 2746, 2745, 2744, 2743] by Super 2 with 301 at 1,1,2,2
2199 Id : 8912, {_}: multiply ?70596 (inverse (multiply (multiply (inverse ?70597) (multiply ?70597 (inverse (multiply ?70598 (inverse ?70598))))) (inverse (multiply ?70599 (inverse ?70599))))) =>= inverse (inverse ?70596) [70599, 70598, 70597, 70596] by Super 380 with 8520 at 2,1,2,1,2,2
2200 Id : 9021, {_}: multiply ?70596 (inverse (inverse (multiply ?70598 (inverse ?70598)))) =>= inverse (inverse ?70596) [70598, 70596] by Demod 8912 with 3034 at 1,2,2
2201 Id : 9165, {_}: multiply (inverse (inverse ?72171)) (multiply (inverse (multiply (inverse ?72172) (inverse (inverse ?72172)))) (inverse (inverse (multiply ?72173 (inverse ?72173))))) =>= ?72171 [72173, 72172, 72171] by Super 3919 with 9021 at 2,1,1,2,2
2202 Id : 10068, {_}: multiply (inverse (inverse ?76580)) (inverse (inverse (inverse (multiply (inverse ?76581) (inverse (inverse ?76581)))))) =>= ?76580 [76581, 76580] by Demod 9165 with 9021 at 2,2
2203 Id : 9180, {_}: multiply ?72234 (inverse ?72234) =?= inverse (inverse (inverse (multiply ?72235 (inverse ?72235)))) [72235, 72234] by Super 8282 with 9021 at 3
2204 Id : 10100, {_}: multiply (inverse (inverse ?76745)) (multiply ?76746 (inverse ?76746)) =>= ?76745 [76746, 76745] by Super 10068 with 9180 at 2,2
2205 Id : 10663, {_}: multiply ?82289 (inverse (multiply ?82290 (inverse ?82290))) =>= inverse (inverse ?82289) [82290, 82289] by Super 8520 with 10100 at 1,2
2206 Id : 10913, {_}: multiply (inverse (inverse ?83563)) (inverse (inverse (inverse (multiply (inverse ?83564) (multiply ?83564 (inverse (multiply ?83565 (inverse ?83565)))))))) =>= ?83563 [83565, 83564, 83563] by Super 3919 with 10663 at 2,2
2207 Id : 10892, {_}: inverse (inverse (multiply (inverse ?24702) (multiply ?24702 ?24703))) =>= ?24703 [24703, 24702] by Demod 3034 with 10663 at 2
2208 Id : 11238, {_}: multiply (inverse (inverse ?83563)) (inverse (inverse (multiply ?83565 (inverse ?83565)))) =>= ?83563 [83565, 83563] by Demod 10913 with 10892 at 1,2,2
2209 Id : 11239, {_}: inverse (inverse (inverse (inverse ?83563))) =>= ?83563 [83563] by Demod 11238 with 9021 at 2
2210 Id : 138, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1160) (multiply (inverse (inverse ?1161)) (multiply (inverse ?1161) ?1162)))) ?1163) (inverse (multiply ?1160 ?1163))) =>= ?1162 [1163, 1162, 1161, 1160] by Super 2 with 5 at 2
2211 Id : 145, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1213) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1214) (multiply (inverse (inverse ?1215)) (multiply (inverse ?1215) ?1216)))) ?1217) (inverse (multiply ?1214 ?1217))))) (multiply ?1216 ?1218)))) ?1219) (inverse (multiply ?1213 ?1219))) =>= ?1218 [1219, 1218, 1217, 1216, 1215, 1214, 1213] by Super 138 with 29 at 1,2,2,1,1,1,1,2
2212 Id : 168, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1213) (multiply (inverse ?1216) (multiply ?1216 ?1218)))) ?1219) (inverse (multiply ?1213 ?1219))) =>= ?1218 [1219, 1218, 1216, 1213] by Demod 145 with 29 at 1,1,2,1,1,1,1,2
2213 Id : 777, {_}: multiply (inverse ?5891) (multiply ?5891 (multiply ?5892 (inverse (multiply (multiply (inverse (multiply (inverse ?5893) ?5894)) ?5895) (inverse (multiply ?5893 ?5895)))))) =>= multiply (inverse (inverse ?5892)) ?5894 [5895, 5894, 5893, 5892, 5891] by Super 91 with 5 at 2,2,2
2214 Id : 813, {_}: multiply (inverse ?6211) (multiply ?6211 (multiply ?6212 ?6213)) =?= multiply (inverse (inverse ?6212)) (multiply (inverse ?6214) (multiply ?6214 ?6213)) [6214, 6213, 6212, 6211] by Super 777 with 168 at 2,2,2,2
2215 Id : 1401, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?11491) (multiply ?11491 (multiply ?11492 ?11493)))) ?11494) (inverse (multiply (inverse ?11492) ?11494))) =>= ?11493 [11494, 11493, 11492, 11491] by Super 168 with 813 at 1,1,1,1,2
2216 Id : 1427, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?11709) (multiply ?11709 (multiply (inverse ?11710) (multiply ?11710 ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711, 11710, 11709] by Super 1401 with 301 at 2,2,1,1,1,1,2
2217 Id : 10889, {_}: multiply (inverse ?52992) (multiply ?52992 (inverse (inverse ?52993))) =>= ?52993 [52993, 52992] by Demod 6773 with 10663 at 2,2,2
2218 Id : 11440, {_}: multiply (inverse ?85947) (multiply ?85947 ?85948) =>= inverse (inverse ?85948) [85948, 85947] by Super 10889 with 11239 at 2,2,2
2219 Id : 12070, {_}: inverse (multiply (multiply (inverse (inverse (inverse (multiply (inverse ?11710) (multiply ?11710 ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711, 11710] by Demod 1427 with 11440 at 1,1,1,1,2
2220 Id : 12071, {_}: inverse (multiply (multiply (inverse (inverse (inverse (inverse (inverse ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711] by Demod 12070 with 11440 at 1,1,1,1,1,1,2
2221 Id : 12086, {_}: inverse (multiply (multiply (inverse ?11711) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711] by Demod 12071 with 11239 at 1,1,1,2
2222 Id : 11284, {_}: multiply ?84907 (inverse (multiply (inverse (inverse (inverse ?84908))) ?84908)) =>= inverse (inverse ?84907) [84908, 84907] by Super 10663 with 11239 at 2,1,2,2
2223 Id : 12456, {_}: inverse (inverse (inverse (multiply (inverse ?89511) ?89512))) =>= multiply (inverse ?89512) ?89511 [89512, 89511] by Super 12086 with 11284 at 1,2
2224 Id : 12807, {_}: inverse (multiply (inverse ?89891) ?89892) =>= multiply (inverse ?89892) ?89891 [89892, 89891] by Super 11239 with 12456 at 1,2
2225 Id : 13084, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (inverse (multiply (inverse (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?27)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 6 with 12807 at 1,1,1,2,1,2,1,2,2
2226 Id : 13085, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13084 with 12807 at 1,1,1,1,2,1,2,1,2,2
2227 Id : 13086, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (inverse (multiply (inverse ?26) ?30)) ?28)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13085 with 12807 at 2,1,1,1,1,2,1,2,1,2,2
2228 Id : 13087, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13086 with 12807 at 1,2,1,1,1,1,2,1,2,1,2,2
2229 Id : 12072, {_}: multiply ?2743 (inverse (multiply (inverse (inverse ?2745)) (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745))))) =>= ?2747 [2747, 2746, 2745, 2743] by Demod 380 with 11440 at 1,1,2,2
2230 Id : 13068, {_}: multiply ?2743 (multiply (inverse (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745)))) (inverse ?2745)) =>= ?2747 [2745, 2747, 2746, 2743] by Demod 12072 with 12807 at 2,2
2231 Id : 358, {_}: multiply (inverse ?2595) (multiply ?2595 (inverse (multiply (multiply (inverse ?2596) (multiply ?2596 ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597, 2596, 2595] by Super 28 with 301 at 1,1,2,2,2
2232 Id : 12055, {_}: inverse (inverse (inverse (multiply (multiply (inverse ?2596) (multiply ?2596 ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597, 2596] by Demod 358 with 11440 at 2
2233 Id : 12056, {_}: inverse (inverse (inverse (multiply (inverse (inverse ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597] by Demod 12055 with 11440 at 1,1,1,1,2
2234 Id : 12778, {_}: multiply (inverse (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))) (inverse ?2597) =>= ?2599 [2597, 2599, 2598] by Demod 12056 with 12456 at 2
2235 Id : 13130, {_}: multiply ?2743 (multiply (inverse ?2743) ?2747) =>= ?2747 [2747, 2743] by Demod 13068 with 12778 at 2,2
2236 Id : 12068, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?2584) (multiply ?2584 ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585, 2584] by Demod 356 with 11440 at 2
2237 Id : 12069, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 12068 with 11440 at 1,1,1,1,1,1,2
2238 Id : 12343, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse ?88665))) ?88666))))) =>= multiply (inverse (inverse (inverse ?88666))) ?88665 [88666, 88665] by Super 12069 with 11284 at 1,1,1,2
2239 Id : 12705, {_}: inverse (multiply (inverse (inverse (inverse ?88665))) ?88666) =>= multiply (inverse (inverse (inverse ?88666))) ?88665 [88666, 88665] by Demod 12343 with 11239 at 2
2240 Id : 13398, {_}: multiply (inverse ?88666) (inverse (inverse ?88665)) =?= multiply (inverse (inverse (inverse ?88666))) ?88665 [88665, 88666] by Demod 12705 with 12807 at 2
2241 Id : 13591, {_}: multiply (inverse ?93455) (inverse (inverse (multiply (inverse (inverse (inverse (inverse ?93455)))) ?93456))) =>= ?93456 [93456, 93455] by Super 13130 with 13398 at 2
2242 Id : 13688, {_}: multiply (inverse ?93455) (inverse (multiply (inverse ?93456) (inverse (inverse (inverse ?93455))))) =>= ?93456 [93456, 93455] by Demod 13591 with 12807 at 1,2,2
2243 Id : 13689, {_}: multiply (inverse ?93455) (multiply (inverse (inverse (inverse (inverse ?93455)))) ?93456) =>= ?93456 [93456, 93455] by Demod 13688 with 12807 at 2,2
2244 Id : 13690, {_}: multiply (inverse ?93455) (multiply ?93455 ?93456) =>= ?93456 [93456, 93455] by Demod 13689 with 11239 at 1,2,2
2245 Id : 13691, {_}: inverse (inverse ?93456) =>= ?93456 [93456] by Demod 13690 with 11440 at 2
2246 Id : 14259, {_}: inverse (multiply ?94937 ?94938) =<= multiply (inverse ?94938) (inverse ?94937) [94938, 94937] by Super 12807 with 13691 at 1,1,2
2247 Id : 14272, {_}: inverse (multiply ?94994 (inverse ?94995)) =>= multiply ?94995 (inverse ?94994) [94995, 94994] by Super 14259 with 13691 at 1,3
2248 Id : 15113, {_}: multiply ?26 (multiply (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31) (inverse (multiply ?29 ?31))))) (inverse ?27)) =>= ?30 [31, 29, 30, 27, 28, 26] by Demod 13087 with 14272 at 2,2
2249 Id : 15114, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 15113 with 14272 at 2,1,2,2
2250 Id : 14099, {_}: inverse (multiply ?94283 ?94284) =<= multiply (inverse ?94284) (inverse ?94283) [94284, 94283] by Super 12807 with 13691 at 1,1,2
2251 Id : 15376, {_}: multiply ?101449 (inverse (multiply ?101450 ?101449)) =>= inverse ?101450 [101450, 101449] by Super 13130 with 14099 at 2,2
2252 Id : 14196, {_}: multiply ?94524 (inverse (multiply ?94525 ?94524)) =>= inverse ?94525 [94525, 94524] by Super 13130 with 14099 at 2,2
2253 Id : 15386, {_}: multiply (inverse (multiply ?101486 ?101487)) (inverse (inverse ?101486)) =>= inverse ?101487 [101487, 101486] by Super 15376 with 14196 at 1,2,2
2254 Id : 15574, {_}: inverse (multiply (inverse ?101486) (multiply ?101486 ?101487)) =>= inverse ?101487 [101487, 101486] by Demod 15386 with 14099 at 2
2255 Id : 16040, {_}: multiply (inverse (multiply ?103094 ?103095)) ?103094 =>= inverse ?103095 [103095, 103094] by Demod 15574 with 12807 at 2
2256 Id : 12061, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?216) ?217)) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 217, 216] by Demod 28 with 11440 at 2
2257 Id : 13066, {_}: inverse (inverse (inverse (multiply (multiply (multiply (inverse ?217) ?216) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 216, 217] by Demod 12061 with 12807 at 1,1,1,1,1,2
2258 Id : 14035, {_}: inverse (multiply (multiply (multiply (inverse ?217) ?216) ?218) (inverse (multiply ?216 ?218))) =>= ?217 [218, 216, 217] by Demod 13066 with 13691 at 2
2259 Id : 15129, {_}: multiply (multiply ?216 ?218) (inverse (multiply (multiply (inverse ?217) ?216) ?218)) =>= ?217 [217, 218, 216] by Demod 14035 with 14272 at 2
2260 Id : 16059, {_}: multiply (inverse ?103200) (multiply ?103201 ?103202) =<= inverse (inverse (multiply (multiply (inverse ?103200) ?103201) ?103202)) [103202, 103201, 103200] by Super 16040 with 15129 at 1,1,2
2261 Id : 16156, {_}: multiply (inverse ?103200) (multiply ?103201 ?103202) =<= multiply (multiply (inverse ?103200) ?103201) ?103202 [103202, 103201, 103200] by Demod 16059 with 13691 at 3
2262 Id : 17066, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (inverse ?27) (multiply (multiply (multiply (inverse ?30) ?26) ?28) ?29)) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 15114 with 16156 at 1,1,2,2,1,2,2
2263 Id : 17067, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (multiply (multiply (inverse ?30) ?26) ?28) ?29) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17066 with 16156 at 1,2,2,1,2,2
2264 Id : 17068, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (multiply (inverse ?30) (multiply ?26 ?28)) ?29) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17067 with 16156 at 1,1,2,1,2,2,1,2,2
2265 Id : 17069, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (inverse ?30) (multiply (multiply ?26 ?28) ?29)) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17068 with 16156 at 1,2,1,2,2,1,2,2
2266 Id : 17070, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31)))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17069 with 16156 at 2,1,2,2,1,2,2
2267 Id : 17075, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31))) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17070 with 12807 at 2,2,1,2,2
2268 Id : 17076, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) ?30) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17075 with 12807 at 1,2,2,1,2,2
2269 Id : 17077, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) (multiply ?30 ?27)))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17076 with 16156 at 2,2,1,2,2
2270 Id : 14023, {_}: multiply (inverse ?33635) ?33635 =?= multiply (inverse (inverse (inverse ?33638))) ?33638 [33638, 33635] by Demod 4117 with 13691 at 1,2
2271 Id : 14024, {_}: multiply (inverse ?33635) ?33635 =?= multiply (inverse ?33638) ?33638 [33638, 33635] by Demod 14023 with 13691 at 1,3
2272 Id : 14053, {_}: multiply (inverse ?93965) ?93965 =?= multiply ?93966 (inverse ?93966) [93966, 93965] by Super 14024 with 13691 at 1,3
2273 Id : 19206, {_}: multiply ?108859 (multiply (multiply ?108860 (multiply (multiply ?108861 ?108862) (multiply ?108863 (inverse ?108863)))) (inverse ?108862)) =>= multiply (multiply ?108859 ?108860) ?108861 [108863, 108862, 108861, 108860, 108859] by Super 17077 with 14053 at 2,2,1,2,2
2274 Id : 14021, {_}: multiply ?70596 (multiply ?70598 (inverse ?70598)) =>= inverse (inverse ?70596) [70598, 70596] by Demod 9021 with 13691 at 2,2
2275 Id : 14022, {_}: multiply ?70596 (multiply ?70598 (inverse ?70598)) =>= ?70596 [70598, 70596] by Demod 14021 with 13691 at 3
2276 Id : 19669, {_}: multiply ?108859 (multiply (multiply ?108860 (multiply ?108861 ?108862)) (inverse ?108862)) =>= multiply (multiply ?108859 ?108860) ?108861 [108862, 108861, 108860, 108859] by Demod 19206 with 14022 at 2,1,2,2
2277 Id : 14028, {_}: inverse (multiply (multiply (inverse (inverse (inverse ?2585))) ?2586) (inverse (multiply ?2587 ?2586))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 12069 with 13691 at 2
2278 Id : 14029, {_}: inverse (multiply (multiply (inverse ?2585) ?2586) (inverse (multiply ?2587 ?2586))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 14028 with 13691 at 1,1,1,2
2279 Id : 15108, {_}: multiply (multiply ?2587 ?2586) (inverse (multiply (inverse ?2585) ?2586)) =>= multiply ?2587 ?2585 [2585, 2586, 2587] by Demod 14029 with 14272 at 2
2280 Id : 15134, {_}: multiply (multiply ?2587 ?2586) (multiply (inverse ?2586) ?2585) =>= multiply ?2587 ?2585 [2585, 2586, 2587] by Demod 15108 with 12807 at 2,2
2281 Id : 15575, {_}: multiply (inverse (multiply ?101486 ?101487)) ?101486 =>= inverse ?101487 [101487, 101486] by Demod 15574 with 12807 at 2
2282 Id : 16032, {_}: multiply (multiply ?103052 (multiply ?103053 ?103054)) (inverse ?103054) =>= multiply ?103052 ?103053 [103054, 103053, 103052] by Super 15134 with 15575 at 2,2
2283 Id : 32860, {_}: multiply ?108859 (multiply ?108860 ?108861) =?= multiply (multiply ?108859 ?108860) ?108861 [108861, 108860, 108859] by Demod 19669 with 16032 at 2,2
2284 Id : 33337, {_}: multiply a (multiply b c) === multiply a (multiply b c) [] by Demod 1 with 32860 at 3
2285 Id : 1, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity
2286 % SZS output end CNFRefutation for GRP014-1.p
2287 22593: solved GRP014-1.p in 11.760735 using nrkbo
2288 22593: status Unsatisfiable for GRP014-1.p
2289 CLASH, statistics insufficient
2291 22602: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2292 22602: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2294 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
2295 [8, 7, 6] by associativity ?6 ?7 ?8
2297 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2298 [11, 10] by symmetry_of_glb ?10 ?11
2300 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2301 [14, 13] by symmetry_of_lub ?13 ?14
2303 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2305 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2306 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2308 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2310 least_upper_bound (least_upper_bound ?20 ?21) ?22
2311 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2312 22602: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2313 22602: Id : 10, {_}:
2314 greatest_lower_bound ?26 ?26 =>= ?26
2315 [26] by idempotence_of_gld ?26
2316 22602: Id : 11, {_}:
2317 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2318 [29, 28] by lub_absorbtion ?28 ?29
2319 22602: Id : 12, {_}:
2320 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2321 [32, 31] by glb_absorbtion ?31 ?32
2322 22602: Id : 13, {_}:
2323 multiply ?34 (least_upper_bound ?35 ?36)
2325 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2326 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2327 22602: Id : 14, {_}:
2328 multiply ?38 (greatest_lower_bound ?39 ?40)
2330 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2331 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2332 22602: Id : 15, {_}:
2333 multiply (least_upper_bound ?42 ?43) ?44
2335 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2336 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2337 22602: Id : 16, {_}:
2338 multiply (greatest_lower_bound ?46 ?47) ?48
2340 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2341 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2342 22602: Id : 17, {_}:
2343 positive_part ?50 =<= least_upper_bound ?50 identity
2345 22602: Id : 18, {_}:
2346 negative_part ?52 =<= greatest_lower_bound ?52 identity
2348 22602: Id : 19, {_}:
2349 least_upper_bound ?54 (greatest_lower_bound ?55 ?56)
2351 greatest_lower_bound (least_upper_bound ?54 ?55)
2352 (least_upper_bound ?54 ?56)
2353 [56, 55, 54] by lat4_3 ?54 ?55 ?56
2354 22602: Id : 20, {_}:
2355 greatest_lower_bound ?58 (least_upper_bound ?59 ?60)
2357 least_upper_bound (greatest_lower_bound ?58 ?59)
2358 (greatest_lower_bound ?58 ?60)
2359 [60, 59, 58] by lat4_4 ?58 ?59 ?60
2362 a =<= multiply (positive_part a) (negative_part a)
2368 22602: identity 4 0 0
2369 22602: inverse 1 1 0
2370 22602: positive_part 2 1 1 0,1,3
2371 22602: negative_part 2 1 1 0,2,3
2372 22602: greatest_lower_bound 19 2 0
2373 22602: least_upper_bound 19 2 0
2374 22602: multiply 19 2 1 0,3
2375 CLASH, statistics insufficient
2377 22603: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2378 22603: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2380 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
2381 [8, 7, 6] by associativity ?6 ?7 ?8
2383 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2384 [11, 10] by symmetry_of_glb ?10 ?11
2386 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2387 [14, 13] by symmetry_of_lub ?13 ?14
2389 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2391 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2392 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2394 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2396 least_upper_bound (least_upper_bound ?20 ?21) ?22
2397 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2398 22603: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2399 22603: Id : 10, {_}:
2400 greatest_lower_bound ?26 ?26 =>= ?26
2401 [26] by idempotence_of_gld ?26
2402 22603: Id : 11, {_}:
2403 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2404 [29, 28] by lub_absorbtion ?28 ?29
2405 22603: Id : 12, {_}:
2406 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2407 [32, 31] by glb_absorbtion ?31 ?32
2408 22603: Id : 13, {_}:
2409 multiply ?34 (least_upper_bound ?35 ?36)
2411 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2412 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2413 22603: Id : 14, {_}:
2414 multiply ?38 (greatest_lower_bound ?39 ?40)
2416 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2417 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2418 22603: Id : 15, {_}:
2419 multiply (least_upper_bound ?42 ?43) ?44
2421 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2422 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2423 22603: Id : 16, {_}:
2424 multiply (greatest_lower_bound ?46 ?47) ?48
2426 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2427 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2428 22603: Id : 17, {_}:
2429 positive_part ?50 =<= least_upper_bound ?50 identity
2431 22603: Id : 18, {_}:
2432 negative_part ?52 =<= greatest_lower_bound ?52 identity
2434 22603: Id : 19, {_}:
2435 least_upper_bound ?54 (greatest_lower_bound ?55 ?56)
2437 greatest_lower_bound (least_upper_bound ?54 ?55)
2438 (least_upper_bound ?54 ?56)
2439 [56, 55, 54] by lat4_3 ?54 ?55 ?56
2440 22603: Id : 20, {_}:
2441 greatest_lower_bound ?58 (least_upper_bound ?59 ?60)
2443 least_upper_bound (greatest_lower_bound ?58 ?59)
2444 (greatest_lower_bound ?58 ?60)
2445 [60, 59, 58] by lat4_4 ?58 ?59 ?60
2448 a =<= multiply (positive_part a) (negative_part a)
2454 22603: identity 4 0 0
2455 22603: inverse 1 1 0
2456 22603: positive_part 2 1 1 0,1,3
2457 22603: negative_part 2 1 1 0,2,3
2458 22603: greatest_lower_bound 19 2 0
2459 22603: least_upper_bound 19 2 0
2460 22603: multiply 19 2 1 0,3
2461 CLASH, statistics insufficient
2463 22604: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2464 22604: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2466 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
2467 [8, 7, 6] by associativity ?6 ?7 ?8
2469 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2470 [11, 10] by symmetry_of_glb ?10 ?11
2472 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2473 [14, 13] by symmetry_of_lub ?13 ?14
2475 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2477 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2478 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2480 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2482 least_upper_bound (least_upper_bound ?20 ?21) ?22
2483 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2484 22604: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2485 22604: Id : 10, {_}:
2486 greatest_lower_bound ?26 ?26 =>= ?26
2487 [26] by idempotence_of_gld ?26
2488 22604: Id : 11, {_}:
2489 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2490 [29, 28] by lub_absorbtion ?28 ?29
2491 22604: Id : 12, {_}:
2492 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2493 [32, 31] by glb_absorbtion ?31 ?32
2494 22604: Id : 13, {_}:
2495 multiply ?34 (least_upper_bound ?35 ?36)
2497 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2498 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2499 22604: Id : 14, {_}:
2500 multiply ?38 (greatest_lower_bound ?39 ?40)
2502 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2503 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2504 22604: Id : 15, {_}:
2505 multiply (least_upper_bound ?42 ?43) ?44
2507 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2508 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2509 22604: Id : 16, {_}:
2510 multiply (greatest_lower_bound ?46 ?47) ?48
2512 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2513 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2514 22604: Id : 17, {_}:
2515 positive_part ?50 =>= least_upper_bound ?50 identity
2517 22604: Id : 18, {_}:
2518 negative_part ?52 =>= greatest_lower_bound ?52 identity
2520 22604: Id : 19, {_}:
2521 least_upper_bound ?54 (greatest_lower_bound ?55 ?56)
2523 greatest_lower_bound (least_upper_bound ?54 ?55)
2524 (least_upper_bound ?54 ?56)
2525 [56, 55, 54] by lat4_3 ?54 ?55 ?56
2526 22604: Id : 20, {_}:
2527 greatest_lower_bound ?58 (least_upper_bound ?59 ?60)
2529 least_upper_bound (greatest_lower_bound ?58 ?59)
2530 (greatest_lower_bound ?58 ?60)
2531 [60, 59, 58] by lat4_4 ?58 ?59 ?60
2534 a =<= multiply (positive_part a) (negative_part a)
2540 22604: identity 4 0 0
2541 22604: inverse 1 1 0
2542 22604: positive_part 2 1 1 0,1,3
2543 22604: negative_part 2 1 1 0,2,3
2544 22604: greatest_lower_bound 19 2 0
2545 22604: least_upper_bound 19 2 0
2546 22604: multiply 19 2 1 0,3
2549 Found proof, 10.348100s
2550 % SZS status Unsatisfiable for GRP167-1.p
2551 % SZS output start CNFRefutation for GRP167-1.p
2552 Id : 185, {_}: multiply ?584 (greatest_lower_bound ?585 ?586) =<= greatest_lower_bound (multiply ?584 ?585) (multiply ?584 ?586) [586, 585, 584] by monotony_glb1 ?584 ?585 ?586
2553 Id : 218, {_}: multiply (least_upper_bound ?658 ?659) ?660 =<= least_upper_bound (multiply ?658 ?660) (multiply ?659 ?660) [660, 659, 658] by monotony_lub2 ?658 ?659 ?660
2554 Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29
2555 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2556 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2557 Id : 12, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32
2558 Id : 7, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2559 Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
2560 Id : 250, {_}: multiply (greatest_lower_bound ?735 ?736) ?737 =<= greatest_lower_bound (multiply ?735 ?737) (multiply ?736 ?737) [737, 736, 735] by monotony_glb2 ?735 ?736 ?737
2561 Id : 16, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2562 Id : 18, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52
2563 Id : 364, {_}: greatest_lower_bound ?996 (least_upper_bound ?997 ?998) =<= least_upper_bound (greatest_lower_bound ?996 ?997) (greatest_lower_bound ?996 ?998) [998, 997, 996] by lat4_4 ?996 ?997 ?998
2564 Id : 17, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50
2565 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
2566 Id : 155, {_}: multiply ?513 (least_upper_bound ?514 ?515) =<= least_upper_bound (multiply ?513 ?514) (multiply ?513 ?515) [515, 514, 513] by monotony_lub1 ?513 ?514 ?515
2567 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2568 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2569 Id : 25, {_}: multiply (multiply ?69 ?70) ?71 =?= multiply ?69 (multiply ?70 ?71) [71, 70, 69] by associativity ?69 ?70 ?71
2570 Id : 27, {_}: multiply (multiply ?76 (inverse ?77)) ?77 =>= multiply ?76 identity [77, 76] by Super 25 with 3 at 2,3
2571 Id : 643, {_}: multiply (multiply ?1439 (inverse ?1440)) ?1440 =>= multiply ?1439 identity [1440, 1439] by Super 25 with 3 at 2,3
2572 Id : 645, {_}: multiply identity ?1444 =<= multiply (inverse (inverse ?1444)) identity [1444] by Super 643 with 3 at 1,2
2573 Id : 656, {_}: ?1444 =<= multiply (inverse (inverse ?1444)) identity [1444] by Demod 645 with 2 at 2
2574 Id : 26, {_}: multiply (multiply ?73 identity) ?74 =>= multiply ?73 ?74 [74, 73] by Super 25 with 2 at 2,3
2575 Id : 1111, {_}: multiply ?2369 ?2370 =<= multiply (inverse (inverse ?2369)) ?2370 [2370, 2369] by Super 26 with 656 at 1,2
2576 Id : 2348, {_}: ?1444 =<= multiply ?1444 identity [1444] by Demod 656 with 1111 at 3
2577 Id : 2350, {_}: multiply (multiply ?76 (inverse ?77)) ?77 =>= ?76 [77, 76] by Demod 27 with 2348 at 3
2578 Id : 2372, {_}: inverse (inverse ?4335) =<= multiply ?4335 identity [4335] by Super 2348 with 1111 at 3
2579 Id : 2377, {_}: inverse (inverse ?4335) =>= ?4335 [4335] by Demod 2372 with 2348 at 3
2580 Id : 25971, {_}: multiply (multiply ?35046 ?35047) (inverse ?35047) =>= ?35046 [35047, 35046] by Super 2350 with 2377 at 2,1,2
2581 Id : 161, {_}: multiply (inverse ?536) (least_upper_bound ?536 ?537) =>= least_upper_bound identity (multiply (inverse ?536) ?537) [537, 536] by Super 155 with 3 at 1,3
2582 Id : 279, {_}: least_upper_bound identity ?790 =>= positive_part ?790 [790] by Super 6 with 17 at 3
2583 Id : 4991, {_}: multiply (inverse ?8728) (least_upper_bound ?8728 ?8729) =>= positive_part (multiply (inverse ?8728) ?8729) [8729, 8728] by Demod 161 with 279 at 3
2584 Id : 5015, {_}: multiply (inverse ?8798) (positive_part ?8798) =?= positive_part (multiply (inverse ?8798) identity) [8798] by Super 4991 with 17 at 2,2
2585 Id : 5066, {_}: multiply (inverse ?8872) (positive_part ?8872) =>= positive_part (inverse ?8872) [8872] by Demod 5015 with 2348 at 1,3
2586 Id : 5077, {_}: multiply ?8900 (positive_part (inverse ?8900)) =>= positive_part (inverse (inverse ?8900)) [8900] by Super 5066 with 2377 at 1,2
2587 Id : 5091, {_}: multiply ?8900 (positive_part (inverse ?8900)) =>= positive_part ?8900 [8900] by Demod 5077 with 2377 at 1,3
2588 Id : 25993, {_}: multiply (positive_part ?35122) (inverse (positive_part (inverse ?35122))) =>= ?35122 [35122] by Super 25971 with 5091 at 1,2
2589 Id : 2406, {_}: multiply (multiply ?4349 ?4350) (inverse ?4350) =>= ?4349 [4350, 4349] by Super 2350 with 2377 at 2,1,2
2590 Id : 4974, {_}: multiply (inverse ?536) (least_upper_bound ?536 ?537) =>= positive_part (multiply (inverse ?536) ?537) [537, 536] by Demod 161 with 279 at 3
2591 Id : 373, {_}: greatest_lower_bound ?1035 (least_upper_bound ?1036 identity) =<= least_upper_bound (greatest_lower_bound ?1035 ?1036) (negative_part ?1035) [1036, 1035] by Super 364 with 18 at 2,3
2592 Id : 397, {_}: greatest_lower_bound ?1035 (positive_part ?1036) =<= least_upper_bound (greatest_lower_bound ?1035 ?1036) (negative_part ?1035) [1036, 1035] by Demod 373 with 17 at 2,2
2593 Id : 256, {_}: multiply (greatest_lower_bound (inverse ?758) ?759) ?758 =>= greatest_lower_bound identity (multiply ?759 ?758) [759, 758] by Super 250 with 3 at 1,3
2594 Id : 296, {_}: greatest_lower_bound identity ?821 =>= negative_part ?821 [821] by Super 5 with 18 at 3
2595 Id : 17350, {_}: multiply (greatest_lower_bound (inverse ?24308) ?24309) ?24308 =>= negative_part (multiply ?24309 ?24308) [24309, 24308] by Demod 256 with 296 at 3
2596 Id : 17377, {_}: multiply (negative_part (inverse ?24398)) ?24398 =>= negative_part (multiply identity ?24398) [24398] by Super 17350 with 18 at 1,2
2597 Id : 17420, {_}: multiply (negative_part (inverse ?24398)) ?24398 =>= negative_part ?24398 [24398] by Demod 17377 with 2 at 1,3
2598 Id : 17441, {_}: multiply (greatest_lower_bound (negative_part (inverse ?24443)) ?24444) ?24443 =>= greatest_lower_bound (negative_part ?24443) (multiply ?24444 ?24443) [24444, 24443] by Super 16 with 17420 at 1,3
2599 Id : 455, {_}: greatest_lower_bound identity (greatest_lower_bound ?1150 ?1151) =>= greatest_lower_bound (negative_part ?1150) ?1151 [1151, 1150] by Super 7 with 296 at 1,3
2600 Id : 465, {_}: negative_part (greatest_lower_bound ?1150 ?1151) =>= greatest_lower_bound (negative_part ?1150) ?1151 [1151, 1150] by Demod 455 with 296 at 2
2601 Id : 299, {_}: greatest_lower_bound ?828 (greatest_lower_bound ?829 identity) =>= negative_part (greatest_lower_bound ?828 ?829) [829, 828] by Super 7 with 18 at 3
2602 Id : 309, {_}: greatest_lower_bound ?828 (negative_part ?829) =<= negative_part (greatest_lower_bound ?828 ?829) [829, 828] by Demod 299 with 18 at 2,2
2603 Id : 831, {_}: greatest_lower_bound ?1150 (negative_part ?1151) =?= greatest_lower_bound (negative_part ?1150) ?1151 [1151, 1150] by Demod 465 with 309 at 2
2604 Id : 17491, {_}: multiply (greatest_lower_bound (inverse ?24443) (negative_part ?24444)) ?24443 =>= greatest_lower_bound (negative_part ?24443) (multiply ?24444 ?24443) [24444, 24443] by Demod 17441 with 831 at 1,2
2605 Id : 17492, {_}: multiply (greatest_lower_bound (inverse ?24443) (negative_part ?24444)) ?24443 =>= greatest_lower_bound (multiply ?24444 ?24443) (negative_part ?24443) [24444, 24443] by Demod 17491 with 5 at 3
2606 Id : 17323, {_}: multiply (greatest_lower_bound (inverse ?758) ?759) ?758 =>= negative_part (multiply ?759 ?758) [759, 758] by Demod 256 with 296 at 3
2607 Id : 17493, {_}: negative_part (multiply (negative_part ?24444) ?24443) =<= greatest_lower_bound (multiply ?24444 ?24443) (negative_part ?24443) [24443, 24444] by Demod 17492 with 17323 at 2
2608 Id : 5044, {_}: multiply (inverse ?8798) (positive_part ?8798) =>= positive_part (inverse ?8798) [8798] by Demod 5015 with 2348 at 1,3
2609 Id : 25992, {_}: multiply (positive_part (inverse ?35120)) (inverse (positive_part ?35120)) =>= inverse ?35120 [35120] by Super 25971 with 5044 at 1,2
2610 Id : 65949, {_}: negative_part (multiply (negative_part (positive_part (inverse ?78239))) (inverse (positive_part ?78239))) =>= greatest_lower_bound (inverse ?78239) (negative_part (inverse (positive_part ?78239))) [78239] by Super 17493 with 25992 at 1,3
2611 Id : 285, {_}: greatest_lower_bound ?806 (positive_part ?806) =>= ?806 [806] by Super 12 with 17 at 2,2
2612 Id : 575, {_}: greatest_lower_bound (positive_part ?1304) ?1304 =>= ?1304 [1304] by Super 5 with 285 at 3
2613 Id : 424, {_}: least_upper_bound identity (least_upper_bound ?1119 ?1120) =>= least_upper_bound (positive_part ?1119) ?1120 [1120, 1119] by Super 8 with 279 at 1,3
2614 Id : 433, {_}: positive_part (least_upper_bound ?1119 ?1120) =>= least_upper_bound (positive_part ?1119) ?1120 [1120, 1119] by Demod 424 with 279 at 2
2615 Id : 282, {_}: least_upper_bound ?797 (least_upper_bound ?798 identity) =>= positive_part (least_upper_bound ?797 ?798) [798, 797] by Super 8 with 17 at 3
2616 Id : 292, {_}: least_upper_bound ?797 (positive_part ?798) =<= positive_part (least_upper_bound ?797 ?798) [798, 797] by Demod 282 with 17 at 2,2
2617 Id : 749, {_}: least_upper_bound ?1119 (positive_part ?1120) =?= least_upper_bound (positive_part ?1119) ?1120 [1120, 1119] by Demod 433 with 292 at 2
2618 Id : 758, {_}: least_upper_bound (positive_part (positive_part ?1606)) ?1606 =>= positive_part ?1606 [1606] by Super 9 with 749 at 2
2619 Id : 606, {_}: least_upper_bound ?1347 (positive_part ?1348) =<= positive_part (least_upper_bound ?1347 ?1348) [1348, 1347] by Demod 282 with 17 at 2,2
2620 Id : 616, {_}: least_upper_bound ?1379 (positive_part identity) =>= positive_part (positive_part ?1379) [1379] by Super 606 with 17 at 1,3
2621 Id : 278, {_}: positive_part identity =>= identity [] by Super 9 with 17 at 2
2622 Id : 628, {_}: least_upper_bound ?1379 identity =<= positive_part (positive_part ?1379) [1379] by Demod 616 with 278 at 2,2
2623 Id : 629, {_}: positive_part ?1379 =<= positive_part (positive_part ?1379) [1379] by Demod 628 with 17 at 2
2624 Id : 798, {_}: least_upper_bound (positive_part ?1606) ?1606 =>= positive_part ?1606 [1606] by Demod 758 with 629 at 1,2
2625 Id : 5005, {_}: multiply (inverse (positive_part ?8766)) (positive_part ?8766) =<= positive_part (multiply (inverse (positive_part ?8766)) ?8766) [8766] by Super 4991 with 798 at 2,2
2626 Id : 5040, {_}: identity =<= positive_part (multiply (inverse (positive_part ?8766)) ?8766) [8766] by Demod 5005 with 3 at 2
2627 Id : 5691, {_}: greatest_lower_bound identity (multiply (inverse (positive_part ?9483)) ?9483) =>= multiply (inverse (positive_part ?9483)) ?9483 [9483] by Super 575 with 5040 at 1,2
2628 Id : 5736, {_}: negative_part (multiply (inverse (positive_part ?9483)) ?9483) =>= multiply (inverse (positive_part ?9483)) ?9483 [9483] by Demod 5691 with 296 at 2
2629 Id : 770, {_}: least_upper_bound ?1642 (positive_part ?1643) =?= least_upper_bound (positive_part ?1642) ?1643 [1643, 1642] by Demod 433 with 292 at 2
2630 Id : 456, {_}: least_upper_bound identity (negative_part ?1153) =>= identity [1153] by Super 11 with 296 at 2,2
2631 Id : 464, {_}: positive_part (negative_part ?1153) =>= identity [1153] by Demod 456 with 279 at 2
2632 Id : 772, {_}: least_upper_bound (negative_part ?1647) (positive_part ?1648) =>= least_upper_bound identity ?1648 [1648, 1647] by Super 770 with 464 at 1,3
2633 Id : 812, {_}: least_upper_bound (negative_part ?1647) (positive_part ?1648) =>= positive_part ?1648 [1648, 1647] by Demod 772 with 279 at 3
2634 Id : 5068, {_}: multiply (inverse (negative_part ?8875)) identity =>= positive_part (inverse (negative_part ?8875)) [8875] by Super 5066 with 464 at 2,2
2635 Id : 5087, {_}: inverse (negative_part ?8875) =<= positive_part (inverse (negative_part ?8875)) [8875] by Demod 5068 with 2348 at 2
2636 Id : 5099, {_}: least_upper_bound (negative_part ?8914) (inverse (negative_part ?8915)) =>= positive_part (inverse (negative_part ?8915)) [8915, 8914] by Super 812 with 5087 at 2,2
2637 Id : 5137, {_}: least_upper_bound (inverse (negative_part ?8915)) (negative_part ?8914) =>= positive_part (inverse (negative_part ?8915)) [8914, 8915] by Demod 5099 with 6 at 2
2638 Id : 5138, {_}: least_upper_bound (inverse (negative_part ?8915)) (negative_part ?8914) =>= inverse (negative_part ?8915) [8914, 8915] by Demod 5137 with 5087 at 3
2639 Id : 7238, {_}: multiply (inverse (inverse (negative_part ?11513))) (inverse (negative_part ?11513)) =?= positive_part (multiply (inverse (inverse (negative_part ?11513))) (negative_part ?11514)) [11514, 11513] by Super 4974 with 5138 at 2,2
2640 Id : 7311, {_}: identity =<= positive_part (multiply (inverse (inverse (negative_part ?11513))) (negative_part ?11514)) [11514, 11513] by Demod 7238 with 3 at 2
2641 Id : 7312, {_}: identity =<= positive_part (multiply (negative_part ?11513) (negative_part ?11514)) [11514, 11513] by Demod 7311 with 2377 at 1,1,3
2642 Id : 11865, {_}: negative_part (multiply (inverse identity) (multiply (negative_part ?16875) (negative_part ?16876))) =<= multiply (inverse (positive_part (multiply (negative_part ?16875) (negative_part ?16876)))) (multiply (negative_part ?16875) (negative_part ?16876)) [16876, 16875] by Super 5736 with 7312 at 1,1,1,2
2643 Id : 2405, {_}: multiply ?4347 (inverse ?4347) =>= identity [4347] by Super 3 with 2377 at 1,2
2644 Id : 2415, {_}: identity =<= inverse identity [] by Super 2 with 2405 at 2
2645 Id : 11917, {_}: negative_part (multiply identity (multiply (negative_part ?16875) (negative_part ?16876))) =<= multiply (inverse (positive_part (multiply (negative_part ?16875) (negative_part ?16876)))) (multiply (negative_part ?16875) (negative_part ?16876)) [16876, 16875] by Demod 11865 with 2415 at 1,1,2
2646 Id : 11918, {_}: negative_part (multiply identity (multiply (negative_part ?16875) (negative_part ?16876))) =>= multiply (inverse identity) (multiply (negative_part ?16875) (negative_part ?16876)) [16876, 16875] by Demod 11917 with 7312 at 1,1,3
2647 Id : 11919, {_}: negative_part (multiply (negative_part ?16875) (negative_part ?16876)) =<= multiply (inverse identity) (multiply (negative_part ?16875) (negative_part ?16876)) [16876, 16875] by Demod 11918 with 2 at 1,2
2648 Id : 11920, {_}: negative_part (multiply (negative_part ?16875) (negative_part ?16876)) =<= multiply identity (multiply (negative_part ?16875) (negative_part ?16876)) [16876, 16875] by Demod 11919 with 2415 at 1,3
2649 Id : 13421, {_}: negative_part (multiply (negative_part ?18780) (negative_part ?18781)) =>= multiply (negative_part ?18780) (negative_part ?18781) [18781, 18780] by Demod 11920 with 2 at 3
2650 Id : 5075, {_}: multiply (inverse (positive_part ?8895)) (positive_part ?8895) =>= positive_part (inverse (positive_part ?8895)) [8895] by Super 5066 with 629 at 2,2
2651 Id : 5090, {_}: identity =<= positive_part (inverse (positive_part ?8895)) [8895] by Demod 5075 with 3 at 2
2652 Id : 5175, {_}: greatest_lower_bound identity (inverse (positive_part ?9005)) =>= inverse (positive_part ?9005) [9005] by Super 575 with 5090 at 1,2
2653 Id : 5216, {_}: negative_part (inverse (positive_part ?9005)) =>= inverse (positive_part ?9005) [9005] by Demod 5175 with 296 at 2
2654 Id : 13433, {_}: negative_part (multiply (negative_part ?18822) (inverse (positive_part ?18823))) =>= multiply (negative_part ?18822) (negative_part (inverse (positive_part ?18823))) [18823, 18822] by Super 13421 with 5216 at 2,1,2
2655 Id : 13543, {_}: negative_part (multiply (negative_part ?18822) (inverse (positive_part ?18823))) =>= multiply (negative_part ?18822) (inverse (positive_part ?18823)) [18823, 18822] by Demod 13433 with 5216 at 2,3
2656 Id : 66057, {_}: multiply (negative_part (positive_part (inverse ?78239))) (inverse (positive_part ?78239)) =>= greatest_lower_bound (inverse ?78239) (negative_part (inverse (positive_part ?78239))) [78239] by Demod 65949 with 13543 at 2
2657 Id : 66058, {_}: multiply (negative_part (positive_part (inverse ?78239))) (inverse (positive_part ?78239)) =>= greatest_lower_bound (inverse ?78239) (inverse (positive_part ?78239)) [78239] by Demod 66057 with 5216 at 2,3
2658 Id : 451, {_}: negative_part (least_upper_bound identity ?1143) =>= identity [1143] by Super 12 with 296 at 2
2659 Id : 469, {_}: negative_part (positive_part ?1143) =>= identity [1143] by Demod 451 with 279 at 1,2
2660 Id : 66059, {_}: multiply identity (inverse (positive_part ?78239)) =<= greatest_lower_bound (inverse ?78239) (inverse (positive_part ?78239)) [78239] by Demod 66058 with 469 at 1,2
2661 Id : 66060, {_}: inverse (positive_part ?78239) =<= greatest_lower_bound (inverse ?78239) (inverse (positive_part ?78239)) [78239] by Demod 66059 with 2 at 2
2662 Id : 66290, {_}: greatest_lower_bound (inverse ?78524) (positive_part (inverse (positive_part ?78524))) =>= least_upper_bound (inverse (positive_part ?78524)) (negative_part (inverse ?78524)) [78524] by Super 397 with 66060 at 1,3
2663 Id : 66456, {_}: greatest_lower_bound (inverse ?78524) identity =<= least_upper_bound (inverse (positive_part ?78524)) (negative_part (inverse ?78524)) [78524] by Demod 66290 with 5090 at 2,2
2664 Id : 66457, {_}: greatest_lower_bound identity (inverse ?78524) =<= least_upper_bound (inverse (positive_part ?78524)) (negative_part (inverse ?78524)) [78524] by Demod 66456 with 5 at 2
2665 Id : 66458, {_}: negative_part (inverse ?78524) =<= least_upper_bound (inverse (positive_part ?78524)) (negative_part (inverse ?78524)) [78524] by Demod 66457 with 296 at 2
2666 Id : 80743, {_}: multiply (inverse (inverse (positive_part ?90706))) (negative_part (inverse ?90706)) =<= positive_part (multiply (inverse (inverse (positive_part ?90706))) (negative_part (inverse ?90706))) [90706] by Super 4974 with 66458 at 2,2
2667 Id : 80871, {_}: multiply (positive_part ?90706) (negative_part (inverse ?90706)) =<= positive_part (multiply (inverse (inverse (positive_part ?90706))) (negative_part (inverse ?90706))) [90706] by Demod 80743 with 2377 at 1,2
2668 Id : 80872, {_}: multiply (positive_part ?90706) (negative_part (inverse ?90706)) =<= positive_part (multiply (positive_part ?90706) (negative_part (inverse ?90706))) [90706] by Demod 80871 with 2377 at 1,1,3
2669 Id : 224, {_}: multiply (least_upper_bound (inverse ?681) ?682) ?681 =>= least_upper_bound identity (multiply ?682 ?681) [682, 681] by Super 218 with 3 at 1,3
2670 Id : 15127, {_}: multiply (least_upper_bound (inverse ?21966) ?21967) ?21966 =>= positive_part (multiply ?21967 ?21966) [21967, 21966] by Demod 224 with 279 at 3
2671 Id : 5107, {_}: least_upper_bound (inverse (negative_part ?8933)) (positive_part ?8934) =>= least_upper_bound (inverse (negative_part ?8933)) ?8934 [8934, 8933] by Super 749 with 5087 at 1,3
2672 Id : 15147, {_}: multiply (least_upper_bound (inverse (negative_part ?22031)) ?22032) (negative_part ?22031) =>= positive_part (multiply (positive_part ?22032) (negative_part ?22031)) [22032, 22031] by Super 15127 with 5107 at 1,2
2673 Id : 15100, {_}: multiply (least_upper_bound (inverse ?681) ?682) ?681 =>= positive_part (multiply ?682 ?681) [682, 681] by Demod 224 with 279 at 3
2674 Id : 15182, {_}: positive_part (multiply ?22032 (negative_part ?22031)) =<= positive_part (multiply (positive_part ?22032) (negative_part ?22031)) [22031, 22032] by Demod 15147 with 15100 at 2
2675 Id : 80873, {_}: multiply (positive_part ?90706) (negative_part (inverse ?90706)) =<= positive_part (multiply ?90706 (negative_part (inverse ?90706))) [90706] by Demod 80872 with 15182 at 3
2676 Id : 191, {_}: multiply (inverse ?607) (greatest_lower_bound ?607 ?608) =>= greatest_lower_bound identity (multiply (inverse ?607) ?608) [608, 607] by Super 185 with 3 at 1,3
2677 Id : 14063, {_}: multiply (inverse ?19549) (greatest_lower_bound ?19549 ?19550) =>= negative_part (multiply (inverse ?19549) ?19550) [19550, 19549] by Demod 191 with 296 at 3
2678 Id : 14093, {_}: multiply (inverse ?19640) (negative_part ?19640) =?= negative_part (multiply (inverse ?19640) identity) [19640] by Super 14063 with 18 at 2,2
2679 Id : 14179, {_}: multiply (inverse ?19758) (negative_part ?19758) =>= negative_part (inverse ?19758) [19758] by Demod 14093 with 2348 at 1,3
2680 Id : 14205, {_}: multiply ?19826 (negative_part (inverse ?19826)) =>= negative_part (inverse (inverse ?19826)) [19826] by Super 14179 with 2377 at 1,2
2681 Id : 14261, {_}: multiply ?19826 (negative_part (inverse ?19826)) =>= negative_part ?19826 [19826] by Demod 14205 with 2377 at 1,3
2682 Id : 80874, {_}: multiply (positive_part ?90706) (negative_part (inverse ?90706)) =>= positive_part (negative_part ?90706) [90706] by Demod 80873 with 14261 at 1,3
2683 Id : 80875, {_}: multiply (positive_part ?90706) (negative_part (inverse ?90706)) =>= identity [90706] by Demod 80874 with 464 at 3
2684 Id : 81247, {_}: multiply identity (inverse (negative_part (inverse ?91006))) =>= positive_part ?91006 [91006] by Super 2406 with 80875 at 1,2
2685 Id : 81627, {_}: inverse (negative_part (inverse ?91433)) =>= positive_part ?91433 [91433] by Demod 81247 with 2 at 2
2686 Id : 81628, {_}: inverse (negative_part ?91435) =<= positive_part (inverse ?91435) [91435] by Super 81627 with 2377 at 1,1,2
2687 Id : 82425, {_}: multiply (positive_part ?35122) (inverse (inverse (negative_part ?35122))) =>= ?35122 [35122] by Demod 25993 with 81628 at 1,2,2
2688 Id : 82501, {_}: multiply (positive_part ?35122) (negative_part ?35122) =>= ?35122 [35122] by Demod 82425 with 2377 at 2,2
2689 Id : 82875, {_}: a === a [] by Demod 1 with 82501 at 3
2690 Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4
2691 % SZS output end CNFRefutation for GRP167-1.p
2692 22602: solved GRP167-1.p in 10.376648 using nrkbo
2693 22602: status Unsatisfiable for GRP167-1.p
2694 CLASH, statistics insufficient
2696 22609: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2697 22609: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2699 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
2700 [8, 7, 6] by associativity ?6 ?7 ?8
2702 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2703 [11, 10] by symmetry_of_glb ?10 ?11
2705 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2706 [14, 13] by symmetry_of_lub ?13 ?14
2708 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2710 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2711 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2713 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2715 least_upper_bound (least_upper_bound ?20 ?21) ?22
2716 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2717 22609: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2718 22609: Id : 10, {_}:
2719 greatest_lower_bound ?26 ?26 =>= ?26
2720 [26] by idempotence_of_gld ?26
2721 22609: Id : 11, {_}:
2722 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2723 [29, 28] by lub_absorbtion ?28 ?29
2724 22609: Id : 12, {_}:
2725 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2726 [32, 31] by glb_absorbtion ?31 ?32
2727 22609: Id : 13, {_}:
2728 multiply ?34 (least_upper_bound ?35 ?36)
2730 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2731 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2732 22609: Id : 14, {_}:
2733 multiply ?38 (greatest_lower_bound ?39 ?40)
2735 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2736 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2737 22609: Id : 15, {_}:
2738 multiply (least_upper_bound ?42 ?43) ?44
2740 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2741 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2742 22609: Id : 16, {_}:
2743 multiply (greatest_lower_bound ?46 ?47) ?48
2745 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2746 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2747 22609: Id : 17, {_}: inverse identity =>= identity [] by lat4_1
2748 22609: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51
2749 22609: Id : 19, {_}:
2750 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
2751 [54, 53] by lat4_3 ?53 ?54
2752 22609: Id : 20, {_}:
2753 positive_part ?56 =<= least_upper_bound ?56 identity
2755 22609: Id : 21, {_}:
2756 negative_part ?58 =<= greatest_lower_bound ?58 identity
2758 22609: Id : 22, {_}:
2759 least_upper_bound ?60 (greatest_lower_bound ?61 ?62)
2761 greatest_lower_bound (least_upper_bound ?60 ?61)
2762 (least_upper_bound ?60 ?62)
2763 [62, 61, 60] by lat4_6 ?60 ?61 ?62
2764 22609: Id : 23, {_}:
2765 greatest_lower_bound ?64 (least_upper_bound ?65 ?66)
2767 least_upper_bound (greatest_lower_bound ?64 ?65)
2768 (greatest_lower_bound ?64 ?66)
2769 [66, 65, 64] by lat4_7 ?64 ?65 ?66
2772 a =<= multiply (positive_part a) (negative_part a)
2778 22609: identity 6 0 0
2779 22609: positive_part 2 1 1 0,1,3
2780 22609: negative_part 2 1 1 0,2,3
2781 22609: inverse 7 1 0
2782 22609: greatest_lower_bound 19 2 0
2783 22609: least_upper_bound 19 2 0
2784 22609: multiply 21 2 1 0,3
2785 CLASH, statistics insufficient
2787 22610: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2788 22610: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2790 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
2791 [8, 7, 6] by associativity ?6 ?7 ?8
2793 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2794 [11, 10] by symmetry_of_glb ?10 ?11
2796 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2797 [14, 13] by symmetry_of_lub ?13 ?14
2798 CLASH, statistics insufficient
2800 22611: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2801 22611: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2803 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
2804 [8, 7, 6] by associativity ?6 ?7 ?8
2806 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
2807 [11, 10] by symmetry_of_glb ?10 ?11
2809 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2811 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2812 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2814 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2816 least_upper_bound (least_upper_bound ?20 ?21) ?22
2817 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2818 22610: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2819 22610: Id : 10, {_}:
2820 greatest_lower_bound ?26 ?26 =>= ?26
2821 [26] by idempotence_of_gld ?26
2822 22610: Id : 11, {_}:
2823 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2824 [29, 28] by lub_absorbtion ?28 ?29
2825 22610: Id : 12, {_}:
2826 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2827 [32, 31] by glb_absorbtion ?31 ?32
2828 22610: Id : 13, {_}:
2829 multiply ?34 (least_upper_bound ?35 ?36)
2831 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2832 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2833 22610: Id : 14, {_}:
2834 multiply ?38 (greatest_lower_bound ?39 ?40)
2836 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2837 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2838 22610: Id : 15, {_}:
2839 multiply (least_upper_bound ?42 ?43) ?44
2841 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2842 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2843 22610: Id : 16, {_}:
2844 multiply (greatest_lower_bound ?46 ?47) ?48
2846 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2847 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2848 22610: Id : 17, {_}: inverse identity =>= identity [] by lat4_1
2849 22610: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51
2850 22610: Id : 19, {_}:
2851 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
2852 [54, 53] by lat4_3 ?53 ?54
2853 22610: Id : 20, {_}:
2854 positive_part ?56 =<= least_upper_bound ?56 identity
2856 22610: Id : 21, {_}:
2857 negative_part ?58 =<= greatest_lower_bound ?58 identity
2859 22610: Id : 22, {_}:
2860 least_upper_bound ?60 (greatest_lower_bound ?61 ?62)
2862 greatest_lower_bound (least_upper_bound ?60 ?61)
2863 (least_upper_bound ?60 ?62)
2864 [62, 61, 60] by lat4_6 ?60 ?61 ?62
2865 22610: Id : 23, {_}:
2866 greatest_lower_bound ?64 (least_upper_bound ?65 ?66)
2868 least_upper_bound (greatest_lower_bound ?64 ?65)
2869 (greatest_lower_bound ?64 ?66)
2870 [66, 65, 64] by lat4_7 ?64 ?65 ?66
2873 a =<= multiply (positive_part a) (negative_part a)
2879 22610: identity 6 0 0
2880 22610: positive_part 2 1 1 0,1,3
2881 22610: negative_part 2 1 1 0,2,3
2882 22610: inverse 7 1 0
2883 22610: greatest_lower_bound 19 2 0
2884 22610: least_upper_bound 19 2 0
2885 22610: multiply 21 2 1 0,3
2887 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
2888 [14, 13] by symmetry_of_lub ?13 ?14
2890 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
2892 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
2893 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
2895 least_upper_bound ?20 (least_upper_bound ?21 ?22)
2897 least_upper_bound (least_upper_bound ?20 ?21) ?22
2898 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2899 22611: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2900 22611: Id : 10, {_}:
2901 greatest_lower_bound ?26 ?26 =>= ?26
2902 [26] by idempotence_of_gld ?26
2903 22611: Id : 11, {_}:
2904 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
2905 [29, 28] by lub_absorbtion ?28 ?29
2906 22611: Id : 12, {_}:
2907 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
2908 [32, 31] by glb_absorbtion ?31 ?32
2909 22611: Id : 13, {_}:
2910 multiply ?34 (least_upper_bound ?35 ?36)
2912 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
2913 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2914 22611: Id : 14, {_}:
2915 multiply ?38 (greatest_lower_bound ?39 ?40)
2917 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
2918 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2919 22611: Id : 15, {_}:
2920 multiply (least_upper_bound ?42 ?43) ?44
2922 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
2923 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
2924 22611: Id : 16, {_}:
2925 multiply (greatest_lower_bound ?46 ?47) ?48
2927 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
2928 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
2929 22611: Id : 17, {_}: inverse identity =>= identity [] by lat4_1
2930 22611: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51
2931 22611: Id : 19, {_}:
2932 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
2933 [54, 53] by lat4_3 ?53 ?54
2934 22611: Id : 20, {_}:
2935 positive_part ?56 =>= least_upper_bound ?56 identity
2937 22611: Id : 21, {_}:
2938 negative_part ?58 =>= greatest_lower_bound ?58 identity
2940 22611: Id : 22, {_}:
2941 least_upper_bound ?60 (greatest_lower_bound ?61 ?62)
2943 greatest_lower_bound (least_upper_bound ?60 ?61)
2944 (least_upper_bound ?60 ?62)
2945 [62, 61, 60] by lat4_6 ?60 ?61 ?62
2946 22611: Id : 23, {_}:
2947 greatest_lower_bound ?64 (least_upper_bound ?65 ?66)
2949 least_upper_bound (greatest_lower_bound ?64 ?65)
2950 (greatest_lower_bound ?64 ?66)
2951 [66, 65, 64] by lat4_7 ?64 ?65 ?66
2954 a =<= multiply (positive_part a) (negative_part a)
2960 22611: identity 6 0 0
2961 22611: positive_part 2 1 1 0,1,3
2962 22611: negative_part 2 1 1 0,2,3
2963 22611: inverse 7 1 0
2964 22611: greatest_lower_bound 19 2 0
2965 22611: least_upper_bound 19 2 0
2966 22611: multiply 21 2 1 0,3
2969 Found proof, 6.082892s
2970 % SZS status Unsatisfiable for GRP167-2.p
2971 % SZS output start CNFRefutation for GRP167-2.p
2972 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
2973 Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
2974 Id : 11, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29
2975 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
2976 Id : 22, {_}: least_upper_bound ?60 (greatest_lower_bound ?61 ?62) =<= greatest_lower_bound (least_upper_bound ?60 ?61) (least_upper_bound ?60 ?62) [62, 61, 60] by lat4_6 ?60 ?61 ?62
2977 Id : 221, {_}: multiply (least_upper_bound ?664 ?665) ?666 =<= least_upper_bound (multiply ?664 ?666) (multiply ?665 ?666) [666, 665, 664] by monotony_lub2 ?664 ?665 ?666
2978 Id : 21, {_}: negative_part ?58 =<= greatest_lower_bound ?58 identity [58] by lat4_5 ?58
2979 Id : 14, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
2980 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
2981 Id : 20, {_}: positive_part ?56 =<= least_upper_bound ?56 identity [56] by lat4_4 ?56
2982 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
2983 Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by lat4_3 ?53 ?54
2984 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
2985 Id : 17, {_}: inverse identity =>= identity [] by lat4_1
2986 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
2987 Id : 28, {_}: multiply (multiply ?75 ?76) ?77 =?= multiply ?75 (multiply ?76 ?77) [77, 76, 75] by associativity ?75 ?76 ?77
2988 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by lat4_2 ?51
2989 Id : 302, {_}: inverse (multiply ?849 ?850) =<= multiply (inverse ?850) (inverse ?849) [850, 849] by lat4_3 ?849 ?850
2990 Id : 1638, {_}: inverse (multiply ?3326 (inverse ?3327)) =>= multiply ?3327 (inverse ?3326) [3327, 3326] by Super 302 with 18 at 1,3
2991 Id : 30, {_}: multiply (multiply ?82 (inverse ?83)) ?83 =>= multiply ?82 identity [83, 82] by Super 28 with 3 at 2,3
2992 Id : 303, {_}: inverse (multiply identity ?852) =<= multiply (inverse ?852) identity [852] by Super 302 with 17 at 2,3
2993 Id : 587, {_}: inverse ?1361 =<= multiply (inverse ?1361) identity [1361] by Demod 303 with 2 at 1,2
2994 Id : 589, {_}: inverse (inverse ?1364) =<= multiply ?1364 identity [1364] by Super 587 with 18 at 1,3
2995 Id : 603, {_}: ?1364 =<= multiply ?1364 identity [1364] by Demod 589 with 18 at 2
2996 Id : 645, {_}: multiply (multiply ?82 (inverse ?83)) ?83 =>= ?82 [83, 82] by Demod 30 with 603 at 3
2997 Id : 1648, {_}: inverse ?3357 =<= multiply ?3358 (inverse (multiply ?3357 (inverse (inverse ?3358)))) [3358, 3357] by Super 1638 with 645 at 1,2
2998 Id : 306, {_}: inverse (multiply ?859 (inverse ?860)) =>= multiply ?860 (inverse ?859) [860, 859] by Super 302 with 18 at 1,3
2999 Id : 1667, {_}: inverse ?3357 =<= multiply ?3358 (multiply (inverse ?3358) (inverse ?3357)) [3358, 3357] by Demod 1648 with 306 at 2,3
3000 Id : 48018, {_}: inverse ?56639 =<= multiply ?56640 (inverse (multiply ?56639 ?56640)) [56640, 56639] by Demod 1667 with 19 at 2,3
3001 Id : 657, {_}: multiply ?1476 (least_upper_bound ?1477 identity) =?= least_upper_bound (multiply ?1476 ?1477) ?1476 [1477, 1476] by Super 13 with 603 at 2,3
3002 Id : 4078, {_}: multiply ?7362 (positive_part ?7363) =<= least_upper_bound (multiply ?7362 ?7363) ?7362 [7363, 7362] by Demod 657 with 20 at 2,2
3003 Id : 4080, {_}: multiply (inverse ?7367) (positive_part ?7367) =>= least_upper_bound identity (inverse ?7367) [7367] by Super 4078 with 3 at 1,3
3004 Id : 320, {_}: least_upper_bound identity ?881 =>= positive_part ?881 [881] by Super 6 with 20 at 3
3005 Id : 4115, {_}: multiply (inverse ?7367) (positive_part ?7367) =>= positive_part (inverse ?7367) [7367] by Demod 4080 with 320 at 3
3006 Id : 618, {_}: multiply (multiply ?1420 (inverse ?1421)) ?1421 =>= multiply ?1420 identity [1421, 1420] by Super 28 with 3 at 2,3
3007 Id : 620, {_}: multiply (multiply ?1425 ?1426) (inverse ?1426) =>= multiply ?1425 identity [1426, 1425] by Super 618 with 18 at 2,1,2
3008 Id : 34073, {_}: multiply (multiply ?41189 ?41190) (inverse ?41190) =>= ?41189 [41190, 41189] by Demod 620 with 603 at 3
3009 Id : 651, {_}: multiply ?1462 (greatest_lower_bound ?1463 identity) =?= greatest_lower_bound (multiply ?1462 ?1463) ?1462 [1463, 1462] by Super 14 with 603 at 2,3
3010 Id : 676, {_}: multiply ?1462 (negative_part ?1463) =<= greatest_lower_bound (multiply ?1462 ?1463) ?1462 [1463, 1462] by Demod 651 with 21 at 2,2
3011 Id : 227, {_}: multiply (least_upper_bound (inverse ?687) ?688) ?687 =>= least_upper_bound identity (multiply ?688 ?687) [688, 687] by Super 221 with 3 at 1,3
3012 Id : 14335, {_}: multiply (least_upper_bound (inverse ?21902) ?21903) ?21902 =>= positive_part (multiply ?21903 ?21902) [21903, 21902] by Demod 227 with 320 at 3
3013 Id : 14360, {_}: multiply (positive_part (inverse ?21984)) ?21984 =>= positive_part (multiply identity ?21984) [21984] by Super 14335 with 20 at 1,2
3014 Id : 14399, {_}: multiply (positive_part (inverse ?21984)) ?21984 =>= positive_part ?21984 [21984] by Demod 14360 with 2 at 1,3
3015 Id : 14409, {_}: multiply (positive_part (inverse ?22003)) (negative_part ?22003) =>= greatest_lower_bound (positive_part ?22003) (positive_part (inverse ?22003)) [22003] by Super 676 with 14399 at 1,3
3016 Id : 504, {_}: least_upper_bound identity (greatest_lower_bound ?1268 ?1269) =<= greatest_lower_bound (least_upper_bound identity ?1268) (positive_part ?1269) [1269, 1268] by Super 22 with 320 at 2,3
3017 Id : 513, {_}: positive_part (greatest_lower_bound ?1268 ?1269) =<= greatest_lower_bound (least_upper_bound identity ?1268) (positive_part ?1269) [1269, 1268] by Demod 504 with 320 at 2
3018 Id : 514, {_}: positive_part (greatest_lower_bound ?1268 ?1269) =<= greatest_lower_bound (positive_part ?1268) (positive_part ?1269) [1269, 1268] by Demod 513 with 320 at 1,3
3019 Id : 14487, {_}: multiply (positive_part (inverse ?22003)) (negative_part ?22003) =>= positive_part (greatest_lower_bound ?22003 (inverse ?22003)) [22003] by Demod 14409 with 514 at 3
3020 Id : 501, {_}: least_upper_bound identity (least_upper_bound ?1262 ?1263) =>= least_upper_bound (positive_part ?1262) ?1263 [1263, 1262] by Super 8 with 320 at 1,3
3021 Id : 518, {_}: positive_part (least_upper_bound ?1262 ?1263) =>= least_upper_bound (positive_part ?1262) ?1263 [1263, 1262] by Demod 501 with 320 at 2
3022 Id : 317, {_}: least_upper_bound ?872 (least_upper_bound ?873 identity) =>= positive_part (least_upper_bound ?872 ?873) [873, 872] by Super 8 with 20 at 3
3023 Id : 329, {_}: least_upper_bound ?872 (positive_part ?873) =<= positive_part (least_upper_bound ?872 ?873) [873, 872] by Demod 317 with 20 at 2,2
3024 Id : 975, {_}: least_upper_bound ?1262 (positive_part ?1263) =?= least_upper_bound (positive_part ?1262) ?1263 [1263, 1262] by Demod 518 with 329 at 2
3025 Id : 4147, {_}: multiply (inverse ?7493) (positive_part ?7493) =>= positive_part (inverse ?7493) [7493] by Demod 4080 with 320 at 3
3026 Id : 337, {_}: greatest_lower_bound identity ?912 =>= negative_part ?912 [912] by Super 5 with 21 at 3
3027 Id : 533, {_}: least_upper_bound identity (negative_part ?1296) =>= identity [1296] by Super 11 with 337 at 2,2
3028 Id : 549, {_}: positive_part (negative_part ?1296) =>= identity [1296] by Demod 533 with 320 at 2
3029 Id : 4149, {_}: multiply (inverse (negative_part ?7496)) identity =>= positive_part (inverse (negative_part ?7496)) [7496] by Super 4147 with 549 at 2,2
3030 Id : 4174, {_}: inverse (negative_part ?7496) =<= positive_part (inverse (negative_part ?7496)) [7496] by Demod 4149 with 603 at 2
3031 Id : 4193, {_}: least_upper_bound (inverse (negative_part ?7552)) (positive_part ?7553) =>= least_upper_bound (inverse (negative_part ?7552)) ?7553 [7553, 7552] by Super 975 with 4174 at 1,3
3032 Id : 14357, {_}: multiply (least_upper_bound (inverse (negative_part ?21975)) ?21976) (negative_part ?21975) =>= positive_part (multiply (positive_part ?21976) (negative_part ?21975)) [21976, 21975] by Super 14335 with 4193 at 1,2
3033 Id : 14303, {_}: multiply (least_upper_bound (inverse ?687) ?688) ?687 =>= positive_part (multiply ?688 ?687) [688, 687] by Demod 227 with 320 at 3
3034 Id : 14396, {_}: positive_part (multiply ?21976 (negative_part ?21975)) =<= positive_part (multiply (positive_part ?21976) (negative_part ?21975)) [21975, 21976] by Demod 14357 with 14303 at 2
3035 Id : 15618, {_}: positive_part (multiply (inverse ?23238) (negative_part ?23238)) =<= positive_part (positive_part (greatest_lower_bound ?23238 (inverse ?23238))) [23238] by Super 14396 with 14487 at 1,3
3036 Id : 4791, {_}: multiply ?8267 (negative_part ?8268) =<= greatest_lower_bound (multiply ?8267 ?8268) ?8267 [8268, 8267] by Demod 651 with 21 at 2,2
3037 Id : 4793, {_}: multiply (inverse ?8272) (negative_part ?8272) =>= greatest_lower_bound identity (inverse ?8272) [8272] by Super 4791 with 3 at 1,3
3038 Id : 4834, {_}: multiply (inverse ?8272) (negative_part ?8272) =>= negative_part (inverse ?8272) [8272] by Demod 4793 with 337 at 3
3039 Id : 15709, {_}: positive_part (negative_part (inverse ?23238)) =<= positive_part (positive_part (greatest_lower_bound ?23238 (inverse ?23238))) [23238] by Demod 15618 with 4834 at 1,2
3040 Id : 774, {_}: least_upper_bound ?1603 (positive_part ?1604) =<= positive_part (least_upper_bound ?1603 ?1604) [1604, 1603] by Demod 317 with 20 at 2,2
3041 Id : 784, {_}: least_upper_bound ?1635 (positive_part identity) =>= positive_part (positive_part ?1635) [1635] by Super 774 with 20 at 1,3
3042 Id : 322, {_}: positive_part identity =>= identity [] by Super 9 with 20 at 2
3043 Id : 796, {_}: least_upper_bound ?1635 identity =<= positive_part (positive_part ?1635) [1635] by Demod 784 with 322 at 2,2
3044 Id : 797, {_}: positive_part ?1635 =<= positive_part (positive_part ?1635) [1635] by Demod 796 with 20 at 2
3045 Id : 15710, {_}: positive_part (negative_part (inverse ?23238)) =<= positive_part (greatest_lower_bound ?23238 (inverse ?23238)) [23238] by Demod 15709 with 797 at 3
3046 Id : 15711, {_}: identity =<= positive_part (greatest_lower_bound ?23238 (inverse ?23238)) [23238] by Demod 15710 with 549 at 2
3047 Id : 15820, {_}: multiply (positive_part (inverse ?22003)) (negative_part ?22003) =>= identity [22003] by Demod 14487 with 15711 at 3
3048 Id : 34109, {_}: multiply identity (inverse (negative_part ?41304)) =>= positive_part (inverse ?41304) [41304] by Super 34073 with 15820 at 1,2
3049 Id : 34155, {_}: inverse (negative_part ?41304) =<= positive_part (inverse ?41304) [41304] by Demod 34109 with 2 at 2
3050 Id : 34195, {_}: multiply (inverse ?7367) (positive_part ?7367) =>= inverse (negative_part ?7367) [7367] by Demod 4115 with 34155 at 3
3051 Id : 48045, {_}: inverse (inverse ?56723) =<= multiply (positive_part ?56723) (inverse (inverse (negative_part ?56723))) [56723] by Super 48018 with 34195 at 1,2,3
3052 Id : 48126, {_}: ?56723 =<= multiply (positive_part ?56723) (inverse (inverse (negative_part ?56723))) [56723] by Demod 48045 with 18 at 2
3053 Id : 48127, {_}: ?56723 =<= multiply (positive_part ?56723) (negative_part ?56723) [56723] by Demod 48126 with 18 at 2,3
3054 Id : 48357, {_}: a === a [] by Demod 1 with 48127 at 3
3055 Id : 1, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4
3056 % SZS output end CNFRefutation for GRP167-2.p
3057 22609: solved GRP167-2.p in 6.08038 using nrkbo
3058 22609: status Unsatisfiable for GRP167-2.p
3059 NO CLASH, using fixed ground order
3061 NO CLASH, using fixed ground order
3063 22622: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3064 22622: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3066 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
3067 [8, 7, 6] by associativity ?6 ?7 ?8
3069 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3070 [11, 10] by symmetry_of_glb ?10 ?11
3072 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3073 [14, 13] by symmetry_of_lub ?13 ?14
3075 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3077 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3078 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3080 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3082 least_upper_bound (least_upper_bound ?20 ?21) ?22
3083 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3084 22622: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3085 22622: Id : 10, {_}:
3086 greatest_lower_bound ?26 ?26 =>= ?26
3087 [26] by idempotence_of_gld ?26
3088 22622: Id : 11, {_}:
3089 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3090 [29, 28] by lub_absorbtion ?28 ?29
3091 22622: Id : 12, {_}:
3092 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3093 [32, 31] by glb_absorbtion ?31 ?32
3094 22622: Id : 13, {_}:
3095 multiply ?34 (least_upper_bound ?35 ?36)
3097 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3098 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3099 22622: Id : 14, {_}:
3100 multiply ?38 (greatest_lower_bound ?39 ?40)
3102 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3103 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3104 22622: Id : 15, {_}:
3105 multiply (least_upper_bound ?42 ?43) ?44
3107 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3108 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3109 22622: Id : 16, {_}:
3110 multiply (greatest_lower_bound ?46 ?47) ?48
3112 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3113 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3114 22622: Id : 17, {_}: least_upper_bound identity a =>= a [] by p09a_1
3115 22622: Id : 18, {_}: least_upper_bound identity b =>= b [] by p09a_2
3116 22622: Id : 19, {_}: least_upper_bound identity c =>= c [] by p09a_3
3117 22622: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09a_4
3120 greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c
3125 22622: b 4 0 1 1,2,2
3126 22622: c 4 0 2 2,2,2
3128 22622: identity 6 0 0
3129 22622: inverse 1 1 0
3130 22622: least_upper_bound 16 2 0
3131 22622: greatest_lower_bound 16 2 2 0,2
3132 22622: multiply 19 2 1 0,2,2
3133 NO CLASH, using fixed ground order
3135 22623: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3136 22623: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3138 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
3139 [8, 7, 6] by associativity ?6 ?7 ?8
3141 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3142 [11, 10] by symmetry_of_glb ?10 ?11
3144 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3145 [14, 13] by symmetry_of_lub ?13 ?14
3147 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3149 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3150 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3152 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3154 least_upper_bound (least_upper_bound ?20 ?21) ?22
3155 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3156 22623: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3157 22623: Id : 10, {_}:
3158 greatest_lower_bound ?26 ?26 =>= ?26
3159 [26] by idempotence_of_gld ?26
3160 22623: Id : 11, {_}:
3161 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3162 [29, 28] by lub_absorbtion ?28 ?29
3163 22623: Id : 12, {_}:
3164 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3165 [32, 31] by glb_absorbtion ?31 ?32
3166 22623: Id : 13, {_}:
3167 multiply ?34 (least_upper_bound ?35 ?36)
3169 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3170 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3171 22623: Id : 14, {_}:
3172 multiply ?38 (greatest_lower_bound ?39 ?40)
3174 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3175 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3176 22623: Id : 15, {_}:
3177 multiply (least_upper_bound ?42 ?43) ?44
3179 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3180 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3181 22623: Id : 16, {_}:
3182 multiply (greatest_lower_bound ?46 ?47) ?48
3184 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3185 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3186 22623: Id : 17, {_}: least_upper_bound identity a =>= a [] by p09a_1
3187 22623: Id : 18, {_}: least_upper_bound identity b =>= b [] by p09a_2
3188 22623: Id : 19, {_}: least_upper_bound identity c =>= c [] by p09a_3
3189 22623: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09a_4
3192 greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c
3197 22623: b 4 0 1 1,2,2
3198 22623: c 4 0 2 2,2,2
3200 22623: identity 6 0 0
3201 22623: inverse 1 1 0
3202 22623: least_upper_bound 16 2 0
3203 22623: greatest_lower_bound 16 2 2 0,2
3204 22623: multiply 19 2 1 0,2,2
3205 22621: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3206 22621: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3208 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3209 [8, 7, 6] by associativity ?6 ?7 ?8
3211 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3212 [11, 10] by symmetry_of_glb ?10 ?11
3214 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3215 [14, 13] by symmetry_of_lub ?13 ?14
3217 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3219 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3220 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3222 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3224 least_upper_bound (least_upper_bound ?20 ?21) ?22
3225 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3226 22621: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3227 22621: Id : 10, {_}:
3228 greatest_lower_bound ?26 ?26 =>= ?26
3229 [26] by idempotence_of_gld ?26
3230 22621: Id : 11, {_}:
3231 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3232 [29, 28] by lub_absorbtion ?28 ?29
3233 22621: Id : 12, {_}:
3234 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3235 [32, 31] by glb_absorbtion ?31 ?32
3236 22621: Id : 13, {_}:
3237 multiply ?34 (least_upper_bound ?35 ?36)
3239 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3240 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3241 22621: Id : 14, {_}:
3242 multiply ?38 (greatest_lower_bound ?39 ?40)
3244 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3245 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3246 22621: Id : 15, {_}:
3247 multiply (least_upper_bound ?42 ?43) ?44
3249 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3250 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3251 22621: Id : 16, {_}:
3252 multiply (greatest_lower_bound ?46 ?47) ?48
3254 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3255 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3256 22621: Id : 17, {_}: least_upper_bound identity a =>= a [] by p09a_1
3257 22621: Id : 18, {_}: least_upper_bound identity b =>= b [] by p09a_2
3258 22621: Id : 19, {_}: least_upper_bound identity c =>= c [] by p09a_3
3259 22621: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09a_4
3262 greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c
3267 22621: b 4 0 1 1,2,2
3268 22621: c 4 0 2 2,2,2
3270 22621: identity 6 0 0
3271 22621: inverse 1 1 0
3272 22621: least_upper_bound 16 2 0
3273 22621: greatest_lower_bound 16 2 2 0,2
3274 22621: multiply 19 2 1 0,2,2
3275 % SZS status Timeout for GRP178-1.p
3276 NO CLASH, using fixed ground order
3278 22657: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3279 22657: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3281 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3282 [8, 7, 6] by associativity ?6 ?7 ?8
3284 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3285 [11, 10] by symmetry_of_glb ?10 ?11
3287 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3288 [14, 13] by symmetry_of_lub ?13 ?14
3290 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3292 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3293 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3295 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3297 least_upper_bound (least_upper_bound ?20 ?21) ?22
3298 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3299 22657: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3300 22657: Id : 10, {_}:
3301 greatest_lower_bound ?26 ?26 =>= ?26
3302 [26] by idempotence_of_gld ?26
3303 22657: Id : 11, {_}:
3304 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3305 [29, 28] by lub_absorbtion ?28 ?29
3306 22657: Id : 12, {_}:
3307 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3308 [32, 31] by glb_absorbtion ?31 ?32
3309 22657: Id : 13, {_}:
3310 multiply ?34 (least_upper_bound ?35 ?36)
3312 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3313 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3314 22657: Id : 14, {_}:
3315 multiply ?38 (greatest_lower_bound ?39 ?40)
3317 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3318 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3319 22657: Id : 15, {_}:
3320 multiply (least_upper_bound ?42 ?43) ?44
3322 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3323 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3324 22657: Id : 16, {_}:
3325 multiply (greatest_lower_bound ?46 ?47) ?48
3327 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3328 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3329 22657: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1
3330 22657: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2
3331 22657: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3
3332 22657: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09b_4
3335 greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c
3340 22657: b 3 0 1 1,2,2
3341 22657: c 3 0 2 2,2,2
3343 22657: identity 9 0 0
3344 22657: inverse 1 1 0
3345 22657: least_upper_bound 13 2 0
3346 22657: multiply 19 2 1 0,2,2
3347 22657: greatest_lower_bound 19 2 2 0,2
3348 NO CLASH, using fixed ground order
3350 22658: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3351 22658: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3353 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
3354 [8, 7, 6] by associativity ?6 ?7 ?8
3356 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3357 [11, 10] by symmetry_of_glb ?10 ?11
3359 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3360 [14, 13] by symmetry_of_lub ?13 ?14
3362 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3364 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3365 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3367 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3369 least_upper_bound (least_upper_bound ?20 ?21) ?22
3370 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3371 22658: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3372 22658: Id : 10, {_}:
3373 greatest_lower_bound ?26 ?26 =>= ?26
3374 [26] by idempotence_of_gld ?26
3375 22658: Id : 11, {_}:
3376 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3377 [29, 28] by lub_absorbtion ?28 ?29
3378 22658: Id : 12, {_}:
3379 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3380 [32, 31] by glb_absorbtion ?31 ?32
3381 22658: Id : 13, {_}:
3382 multiply ?34 (least_upper_bound ?35 ?36)
3384 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3385 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3386 22658: Id : 14, {_}:
3387 multiply ?38 (greatest_lower_bound ?39 ?40)
3389 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3390 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3391 22658: Id : 15, {_}:
3392 multiply (least_upper_bound ?42 ?43) ?44
3394 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3395 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3396 22658: Id : 16, {_}:
3397 multiply (greatest_lower_bound ?46 ?47) ?48
3399 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3400 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3401 22658: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1
3402 22658: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2
3403 22658: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3
3404 22658: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09b_4
3407 greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c
3412 22658: b 3 0 1 1,2,2
3413 22658: c 3 0 2 2,2,2
3415 22658: identity 9 0 0
3416 22658: inverse 1 1 0
3417 22658: least_upper_bound 13 2 0
3418 22658: multiply 19 2 1 0,2,2
3419 22658: greatest_lower_bound 19 2 2 0,2
3420 NO CLASH, using fixed ground order
3422 22659: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3423 22659: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3425 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
3426 [8, 7, 6] by associativity ?6 ?7 ?8
3428 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3429 [11, 10] by symmetry_of_glb ?10 ?11
3431 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3432 [14, 13] by symmetry_of_lub ?13 ?14
3434 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3436 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3437 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3439 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3441 least_upper_bound (least_upper_bound ?20 ?21) ?22
3442 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3443 22659: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3444 22659: Id : 10, {_}:
3445 greatest_lower_bound ?26 ?26 =>= ?26
3446 [26] by idempotence_of_gld ?26
3447 22659: Id : 11, {_}:
3448 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3449 [29, 28] by lub_absorbtion ?28 ?29
3450 22659: Id : 12, {_}:
3451 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3452 [32, 31] by glb_absorbtion ?31 ?32
3453 22659: Id : 13, {_}:
3454 multiply ?34 (least_upper_bound ?35 ?36)
3456 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3457 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3458 22659: Id : 14, {_}:
3459 multiply ?38 (greatest_lower_bound ?39 ?40)
3461 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3462 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3463 22659: Id : 15, {_}:
3464 multiply (least_upper_bound ?42 ?43) ?44
3466 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3467 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3468 22659: Id : 16, {_}:
3469 multiply (greatest_lower_bound ?46 ?47) ?48
3471 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3472 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3473 22659: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1
3474 22659: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2
3475 22659: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3
3476 22659: Id : 20, {_}: greatest_lower_bound a b =>= identity [] by p09b_4
3479 greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c
3484 22659: b 3 0 1 1,2,2
3485 22659: c 3 0 2 2,2,2
3487 22659: identity 9 0 0
3488 22659: inverse 1 1 0
3489 22659: least_upper_bound 13 2 0
3490 22659: multiply 19 2 1 0,2,2
3491 22659: greatest_lower_bound 19 2 2 0,2
3492 % SZS status Timeout for GRP178-2.p
3493 CLASH, statistics insufficient
3495 22685: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3496 22685: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3498 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3499 [8, 7, 6] by associativity ?6 ?7 ?8
3501 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3502 [11, 10] by symmetry_of_glb ?10 ?11
3504 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3505 [14, 13] by symmetry_of_lub ?13 ?14
3507 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3509 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3510 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3512 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3514 least_upper_bound (least_upper_bound ?20 ?21) ?22
3515 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3516 22685: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3517 22685: Id : 10, {_}:
3518 greatest_lower_bound ?26 ?26 =>= ?26
3519 [26] by idempotence_of_gld ?26
3520 22685: Id : 11, {_}:
3521 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3522 [29, 28] by lub_absorbtion ?28 ?29
3523 22685: Id : 12, {_}:
3524 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3525 [32, 31] by glb_absorbtion ?31 ?32
3526 22685: Id : 13, {_}:
3527 multiply ?34 (least_upper_bound ?35 ?36)
3529 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3530 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3531 22685: Id : 14, {_}:
3532 multiply ?38 (greatest_lower_bound ?39 ?40)
3534 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3535 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3536 22685: Id : 15, {_}:
3537 multiply (least_upper_bound ?42 ?43) ?44
3539 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3540 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3541 22685: Id : 16, {_}:
3542 multiply (greatest_lower_bound ?46 ?47) ?48
3544 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3545 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3546 22685: Id : 17, {_}:
3547 greatest_lower_bound a c =>= greatest_lower_bound b c
3549 22685: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_2
3550 22685: Id : 19, {_}:
3551 inverse (greatest_lower_bound ?52 ?53)
3553 least_upper_bound (inverse ?52) (inverse ?53)
3554 [53, 52] by p12x_3 ?52 ?53
3555 22685: Id : 20, {_}:
3556 inverse (least_upper_bound ?55 ?56)
3558 greatest_lower_bound (inverse ?55) (inverse ?56)
3559 [56, 55] by p12x_4 ?55 ?56
3561 22685: Id : 1, {_}: a =>= b [] by prove_p12x
3565 22685: identity 2 0 0
3569 22685: inverse 7 1 0
3570 22685: greatest_lower_bound 17 2 0
3571 22685: least_upper_bound 17 2 0
3572 22685: multiply 18 2 0
3573 CLASH, statistics insufficient
3575 22686: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3576 22686: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3578 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
3579 [8, 7, 6] by associativity ?6 ?7 ?8
3581 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3582 [11, 10] by symmetry_of_glb ?10 ?11
3584 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3585 [14, 13] by symmetry_of_lub ?13 ?14
3586 CLASH, statistics insufficient
3588 22687: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3589 22687: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3591 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
3592 [8, 7, 6] by associativity ?6 ?7 ?8
3594 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3595 [11, 10] by symmetry_of_glb ?10 ?11
3597 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3598 [14, 13] by symmetry_of_lub ?13 ?14
3600 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3602 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3603 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3605 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3607 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3608 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3610 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3612 least_upper_bound (least_upper_bound ?20 ?21) ?22
3613 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3614 22686: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3615 22686: Id : 10, {_}:
3616 greatest_lower_bound ?26 ?26 =>= ?26
3617 [26] by idempotence_of_gld ?26
3618 22686: Id : 11, {_}:
3619 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3620 [29, 28] by lub_absorbtion ?28 ?29
3621 22686: Id : 12, {_}:
3622 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3623 [32, 31] by glb_absorbtion ?31 ?32
3624 22686: Id : 13, {_}:
3625 multiply ?34 (least_upper_bound ?35 ?36)
3627 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3628 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3629 22686: Id : 14, {_}:
3630 multiply ?38 (greatest_lower_bound ?39 ?40)
3632 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3633 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3634 22686: Id : 15, {_}:
3635 multiply (least_upper_bound ?42 ?43) ?44
3637 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3638 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3639 22686: Id : 16, {_}:
3640 multiply (greatest_lower_bound ?46 ?47) ?48
3642 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3643 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3644 22686: Id : 17, {_}:
3645 greatest_lower_bound a c =>= greatest_lower_bound b c
3647 22686: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_2
3648 22686: Id : 19, {_}:
3649 inverse (greatest_lower_bound ?52 ?53)
3651 least_upper_bound (inverse ?52) (inverse ?53)
3652 [53, 52] by p12x_3 ?52 ?53
3653 22686: Id : 20, {_}:
3654 inverse (least_upper_bound ?55 ?56)
3656 greatest_lower_bound (inverse ?55) (inverse ?56)
3657 [56, 55] by p12x_4 ?55 ?56
3659 22686: Id : 1, {_}: a =>= b [] by prove_p12x
3663 22686: identity 2 0 0
3667 22686: inverse 7 1 0
3668 22686: greatest_lower_bound 17 2 0
3669 22686: least_upper_bound 17 2 0
3670 22686: multiply 18 2 0
3672 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3674 least_upper_bound (least_upper_bound ?20 ?21) ?22
3675 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3676 22687: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3677 22687: Id : 10, {_}:
3678 greatest_lower_bound ?26 ?26 =>= ?26
3679 [26] by idempotence_of_gld ?26
3680 22687: Id : 11, {_}:
3681 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3682 [29, 28] by lub_absorbtion ?28 ?29
3683 22687: Id : 12, {_}:
3684 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3685 [32, 31] by glb_absorbtion ?31 ?32
3686 22687: Id : 13, {_}:
3687 multiply ?34 (least_upper_bound ?35 ?36)
3689 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3690 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3691 22687: Id : 14, {_}:
3692 multiply ?38 (greatest_lower_bound ?39 ?40)
3694 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3695 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3696 22687: Id : 15, {_}:
3697 multiply (least_upper_bound ?42 ?43) ?44
3699 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3700 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3701 22687: Id : 16, {_}:
3702 multiply (greatest_lower_bound ?46 ?47) ?48
3704 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3705 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3706 22687: Id : 17, {_}:
3707 greatest_lower_bound a c =>= greatest_lower_bound b c
3709 22687: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_2
3710 22687: Id : 19, {_}:
3711 inverse (greatest_lower_bound ?52 ?53)
3713 least_upper_bound (inverse ?52) (inverse ?53)
3714 [53, 52] by p12x_3 ?52 ?53
3715 22687: Id : 20, {_}:
3716 inverse (least_upper_bound ?55 ?56)
3718 greatest_lower_bound (inverse ?55) (inverse ?56)
3719 [56, 55] by p12x_4 ?55 ?56
3721 22687: Id : 1, {_}: a =>= b [] by prove_p12x
3725 22687: identity 2 0 0
3729 22687: inverse 7 1 0
3730 22687: greatest_lower_bound 17 2 0
3731 22687: least_upper_bound 17 2 0
3732 22687: multiply 18 2 0
3733 % SZS status Timeout for GRP181-3.p
3734 NO CLASH, using fixed ground order
3736 22714: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3737 22714: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3739 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3740 [8, 7, 6] by associativity ?6 ?7 ?8
3742 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3743 [11, 10] by symmetry_of_glb ?10 ?11
3745 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3746 [14, 13] by symmetry_of_lub ?13 ?14
3748 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3750 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3751 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3753 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3755 least_upper_bound (least_upper_bound ?20 ?21) ?22
3756 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3757 22714: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3758 22714: Id : 10, {_}:
3759 greatest_lower_bound ?26 ?26 =>= ?26
3760 [26] by idempotence_of_gld ?26
3761 22714: Id : 11, {_}:
3762 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3763 [29, 28] by lub_absorbtion ?28 ?29
3764 22714: Id : 12, {_}:
3765 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3766 [32, 31] by glb_absorbtion ?31 ?32
3767 22714: Id : 13, {_}:
3768 multiply ?34 (least_upper_bound ?35 ?36)
3770 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3771 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3772 22714: Id : 14, {_}:
3773 multiply ?38 (greatest_lower_bound ?39 ?40)
3775 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3776 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3777 22714: Id : 15, {_}:
3778 multiply (least_upper_bound ?42 ?43) ?44
3780 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3781 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3782 22714: Id : 16, {_}:
3783 multiply (greatest_lower_bound ?46 ?47) ?48
3785 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3786 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3787 22714: Id : 17, {_}: inverse identity =>= identity [] by p21_1
3788 22714: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p21_2 ?51
3789 22714: Id : 19, {_}:
3790 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
3791 [54, 53] by p21_3 ?53 ?54
3794 multiply (least_upper_bound a identity)
3795 (inverse (greatest_lower_bound a identity))
3797 multiply (inverse (greatest_lower_bound a identity))
3798 (least_upper_bound a identity)
3803 22714: a 4 0 4 1,1,2
3804 22714: identity 8 0 4 2,1,2
3805 22714: inverse 9 1 2 0,2,2
3806 22714: least_upper_bound 15 2 2 0,1,2
3807 22714: greatest_lower_bound 15 2 2 0,1,2,2
3808 22714: multiply 22 2 2 0,2
3809 NO CLASH, using fixed ground order
3811 22715: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3812 22715: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3814 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
3815 [8, 7, 6] by associativity ?6 ?7 ?8
3817 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3818 [11, 10] by symmetry_of_glb ?10 ?11
3820 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3821 [14, 13] by symmetry_of_lub ?13 ?14
3823 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3825 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3826 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3828 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3830 least_upper_bound (least_upper_bound ?20 ?21) ?22
3831 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3832 22715: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3833 22715: Id : 10, {_}:
3834 greatest_lower_bound ?26 ?26 =>= ?26
3835 [26] by idempotence_of_gld ?26
3836 22715: Id : 11, {_}:
3837 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3838 [29, 28] by lub_absorbtion ?28 ?29
3839 22715: Id : 12, {_}:
3840 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3841 [32, 31] by glb_absorbtion ?31 ?32
3842 22715: Id : 13, {_}:
3843 multiply ?34 (least_upper_bound ?35 ?36)
3845 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3846 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3847 22715: Id : 14, {_}:
3848 multiply ?38 (greatest_lower_bound ?39 ?40)
3850 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3851 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3852 22715: Id : 15, {_}:
3853 multiply (least_upper_bound ?42 ?43) ?44
3855 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3856 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3857 22715: Id : 16, {_}:
3858 multiply (greatest_lower_bound ?46 ?47) ?48
3860 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3861 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3862 22715: Id : 17, {_}: inverse identity =>= identity [] by p21_1
3863 22715: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p21_2 ?51
3864 22715: Id : 19, {_}:
3865 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
3866 [54, 53] by p21_3 ?53 ?54
3869 multiply (least_upper_bound a identity)
3870 (inverse (greatest_lower_bound a identity))
3872 multiply (inverse (greatest_lower_bound a identity))
3873 (least_upper_bound a identity)
3878 22715: a 4 0 4 1,1,2
3879 22715: identity 8 0 4 2,1,2
3880 22715: inverse 9 1 2 0,2,2
3881 22715: least_upper_bound 15 2 2 0,1,2
3882 22715: greatest_lower_bound 15 2 2 0,1,2,2
3883 22715: multiply 22 2 2 0,2
3884 NO CLASH, using fixed ground order
3886 22716: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3887 22716: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3889 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
3890 [8, 7, 6] by associativity ?6 ?7 ?8
3892 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3893 [11, 10] by symmetry_of_glb ?10 ?11
3895 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3896 [14, 13] by symmetry_of_lub ?13 ?14
3898 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3900 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3901 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3903 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3905 least_upper_bound (least_upper_bound ?20 ?21) ?22
3906 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3907 22716: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3908 22716: Id : 10, {_}:
3909 greatest_lower_bound ?26 ?26 =>= ?26
3910 [26] by idempotence_of_gld ?26
3911 22716: Id : 11, {_}:
3912 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3913 [29, 28] by lub_absorbtion ?28 ?29
3914 22716: Id : 12, {_}:
3915 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3916 [32, 31] by glb_absorbtion ?31 ?32
3917 22716: Id : 13, {_}:
3918 multiply ?34 (least_upper_bound ?35 ?36)
3920 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3921 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3922 22716: Id : 14, {_}:
3923 multiply ?38 (greatest_lower_bound ?39 ?40)
3925 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
3926 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
3927 22716: Id : 15, {_}:
3928 multiply (least_upper_bound ?42 ?43) ?44
3930 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
3931 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
3932 22716: Id : 16, {_}:
3933 multiply (greatest_lower_bound ?46 ?47) ?48
3935 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
3936 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
3937 22716: Id : 17, {_}: inverse identity =>= identity [] by p21_1
3938 22716: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p21_2 ?51
3939 22716: Id : 19, {_}:
3940 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
3941 [54, 53] by p21_3 ?53 ?54
3944 multiply (least_upper_bound a identity)
3945 (inverse (greatest_lower_bound a identity))
3947 multiply (inverse (greatest_lower_bound a identity))
3948 (least_upper_bound a identity)
3953 22716: a 4 0 4 1,1,2
3954 22716: identity 8 0 4 2,1,2
3955 22716: inverse 9 1 2 0,2,2
3956 22716: least_upper_bound 15 2 2 0,1,2
3957 22716: greatest_lower_bound 15 2 2 0,1,2,2
3958 22716: multiply 22 2 2 0,2
3959 % SZS status Timeout for GRP184-2.p
3960 NO CLASH, using fixed ground order
3962 22807: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
3963 22807: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
3965 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
3966 [8, 7, 6] by associativity ?6 ?7 ?8
3968 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
3969 [11, 10] by symmetry_of_glb ?10 ?11
3971 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
3972 [14, 13] by symmetry_of_lub ?13 ?14
3974 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
3976 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
3977 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
3979 least_upper_bound ?20 (least_upper_bound ?21 ?22)
3981 least_upper_bound (least_upper_bound ?20 ?21) ?22
3982 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
3983 22807: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
3984 22807: Id : 10, {_}:
3985 greatest_lower_bound ?26 ?26 =>= ?26
3986 [26] by idempotence_of_gld ?26
3987 22807: Id : 11, {_}:
3988 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
3989 [29, 28] by lub_absorbtion ?28 ?29
3990 22807: Id : 12, {_}:
3991 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
3992 [32, 31] by glb_absorbtion ?31 ?32
3993 22807: Id : 13, {_}:
3994 multiply ?34 (least_upper_bound ?35 ?36)
3996 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
3997 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
3998 22807: Id : 14, {_}:
3999 multiply ?38 (greatest_lower_bound ?39 ?40)
4001 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
4002 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4003 22807: Id : 15, {_}:
4004 multiply (least_upper_bound ?42 ?43) ?44
4006 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
4007 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4008 22807: Id : 16, {_}:
4009 multiply (greatest_lower_bound ?46 ?47) ?48
4011 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
4012 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4015 least_upper_bound (least_upper_bound (multiply a b) identity)
4016 (multiply (least_upper_bound a identity)
4017 (least_upper_bound b identity))
4019 multiply (least_upper_bound a identity)
4020 (least_upper_bound b identity)
4025 22807: a 3 0 3 1,1,1,2
4026 22807: b 3 0 3 2,1,1,2
4027 22807: identity 7 0 5 2,1,2
4028 22807: inverse 1 1 0
4029 22807: greatest_lower_bound 13 2 0
4030 22807: least_upper_bound 19 2 6 0,2
4031 22807: multiply 21 2 3 0,1,1,2
4032 NO CLASH, using fixed ground order
4034 22808: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4035 22808: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4037 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
4038 [8, 7, 6] by associativity ?6 ?7 ?8
4040 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
4041 [11, 10] by symmetry_of_glb ?10 ?11
4043 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
4044 [14, 13] by symmetry_of_lub ?13 ?14
4046 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
4048 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
4049 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
4051 least_upper_bound ?20 (least_upper_bound ?21 ?22)
4053 least_upper_bound (least_upper_bound ?20 ?21) ?22
4054 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4055 22808: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4056 22808: Id : 10, {_}:
4057 greatest_lower_bound ?26 ?26 =>= ?26
4058 [26] by idempotence_of_gld ?26
4059 22808: Id : 11, {_}:
4060 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
4061 [29, 28] by lub_absorbtion ?28 ?29
4062 22808: Id : 12, {_}:
4063 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
4064 [32, 31] by glb_absorbtion ?31 ?32
4065 22808: Id : 13, {_}:
4066 multiply ?34 (least_upper_bound ?35 ?36)
4068 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
4069 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4070 22808: Id : 14, {_}:
4071 multiply ?38 (greatest_lower_bound ?39 ?40)
4073 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
4074 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4075 22808: Id : 15, {_}:
4076 multiply (least_upper_bound ?42 ?43) ?44
4078 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
4079 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4080 22808: Id : 16, {_}:
4081 multiply (greatest_lower_bound ?46 ?47) ?48
4083 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
4084 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4087 least_upper_bound (least_upper_bound (multiply a b) identity)
4088 (multiply (least_upper_bound a identity)
4089 (least_upper_bound b identity))
4091 multiply (least_upper_bound a identity)
4092 (least_upper_bound b identity)
4097 22808: a 3 0 3 1,1,1,2
4098 22808: b 3 0 3 2,1,1,2
4099 22808: identity 7 0 5 2,1,2
4100 22808: inverse 1 1 0
4101 22808: greatest_lower_bound 13 2 0
4102 22808: least_upper_bound 19 2 6 0,2
4103 22808: multiply 21 2 3 0,1,1,2
4104 NO CLASH, using fixed ground order
4106 22809: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4107 22809: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4109 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
4110 [8, 7, 6] by associativity ?6 ?7 ?8
4112 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
4113 [11, 10] by symmetry_of_glb ?10 ?11
4115 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
4116 [14, 13] by symmetry_of_lub ?13 ?14
4118 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
4120 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
4121 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
4123 least_upper_bound ?20 (least_upper_bound ?21 ?22)
4125 least_upper_bound (least_upper_bound ?20 ?21) ?22
4126 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4127 22809: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4128 22809: Id : 10, {_}:
4129 greatest_lower_bound ?26 ?26 =>= ?26
4130 [26] by idempotence_of_gld ?26
4131 22809: Id : 11, {_}:
4132 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
4133 [29, 28] by lub_absorbtion ?28 ?29
4134 22809: Id : 12, {_}:
4135 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
4136 [32, 31] by glb_absorbtion ?31 ?32
4137 22809: Id : 13, {_}:
4138 multiply ?34 (least_upper_bound ?35 ?36)
4140 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
4141 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4142 22809: Id : 14, {_}:
4143 multiply ?38 (greatest_lower_bound ?39 ?40)
4145 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
4146 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4147 22809: Id : 15, {_}:
4148 multiply (least_upper_bound ?42 ?43) ?44
4150 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
4151 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4152 22809: Id : 16, {_}:
4153 multiply (greatest_lower_bound ?46 ?47) ?48
4155 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
4156 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4159 least_upper_bound (least_upper_bound (multiply a b) identity)
4160 (multiply (least_upper_bound a identity)
4161 (least_upper_bound b identity))
4163 multiply (least_upper_bound a identity)
4164 (least_upper_bound b identity)
4169 22809: a 3 0 3 1,1,1,2
4170 22809: b 3 0 3 2,1,1,2
4171 22809: identity 7 0 5 2,1,2
4172 22809: inverse 1 1 0
4173 22809: greatest_lower_bound 13 2 0
4174 22809: least_upper_bound 19 2 6 0,2
4175 22809: multiply 21 2 3 0,1,1,2
4178 Found proof, 1.740382s
4179 % SZS status Unsatisfiable for GRP185-1.p
4180 % SZS output start CNFRefutation for GRP185-1.p
4181 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4182 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4183 Id : 21, {_}: multiply (multiply ?57 ?58) ?59 =>= multiply ?57 (multiply ?58 ?59) [59, 58, 57] by associativity ?57 ?58 ?59
4184 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4185 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4186 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4187 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4188 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
4189 Id : 23, {_}: multiply identity ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Super 21 with 3 at 1,2
4190 Id : 482, {_}: ?594 =<= multiply (inverse ?595) (multiply ?595 ?594) [595, 594] by Demod 23 with 2 at 2
4191 Id : 484, {_}: ?599 =<= multiply (inverse (inverse ?599)) identity [599] by Super 482 with 3 at 2,3
4192 Id : 27, {_}: ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Demod 23 with 2 at 2
4193 Id : 490, {_}: multiply ?621 ?622 =<= multiply (inverse (inverse ?621)) ?622 [622, 621] by Super 482 with 27 at 2,3
4194 Id : 725, {_}: ?599 =<= multiply ?599 identity [599] by Demod 484 with 490 at 3
4195 Id : 73, {_}: least_upper_bound ?180 (least_upper_bound ?180 ?181) =>= least_upper_bound ?180 ?181 [181, 180] by Super 8 with 9 at 1,3
4196 Id : 57, {_}: least_upper_bound ?143 (least_upper_bound ?144 ?145) =?= least_upper_bound ?144 (least_upper_bound ?145 ?143) [145, 144, 143] by Super 6 with 8 at 3
4197 Id : 3011, {_}: least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) === least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) [] by Demod 3010 with 73 at 2,2,2
4198 Id : 3010, {_}: least_upper_bound b (least_upper_bound a (least_upper_bound identity (least_upper_bound identity (multiply a b)))) =>= least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) [] by Demod 3009 with 8 at 2,2
4199 Id : 3009, {_}: least_upper_bound b (least_upper_bound (least_upper_bound a identity) (least_upper_bound identity (multiply a b))) =>= least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) [] by Demod 3008 with 8 at 2
4200 Id : 3008, {_}: least_upper_bound (least_upper_bound b (least_upper_bound a identity)) (least_upper_bound identity (multiply a b)) =>= least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) [] by Demod 3007 with 8 at 2,3
4201 Id : 3007, {_}: least_upper_bound (least_upper_bound b (least_upper_bound a identity)) (least_upper_bound identity (multiply a b)) =>= least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b)) [] by Demod 3006 with 57 at 2
4202 Id : 3006, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a identity))) =>= least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b)) [] by Demod 3005 with 8 at 3
4203 Id : 3005, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a identity))) =>= least_upper_bound (least_upper_bound b (least_upper_bound a identity)) (multiply a b) [] by Demod 3004 with 2 at 2,2,2,2,2
4204 Id : 3004, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a (multiply identity identity)))) =>= least_upper_bound (least_upper_bound b (least_upper_bound a identity)) (multiply a b) [] by Demod 3003 with 725 at 1,2,2,2,2
4205 Id : 3003, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound (least_upper_bound b (least_upper_bound a identity)) (multiply a b) [] by Demod 3002 with 2 at 1,2,2,2
4206 Id : 3002, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound (least_upper_bound b (least_upper_bound a identity)) (multiply a b) [] by Demod 3001 with 6 at 3
4207 Id : 3001, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a identity)) [] by Demod 3000 with 73 at 2,2
4208 Id : 3000, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a identity)) [] by Demod 2999 with 2 at 2,2,2,3
4209 Id : 2999, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a (multiply identity identity))) [] by Demod 2998 with 725 at 1,2,2,3
4210 Id : 2998, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) (multiply identity identity))) [] by Demod 2997 with 2 at 1,2,3
4211 Id : 2997, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))) [] by Demod 2996 with 8 at 2,2,2
4212 Id : 2996, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))) [] by Demod 2995 with 8 at 3
4213 Id : 2995, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)) [] by Demod 2994 with 15 at 2,2,2,2
4214 Id : 2994, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)) [] by Demod 2993 with 15 at 1,2,2,2
4215 Id : 2993, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)) [] by Demod 2992 with 15 at 2,3
4216 Id : 2992, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity) [] by Demod 2991 with 15 at 1,3
4217 Id : 2991, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity) [] by Demod 2990 with 13 at 2,2,2
4218 Id : 2990, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) =>= least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity) [] by Demod 2989 with 13 at 3
4219 Id : 2989, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 56 with 8 at 2
4220 Id : 56, {_}: least_upper_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 1 with 6 at 1,2
4221 Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a
4222 % SZS output end CNFRefutation for GRP185-1.p
4223 22809: solved GRP185-1.p in 0.852052 using lpo
4224 22809: status Unsatisfiable for GRP185-1.p
4225 NO CLASH, using fixed ground order
4227 NO CLASH, using fixed ground order
4229 22815: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4230 22815: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4232 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
4233 [8, 7, 6] by associativity ?6 ?7 ?8
4235 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
4236 [11, 10] by symmetry_of_glb ?10 ?11
4238 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
4239 [14, 13] by symmetry_of_lub ?13 ?14
4241 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
4243 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
4244 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
4246 least_upper_bound ?20 (least_upper_bound ?21 ?22)
4248 least_upper_bound (least_upper_bound ?20 ?21) ?22
4249 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4250 NO CLASH, using fixed ground order
4252 22816: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4253 22816: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4255 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
4256 [8, 7, 6] by associativity ?6 ?7 ?8
4258 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
4259 [11, 10] by symmetry_of_glb ?10 ?11
4261 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
4262 [14, 13] by symmetry_of_lub ?13 ?14
4264 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
4266 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
4267 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
4269 least_upper_bound ?20 (least_upper_bound ?21 ?22)
4271 least_upper_bound (least_upper_bound ?20 ?21) ?22
4272 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4273 22816: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4274 22814: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4275 22815: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4276 22814: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
4277 22815: Id : 10, {_}:
4278 greatest_lower_bound ?26 ?26 =>= ?26
4279 [26] by idempotence_of_gld ?26
4280 22815: Id : 11, {_}:
4281 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
4282 [29, 28] by lub_absorbtion ?28 ?29
4283 22815: Id : 12, {_}:
4284 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
4285 [32, 31] by glb_absorbtion ?31 ?32
4287 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
4288 [8, 7, 6] by associativity ?6 ?7 ?8
4290 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
4291 [11, 10] by symmetry_of_glb ?10 ?11
4293 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
4294 [14, 13] by symmetry_of_lub ?13 ?14
4295 22815: Id : 13, {_}:
4296 multiply ?34 (least_upper_bound ?35 ?36)
4298 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
4299 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4301 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
4303 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
4304 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
4305 22815: Id : 14, {_}:
4306 multiply ?38 (greatest_lower_bound ?39 ?40)
4308 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
4309 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4311 least_upper_bound ?20 (least_upper_bound ?21 ?22)
4313 least_upper_bound (least_upper_bound ?20 ?21) ?22
4314 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4315 22814: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4316 22814: Id : 10, {_}:
4317 greatest_lower_bound ?26 ?26 =>= ?26
4318 [26] by idempotence_of_gld ?26
4319 22814: Id : 11, {_}:
4320 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
4321 [29, 28] by lub_absorbtion ?28 ?29
4322 22814: Id : 12, {_}:
4323 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
4324 [32, 31] by glb_absorbtion ?31 ?32
4325 22814: Id : 13, {_}:
4326 multiply ?34 (least_upper_bound ?35 ?36)
4328 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
4329 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4330 22814: Id : 14, {_}:
4331 multiply ?38 (greatest_lower_bound ?39 ?40)
4333 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
4334 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4335 22814: Id : 15, {_}:
4336 multiply (least_upper_bound ?42 ?43) ?44
4338 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
4339 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4340 22814: Id : 16, {_}:
4341 multiply (greatest_lower_bound ?46 ?47) ?48
4343 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
4344 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4345 22814: Id : 17, {_}: inverse identity =>= identity [] by p22a_1
4346 22814: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51
4347 22814: Id : 19, {_}:
4348 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
4349 [54, 53] by p22a_3 ?53 ?54
4352 least_upper_bound (least_upper_bound (multiply a b) identity)
4353 (multiply (least_upper_bound a identity)
4354 (least_upper_bound b identity))
4356 multiply (least_upper_bound a identity)
4357 (least_upper_bound b identity)
4362 22814: a 3 0 3 1,1,1,2
4363 22814: b 3 0 3 2,1,1,2
4364 22814: identity 9 0 5 2,1,2
4365 22814: inverse 7 1 0
4366 22814: greatest_lower_bound 13 2 0
4367 22814: least_upper_bound 19 2 6 0,2
4368 22814: multiply 23 2 3 0,1,1,2
4369 22816: Id : 10, {_}:
4370 greatest_lower_bound ?26 ?26 =>= ?26
4371 [26] by idempotence_of_gld ?26
4372 22815: Id : 15, {_}:
4373 multiply (least_upper_bound ?42 ?43) ?44
4375 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
4376 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4377 22815: Id : 16, {_}:
4378 multiply (greatest_lower_bound ?46 ?47) ?48
4380 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
4381 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4382 22815: Id : 17, {_}: inverse identity =>= identity [] by p22a_1
4383 22815: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51
4384 22815: Id : 19, {_}:
4385 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
4386 [54, 53] by p22a_3 ?53 ?54
4389 least_upper_bound (least_upper_bound (multiply a b) identity)
4390 (multiply (least_upper_bound a identity)
4391 (least_upper_bound b identity))
4393 multiply (least_upper_bound a identity)
4394 (least_upper_bound b identity)
4399 22815: a 3 0 3 1,1,1,2
4400 22815: b 3 0 3 2,1,1,2
4401 22815: identity 9 0 5 2,1,2
4402 22815: inverse 7 1 0
4403 22815: greatest_lower_bound 13 2 0
4404 22815: least_upper_bound 19 2 6 0,2
4405 22815: multiply 23 2 3 0,1,1,2
4406 22816: Id : 11, {_}:
4407 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
4408 [29, 28] by lub_absorbtion ?28 ?29
4409 22816: Id : 12, {_}:
4410 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
4411 [32, 31] by glb_absorbtion ?31 ?32
4412 22816: Id : 13, {_}:
4413 multiply ?34 (least_upper_bound ?35 ?36)
4415 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
4416 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4417 22816: Id : 14, {_}:
4418 multiply ?38 (greatest_lower_bound ?39 ?40)
4420 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
4421 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
4422 22816: Id : 15, {_}:
4423 multiply (least_upper_bound ?42 ?43) ?44
4425 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
4426 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4427 22816: Id : 16, {_}:
4428 multiply (greatest_lower_bound ?46 ?47) ?48
4430 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
4431 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
4432 22816: Id : 17, {_}: inverse identity =>= identity [] by p22a_1
4433 22816: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51
4434 22816: Id : 19, {_}:
4435 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
4436 [54, 53] by p22a_3 ?53 ?54
4439 least_upper_bound (least_upper_bound (multiply a b) identity)
4440 (multiply (least_upper_bound a identity)
4441 (least_upper_bound b identity))
4443 multiply (least_upper_bound a identity)
4444 (least_upper_bound b identity)
4449 22816: a 3 0 3 1,1,1,2
4450 22816: b 3 0 3 2,1,1,2
4451 22816: identity 9 0 5 2,1,2
4452 22816: inverse 7 1 0
4453 22816: greatest_lower_bound 13 2 0
4454 22816: least_upper_bound 19 2 6 0,2
4455 22816: multiply 23 2 3 0,1,1,2
4458 Found proof, 4.698116s
4459 % SZS status Unsatisfiable for GRP185-2.p
4460 % SZS output start CNFRefutation for GRP185-2.p
4461 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51
4462 Id : 17, {_}: inverse identity =>= identity [] by p22a_1
4463 Id : 426, {_}: inverse (multiply ?520 ?521) =?= multiply (inverse ?521) (inverse ?520) [521, 520] by p22a_3 ?520 ?521
4464 Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
4465 Id : 62, {_}: least_upper_bound ?157 (least_upper_bound ?158 ?159) =<= least_upper_bound (least_upper_bound ?157 ?158) ?159 [159, 158, 157] by associativity_of_lub ?157 ?158 ?159
4466 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
4467 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4468 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
4469 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
4470 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
4471 Id : 63, {_}: least_upper_bound ?161 (least_upper_bound ?162 ?163) =<= least_upper_bound (least_upper_bound ?162 ?161) ?163 [163, 162, 161] by Super 62 with 6 at 1,3
4472 Id : 69, {_}: least_upper_bound ?161 (least_upper_bound ?162 ?163) =?= least_upper_bound ?162 (least_upper_bound ?161 ?163) [163, 162, 161] by Demod 63 with 8 at 3
4473 Id : 76, {_}: least_upper_bound ?186 (least_upper_bound ?186 ?187) =>= least_upper_bound ?186 ?187 [187, 186] by Super 8 with 9 at 1,3
4474 Id : 427, {_}: inverse (multiply identity ?523) =<= multiply (inverse ?523) identity [523] by Super 426 with 17 at 2,3
4475 Id : 481, {_}: inverse ?569 =<= multiply (inverse ?569) identity [569] by Demod 427 with 2 at 1,2
4476 Id : 483, {_}: inverse (inverse ?572) =<= multiply ?572 identity [572] by Super 481 with 18 at 1,3
4477 Id : 491, {_}: ?572 =<= multiply ?572 identity [572] by Demod 483 with 18 at 2
4478 Id : 60, {_}: least_upper_bound ?149 (least_upper_bound ?150 ?151) =?= least_upper_bound ?150 (least_upper_bound ?151 ?149) [151, 150, 149] by Super 6 with 8 at 3
4479 Id : 706, {_}: least_upper_bound ?667 (least_upper_bound ?667 ?668) =>= least_upper_bound ?667 ?668 [668, 667] by Super 8 with 9 at 1,3
4480 Id : 707, {_}: least_upper_bound ?670 (least_upper_bound ?671 ?670) =>= least_upper_bound ?670 ?671 [671, 670] by Super 706 with 6 at 2,2
4481 Id : 1184, {_}: least_upper_bound ?916 (least_upper_bound (least_upper_bound ?917 ?916) ?918) =?= least_upper_bound (least_upper_bound ?916 ?917) ?918 [918, 917, 916] by Super 8 with 707 at 1,3
4482 Id : 1214, {_}: least_upper_bound ?916 (least_upper_bound ?917 (least_upper_bound ?916 ?918)) =<= least_upper_bound (least_upper_bound ?916 ?917) ?918 [918, 917, 916] by Demod 1184 with 8 at 2,2
4483 Id : 1215, {_}: least_upper_bound ?916 (least_upper_bound ?917 (least_upper_bound ?916 ?918)) =>= least_upper_bound ?916 (least_upper_bound ?917 ?918) [918, 917, 916] by Demod 1214 with 8 at 3
4484 Id : 7862, {_}: least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) === least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) [] by Demod 7861 with 69 at 2
4485 Id : 7861, {_}: least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) =>= least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) [] by Demod 7860 with 60 at 2,2
4486 Id : 7860, {_}: least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) a)) =>= least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) [] by Demod 7859 with 491 at 2,2,2,2
4487 Id : 7859, {_}: least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) (multiply a identity))) =>= least_upper_bound a (least_upper_bound b (least_upper_bound identity (multiply a b))) [] by Demod 7858 with 69 at 3
4488 Id : 7858, {_}: least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) (multiply a identity))) =>= least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) [] by Demod 7857 with 1215 at 2,2
4489 Id : 7857, {_}: least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b))) [] by Demod 7856 with 60 at 2,3
4490 Id : 7856, {_}: least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) a)) [] by Demod 7855 with 69 at 2
4491 Id : 7855, {_}: least_upper_bound identity (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) a)) [] by Demod 7854 with 491 at 2,2,2,3
4492 Id : 7854, {_}: least_upper_bound identity (least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) (multiply a identity))) [] by Demod 7853 with 69 at 2,2
4493 Id : 7853, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound b (least_upper_bound identity (least_upper_bound (multiply a b) (multiply a identity))) [] by Demod 7852 with 69 at 2,3
4494 Id : 7852, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a identity)))) =>= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 7851 with 76 at 2,2
4495 Id : 7851, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a identity))))) =>= least_upper_bound b (least_upper_bound (multiply a b) (least_upper_bound identity (multiply a identity))) [] by Demod 7850 with 69 at 3
4496 Id : 7850, {_}: least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a identity))) [] by Demod 509 with 69 at 2
4497 Id : 509, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a identity))) [] by Demod 508 with 6 at 2,2,2,2,2
4498 Id : 508, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) identity)))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound identity (multiply a identity))) [] by Demod 507 with 6 at 2,2,3
4499 Id : 507, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) identity)))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) identity)) [] by Demod 506 with 2 at 2,2,2,2,2,2
4500 Id : 506, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) (multiply identity identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) identity)) [] by Demod 505 with 2 at 1,2,2,2,2
4501 Id : 505, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) identity)) [] by Demod 504 with 2 at 2,2,2,3
4502 Id : 504, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) (multiply identity identity))) [] by Demod 503 with 2 at 1,2,3
4503 Id : 503, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))))) =>= least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))) [] by Demod 502 with 8 at 2,2,2
4504 Id : 502, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity))) [] by Demod 501 with 8 at 3
4505 Id : 501, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)) [] by Demod 500 with 15 at 2,2,2,2
4506 Id : 500, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)) [] by Demod 499 with 15 at 1,2,2,2
4507 Id : 499, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity)) [] by Demod 498 with 15 at 2,3
4508 Id : 498, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity) [] by Demod 497 with 15 at 1,3
4509 Id : 497, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity))) =>= least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity) [] by Demod 496 with 13 at 2,2,2
4510 Id : 496, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (multiply (least_upper_bound a identity) (least_upper_bound b identity))) =>= least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity) [] by Demod 495 with 13 at 3
4511 Id : 495, {_}: least_upper_bound (multiply a b) (least_upper_bound identity (multiply (least_upper_bound a identity) (least_upper_bound b identity))) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by Demod 1 with 8 at 2
4512 Id : 1, {_}: least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= multiply (least_upper_bound a identity) (least_upper_bound b identity) [] by prove_p22a
4513 % SZS output end CNFRefutation for GRP185-2.p
4514 22816: solved GRP185-2.p in 2.292143 using lpo
4515 22816: status Unsatisfiable for GRP185-2.p
4516 CLASH, statistics insufficient
4518 22828: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4519 22828: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4521 multiply ?6 (left_division ?6 ?7) =>= ?7
4522 [7, 6] by multiply_left_division ?6 ?7
4524 left_division ?9 (multiply ?9 ?10) =>= ?10
4525 [10, 9] by left_division_multiply ?9 ?10
4527 multiply (right_division ?12 ?13) ?13 =>= ?12
4528 [13, 12] by multiply_right_division ?12 ?13
4530 right_division (multiply ?15 ?16) ?16 =>= ?15
4531 [16, 15] by right_division_multiply ?15 ?16
4533 multiply ?18 (right_inverse ?18) =>= identity
4534 [18] by right_inverse ?18
4536 multiply (left_inverse ?20) ?20 =>= identity
4537 [20] by left_inverse ?20
4538 22828: Id : 10, {_}:
4539 multiply (multiply ?22 (multiply ?23 ?24)) ?22
4541 multiply (multiply ?22 ?23) (multiply ?24 ?22)
4542 [24, 23, 22] by moufang1 ?22 ?23 ?24
4545 multiply (multiply (multiply a b) c) b
4547 multiply a (multiply b (multiply c b))
4548 [] by prove_moufang2
4552 22828: a 2 0 2 1,1,1,2
4553 22828: c 2 0 2 2,1,2
4554 22828: identity 4 0 0
4555 22828: b 4 0 4 2,1,1,2
4556 22828: right_inverse 1 1 0
4557 22828: left_inverse 1 1 0
4558 22828: left_division 2 2 0
4559 22828: right_division 2 2 0
4560 22828: multiply 20 2 6 0,2
4561 CLASH, statistics insufficient
4563 22829: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4564 22829: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4566 multiply ?6 (left_division ?6 ?7) =>= ?7
4567 [7, 6] by multiply_left_division ?6 ?7
4569 left_division ?9 (multiply ?9 ?10) =>= ?10
4570 [10, 9] by left_division_multiply ?9 ?10
4572 multiply (right_division ?12 ?13) ?13 =>= ?12
4573 [13, 12] by multiply_right_division ?12 ?13
4575 right_division (multiply ?15 ?16) ?16 =>= ?15
4576 [16, 15] by right_division_multiply ?15 ?16
4578 multiply ?18 (right_inverse ?18) =>= identity
4579 [18] by right_inverse ?18
4581 multiply (left_inverse ?20) ?20 =>= identity
4582 [20] by left_inverse ?20
4583 22829: Id : 10, {_}:
4584 multiply (multiply ?22 (multiply ?23 ?24)) ?22
4586 multiply (multiply ?22 ?23) (multiply ?24 ?22)
4587 [24, 23, 22] by moufang1 ?22 ?23 ?24
4590 multiply (multiply (multiply a b) c) b
4592 multiply a (multiply b (multiply c b))
4593 [] by prove_moufang2
4597 22829: a 2 0 2 1,1,1,2
4598 22829: c 2 0 2 2,1,2
4599 22829: identity 4 0 0
4600 22829: b 4 0 4 2,1,1,2
4601 22829: right_inverse 1 1 0
4602 22829: left_inverse 1 1 0
4603 22829: left_division 2 2 0
4604 22829: right_division 2 2 0
4605 22829: multiply 20 2 6 0,2
4606 CLASH, statistics insufficient
4608 22830: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4609 22830: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4611 multiply ?6 (left_division ?6 ?7) =>= ?7
4612 [7, 6] by multiply_left_division ?6 ?7
4614 left_division ?9 (multiply ?9 ?10) =>= ?10
4615 [10, 9] by left_division_multiply ?9 ?10
4617 multiply (right_division ?12 ?13) ?13 =>= ?12
4618 [13, 12] by multiply_right_division ?12 ?13
4620 right_division (multiply ?15 ?16) ?16 =>= ?15
4621 [16, 15] by right_division_multiply ?15 ?16
4623 multiply ?18 (right_inverse ?18) =>= identity
4624 [18] by right_inverse ?18
4626 multiply (left_inverse ?20) ?20 =>= identity
4627 [20] by left_inverse ?20
4628 22830: Id : 10, {_}:
4629 multiply (multiply ?22 (multiply ?23 ?24)) ?22
4631 multiply (multiply ?22 ?23) (multiply ?24 ?22)
4632 [24, 23, 22] by moufang1 ?22 ?23 ?24
4635 multiply (multiply (multiply a b) c) b
4637 multiply a (multiply b (multiply c b))
4638 [] by prove_moufang2
4642 22830: a 2 0 2 1,1,1,2
4643 22830: c 2 0 2 2,1,2
4644 22830: identity 4 0 0
4645 22830: b 4 0 4 2,1,1,2
4646 22830: right_inverse 1 1 0
4647 22830: left_inverse 1 1 0
4648 22830: left_division 2 2 0
4649 22830: right_division 2 2 0
4650 22830: multiply 20 2 6 0,2
4651 % SZS status Timeout for GRP200-1.p
4652 CLASH, statistics insufficient
4654 22867: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4655 22867: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4657 multiply ?6 (left_division ?6 ?7) =>= ?7
4658 [7, 6] by multiply_left_division ?6 ?7
4660 left_division ?9 (multiply ?9 ?10) =>= ?10
4661 [10, 9] by left_division_multiply ?9 ?10
4663 multiply (right_division ?12 ?13) ?13 =>= ?12
4664 [13, 12] by multiply_right_division ?12 ?13
4666 right_division (multiply ?15 ?16) ?16 =>= ?15
4667 [16, 15] by right_division_multiply ?15 ?16
4669 multiply ?18 (right_inverse ?18) =>= identity
4670 [18] by right_inverse ?18
4672 multiply (left_inverse ?20) ?20 =>= identity
4673 [20] by left_inverse ?20
4674 22867: Id : 10, {_}:
4675 multiply (multiply (multiply ?22 ?23) ?24) ?23
4677 multiply ?22 (multiply ?23 (multiply ?24 ?23))
4678 [24, 23, 22] by moufang2 ?22 ?23 ?24
4681 multiply (multiply (multiply a b) a) c
4683 multiply a (multiply b (multiply a c))
4684 [] by prove_moufang3
4688 22867: b 2 0 2 2,1,1,2
4690 22867: identity 4 0 0
4691 22867: a 4 0 4 1,1,1,2
4692 22867: right_inverse 1 1 0
4693 22867: left_inverse 1 1 0
4694 22867: left_division 2 2 0
4695 22867: right_division 2 2 0
4696 22867: multiply 20 2 6 0,2
4697 CLASH, statistics insufficient
4699 22868: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4700 22868: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4702 multiply ?6 (left_division ?6 ?7) =>= ?7
4703 [7, 6] by multiply_left_division ?6 ?7
4705 left_division ?9 (multiply ?9 ?10) =>= ?10
4706 [10, 9] by left_division_multiply ?9 ?10
4708 multiply (right_division ?12 ?13) ?13 =>= ?12
4709 [13, 12] by multiply_right_division ?12 ?13
4711 right_division (multiply ?15 ?16) ?16 =>= ?15
4712 [16, 15] by right_division_multiply ?15 ?16
4714 multiply ?18 (right_inverse ?18) =>= identity
4715 [18] by right_inverse ?18
4717 multiply (left_inverse ?20) ?20 =>= identity
4718 [20] by left_inverse ?20
4719 22868: Id : 10, {_}:
4720 multiply (multiply (multiply ?22 ?23) ?24) ?23
4722 multiply ?22 (multiply ?23 (multiply ?24 ?23))
4723 [24, 23, 22] by moufang2 ?22 ?23 ?24
4726 multiply (multiply (multiply a b) a) c
4728 multiply a (multiply b (multiply a c))
4729 [] by prove_moufang3
4733 22868: b 2 0 2 2,1,1,2
4735 22868: identity 4 0 0
4736 22868: a 4 0 4 1,1,1,2
4737 22868: right_inverse 1 1 0
4738 22868: left_inverse 1 1 0
4739 22868: left_division 2 2 0
4740 22868: right_division 2 2 0
4741 22868: multiply 20 2 6 0,2
4742 CLASH, statistics insufficient
4744 22869: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4745 22869: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4747 multiply ?6 (left_division ?6 ?7) =>= ?7
4748 [7, 6] by multiply_left_division ?6 ?7
4750 left_division ?9 (multiply ?9 ?10) =>= ?10
4751 [10, 9] by left_division_multiply ?9 ?10
4753 multiply (right_division ?12 ?13) ?13 =>= ?12
4754 [13, 12] by multiply_right_division ?12 ?13
4756 right_division (multiply ?15 ?16) ?16 =>= ?15
4757 [16, 15] by right_division_multiply ?15 ?16
4759 multiply ?18 (right_inverse ?18) =>= identity
4760 [18] by right_inverse ?18
4762 multiply (left_inverse ?20) ?20 =>= identity
4763 [20] by left_inverse ?20
4764 22869: Id : 10, {_}:
4765 multiply (multiply (multiply ?22 ?23) ?24) ?23
4767 multiply ?22 (multiply ?23 (multiply ?24 ?23))
4768 [24, 23, 22] by moufang2 ?22 ?23 ?24
4771 multiply (multiply (multiply a b) a) c
4773 multiply a (multiply b (multiply a c))
4774 [] by prove_moufang3
4778 22869: b 2 0 2 2,1,1,2
4780 22869: identity 4 0 0
4781 22869: a 4 0 4 1,1,1,2
4782 22869: right_inverse 1 1 0
4783 22869: left_inverse 1 1 0
4784 22869: left_division 2 2 0
4785 22869: right_division 2 2 0
4786 22869: multiply 20 2 6 0,2
4789 Found proof, 24.434685s
4790 % SZS status Unsatisfiable for GRP201-1.p
4791 % SZS output start CNFRefutation for GRP201-1.p
4792 Id : 22, {_}: left_division ?48 (multiply ?48 ?49) =>= ?49 [49, 48] by left_division_multiply ?48 ?49
4793 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18
4794 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13
4795 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7
4796 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4797 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20
4798 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?24) ?23 =>= multiply ?22 (multiply ?23 (multiply ?24 ?23)) [24, 23, 22] by moufang2 ?22 ?23 ?24
4799 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16
4800 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10
4801 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4802 Id : 54, {_}: multiply (multiply (multiply ?119 ?120) ?121) ?120 =>= multiply ?119 (multiply ?120 (multiply ?121 ?120)) [121, 120, 119] by moufang2 ?119 ?120 ?121
4803 Id : 55, {_}: multiply (multiply ?123 ?124) ?123 =<= multiply identity (multiply ?123 (multiply ?124 ?123)) [124, 123] by Super 54 with 2 at 1,1,2
4804 Id : 71, {_}: multiply (multiply ?123 ?124) ?123 =>= multiply ?123 (multiply ?124 ?123) [124, 123] by Demod 55 with 2 at 3
4805 Id : 897, {_}: right_division (multiply ?1221 (multiply ?1222 (multiply ?1223 ?1222))) ?1222 =>= multiply (multiply ?1221 ?1222) ?1223 [1223, 1222, 1221] by Super 7 with 10 at 1,2
4806 Id : 904, {_}: right_division (multiply ?1247 (multiply ?1248 identity)) ?1248 =>= multiply (multiply ?1247 ?1248) (left_inverse ?1248) [1248, 1247] by Super 897 with 9 at 2,2,1,2
4807 Id : 944, {_}: right_division (multiply ?1247 ?1248) ?1248 =<= multiply (multiply ?1247 ?1248) (left_inverse ?1248) [1248, 1247] by Demod 904 with 3 at 2,1,2
4808 Id : 945, {_}: ?1247 =<= multiply (multiply ?1247 ?1248) (left_inverse ?1248) [1248, 1247] by Demod 944 with 7 at 2
4809 Id : 1320, {_}: left_division (multiply ?1774 ?1775) ?1774 =>= left_inverse ?1775 [1775, 1774] by Super 5 with 945 at 2,2
4810 Id : 1325, {_}: left_division ?1787 ?1788 =<= left_inverse (left_division ?1788 ?1787) [1788, 1787] by Super 1320 with 4 at 1,2
4811 Id : 1124, {_}: ?1512 =<= multiply (multiply ?1512 ?1513) (left_inverse ?1513) [1513, 1512] by Demod 944 with 7 at 2
4812 Id : 1136, {_}: right_division ?1545 ?1546 =<= multiply ?1545 (left_inverse ?1546) [1546, 1545] by Super 1124 with 6 at 1,3
4813 Id : 1239, {_}: right_division (multiply (left_inverse ?1664) ?1665) ?1664 =<= multiply (left_inverse ?1664) (multiply ?1665 (left_inverse ?1664)) [1665, 1664] by Super 71 with 1136 at 2
4814 Id : 1291, {_}: right_division (multiply (left_inverse ?1664) ?1665) ?1664 =<= multiply (left_inverse ?1664) (right_division ?1665 ?1664) [1665, 1664] by Demod 1239 with 1136 at 2,3
4815 Id : 621, {_}: right_division (multiply ?874 (multiply ?875 ?874)) ?874 =>= multiply ?874 ?875 [875, 874] by Super 7 with 71 at 1,2
4816 Id : 2721, {_}: right_division (multiply (left_inverse ?3427) (multiply ?3427 (multiply ?3428 ?3427))) ?3427 =>= multiply (left_inverse ?3427) (multiply ?3427 ?3428) [3428, 3427] by Super 1291 with 621 at 2,3
4817 Id : 53, {_}: right_division (multiply ?115 (multiply ?116 (multiply ?117 ?116))) ?116 =>= multiply (multiply ?115 ?116) ?117 [117, 116, 115] by Super 7 with 10 at 1,2
4818 Id : 2757, {_}: multiply (multiply (left_inverse ?3427) ?3427) ?3428 =>= multiply (left_inverse ?3427) (multiply ?3427 ?3428) [3428, 3427] by Demod 2721 with 53 at 2
4819 Id : 2758, {_}: multiply identity ?3428 =<= multiply (left_inverse ?3427) (multiply ?3427 ?3428) [3427, 3428] by Demod 2757 with 9 at 1,2
4820 Id : 2759, {_}: ?3428 =<= multiply (left_inverse ?3427) (multiply ?3427 ?3428) [3427, 3428] by Demod 2758 with 2 at 2
4821 Id : 3344, {_}: left_division (left_inverse ?4254) ?4255 =>= multiply ?4254 ?4255 [4255, 4254] by Super 5 with 2759 at 2,2
4822 Id : 46, {_}: left_division (left_inverse ?101) identity =>= ?101 [101] by Super 5 with 9 at 2,2
4823 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2
4824 Id : 425, {_}: right_inverse (left_inverse ?101) =>= ?101 [101] by Demod 46 with 40 at 2
4825 Id : 626, {_}: multiply (multiply ?892 ?893) ?892 =>= multiply ?892 (multiply ?893 ?892) [893, 892] by Demod 55 with 2 at 3
4826 Id : 633, {_}: multiply identity ?911 =<= multiply ?911 (multiply (right_inverse ?911) ?911) [911] by Super 626 with 8 at 1,2
4827 Id : 654, {_}: ?911 =<= multiply ?911 (multiply (right_inverse ?911) ?911) [911] by Demod 633 with 2 at 2
4828 Id : 727, {_}: left_division ?1053 ?1053 =<= multiply (right_inverse ?1053) ?1053 [1053] by Super 5 with 654 at 2,2
4829 Id : 24, {_}: left_division ?53 ?53 =>= identity [53] by Super 22 with 3 at 2,2
4830 Id : 754, {_}: identity =<= multiply (right_inverse ?1053) ?1053 [1053] by Demod 727 with 24 at 2
4831 Id : 784, {_}: right_division identity ?1115 =>= right_inverse ?1115 [1115] by Super 7 with 754 at 1,2
4832 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2
4833 Id : 808, {_}: left_inverse ?1115 =<= right_inverse ?1115 [1115] by Demod 784 with 45 at 2
4834 Id : 829, {_}: left_inverse (left_inverse ?101) =>= ?101 [101] by Demod 425 with 808 at 2
4835 Id : 3348, {_}: left_division ?4266 ?4267 =<= multiply (left_inverse ?4266) ?4267 [4267, 4266] by Super 3344 with 829 at 1,2
4836 Id : 3417, {_}: multiply (multiply (left_division ?4342 ?4343) ?4344) ?4343 =<= multiply (left_inverse ?4342) (multiply ?4343 (multiply ?4344 ?4343)) [4344, 4343, 4342] by Super 10 with 3348 at 1,1,2
4837 Id : 3495, {_}: multiply (multiply (left_division ?4342 ?4343) ?4344) ?4343 =>= left_division ?4342 (multiply ?4343 (multiply ?4344 ?4343)) [4344, 4343, 4342] by Demod 3417 with 3348 at 3
4838 Id : 3351, {_}: left_division (left_division ?4274 ?4275) ?4276 =<= multiply (left_division ?4275 ?4274) ?4276 [4276, 4275, 4274] by Super 3344 with 1325 at 1,2
4839 Id : 9541, {_}: multiply (left_division (left_division ?4343 ?4342) ?4344) ?4343 =>= left_division ?4342 (multiply ?4343 (multiply ?4344 ?4343)) [4344, 4342, 4343] by Demod 3495 with 3351 at 1,2
4840 Id : 9542, {_}: left_division (left_division ?4344 (left_division ?4343 ?4342)) ?4343 =>= left_division ?4342 (multiply ?4343 (multiply ?4344 ?4343)) [4342, 4343, 4344] by Demod 9541 with 3351 at 2
4841 Id : 9554, {_}: left_division ?10951 (left_division ?10952 (left_division ?10951 ?10953)) =<= left_inverse (left_division ?10953 (multiply ?10951 (multiply ?10952 ?10951))) [10953, 10952, 10951] by Super 1325 with 9542 at 1,3
4842 Id : 27037, {_}: left_division ?28025 (left_division ?28026 (left_division ?28025 ?28027)) =<= left_division (multiply ?28025 (multiply ?28026 ?28025)) ?28027 [28027, 28026, 28025] by Demod 9554 with 1325 at 3
4843 Id : 27055, {_}: left_division (left_inverse ?28099) (left_division ?28100 (left_division (left_inverse ?28099) ?28101)) =>= left_division (multiply (left_inverse ?28099) (right_division ?28100 ?28099)) ?28101 [28101, 28100, 28099] by Super 27037 with 1136 at 2,1,3
4844 Id : 3143, {_}: left_division (left_inverse ?4011) ?4012 =>= multiply ?4011 ?4012 [4012, 4011] by Super 5 with 2759 at 2,2
4845 Id : 27191, {_}: multiply ?28099 (left_division ?28100 (left_division (left_inverse ?28099) ?28101)) =>= left_division (multiply (left_inverse ?28099) (right_division ?28100 ?28099)) ?28101 [28101, 28100, 28099] by Demod 27055 with 3143 at 2
4846 Id : 27192, {_}: multiply ?28099 (left_division ?28100 (left_division (left_inverse ?28099) ?28101)) =>= left_division (left_division ?28099 (right_division ?28100 ?28099)) ?28101 [28101, 28100, 28099] by Demod 27191 with 3348 at 1,3
4847 Id : 1117, {_}: right_division ?1491 (left_inverse ?1492) =>= multiply ?1491 ?1492 [1492, 1491] by Super 7 with 945 at 1,2
4848 Id : 1524, {_}: right_division ?2086 (left_division ?2087 ?2088) =<= multiply ?2086 (left_division ?2088 ?2087) [2088, 2087, 2086] by Super 1117 with 1325 at 2,2
4849 Id : 27193, {_}: right_division ?28099 (left_division (left_division (left_inverse ?28099) ?28101) ?28100) =>= left_division (left_division ?28099 (right_division ?28100 ?28099)) ?28101 [28100, 28101, 28099] by Demod 27192 with 1524 at 2
4850 Id : 3400, {_}: right_division (left_division ?1664 ?1665) ?1664 =<= multiply (left_inverse ?1664) (right_division ?1665 ?1664) [1665, 1664] by Demod 1291 with 3348 at 1,2
4851 Id : 3401, {_}: right_division (left_division ?1664 ?1665) ?1664 =<= left_division ?1664 (right_division ?1665 ?1664) [1665, 1664] by Demod 3400 with 3348 at 3
4852 Id : 27194, {_}: right_division ?28099 (left_division (left_division (left_inverse ?28099) ?28101) ?28100) =>= left_division (right_division (left_division ?28099 ?28100) ?28099) ?28101 [28100, 28101, 28099] by Demod 27193 with 3401 at 1,3
4853 Id : 40132, {_}: right_division ?42719 (left_division (multiply ?42719 ?42720) ?42721) =<= left_division (right_division (left_division ?42719 ?42721) ?42719) ?42720 [42721, 42720, 42719] by Demod 27194 with 3143 at 1,2,2
4854 Id : 1118, {_}: left_division (multiply ?1494 ?1495) ?1494 =>= left_inverse ?1495 [1495, 1494] by Super 5 with 945 at 2,2
4855 Id : 3133, {_}: left_division ?3978 (left_inverse ?3979) =>= left_inverse (multiply ?3979 ?3978) [3979, 3978] by Super 1118 with 2759 at 1,2
4856 Id : 40144, {_}: right_division ?42768 (left_division (multiply ?42768 ?42769) (left_inverse ?42770)) =<= left_division (right_division (left_inverse (multiply ?42770 ?42768)) ?42768) ?42769 [42770, 42769, 42768] by Super 40132 with 3133 at 1,1,3
4857 Id : 40468, {_}: right_division ?42768 (left_inverse (multiply ?42770 (multiply ?42768 ?42769))) =<= left_division (right_division (left_inverse (multiply ?42770 ?42768)) ?42768) ?42769 [42769, 42770, 42768] by Demod 40144 with 3133 at 2,2
4858 Id : 3414, {_}: right_division (left_inverse ?4334) ?4335 =<= left_division ?4334 (left_inverse ?4335) [4335, 4334] by Super 1136 with 3348 at 3
4859 Id : 3502, {_}: right_division (left_inverse ?4334) ?4335 =>= left_inverse (multiply ?4335 ?4334) [4335, 4334] by Demod 3414 with 3133 at 3
4860 Id : 40469, {_}: right_division ?42768 (left_inverse (multiply ?42770 (multiply ?42768 ?42769))) =<= left_division (left_inverse (multiply ?42768 (multiply ?42770 ?42768))) ?42769 [42769, 42770, 42768] by Demod 40468 with 3502 at 1,3
4861 Id : 40470, {_}: multiply ?42768 (multiply ?42770 (multiply ?42768 ?42769)) =<= left_division (left_inverse (multiply ?42768 (multiply ?42770 ?42768))) ?42769 [42769, 42770, 42768] by Demod 40469 with 1117 at 2
4862 Id : 40471, {_}: multiply ?42768 (multiply ?42770 (multiply ?42768 ?42769)) =<= multiply (multiply ?42768 (multiply ?42770 ?42768)) ?42769 [42769, 42770, 42768] by Demod 40470 with 3143 at 3
4863 Id : 50862, {_}: multiply a (multiply b (multiply a c)) =?= multiply a (multiply b (multiply a c)) [] by Demod 50861 with 40471 at 2
4864 Id : 50861, {_}: multiply (multiply a (multiply b a)) c =>= multiply a (multiply b (multiply a c)) [] by Demod 1 with 71 at 1,2
4865 Id : 1, {_}: multiply (multiply (multiply a b) a) c =>= multiply a (multiply b (multiply a c)) [] by prove_moufang3
4866 % SZS output end CNFRefutation for GRP201-1.p
4867 22868: solved GRP201-1.p in 12.232764 using kbo
4868 22868: status Unsatisfiable for GRP201-1.p
4869 CLASH, statistics insufficient
4871 CLASH, statistics insufficient
4873 22883: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4874 22883: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4876 multiply ?6 (left_division ?6 ?7) =>= ?7
4877 [7, 6] by multiply_left_division ?6 ?7
4879 left_division ?9 (multiply ?9 ?10) =>= ?10
4880 [10, 9] by left_division_multiply ?9 ?10
4882 multiply (right_division ?12 ?13) ?13 =>= ?12
4883 [13, 12] by multiply_right_division ?12 ?13
4885 right_division (multiply ?15 ?16) ?16 =>= ?15
4886 [16, 15] by right_division_multiply ?15 ?16
4888 multiply ?18 (right_inverse ?18) =>= identity
4889 [18] by right_inverse ?18
4891 multiply (left_inverse ?20) ?20 =>= identity
4892 [20] by left_inverse ?20
4893 22883: Id : 10, {_}:
4894 multiply (multiply (multiply ?22 ?23) ?22) ?24
4896 multiply ?22 (multiply ?23 (multiply ?22 ?24))
4897 [24, 23, 22] by moufang3 ?22 ?23 ?24
4900 multiply (multiply a (multiply b c)) a
4902 multiply (multiply a b) (multiply c a)
4903 [] by prove_moufang1
4907 22883: b 2 0 2 1,2,1,2
4908 22883: c 2 0 2 2,2,1,2
4909 22883: identity 4 0 0
4910 22883: a 4 0 4 1,1,2
4911 22883: right_inverse 1 1 0
4912 22883: left_inverse 1 1 0
4913 22883: left_division 2 2 0
4914 22883: right_division 2 2 0
4915 22883: multiply 20 2 6 0,2
4916 22882: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4917 22882: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4919 multiply ?6 (left_division ?6 ?7) =>= ?7
4920 [7, 6] by multiply_left_division ?6 ?7
4922 left_division ?9 (multiply ?9 ?10) =>= ?10
4923 [10, 9] by left_division_multiply ?9 ?10
4925 multiply (right_division ?12 ?13) ?13 =>= ?12
4926 [13, 12] by multiply_right_division ?12 ?13
4928 right_division (multiply ?15 ?16) ?16 =>= ?15
4929 [16, 15] by right_division_multiply ?15 ?16
4931 multiply ?18 (right_inverse ?18) =>= identity
4932 [18] by right_inverse ?18
4934 multiply (left_inverse ?20) ?20 =>= identity
4935 [20] by left_inverse ?20
4936 22882: Id : 10, {_}:
4937 multiply (multiply (multiply ?22 ?23) ?22) ?24
4939 multiply ?22 (multiply ?23 (multiply ?22 ?24))
4940 [24, 23, 22] by moufang3 ?22 ?23 ?24
4943 multiply (multiply a (multiply b c)) a
4945 multiply (multiply a b) (multiply c a)
4946 [] by prove_moufang1
4950 22882: b 2 0 2 1,2,1,2
4951 22882: c 2 0 2 2,2,1,2
4952 22882: identity 4 0 0
4953 22882: a 4 0 4 1,1,2
4954 22882: right_inverse 1 1 0
4955 22882: left_inverse 1 1 0
4956 22882: left_division 2 2 0
4957 22882: right_division 2 2 0
4958 22882: multiply 20 2 6 0,2
4959 CLASH, statistics insufficient
4961 22884: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
4962 22884: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
4964 multiply ?6 (left_division ?6 ?7) =>= ?7
4965 [7, 6] by multiply_left_division ?6 ?7
4967 left_division ?9 (multiply ?9 ?10) =>= ?10
4968 [10, 9] by left_division_multiply ?9 ?10
4970 multiply (right_division ?12 ?13) ?13 =>= ?12
4971 [13, 12] by multiply_right_division ?12 ?13
4973 right_division (multiply ?15 ?16) ?16 =>= ?15
4974 [16, 15] by right_division_multiply ?15 ?16
4976 multiply ?18 (right_inverse ?18) =>= identity
4977 [18] by right_inverse ?18
4979 multiply (left_inverse ?20) ?20 =>= identity
4980 [20] by left_inverse ?20
4981 22884: Id : 10, {_}:
4982 multiply (multiply (multiply ?22 ?23) ?22) ?24
4984 multiply ?22 (multiply ?23 (multiply ?22 ?24))
4985 [24, 23, 22] by moufang3 ?22 ?23 ?24
4988 multiply (multiply a (multiply b c)) a
4990 multiply (multiply a b) (multiply c a)
4991 [] by prove_moufang1
4995 22884: b 2 0 2 1,2,1,2
4996 22884: c 2 0 2 2,2,1,2
4997 22884: identity 4 0 0
4998 22884: a 4 0 4 1,1,2
4999 22884: right_inverse 1 1 0
5000 22884: left_inverse 1 1 0
5001 22884: left_division 2 2 0
5002 22884: right_division 2 2 0
5003 22884: multiply 20 2 6 0,2
5006 Found proof, 29.906330s
5007 % SZS status Unsatisfiable for GRP202-1.p
5008 % SZS output start CNFRefutation for GRP202-1.p
5009 Id : 56, {_}: multiply (multiply (multiply ?126 ?127) ?126) ?128 =>= multiply ?126 (multiply ?127 (multiply ?126 ?128)) [128, 127, 126] by moufang3 ?126 ?127 ?128
5010 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7
5011 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20
5012 Id : 22, {_}: left_division ?48 (multiply ?48 ?49) =>= ?49 [49, 48] by left_division_multiply ?48 ?49
5013 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
5014 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10
5015 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18
5016 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13
5017 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16
5018 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24
5019 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
5020 Id : 53, {_}: multiply ?115 (multiply ?116 (multiply ?115 identity)) =>= multiply (multiply ?115 ?116) ?115 [116, 115] by Super 3 with 10 at 2
5021 Id : 70, {_}: multiply ?115 (multiply ?116 ?115) =<= multiply (multiply ?115 ?116) ?115 [116, 115] by Demod 53 with 3 at 2,2,2
5022 Id : 894, {_}: right_division (multiply ?1099 (multiply ?1100 ?1099)) ?1099 =>= multiply ?1099 ?1100 [1100, 1099] by Super 7 with 70 at 1,2
5023 Id : 900, {_}: right_division (multiply ?1115 ?1116) ?1115 =<= multiply ?1115 (right_division ?1116 ?1115) [1116, 1115] by Super 894 with 6 at 2,1,2
5024 Id : 55, {_}: right_division (multiply ?122 (multiply ?123 (multiply ?122 ?124))) ?124 =>= multiply (multiply ?122 ?123) ?122 [124, 123, 122] by Super 7 with 10 at 1,2
5025 Id : 2577, {_}: right_division (multiply ?3478 (multiply ?3479 (multiply ?3478 ?3480))) ?3480 =>= multiply ?3478 (multiply ?3479 ?3478) [3480, 3479, 3478] by Demod 55 with 70 at 3
5026 Id : 647, {_}: multiply ?831 (multiply ?832 ?831) =<= multiply (multiply ?831 ?832) ?831 [832, 831] by Demod 53 with 3 at 2,2,2
5027 Id : 654, {_}: multiply ?850 (multiply (right_inverse ?850) ?850) =>= multiply identity ?850 [850] by Super 647 with 8 at 1,3
5028 Id : 677, {_}: multiply ?850 (multiply (right_inverse ?850) ?850) =>= ?850 [850] by Demod 654 with 2 at 3
5029 Id : 765, {_}: left_division ?991 ?991 =<= multiply (right_inverse ?991) ?991 [991] by Super 5 with 677 at 2,2
5030 Id : 24, {_}: left_division ?53 ?53 =>= identity [53] by Super 22 with 3 at 2,2
5031 Id : 791, {_}: identity =<= multiply (right_inverse ?991) ?991 [991] by Demod 765 with 24 at 2
5032 Id : 819, {_}: right_division identity ?1047 =>= right_inverse ?1047 [1047] by Super 7 with 791 at 1,2
5033 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2
5034 Id : 846, {_}: left_inverse ?1047 =<= right_inverse ?1047 [1047] by Demod 819 with 45 at 2
5035 Id : 861, {_}: multiply ?18 (left_inverse ?18) =>= identity [18] by Demod 8 with 846 at 2,2
5036 Id : 2586, {_}: right_division (multiply ?3513 (multiply ?3514 identity)) (left_inverse ?3513) =>= multiply ?3513 (multiply ?3514 ?3513) [3514, 3513] by Super 2577 with 861 at 2,2,1,2
5037 Id : 2645, {_}: right_division (multiply ?3513 ?3514) (left_inverse ?3513) =>= multiply ?3513 (multiply ?3514 ?3513) [3514, 3513] by Demod 2586 with 3 at 2,1,2
5038 Id : 2833, {_}: right_division (multiply (left_inverse ?3781) (multiply ?3781 ?3782)) (left_inverse ?3781) =>= multiply (left_inverse ?3781) (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Super 900 with 2645 at 2,3
5039 Id : 52, {_}: multiply ?111 (multiply ?112 (multiply ?111 (left_division (multiply (multiply ?111 ?112) ?111) ?113))) =>= ?113 [113, 112, 111] by Super 4 with 10 at 2
5040 Id : 969, {_}: multiply ?1216 (multiply ?1217 (multiply ?1216 (left_division (multiply ?1216 (multiply ?1217 ?1216)) ?1218))) =>= ?1218 [1218, 1217, 1216] by Demod 52 with 70 at 1,2,2,2,2
5041 Id : 976, {_}: multiply ?1242 (multiply (left_inverse ?1242) (multiply ?1242 (left_division (multiply ?1242 identity) ?1243))) =>= ?1243 [1243, 1242] by Super 969 with 9 at 2,1,2,2,2,2
5042 Id : 1036, {_}: multiply ?1242 (multiply (left_inverse ?1242) (multiply ?1242 (left_division ?1242 ?1243))) =>= ?1243 [1243, 1242] by Demod 976 with 3 at 1,2,2,2,2
5043 Id : 1037, {_}: multiply ?1242 (multiply (left_inverse ?1242) ?1243) =>= ?1243 [1243, 1242] by Demod 1036 with 4 at 2,2,2
5044 Id : 1172, {_}: left_division ?1548 ?1549 =<= multiply (left_inverse ?1548) ?1549 [1549, 1548] by Super 5 with 1037 at 2,2
5045 Id : 2879, {_}: right_division (left_division ?3781 (multiply ?3781 ?3782)) (left_inverse ?3781) =<= multiply (left_inverse ?3781) (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Demod 2833 with 1172 at 1,2
5046 Id : 2880, {_}: right_division (left_division ?3781 (multiply ?3781 ?3782)) (left_inverse ?3781) =>= left_division ?3781 (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Demod 2879 with 1172 at 3
5047 Id : 2881, {_}: right_division ?3782 (left_inverse ?3781) =<= left_division ?3781 (multiply ?3781 (multiply ?3782 ?3781)) [3781, 3782] by Demod 2880 with 5 at 1,2
5048 Id : 2882, {_}: right_division ?3782 (left_inverse ?3781) =>= multiply ?3782 ?3781 [3781, 3782] by Demod 2881 with 5 at 3
5049 Id : 1389, {_}: right_division (left_division ?1827 ?1828) ?1828 =>= left_inverse ?1827 [1828, 1827] by Super 7 with 1172 at 1,2
5050 Id : 28, {_}: left_division (right_division ?62 ?63) ?62 =>= ?63 [63, 62] by Super 5 with 6 at 2,2
5051 Id : 1395, {_}: right_division ?1844 ?1845 =<= left_inverse (right_division ?1845 ?1844) [1845, 1844] by Super 1389 with 28 at 1,2
5052 Id : 3679, {_}: multiply (multiply ?4879 ?4880) ?4881 =<= multiply ?4880 (multiply (left_division ?4880 ?4879) (multiply ?4880 ?4881)) [4881, 4880, 4879] by Super 56 with 4 at 1,1,2
5053 Id : 3684, {_}: multiply (multiply ?4897 ?4898) (left_division ?4898 ?4899) =>= multiply ?4898 (multiply (left_division ?4898 ?4897) ?4899) [4899, 4898, 4897] by Super 3679 with 4 at 2,2,3
5054 Id : 2950, {_}: right_division (left_inverse ?3910) ?3911 =>= left_inverse (multiply ?3911 ?3910) [3911, 3910] by Super 1395 with 2882 at 1,3
5055 Id : 3037, {_}: left_inverse (multiply (left_inverse ?4021) ?4022) =>= multiply (left_inverse ?4022) ?4021 [4022, 4021] by Super 2882 with 2950 at 2
5056 Id : 3056, {_}: left_inverse (left_division ?4021 ?4022) =<= multiply (left_inverse ?4022) ?4021 [4022, 4021] by Demod 3037 with 1172 at 1,2
5057 Id : 3057, {_}: left_inverse (left_division ?4021 ?4022) =>= left_division ?4022 ?4021 [4022, 4021] by Demod 3056 with 1172 at 3
5058 Id : 3222, {_}: right_division ?4224 (left_division ?4225 ?4226) =<= multiply ?4224 (left_division ?4226 ?4225) [4226, 4225, 4224] by Super 2882 with 3057 at 2,2
5059 Id : 8079, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =<= multiply ?4898 (multiply (left_division ?4898 ?4897) ?4899) [4899, 4898, 4897] by Demod 3684 with 3222 at 2
5060 Id : 3218, {_}: left_division (left_division ?4210 ?4211) ?4212 =<= multiply (left_division ?4211 ?4210) ?4212 [4212, 4211, 4210] by Super 1172 with 3057 at 1,3
5061 Id : 8080, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =<= multiply ?4898 (left_division (left_division ?4897 ?4898) ?4899) [4899, 4898, 4897] by Demod 8079 with 3218 at 2,3
5062 Id : 8081, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =>= right_division ?4898 (left_division ?4899 (left_division ?4897 ?4898)) [4899, 4898, 4897] by Demod 8080 with 3222 at 3
5063 Id : 8094, {_}: right_division (left_division ?9766 ?9767) (multiply ?9768 ?9767) =<= left_inverse (right_division ?9767 (left_division ?9766 (left_division ?9768 ?9767))) [9768, 9767, 9766] by Super 1395 with 8081 at 1,3
5064 Id : 8159, {_}: right_division (left_division ?9766 ?9767) (multiply ?9768 ?9767) =<= right_division (left_division ?9766 (left_division ?9768 ?9767)) ?9767 [9768, 9767, 9766] by Demod 8094 with 1395 at 3
5065 Id : 23778, {_}: right_division (left_division ?25246 (left_inverse ?25247)) (multiply ?25248 (left_inverse ?25247)) =>= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25247, 25246] by Super 2882 with 8159 at 2
5066 Id : 2960, {_}: right_division ?3937 (left_inverse ?3938) =>= multiply ?3937 ?3938 [3938, 3937] by Demod 2881 with 5 at 3
5067 Id : 46, {_}: left_division (left_inverse ?101) identity =>= ?101 [101] by Super 5 with 9 at 2,2
5068 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2
5069 Id : 426, {_}: right_inverse (left_inverse ?101) =>= ?101 [101] by Demod 46 with 40 at 2
5070 Id : 864, {_}: left_inverse (left_inverse ?101) =>= ?101 [101] by Demod 426 with 846 at 2
5071 Id : 2964, {_}: right_division ?3949 ?3950 =<= multiply ?3949 (left_inverse ?3950) [3950, 3949] by Super 2960 with 864 at 2,2
5072 Id : 3107, {_}: left_division ?4125 (left_inverse ?4126) =>= right_division (left_inverse ?4125) ?4126 [4126, 4125] by Super 1172 with 2964 at 3
5073 Id : 3145, {_}: left_division ?4125 (left_inverse ?4126) =>= left_inverse (multiply ?4126 ?4125) [4126, 4125] by Demod 3107 with 2950 at 3
5074 Id : 23925, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (multiply ?25248 (left_inverse ?25247)) =>= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25246, 25247] by Demod 23778 with 3145 at 1,2
5075 Id : 23926, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (right_division ?25248 ?25247) =<= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25246, 25247] by Demod 23925 with 2964 at 2,2
5076 Id : 23927, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (right_division ?25248 ?25247) =<= left_division (left_division (left_division ?25248 (left_inverse ?25247)) ?25246) ?25247 [25248, 25246, 25247] by Demod 23926 with 3218 at 3
5077 Id : 23928, {_}: left_inverse (multiply (right_division ?25248 ?25247) (multiply ?25247 ?25246)) =<= left_division (left_division (left_division ?25248 (left_inverse ?25247)) ?25246) ?25247 [25246, 25247, 25248] by Demod 23927 with 2950 at 2
5078 Id : 23929, {_}: left_inverse (multiply (right_division ?25248 ?25247) (multiply ?25247 ?25246)) =<= left_division (left_division (left_inverse (multiply ?25247 ?25248)) ?25246) ?25247 [25246, 25247, 25248] by Demod 23928 with 3145 at 1,1,3
5079 Id : 1175, {_}: multiply ?1556 (multiply (left_inverse ?1556) ?1557) =>= ?1557 [1557, 1556] by Demod 1036 with 4 at 2,2,2
5080 Id : 1185, {_}: multiply ?1584 ?1585 =<= left_division (left_inverse ?1584) ?1585 [1585, 1584] by Super 1175 with 4 at 2,2
5081 Id : 1426, {_}: multiply (right_division ?1873 ?1874) ?1875 =>= left_division (right_division ?1874 ?1873) ?1875 [1875, 1874, 1873] by Super 1185 with 1395 at 1,3
5082 Id : 23930, {_}: left_inverse (left_division (right_division ?25247 ?25248) (multiply ?25247 ?25246)) =<= left_division (left_division (left_inverse (multiply ?25247 ?25248)) ?25246) ?25247 [25246, 25248, 25247] by Demod 23929 with 1426 at 1,2
5083 Id : 23931, {_}: left_inverse (left_division (right_division ?25247 ?25248) (multiply ?25247 ?25246)) =>= left_division (multiply (multiply ?25247 ?25248) ?25246) ?25247 [25246, 25248, 25247] by Demod 23930 with 1185 at 1,3
5084 Id : 37380, {_}: left_division (multiply ?37773 ?37774) (right_division ?37773 ?37775) =<= left_division (multiply (multiply ?37773 ?37775) ?37774) ?37773 [37775, 37774, 37773] by Demod 23931 with 3057 at 2
5085 Id : 37397, {_}: left_division (multiply ?37844 ?37845) (right_division ?37844 (left_inverse ?37846)) =>= left_division (multiply (right_division ?37844 ?37846) ?37845) ?37844 [37846, 37845, 37844] by Super 37380 with 2964 at 1,1,3
5086 Id : 37604, {_}: left_division (multiply ?37844 ?37845) (multiply ?37844 ?37846) =<= left_division (multiply (right_division ?37844 ?37846) ?37845) ?37844 [37846, 37845, 37844] by Demod 37397 with 2882 at 2,2
5087 Id : 37605, {_}: left_division (multiply ?37844 ?37845) (multiply ?37844 ?37846) =<= left_division (left_division (right_division ?37846 ?37844) ?37845) ?37844 [37846, 37845, 37844] by Demod 37604 with 1426 at 1,3
5088 Id : 8101, {_}: right_division (multiply ?9794 ?9795) (left_division ?9796 ?9795) =>= right_division ?9795 (left_division ?9796 (left_division ?9794 ?9795)) [9796, 9795, 9794] by Demod 8080 with 3222 at 3
5089 Id : 8114, {_}: right_division (multiply ?9845 (left_inverse ?9846)) (left_inverse (multiply ?9846 ?9847)) =>= right_division (left_inverse ?9846) (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) [9847, 9846, 9845] by Super 8101 with 3145 at 2,2
5090 Id : 8186, {_}: multiply (multiply ?9845 (left_inverse ?9846)) (multiply ?9846 ?9847) =<= right_division (left_inverse ?9846) (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) [9847, 9846, 9845] by Demod 8114 with 2882 at 2
5091 Id : 8187, {_}: multiply (multiply ?9845 (left_inverse ?9846)) (multiply ?9846 ?9847) =<= left_inverse (multiply (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) ?9846) [9847, 9846, 9845] by Demod 8186 with 2950 at 3
5092 Id : 8188, {_}: multiply (right_division ?9845 ?9846) (multiply ?9846 ?9847) =<= left_inverse (multiply (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) ?9846) [9847, 9846, 9845] by Demod 8187 with 2964 at 1,2
5093 Id : 8189, {_}: multiply (right_division ?9845 ?9846) (multiply ?9846 ?9847) =<= left_inverse (left_division (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) ?9846) [9847, 9846, 9845] by Demod 8188 with 3218 at 1,3
5094 Id : 8190, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_inverse (left_division (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) ?9846) [9847, 9845, 9846] by Demod 8189 with 1426 at 2
5095 Id : 8191, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_division ?9846 (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) [9847, 9845, 9846] by Demod 8190 with 3057 at 3
5096 Id : 8192, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_division ?9846 (left_division (left_inverse (multiply ?9846 ?9845)) ?9847) [9847, 9845, 9846] by Demod 8191 with 3145 at 1,2,3
5097 Id : 24138, {_}: left_division (right_division ?25824 ?25825) (multiply ?25824 ?25826) =>= left_division ?25824 (multiply (multiply ?25824 ?25825) ?25826) [25826, 25825, 25824] by Demod 8192 with 1185 at 2,3
5098 Id : 24175, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =<= left_division ?25977 (multiply (multiply ?25977 (left_inverse ?25978)) ?25979) [25979, 25978, 25977] by Super 24138 with 2882 at 1,2
5099 Id : 24394, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =>= left_division ?25977 (multiply (right_division ?25977 ?25978) ?25979) [25979, 25978, 25977] by Demod 24175 with 2964 at 1,2,3
5100 Id : 24395, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =>= left_division ?25977 (left_division (right_division ?25978 ?25977) ?25979) [25979, 25978, 25977] by Demod 24394 with 1426 at 2,3
5101 Id : 47972, {_}: left_division ?49234 (left_division (right_division ?49235 ?49234) ?49236) =<= left_division (left_division (right_division ?49236 ?49234) ?49235) ?49234 [49236, 49235, 49234] by Demod 37605 with 24395 at 2
5102 Id : 1255, {_}: multiply (left_inverse ?1641) (multiply ?1642 (left_inverse ?1641)) =>= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Super 70 with 1172 at 1,3
5103 Id : 1319, {_}: left_division ?1641 (multiply ?1642 (left_inverse ?1641)) =<= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Demod 1255 with 1172 at 2
5104 Id : 3086, {_}: left_division ?1641 (right_division ?1642 ?1641) =<= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Demod 1319 with 2964 at 2,2
5105 Id : 3087, {_}: left_division ?1641 (right_division ?1642 ?1641) =>= right_division (left_division ?1641 ?1642) ?1641 [1642, 1641] by Demod 3086 with 2964 at 3
5106 Id : 48040, {_}: left_division ?49524 (left_division (right_division (right_division ?49525 (right_division ?49526 ?49524)) ?49524) ?49526) =<= left_division (right_division (left_division (right_division ?49526 ?49524) ?49525) (right_division ?49526 ?49524)) ?49524 [49526, 49525, 49524] by Super 47972 with 3087 at 1,3
5107 Id : 59, {_}: multiply (multiply ?136 ?137) ?138 =<= multiply ?137 (multiply (left_division ?137 ?136) (multiply ?137 ?138)) [138, 137, 136] by Super 56 with 4 at 1,1,2
5108 Id : 3668, {_}: left_division ?4830 (multiply (multiply ?4831 ?4830) ?4832) =<= multiply (left_division ?4830 ?4831) (multiply ?4830 ?4832) [4832, 4831, 4830] by Super 5 with 59 at 2,2
5109 Id : 7892, {_}: left_division ?4830 (multiply (multiply ?4831 ?4830) ?4832) =<= left_division (left_division ?4831 ?4830) (multiply ?4830 ?4832) [4832, 4831, 4830] by Demod 3668 with 3218 at 3
5110 Id : 7900, {_}: left_inverse (left_division ?9488 (multiply (multiply ?9489 ?9488) ?9490)) =>= left_division (multiply ?9488 ?9490) (left_division ?9489 ?9488) [9490, 9489, 9488] by Super 3057 with 7892 at 1,2
5111 Id : 7969, {_}: left_division (multiply (multiply ?9489 ?9488) ?9490) ?9488 =>= left_division (multiply ?9488 ?9490) (left_division ?9489 ?9488) [9490, 9488, 9489] by Demod 7900 with 3057 at 2
5112 Id : 22647, {_}: left_division (multiply (left_inverse ?23598) ?23599) (left_division ?23600 (left_inverse ?23598)) =>= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Super 3145 with 7969 at 2
5113 Id : 22730, {_}: left_division (left_division ?23598 ?23599) (left_division ?23600 (left_inverse ?23598)) =<= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Demod 22647 with 1172 at 1,2
5114 Id : 22731, {_}: left_division (left_division ?23598 ?23599) (left_inverse (multiply ?23598 ?23600)) =<= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Demod 22730 with 3145 at 2,2
5115 Id : 22732, {_}: left_division (left_division ?23598 ?23599) (left_inverse (multiply ?23598 ?23600)) =>= left_inverse (multiply ?23598 (multiply (right_division ?23600 ?23598) ?23599)) [23600, 23599, 23598] by Demod 22731 with 2964 at 1,2,1,3
5116 Id : 22733, {_}: left_inverse (multiply (multiply ?23598 ?23600) (left_division ?23598 ?23599)) =>= left_inverse (multiply ?23598 (multiply (right_division ?23600 ?23598) ?23599)) [23599, 23600, 23598] by Demod 22732 with 3145 at 2
5117 Id : 22734, {_}: left_inverse (multiply (multiply ?23598 ?23600) (left_division ?23598 ?23599)) =>= left_inverse (multiply ?23598 (left_division (right_division ?23598 ?23600) ?23599)) [23599, 23600, 23598] by Demod 22733 with 1426 at 2,1,3
5118 Id : 22735, {_}: left_inverse (right_division (multiply ?23598 ?23600) (left_division ?23599 ?23598)) =<= left_inverse (multiply ?23598 (left_division (right_division ?23598 ?23600) ?23599)) [23599, 23600, 23598] by Demod 22734 with 3222 at 1,2
5119 Id : 22736, {_}: left_inverse (right_division (multiply ?23598 ?23600) (left_division ?23599 ?23598)) =>= left_inverse (right_division ?23598 (left_division ?23599 (right_division ?23598 ?23600))) [23599, 23600, 23598] by Demod 22735 with 3222 at 1,3
5120 Id : 22737, {_}: right_division (left_division ?23599 ?23598) (multiply ?23598 ?23600) =<= left_inverse (right_division ?23598 (left_division ?23599 (right_division ?23598 ?23600))) [23600, 23598, 23599] by Demod 22736 with 1395 at 2
5121 Id : 33406, {_}: right_division (left_division ?33402 ?33403) (multiply ?33403 ?33404) =<= right_division (left_division ?33402 (right_division ?33403 ?33404)) ?33403 [33404, 33403, 33402] by Demod 22737 with 1395 at 3
5122 Id : 33487, {_}: right_division (left_division (left_inverse ?33737) ?33738) (multiply ?33738 ?33739) =>= right_division (multiply ?33737 (right_division ?33738 ?33739)) ?33738 [33739, 33738, 33737] by Super 33406 with 1185 at 1,3
5123 Id : 33773, {_}: right_division (multiply ?33737 ?33738) (multiply ?33738 ?33739) =<= right_division (multiply ?33737 (right_division ?33738 ?33739)) ?33738 [33739, 33738, 33737] by Demod 33487 with 1185 at 1,2
5124 Id : 2967, {_}: right_division ?3957 (right_division ?3958 ?3959) =<= multiply ?3957 (right_division ?3959 ?3958) [3959, 3958, 3957] by Super 2960 with 1395 at 2,2
5125 Id : 33774, {_}: right_division (multiply ?33737 ?33738) (multiply ?33738 ?33739) =<= right_division (right_division ?33737 (right_division ?33739 ?33738)) ?33738 [33739, 33738, 33737] by Demod 33773 with 2967 at 1,3
5126 Id : 48410, {_}: left_division ?49524 (left_division (right_division (multiply ?49525 ?49524) (multiply ?49524 ?49526)) ?49526) =<= left_division (right_division (left_division (right_division ?49526 ?49524) ?49525) (right_division ?49526 ?49524)) ?49524 [49526, 49525, 49524] by Demod 48040 with 33774 at 1,2,2
5127 Id : 640, {_}: multiply (multiply ?22 (multiply ?23 ?22)) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by Demod 10 with 70 at 1,2
5128 Id : 1260, {_}: multiply (multiply ?1655 (left_division ?1656 ?1655)) ?1657 =<= multiply ?1655 (multiply (left_inverse ?1656) (multiply ?1655 ?1657)) [1657, 1656, 1655] by Super 640 with 1172 at 2,1,2
5129 Id : 1315, {_}: multiply (multiply ?1655 (left_division ?1656 ?1655)) ?1657 =>= multiply ?1655 (left_division ?1656 (multiply ?1655 ?1657)) [1657, 1656, 1655] by Demod 1260 with 1172 at 2,3
5130 Id : 5054, {_}: multiply (right_division ?1655 (left_division ?1655 ?1656)) ?1657 =>= multiply ?1655 (left_division ?1656 (multiply ?1655 ?1657)) [1657, 1656, 1655] by Demod 1315 with 3222 at 1,2
5131 Id : 5055, {_}: multiply (right_division ?1655 (left_division ?1655 ?1656)) ?1657 =>= right_division ?1655 (left_division (multiply ?1655 ?1657) ?1656) [1657, 1656, 1655] by Demod 5054 with 3222 at 3
5132 Id : 5056, {_}: left_division (right_division (left_division ?1655 ?1656) ?1655) ?1657 =>= right_division ?1655 (left_division (multiply ?1655 ?1657) ?1656) [1657, 1656, 1655] by Demod 5055 with 1426 at 2
5133 Id : 48411, {_}: left_division ?49524 (left_division (right_division (multiply ?49525 ?49524) (multiply ?49524 ?49526)) ?49526) =>= right_division (right_division ?49526 ?49524) (left_division (multiply (right_division ?49526 ?49524) ?49524) ?49525) [49526, 49525, 49524] by Demod 48410 with 5056 at 3
5134 Id : 3100, {_}: multiply (multiply (left_inverse ?4103) (right_division ?4104 ?4103)) ?4105 =<= multiply (left_inverse ?4103) (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Super 640 with 2964 at 2,1,2
5135 Id : 3156, {_}: multiply (left_division ?4103 (right_division ?4104 ?4103)) ?4105 =<= multiply (left_inverse ?4103) (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3100 with 1172 at 1,2
5136 Id : 3157, {_}: multiply (left_division ?4103 (right_division ?4104 ?4103)) ?4105 =<= left_division ?4103 (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3156 with 1172 at 3
5137 Id : 3158, {_}: multiply (right_division (left_division ?4103 ?4104) ?4103) ?4105 =<= left_division ?4103 (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3157 with 3087 at 1,2
5138 Id : 3159, {_}: multiply (right_division (left_division ?4103 ?4104) ?4103) ?4105 =>= left_division ?4103 (multiply ?4104 (left_division ?4103 ?4105)) [4105, 4104, 4103] by Demod 3158 with 1172 at 2,2,3
5139 Id : 3160, {_}: left_division (right_division ?4103 (left_division ?4103 ?4104)) ?4105 =>= left_division ?4103 (multiply ?4104 (left_division ?4103 ?4105)) [4105, 4104, 4103] by Demod 3159 with 1426 at 2
5140 Id : 7103, {_}: left_division (right_division ?4103 (left_division ?4103 ?4104)) ?4105 =>= left_division ?4103 (right_division ?4104 (left_division ?4105 ?4103)) [4105, 4104, 4103] by Demod 3160 with 3222 at 2,3
5141 Id : 7119, {_}: left_division ?8435 (right_division ?8436 (left_division (left_inverse ?8437) ?8435)) =>= left_inverse (multiply ?8437 (right_division ?8435 (left_division ?8435 ?8436))) [8437, 8436, 8435] by Super 3145 with 7103 at 2
5142 Id : 7221, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =<= left_inverse (multiply ?8437 (right_division ?8435 (left_division ?8435 ?8436))) [8437, 8436, 8435] by Demod 7119 with 1185 at 2,2,2
5143 Id : 7222, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =<= left_inverse (right_division ?8437 (right_division (left_division ?8435 ?8436) ?8435)) [8437, 8436, 8435] by Demod 7221 with 2967 at 1,3
5144 Id : 7223, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =>= right_division (right_division (left_division ?8435 ?8436) ?8435) ?8437 [8437, 8436, 8435] by Demod 7222 with 1395 at 3
5145 Id : 21525, {_}: left_inverse (right_division (right_division (left_division ?22100 ?22101) ?22100) ?22102) =>= left_division (right_division ?22101 (multiply ?22102 ?22100)) ?22100 [22102, 22101, 22100] by Super 3057 with 7223 at 1,2
5146 Id : 21646, {_}: right_division ?22102 (right_division (left_division ?22100 ?22101) ?22100) =<= left_division (right_division ?22101 (multiply ?22102 ?22100)) ?22100 [22101, 22100, 22102] by Demod 21525 with 1395 at 2
5147 Id : 48412, {_}: left_division ?49524 (right_division ?49524 (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526)) =>= right_division (right_division ?49526 ?49524) (left_division (multiply (right_division ?49526 ?49524) ?49524) ?49525) [49525, 49526, 49524] by Demod 48411 with 21646 at 2,2
5148 Id : 48413, {_}: left_division ?49524 (right_division ?49524 (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526)) =>= right_division (right_division ?49526 ?49524) (left_division (left_division (right_division ?49524 ?49526) ?49524) ?49525) [49525, 49526, 49524] by Demod 48412 with 1426 at 1,2,3
5149 Id : 3103, {_}: left_division ?4114 (right_division ?4114 ?4115) =>= left_inverse ?4115 [4115, 4114] by Super 5 with 2964 at 2,2
5150 Id : 48414, {_}: left_inverse (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526) =<= right_division (right_division ?49526 ?49524) (left_division (left_division (right_division ?49524 ?49526) ?49524) ?49525) [49524, 49525, 49526] by Demod 48413 with 3103 at 2
5151 Id : 48415, {_}: left_inverse (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526) =>= right_division (right_division ?49526 ?49524) (left_division ?49526 ?49525) [49524, 49525, 49526] by Demod 48414 with 28 at 1,2,3
5152 Id : 48416, {_}: right_division ?49526 (left_division ?49526 (multiply ?49525 ?49524)) =<= right_division (right_division ?49526 ?49524) (left_division ?49526 ?49525) [49524, 49525, 49526] by Demod 48415 with 1395 at 2
5153 Id : 52586, {_}: right_division (left_division ?54688 ?54689) (right_division ?54688 ?54690) =<= left_inverse (right_division ?54688 (left_division ?54688 (multiply ?54689 ?54690))) [54690, 54689, 54688] by Super 1395 with 48416 at 1,3
5154 Id : 52816, {_}: right_division (left_division ?54688 ?54689) (right_division ?54688 ?54690) =<= right_division (left_division ?54688 (multiply ?54689 ?54690)) ?54688 [54690, 54689, 54688] by Demod 52586 with 1395 at 3
5155 Id : 55129, {_}: right_division (left_division (left_inverse ?57654) ?57655) (right_division (left_inverse ?57654) ?57656) =>= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Super 2882 with 52816 at 2
5156 Id : 55322, {_}: right_division (multiply ?57654 ?57655) (right_division (left_inverse ?57654) ?57656) =<= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55129 with 1185 at 1,2
5157 Id : 55323, {_}: right_division (multiply ?57654 ?57655) (left_inverse (multiply ?57656 ?57654)) =<= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55322 with 2950 at 2,2
5158 Id : 55324, {_}: right_division (multiply ?57654 ?57655) (left_inverse (multiply ?57656 ?57654)) =<= left_division (left_division (multiply ?57655 ?57656) (left_inverse ?57654)) ?57654 [57656, 57655, 57654] by Demod 55323 with 3218 at 3
5159 Id : 55325, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= left_division (left_division (multiply ?57655 ?57656) (left_inverse ?57654)) ?57654 [57656, 57655, 57654] by Demod 55324 with 2882 at 2
5160 Id : 55326, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= left_division (left_inverse (multiply ?57654 (multiply ?57655 ?57656))) ?57654 [57656, 57655, 57654] by Demod 55325 with 3145 at 1,3
5161 Id : 55327, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= multiply (multiply ?57654 (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55326 with 1185 at 3
5162 Id : 55328, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =>= multiply ?57654 (multiply (multiply ?57655 ?57656) ?57654) [57656, 57655, 57654] by Demod 55327 with 70 at 3
5163 Id : 57081, {_}: multiply a (multiply (multiply b c) a) =?= multiply a (multiply (multiply b c) a) [] by Demod 57080 with 55328 at 3
5164 Id : 57080, {_}: multiply a (multiply (multiply b c) a) =<= multiply (multiply a b) (multiply c a) [] by Demod 1 with 70 at 2
5165 Id : 1, {_}: multiply (multiply a (multiply b c)) a =>= multiply (multiply a b) (multiply c a) [] by prove_moufang1
5166 % SZS output end CNFRefutation for GRP202-1.p
5167 22883: solved GRP202-1.p in 14.88493 using kbo
5168 22883: status Unsatisfiable for GRP202-1.p
5169 NO CLASH, using fixed ground order
5174 (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4))
5175 (inverse (multiply ?3 (multiply (inverse ?3) ?3)))))
5178 [4, 3, 2] by single_axiom ?2 ?3 ?4
5181 multiply (multiply (inverse b2) b2) a2 =>= a2
5182 [] by prove_these_axioms_2
5186 22932: b2 2 0 2 1,1,1,2
5188 22932: inverse 6 1 1 0,1,1,2
5189 22932: multiply 8 2 2 0,2
5190 NO CLASH, using fixed ground order
5195 (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4))
5196 (inverse (multiply ?3 (multiply (inverse ?3) ?3)))))
5199 [4, 3, 2] by single_axiom ?2 ?3 ?4
5202 multiply (multiply (inverse b2) b2) a2 =>= a2
5203 [] by prove_these_axioms_2
5207 22933: b2 2 0 2 1,1,1,2
5209 22933: inverse 6 1 1 0,1,1,2
5210 22933: multiply 8 2 2 0,2
5211 NO CLASH, using fixed ground order
5216 (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4))
5217 (inverse (multiply ?3 (multiply (inverse ?3) ?3)))))
5220 [4, 3, 2] by single_axiom ?2 ?3 ?4
5223 multiply (multiply (inverse b2) b2) a2 =>= a2
5224 [] by prove_these_axioms_2
5228 22934: b2 2 0 2 1,1,1,2
5230 22934: inverse 6 1 1 0,1,1,2
5231 22934: multiply 8 2 2 0,2
5232 % SZS status Timeout for GRP404-1.p
5233 NO CLASH, using fixed ground order
5238 (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4))
5239 (inverse (multiply ?3 (multiply (inverse ?3) ?3)))))
5242 [4, 3, 2] by single_axiom ?2 ?3 ?4
5245 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5246 [] by prove_these_axioms_3
5250 23295: a3 2 0 2 1,1,2
5251 23295: b3 2 0 2 2,1,2
5253 23295: inverse 5 1 0
5254 23295: multiply 10 2 4 0,2
5255 NO CLASH, using fixed ground order
5260 (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4))
5261 (inverse (multiply ?3 (multiply (inverse ?3) ?3)))))
5264 [4, 3, 2] by single_axiom ?2 ?3 ?4
5267 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5268 [] by prove_these_axioms_3
5272 23296: a3 2 0 2 1,1,2
5273 23296: b3 2 0 2 2,1,2
5275 23296: inverse 5 1 0
5276 23296: multiply 10 2 4 0,2
5277 NO CLASH, using fixed ground order
5282 (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4))
5283 (inverse (multiply ?3 (multiply (inverse ?3) ?3)))))
5286 [4, 3, 2] by single_axiom ?2 ?3 ?4
5289 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5290 [] by prove_these_axioms_3
5294 23297: a3 2 0 2 1,1,2
5295 23297: b3 2 0 2 2,1,2
5297 23297: inverse 5 1 0
5298 23297: multiply 10 2 4 0,2
5299 % SZS status Timeout for GRP405-1.p
5300 NO CLASH, using fixed ground order
5302 NO CLASH, using fixed ground order
5306 (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4))))
5307 (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4))
5310 [4, 3, 2] by single_axiom ?2 ?3 ?4
5313 multiply (multiply (inverse b2) b2) a2 =>= a2
5314 [] by prove_these_axioms_2
5318 23513: b2 2 0 2 1,1,1,2
5320 23513: inverse 6 1 1 0,1,1,2
5321 23513: multiply 8 2 2 0,2
5322 NO CLASH, using fixed ground order
5326 (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4))))
5327 (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4))
5330 [4, 3, 2] by single_axiom ?2 ?3 ?4
5333 multiply (multiply (inverse b2) b2) a2 =>= a2
5334 [] by prove_these_axioms_2
5338 23514: b2 2 0 2 1,1,1,2
5340 23514: inverse 6 1 1 0,1,1,2
5341 23514: multiply 8 2 2 0,2
5344 (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4))))
5345 (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4))
5348 [4, 3, 2] by single_axiom ?2 ?3 ?4
5351 multiply (multiply (inverse b2) b2) a2 =>= a2
5352 [] by prove_these_axioms_2
5356 23512: b2 2 0 2 1,1,1,2
5358 23512: inverse 6 1 1 0,1,1,2
5359 23512: multiply 8 2 2 0,2
5362 Found proof, 51.580663s
5363 % SZS status Unsatisfiable for GRP410-1.p
5364 % SZS output start CNFRefutation for GRP410-1.p
5365 Id : 3, {_}: multiply (multiply (inverse (multiply ?6 (inverse (multiply ?7 ?8)))) (multiply ?6 (inverse ?8))) (inverse (multiply (inverse ?8) ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8
5366 Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
5367 Id : 5, {_}: multiply (multiply (inverse (multiply ?15 (inverse ?16))) (multiply ?15 (inverse (inverse (multiply (inverse ?17) ?17))))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =?= multiply (inverse (multiply ?18 (inverse (multiply ?16 ?17)))) (multiply ?18 (inverse ?17)) [18, 17, 16, 15] by Super 3 with 2 at 1,2,1,1,1,2
5368 Id : 104, {_}: multiply (inverse (multiply ?498 (inverse (multiply (multiply ?499 (inverse (multiply (inverse ?500) ?500))) ?500)))) (multiply ?498 (inverse ?500)) =>= ?499 [500, 499, 498] by Super 2 with 5 at 2
5369 Id : 161, {_}: multiply (multiply (inverse (multiply ?829 (inverse ?830))) (multiply ?829 (inverse (multiply ?831 (inverse ?832))))) (inverse (multiply (inverse (multiply ?831 (inverse ?832))) (multiply ?831 (inverse ?832)))) =>= inverse (multiply ?831 (inverse (multiply (multiply ?830 (inverse (multiply (inverse ?832) ?832))) ?832))) [832, 831, 830, 829] by Super 2 with 104 at 1,2,1,1,1,2
5370 Id : 218, {_}: multiply (inverse (multiply ?1090 (inverse (multiply (inverse (multiply ?1091 (inverse (multiply (multiply ?1092 (inverse (multiply (inverse ?1093) ?1093))) ?1093)))) (multiply ?1091 (inverse ?1093)))))) (multiply ?1090 (inverse (multiply ?1091 (inverse ?1093)))) =?= multiply (inverse (multiply ?1094 (inverse ?1092))) (multiply ?1094 (inverse (multiply ?1091 (inverse ?1093)))) [1094, 1093, 1092, 1091, 1090] by Super 104 with 161 at 1,1,2,1,1,2
5371 Id : 846, {_}: multiply (inverse (multiply ?3342 (inverse ?3343))) (multiply ?3342 (inverse (multiply ?3344 (inverse ?3345)))) =?= multiply (inverse (multiply ?3346 (inverse ?3343))) (multiply ?3346 (inverse (multiply ?3344 (inverse ?3345)))) [3346, 3345, 3344, 3343, 3342] by Demod 218 with 104 at 1,2,1,1,2
5372 Id : 210, {_}: inverse (multiply ?1043 (inverse (multiply (multiply (multiply ?1044 (multiply ?1043 (inverse ?1045))) (inverse (multiply (inverse ?1045) ?1045))) ?1045))) =>= ?1044 [1045, 1044, 1043] by Super 2 with 161 at 2
5373 Id : 856, {_}: multiply (inverse (multiply ?3416 (inverse ?3417))) (multiply ?3416 (inverse (multiply ?3418 (inverse (multiply (multiply (multiply ?3419 (multiply ?3418 (inverse ?3420))) (inverse (multiply (inverse ?3420) ?3420))) ?3420))))) =?= multiply (inverse (multiply ?3421 (inverse ?3417))) (multiply ?3421 ?3419) [3421, 3420, 3419, 3418, 3417, 3416] by Super 846 with 210 at 2,2,3
5374 Id : 1213, {_}: multiply (inverse (multiply ?5198 (inverse ?5199))) (multiply ?5198 ?5200) =?= multiply (inverse (multiply ?5201 (inverse ?5199))) (multiply ?5201 ?5200) [5201, 5200, 5199, 5198] by Demod 856 with 210 at 2,2,2
5375 Id : 1228, {_}: multiply (inverse (multiply ?5296 (inverse (multiply ?5297 (inverse (multiply (multiply (multiply ?5298 (multiply ?5297 (inverse ?5299))) (inverse (multiply (inverse ?5299) ?5299))) ?5299)))))) (multiply ?5296 ?5300) =?= multiply (inverse (multiply ?5301 ?5298)) (multiply ?5301 ?5300) [5301, 5300, 5299, 5298, 5297, 5296] by Super 1213 with 210 at 2,1,1,3
5376 Id : 1288, {_}: multiply (inverse (multiply ?5296 ?5298)) (multiply ?5296 ?5300) =?= multiply (inverse (multiply ?5301 ?5298)) (multiply ?5301 ?5300) [5301, 5300, 5298, 5296] by Demod 1228 with 210 at 2,1,1,2
5377 Id : 1314, {_}: multiply (inverse (multiply ?5709 (inverse (multiply (multiply ?5710 (inverse (multiply (inverse (multiply ?5711 ?5712)) (multiply ?5711 ?5712)))) (multiply ?5713 ?5712))))) (multiply ?5709 (inverse (multiply ?5713 ?5712))) =>= ?5710 [5713, 5712, 5711, 5710, 5709] by Super 104 with 1288 at 1,2,1,1,2,1,1,2
5378 Id : 2743, {_}: multiply ?12126 (inverse (multiply (inverse (multiply ?12127 ?12128)) (multiply ?12127 ?12128))) =?= multiply ?12126 (inverse (multiply (inverse (multiply ?12129 ?12128)) (multiply ?12129 ?12128))) [12129, 12128, 12127, 12126] by Super 2 with 1314 at 1,2
5379 Id : 6, {_}: multiply (multiply (inverse ?20) (multiply (multiply (inverse (multiply ?21 (inverse (multiply ?20 ?22)))) (multiply ?21 (inverse ?22))) (inverse ?22))) (inverse (multiply (inverse ?22) ?22)) =>= inverse ?22 [22, 21, 20] by Super 3 with 2 at 1,1,1,2
5380 Id : 2747, {_}: multiply ?12151 (inverse (multiply (inverse (multiply ?12152 (inverse (multiply (inverse ?12153) ?12153)))) (multiply ?12152 (inverse (multiply (inverse ?12153) ?12153))))) =?= multiply ?12151 (inverse (multiply (inverse (multiply (multiply (inverse ?12154) (multiply (multiply (inverse (multiply ?12155 (inverse (multiply ?12154 ?12153)))) (multiply ?12155 (inverse ?12153))) (inverse ?12153))) (inverse (multiply (inverse ?12153) ?12153)))) (inverse ?12153))) [12155, 12154, 12153, 12152, 12151] by Super 2743 with 6 at 2,1,2,3
5381 Id : 3023, {_}: multiply ?13436 (inverse (multiply (inverse (multiply ?13437 (inverse (multiply (inverse ?13438) ?13438)))) (multiply ?13437 (inverse (multiply (inverse ?13438) ?13438))))) =>= multiply ?13436 (inverse (multiply (inverse (inverse ?13438)) (inverse ?13438))) [13438, 13437, 13436] by Demod 2747 with 6 at 1,1,1,2,3
5382 Id : 3033, {_}: multiply ?13495 (inverse (multiply (inverse (multiply (multiply (inverse (multiply ?13496 (inverse (multiply ?13497 ?13498)))) (multiply ?13496 (inverse ?13498))) (inverse (multiply (inverse ?13498) ?13498)))) ?13497)) =>= multiply ?13495 (inverse (multiply (inverse (inverse ?13498)) (inverse ?13498))) [13498, 13497, 13496, 13495] by Super 3023 with 2 at 2,1,2,2
5383 Id : 3493, {_}: multiply ?14948 (inverse (multiply (inverse ?14949) ?14949)) =?= multiply ?14948 (inverse (multiply (inverse (inverse ?14950)) (inverse ?14950))) [14950, 14949, 14948] by Demod 3033 with 2 at 1,1,1,2,2
5384 Id : 3250, {_}: multiply ?13495 (inverse (multiply (inverse ?13497) ?13497)) =?= multiply ?13495 (inverse (multiply (inverse (inverse ?13498)) (inverse ?13498))) [13498, 13497, 13495] by Demod 3033 with 2 at 1,1,1,2,2
5385 Id : 3510, {_}: multiply ?15042 (inverse (multiply (inverse ?15043) ?15043)) =?= multiply ?15042 (inverse (multiply (inverse ?15044) ?15044)) [15044, 15043, 15042] by Super 3493 with 3250 at 3
5386 Id : 3957, {_}: multiply (inverse (multiply ?16893 (inverse (multiply (multiply ?16894 (inverse (multiply (inverse ?16895) ?16895))) ?16896)))) (multiply ?16893 (inverse ?16896)) =>= ?16894 [16896, 16895, 16894, 16893] by Super 104 with 3510 at 1,1,2,1,1,2
5387 Id : 4003, {_}: multiply (multiply (inverse (multiply ?17133 (inverse (multiply ?17134 ?17135)))) (multiply ?17133 (inverse ?17135))) (inverse (multiply (inverse ?17136) ?17136)) =>= ?17134 [17136, 17135, 17134, 17133] by Super 2 with 3510 at 2
5388 Id : 4810, {_}: multiply (multiply (inverse ?21607) ?21607) (inverse (multiply (inverse (multiply (inverse ?21608) ?21608)) (multiply (inverse ?21608) ?21608))) =>= inverse (multiply (inverse ?21608) ?21608) [21608, 21607] by Super 6 with 4003 at 2,1,2
5389 Id : 1364, {_}: multiply (multiply (inverse (multiply ?5995 (inverse ?5996))) (multiply ?5995 (inverse (multiply ?5997 (inverse ?5998))))) (inverse (multiply (inverse (multiply ?5999 (inverse ?5998))) (multiply ?5999 (inverse ?5998)))) =>= inverse (multiply ?5997 (inverse (multiply (multiply ?5996 (inverse (multiply (inverse ?5998) ?5998))) ?5998))) [5999, 5998, 5997, 5996, 5995] by Super 161 with 1288 at 1,2,2
5390 Id : 4844, {_}: inverse (multiply ?21768 (inverse (multiply (multiply (multiply ?21768 (inverse ?21769)) (inverse (multiply (inverse ?21769) ?21769))) ?21769))) =>= inverse (multiply (inverse (inverse ?21769)) (inverse ?21769)) [21769, 21768] by Super 4810 with 1364 at 2
5391 Id : 21277, {_}: multiply (inverse (multiply (inverse (inverse ?53833)) (inverse ?53833))) (multiply ?53834 (inverse ?53833)) =>= multiply ?53834 (inverse ?53833) [53834, 53833] by Super 3957 with 4844 at 1,2
5392 Id : 21278, {_}: multiply (inverse (multiply (inverse (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838))))) (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))))) (multiply ?53839 ?53837) =>= multiply ?53839 (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))) [53839, 53838, 53837, 53836] by Super 21277 with 210 at 2,2,2
5393 Id : 21547, {_}: multiply (inverse (multiply (inverse ?53837) (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))))) (multiply ?53839 ?53837) =>= multiply ?53839 (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))) [53839, 53838, 53836, 53837] by Demod 21278 with 210 at 1,1,1,1,2
5394 Id : 21548, {_}: multiply (inverse (multiply (inverse ?53837) ?53837)) (multiply ?53839 ?53837) =?= multiply ?53839 (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))) [53838, 53836, 53839, 53837] by Demod 21547 with 210 at 2,1,1,2
5395 Id : 21549, {_}: multiply (inverse (multiply (inverse ?53837) ?53837)) (multiply ?53839 ?53837) =>= multiply ?53839 ?53837 [53839, 53837] by Demod 21548 with 210 at 2,3
5396 Id : 22063, {_}: multiply (inverse (multiply ?55325 ?55326)) (multiply ?55325 ?55326) =>= multiply (inverse ?55326) ?55326 [55326, 55325] by Super 1288 with 21549 at 3
5397 Id : 22073, {_}: multiply (inverse (multiply (inverse (multiply ?55370 (inverse (multiply (multiply ?55371 (inverse (multiply (inverse ?55372) ?55372))) ?55373)))) (multiply ?55370 (inverse ?55373)))) ?55371 =>= multiply (inverse (multiply ?55370 (inverse ?55373))) (multiply ?55370 (inverse ?55373)) [55373, 55372, 55371, 55370] by Super 22063 with 3957 at 2,2
5398 Id : 22230, {_}: multiply (inverse ?55371) ?55371 =?= multiply (inverse (multiply ?55370 (inverse ?55373))) (multiply ?55370 (inverse ?55373)) [55373, 55370, 55371] by Demod 22073 with 3957 at 1,1,2
5399 Id : 21784, {_}: multiply (inverse (multiply ?54500 ?54501)) (multiply ?54500 ?54501) =>= multiply (inverse ?54501) ?54501 [54501, 54500] by Super 1288 with 21549 at 3
5400 Id : 22543, {_}: multiply (inverse ?56820) ?56820 =?= multiply (inverse (inverse ?56821)) (inverse ?56821) [56821, 56820] by Demod 22230 with 21784 at 3
5401 Id : 22231, {_}: multiply (inverse ?55371) ?55371 =?= multiply (inverse (inverse ?55373)) (inverse ?55373) [55373, 55371] by Demod 22230 with 21784 at 3
5402 Id : 22585, {_}: multiply (inverse ?57023) ?57023 =?= multiply (inverse ?57024) ?57024 [57024, 57023] by Super 22543 with 22231 at 3
5403 Id : 22724, {_}: multiply (inverse (multiply (inverse ?57285) ?57285)) (multiply ?57286 ?57287) =>= multiply ?57286 ?57287 [57287, 57286, 57285] by Super 21549 with 22585 at 1,1,2
5404 Id : 23108, {_}: multiply (inverse (multiply ?58913 ?58914)) (multiply ?58913 ?58915) =>= multiply (inverse ?58914) ?58915 [58915, 58914, 58913] by Super 1288 with 22724 at 3
5405 Id : 23378, {_}: multiply (multiply (inverse (inverse (multiply ?17134 ?17135))) (inverse ?17135)) (inverse (multiply (inverse ?17136) ?17136)) =>= ?17134 [17136, 17135, 17134] by Demod 4003 with 23108 at 1,2
5406 Id : 1370, {_}: inverse (multiply ?6029 (inverse (multiply (multiply (multiply (inverse (multiply ?6030 ?6031)) (multiply ?6030 (inverse ?6032))) (inverse (multiply (inverse ?6032) ?6032))) ?6032))) =>= inverse (multiply ?6029 ?6031) [6032, 6031, 6030, 6029] by Super 210 with 1288 at 1,1,1,2,1,2
5407 Id : 4845, {_}: multiply (multiply (inverse ?21771) ?21771) (inverse (multiply (inverse ?21772) ?21772)) =?= inverse (multiply (inverse ?21773) ?21773) [21773, 21772, 21771] by Super 4810 with 3510 at 2
5408 Id : 7295, {_}: inverse (multiply ?28092 (inverse (multiply (inverse (multiply (inverse ?28093) ?28093)) ?28094))) =>= inverse (multiply ?28092 (inverse ?28094)) [28094, 28093, 28092] by Super 1370 with 4845 at 1,1,2,1,2
5409 Id : 22930, {_}: inverse (multiply (inverse ?58245) ?58245) =?= inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse ?58246) ?58246)) ?58247))) (inverse ?58247)) [58247, 58246, 58245] by Super 7295 with 22585 at 1,2
5410 Id : 8, {_}: multiply (multiply (inverse (multiply (multiply (inverse ?26) (multiply (multiply (inverse (multiply ?27 (inverse (multiply ?26 ?28)))) (multiply ?27 (inverse ?28))) (inverse ?28))) (inverse (multiply ?29 (multiply (inverse ?28) ?28))))) (inverse ?28)) (inverse (multiply (inverse (multiply (inverse ?28) ?28)) (multiply (inverse ?28) ?28))) =>= ?29 [29, 28, 27, 26] by Super 2 with 6 at 2,1,2
5411 Id : 7694, {_}: inverse (multiply ?30248 (inverse (multiply (inverse (multiply (inverse ?30249) ?30249)) ?30250))) =>= inverse (multiply ?30248 (inverse ?30250)) [30250, 30249, 30248] by Super 1370 with 4845 at 1,1,2,1,2
5412 Id : 9751, {_}: inverse (multiply ?34833 (inverse (multiply (inverse (multiply ?34834 ?34835)) (multiply ?34834 ?34836)))) =>= inverse (multiply ?34833 (inverse (multiply (inverse ?34835) ?34836))) [34836, 34835, 34834, 34833] by Super 7694 with 1288 at 1,2,1,2
5413 Id : 9799, {_}: inverse (multiply ?35157 (inverse (multiply (inverse (multiply ?35158 (inverse ?35159))) (multiply ?35158 ?35160)))) =?= inverse (multiply ?35157 (inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse ?35161) ?35161)) ?35159))) ?35160))) [35161, 35160, 35159, 35158, 35157] by Super 9751 with 7295 at 1,1,2,1,2
5414 Id : 7715, {_}: inverse (multiply ?30362 (inverse (multiply (inverse (multiply ?30363 ?30364)) (multiply ?30363 ?30365)))) =>= inverse (multiply ?30362 (inverse (multiply (inverse ?30364) ?30365))) [30365, 30364, 30363, 30362] by Super 7694 with 1288 at 1,2,1,2
5415 Id : 10327, {_}: inverse (multiply ?35157 (inverse (multiply (inverse (inverse ?35159)) ?35160))) =<= inverse (multiply ?35157 (inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse ?35161) ?35161)) ?35159))) ?35160))) [35161, 35160, 35159, 35157] by Demod 9799 with 7715 at 2
5416 Id : 14061, {_}: multiply (multiply (inverse (multiply (multiply (inverse ?43109) (multiply (multiply (inverse (multiply ?43110 (inverse (multiply ?43109 ?43111)))) (multiply ?43110 (inverse ?43111))) (inverse ?43111))) (inverse (multiply (inverse (inverse ?43112)) (multiply (inverse ?43111) ?43111))))) (inverse ?43111)) (inverse (multiply (inverse (multiply (inverse ?43111) ?43111)) (multiply (inverse ?43111) ?43111))) =?= inverse (inverse (multiply (inverse (multiply (inverse ?43113) ?43113)) ?43112)) [43113, 43112, 43111, 43110, 43109] by Super 8 with 10327 at 1,1,2
5417 Id : 14495, {_}: inverse (inverse ?43112) =<= inverse (inverse (multiply (inverse (multiply (inverse ?43113) ?43113)) ?43112)) [43113, 43112] by Demod 14061 with 8 at 2
5418 Id : 23770, {_}: inverse (multiply (inverse ?60796) ?60796) =?= inverse (multiply (inverse (inverse ?60797)) (inverse ?60797)) [60797, 60796] by Demod 22930 with 14495 at 1,1,3
5419 Id : 23801, {_}: inverse (multiply (inverse ?60931) ?60931) =?= inverse (multiply (inverse ?60932) ?60932) [60932, 60931] by Super 23770 with 22585 at 1,3
5420 Id : 25761, {_}: multiply (multiply (inverse (inverse (multiply (inverse ?63084) ?63084))) (inverse ?63085)) (inverse (multiply (inverse ?63086) ?63086)) =>= inverse ?63085 [63086, 63085, 63084] by Super 23378 with 23801 at 1,1,1,2
5421 Id : 27867, {_}: multiply (inverse (multiply (inverse ?66211) ?66211)) (inverse ?66212) =?= multiply (multiply (inverse (inverse (multiply (inverse ?66213) ?66213))) (inverse ?66212)) (inverse (multiply (inverse ?66214) ?66214)) [66214, 66213, 66212, 66211] by Super 22724 with 25761 at 2,2
5422 Id : 28152, {_}: multiply (inverse (multiply (inverse ?66849) ?66849)) (inverse ?66850) =>= inverse ?66850 [66850, 66849] by Demod 27867 with 25761 at 3
5423 Id : 28153, {_}: multiply (inverse (multiply (inverse ?66852) ?66852)) ?66853 =?= inverse (multiply ?66854 (inverse (multiply (multiply (multiply ?66853 (multiply ?66854 (inverse ?66855))) (inverse (multiply (inverse ?66855) ?66855))) ?66855))) [66855, 66854, 66853, 66852] by Super 28152 with 210 at 2,2
5424 Id : 28218, {_}: multiply (inverse (multiply (inverse ?66852) ?66852)) ?66853 =>= ?66853 [66853, 66852] by Demod 28153 with 210 at 3
5425 Id : 23366, {_}: multiply (inverse (inverse (multiply (multiply ?16894 (inverse (multiply (inverse ?16895) ?16895))) ?16896))) (inverse ?16896) =>= ?16894 [16896, 16895, 16894] by Demod 3957 with 23108 at 2
5426 Id : 28331, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse ?67206) ?67206)) ?67207))) (inverse ?67207) =?= inverse (multiply (inverse ?67208) ?67208) [67208, 67207, 67206] by Super 23366 with 28218 at 1,1,1,1,2
5427 Id : 28438, {_}: multiply (inverse (inverse ?67207)) (inverse ?67207) =?= inverse (multiply (inverse ?67208) ?67208) [67208, 67207] by Demod 28331 with 28218 at 1,1,1,2
5428 Id : 28698, {_}: multiply (inverse (inverse (multiply (inverse ?68177) ?68177))) ?68178 =>= ?68178 [68178, 68177] by Super 28218 with 28438 at 1,1,2
5429 Id : 23375, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =?= multiply (inverse (multiply ?18 (inverse (multiply ?16 ?17)))) (multiply ?18 (inverse ?17)) [18, 17, 16] by Demod 5 with 23108 at 1,2
5430 Id : 23376, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 23375 with 23108 at 3
5431 Id : 23410, {_}: multiply (multiply (inverse (inverse ?59640)) (inverse (inverse (multiply (inverse (multiply ?59641 ?59642)) (multiply ?59641 ?59642))))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?59641 ?59642)) (multiply ?59641 ?59642)))) (inverse (multiply (inverse ?59642) ?59642)))) =>= multiply (inverse (inverse (multiply ?59640 (multiply ?59641 ?59642)))) (inverse (multiply ?59641 ?59642)) [59642, 59641, 59640] by Super 23376 with 23108 at 1,2,1,2,2
5432 Id : 23543, {_}: multiply (multiply (inverse (inverse ?59640)) (inverse (inverse (multiply (inverse ?59642) ?59642)))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?59641 ?59642)) (multiply ?59641 ?59642)))) (inverse (multiply (inverse ?59642) ?59642)))) =>= multiply (inverse (inverse (multiply ?59640 (multiply ?59641 ?59642)))) (inverse (multiply ?59641 ?59642)) [59641, 59642, 59640] by Demod 23410 with 23108 at 1,1,2,1,2
5433 Id : 23544, {_}: multiply (multiply (inverse (inverse ?59640)) (inverse (inverse (multiply (inverse ?59642) ?59642)))) (inverse (multiply (inverse (inverse (multiply (inverse ?59642) ?59642))) (inverse (multiply (inverse ?59642) ?59642)))) =?= multiply (inverse (inverse (multiply ?59640 (multiply ?59641 ?59642)))) (inverse (multiply ?59641 ?59642)) [59641, 59642, 59640] by Demod 23543 with 23108 at 1,1,1,1,2,2
5434 Id : 23545, {_}: multiply (inverse (inverse (multiply ?59640 ?59642))) (inverse ?59642) =<= multiply (inverse (inverse (multiply ?59640 (multiply ?59641 ?59642)))) (inverse (multiply ?59641 ?59642)) [59641, 59642, 59640] by Demod 23544 with 23376 at 2
5435 Id : 26221, {_}: multiply (inverse (inverse (multiply ?63681 (multiply (inverse ?63682) ?63682)))) (inverse (multiply (inverse ?63683) ?63683)) =>= multiply (inverse (inverse (multiply ?63681 ?63682))) (inverse ?63682) [63683, 63682, 63681] by Super 3510 with 23545 at 3
5436 Id : 29246, {_}: multiply (inverse ?63085) (inverse (multiply (inverse ?63086) ?63086)) =>= inverse ?63085 [63086, 63085] by Demod 25761 with 28698 at 1,2
5437 Id : 29249, {_}: inverse (inverse (multiply ?63681 (multiply (inverse ?63682) ?63682))) =<= multiply (inverse (inverse (multiply ?63681 ?63682))) (inverse ?63682) [63682, 63681] by Demod 26221 with 29246 at 2
5438 Id : 29250, {_}: multiply (inverse (inverse (multiply ?17134 (multiply (inverse ?17135) ?17135)))) (inverse (multiply (inverse ?17136) ?17136)) =>= ?17134 [17136, 17135, 17134] by Demod 23378 with 29249 at 1,2
5439 Id : 29258, {_}: inverse (inverse (multiply ?17134 (multiply (inverse ?17135) ?17135))) =>= ?17134 [17135, 17134] by Demod 29250 with 29246 at 2
5440 Id : 29298, {_}: inverse (inverse (multiply ?68838 (inverse (multiply (inverse ?68839) ?68839)))) =>= ?68838 [68839, 68838] by Super 29258 with 28698 at 2,1,1,2
5441 Id : 29251, {_}: inverse (inverse (multiply (multiply ?16894 (inverse (multiply (inverse ?16895) ?16895))) (multiply (inverse ?16896) ?16896))) =>= ?16894 [16896, 16895, 16894] by Demod 23366 with 29249 at 2
5442 Id : 29259, {_}: multiply ?16894 (inverse (multiply (inverse ?16895) ?16895)) =>= ?16894 [16895, 16894] by Demod 29251 with 29258 at 2
5443 Id : 29399, {_}: inverse (inverse ?68838) =>= ?68838 [68838] by Demod 29298 with 29259 at 1,1,2
5444 Id : 32788, {_}: multiply (multiply (inverse ?68177) ?68177) ?68178 =>= ?68178 [68178, 68177] by Demod 28698 with 29399 at 1,2
5445 Id : 32852, {_}: a2 === a2 [] by Demod 1 with 32788 at 2
5446 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2
5447 % SZS output end CNFRefutation for GRP410-1.p
5448 23512: solved GRP410-1.p in 25.797611 using nrkbo
5449 23512: status Unsatisfiable for GRP410-1.p
5450 NO CLASH, using fixed ground order
5454 (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4))))
5455 (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4))
5458 [4, 3, 2] by single_axiom ?2 ?3 ?4
5461 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5462 [] by prove_these_axioms_3
5466 23552: a3 2 0 2 1,1,2
5467 23552: b3 2 0 2 2,1,2
5469 23552: inverse 5 1 0
5470 23552: multiply 10 2 4 0,2
5471 NO CLASH, using fixed ground order
5475 (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4))))
5476 (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4))
5479 [4, 3, 2] by single_axiom ?2 ?3 ?4
5482 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5483 [] by prove_these_axioms_3
5487 23553: a3 2 0 2 1,1,2
5488 23553: b3 2 0 2 2,1,2
5490 23553: inverse 5 1 0
5491 23553: multiply 10 2 4 0,2
5492 NO CLASH, using fixed ground order
5496 (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4))))
5497 (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4))
5500 [4, 3, 2] by single_axiom ?2 ?3 ?4
5503 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5504 [] by prove_these_axioms_3
5508 23554: a3 2 0 2 1,1,2
5509 23554: b3 2 0 2 2,1,2
5511 23554: inverse 5 1 0
5512 23554: multiply 10 2 4 0,2
5515 Found proof, 26.764346s
5516 % SZS status Unsatisfiable for GRP411-1.p
5517 % SZS output start CNFRefutation for GRP411-1.p
5518 Id : 3, {_}: multiply (multiply (inverse (multiply ?6 (inverse (multiply ?7 ?8)))) (multiply ?6 (inverse ?8))) (inverse (multiply (inverse ?8) ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8
5519 Id : 2, {_}: multiply (multiply (inverse (multiply ?2 (inverse (multiply ?3 ?4)))) (multiply ?2 (inverse ?4))) (inverse (multiply (inverse ?4) ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
5520 Id : 5, {_}: multiply (multiply (inverse (multiply ?15 (inverse ?16))) (multiply ?15 (inverse (inverse (multiply (inverse ?17) ?17))))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =?= multiply (inverse (multiply ?18 (inverse (multiply ?16 ?17)))) (multiply ?18 (inverse ?17)) [18, 17, 16, 15] by Super 3 with 2 at 1,2,1,1,1,2
5521 Id : 104, {_}: multiply (inverse (multiply ?498 (inverse (multiply (multiply ?499 (inverse (multiply (inverse ?500) ?500))) ?500)))) (multiply ?498 (inverse ?500)) =>= ?499 [500, 499, 498] by Super 2 with 5 at 2
5522 Id : 161, {_}: multiply (multiply (inverse (multiply ?829 (inverse ?830))) (multiply ?829 (inverse (multiply ?831 (inverse ?832))))) (inverse (multiply (inverse (multiply ?831 (inverse ?832))) (multiply ?831 (inverse ?832)))) =>= inverse (multiply ?831 (inverse (multiply (multiply ?830 (inverse (multiply (inverse ?832) ?832))) ?832))) [832, 831, 830, 829] by Super 2 with 104 at 1,2,1,1,1,2
5523 Id : 218, {_}: multiply (inverse (multiply ?1090 (inverse (multiply (inverse (multiply ?1091 (inverse (multiply (multiply ?1092 (inverse (multiply (inverse ?1093) ?1093))) ?1093)))) (multiply ?1091 (inverse ?1093)))))) (multiply ?1090 (inverse (multiply ?1091 (inverse ?1093)))) =?= multiply (inverse (multiply ?1094 (inverse ?1092))) (multiply ?1094 (inverse (multiply ?1091 (inverse ?1093)))) [1094, 1093, 1092, 1091, 1090] by Super 104 with 161 at 1,1,2,1,1,2
5524 Id : 846, {_}: multiply (inverse (multiply ?3342 (inverse ?3343))) (multiply ?3342 (inverse (multiply ?3344 (inverse ?3345)))) =?= multiply (inverse (multiply ?3346 (inverse ?3343))) (multiply ?3346 (inverse (multiply ?3344 (inverse ?3345)))) [3346, 3345, 3344, 3343, 3342] by Demod 218 with 104 at 1,2,1,1,2
5525 Id : 210, {_}: inverse (multiply ?1043 (inverse (multiply (multiply (multiply ?1044 (multiply ?1043 (inverse ?1045))) (inverse (multiply (inverse ?1045) ?1045))) ?1045))) =>= ?1044 [1045, 1044, 1043] by Super 2 with 161 at 2
5526 Id : 856, {_}: multiply (inverse (multiply ?3416 (inverse ?3417))) (multiply ?3416 (inverse (multiply ?3418 (inverse (multiply (multiply (multiply ?3419 (multiply ?3418 (inverse ?3420))) (inverse (multiply (inverse ?3420) ?3420))) ?3420))))) =?= multiply (inverse (multiply ?3421 (inverse ?3417))) (multiply ?3421 ?3419) [3421, 3420, 3419, 3418, 3417, 3416] by Super 846 with 210 at 2,2,3
5527 Id : 1213, {_}: multiply (inverse (multiply ?5198 (inverse ?5199))) (multiply ?5198 ?5200) =?= multiply (inverse (multiply ?5201 (inverse ?5199))) (multiply ?5201 ?5200) [5201, 5200, 5199, 5198] by Demod 856 with 210 at 2,2,2
5528 Id : 1238, {_}: multiply (inverse (multiply ?5362 (inverse (multiply (multiply (multiply ?5363 (multiply ?5364 (inverse ?5365))) (inverse (multiply (inverse ?5365) ?5365))) ?5365)))) (multiply ?5362 ?5366) =>= multiply ?5363 (multiply ?5364 ?5366) [5366, 5365, 5364, 5363, 5362] by Super 1213 with 210 at 1,3
5529 Id : 1228, {_}: multiply (inverse (multiply ?5296 (inverse (multiply ?5297 (inverse (multiply (multiply (multiply ?5298 (multiply ?5297 (inverse ?5299))) (inverse (multiply (inverse ?5299) ?5299))) ?5299)))))) (multiply ?5296 ?5300) =?= multiply (inverse (multiply ?5301 ?5298)) (multiply ?5301 ?5300) [5301, 5300, 5299, 5298, 5297, 5296] by Super 1213 with 210 at 2,1,1,3
5530 Id : 1288, {_}: multiply (inverse (multiply ?5296 ?5298)) (multiply ?5296 ?5300) =?= multiply (inverse (multiply ?5301 ?5298)) (multiply ?5301 ?5300) [5301, 5300, 5298, 5296] by Demod 1228 with 210 at 2,1,1,2
5531 Id : 1314, {_}: multiply (inverse (multiply ?5709 (inverse (multiply (multiply ?5710 (inverse (multiply (inverse (multiply ?5711 ?5712)) (multiply ?5711 ?5712)))) (multiply ?5713 ?5712))))) (multiply ?5709 (inverse (multiply ?5713 ?5712))) =>= ?5710 [5713, 5712, 5711, 5710, 5709] by Super 104 with 1288 at 1,2,1,1,2,1,1,2
5532 Id : 2743, {_}: multiply ?12126 (inverse (multiply (inverse (multiply ?12127 ?12128)) (multiply ?12127 ?12128))) =?= multiply ?12126 (inverse (multiply (inverse (multiply ?12129 ?12128)) (multiply ?12129 ?12128))) [12129, 12128, 12127, 12126] by Super 2 with 1314 at 1,2
5533 Id : 6, {_}: multiply (multiply (inverse ?20) (multiply (multiply (inverse (multiply ?21 (inverse (multiply ?20 ?22)))) (multiply ?21 (inverse ?22))) (inverse ?22))) (inverse (multiply (inverse ?22) ?22)) =>= inverse ?22 [22, 21, 20] by Super 3 with 2 at 1,1,1,2
5534 Id : 2747, {_}: multiply ?12151 (inverse (multiply (inverse (multiply ?12152 (inverse (multiply (inverse ?12153) ?12153)))) (multiply ?12152 (inverse (multiply (inverse ?12153) ?12153))))) =?= multiply ?12151 (inverse (multiply (inverse (multiply (multiply (inverse ?12154) (multiply (multiply (inverse (multiply ?12155 (inverse (multiply ?12154 ?12153)))) (multiply ?12155 (inverse ?12153))) (inverse ?12153))) (inverse (multiply (inverse ?12153) ?12153)))) (inverse ?12153))) [12155, 12154, 12153, 12152, 12151] by Super 2743 with 6 at 2,1,2,3
5535 Id : 3023, {_}: multiply ?13436 (inverse (multiply (inverse (multiply ?13437 (inverse (multiply (inverse ?13438) ?13438)))) (multiply ?13437 (inverse (multiply (inverse ?13438) ?13438))))) =>= multiply ?13436 (inverse (multiply (inverse (inverse ?13438)) (inverse ?13438))) [13438, 13437, 13436] by Demod 2747 with 6 at 1,1,1,2,3
5536 Id : 3033, {_}: multiply ?13495 (inverse (multiply (inverse (multiply (multiply (inverse (multiply ?13496 (inverse (multiply ?13497 ?13498)))) (multiply ?13496 (inverse ?13498))) (inverse (multiply (inverse ?13498) ?13498)))) ?13497)) =>= multiply ?13495 (inverse (multiply (inverse (inverse ?13498)) (inverse ?13498))) [13498, 13497, 13496, 13495] by Super 3023 with 2 at 2,1,2,2
5537 Id : 3493, {_}: multiply ?14948 (inverse (multiply (inverse ?14949) ?14949)) =?= multiply ?14948 (inverse (multiply (inverse (inverse ?14950)) (inverse ?14950))) [14950, 14949, 14948] by Demod 3033 with 2 at 1,1,1,2,2
5538 Id : 3250, {_}: multiply ?13495 (inverse (multiply (inverse ?13497) ?13497)) =?= multiply ?13495 (inverse (multiply (inverse (inverse ?13498)) (inverse ?13498))) [13498, 13497, 13495] by Demod 3033 with 2 at 1,1,1,2,2
5539 Id : 3510, {_}: multiply ?15042 (inverse (multiply (inverse ?15043) ?15043)) =?= multiply ?15042 (inverse (multiply (inverse ?15044) ?15044)) [15044, 15043, 15042] by Super 3493 with 3250 at 3
5540 Id : 3957, {_}: multiply (inverse (multiply ?16893 (inverse (multiply (multiply ?16894 (inverse (multiply (inverse ?16895) ?16895))) ?16896)))) (multiply ?16893 (inverse ?16896)) =>= ?16894 [16896, 16895, 16894, 16893] by Super 104 with 3510 at 1,1,2,1,1,2
5541 Id : 4003, {_}: multiply (multiply (inverse (multiply ?17133 (inverse (multiply ?17134 ?17135)))) (multiply ?17133 (inverse ?17135))) (inverse (multiply (inverse ?17136) ?17136)) =>= ?17134 [17136, 17135, 17134, 17133] by Super 2 with 3510 at 2
5542 Id : 4810, {_}: multiply (multiply (inverse ?21607) ?21607) (inverse (multiply (inverse (multiply (inverse ?21608) ?21608)) (multiply (inverse ?21608) ?21608))) =>= inverse (multiply (inverse ?21608) ?21608) [21608, 21607] by Super 6 with 4003 at 2,1,2
5543 Id : 1364, {_}: multiply (multiply (inverse (multiply ?5995 (inverse ?5996))) (multiply ?5995 (inverse (multiply ?5997 (inverse ?5998))))) (inverse (multiply (inverse (multiply ?5999 (inverse ?5998))) (multiply ?5999 (inverse ?5998)))) =>= inverse (multiply ?5997 (inverse (multiply (multiply ?5996 (inverse (multiply (inverse ?5998) ?5998))) ?5998))) [5999, 5998, 5997, 5996, 5995] by Super 161 with 1288 at 1,2,2
5544 Id : 4844, {_}: inverse (multiply ?21768 (inverse (multiply (multiply (multiply ?21768 (inverse ?21769)) (inverse (multiply (inverse ?21769) ?21769))) ?21769))) =>= inverse (multiply (inverse (inverse ?21769)) (inverse ?21769)) [21769, 21768] by Super 4810 with 1364 at 2
5545 Id : 21277, {_}: multiply (inverse (multiply (inverse (inverse ?53833)) (inverse ?53833))) (multiply ?53834 (inverse ?53833)) =>= multiply ?53834 (inverse ?53833) [53834, 53833] by Super 3957 with 4844 at 1,2
5546 Id : 21278, {_}: multiply (inverse (multiply (inverse (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838))))) (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))))) (multiply ?53839 ?53837) =>= multiply ?53839 (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))) [53839, 53838, 53837, 53836] by Super 21277 with 210 at 2,2,2
5547 Id : 21547, {_}: multiply (inverse (multiply (inverse ?53837) (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))))) (multiply ?53839 ?53837) =>= multiply ?53839 (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))) [53839, 53838, 53836, 53837] by Demod 21278 with 210 at 1,1,1,1,2
5548 Id : 21548, {_}: multiply (inverse (multiply (inverse ?53837) ?53837)) (multiply ?53839 ?53837) =?= multiply ?53839 (inverse (multiply ?53836 (inverse (multiply (multiply (multiply ?53837 (multiply ?53836 (inverse ?53838))) (inverse (multiply (inverse ?53838) ?53838))) ?53838)))) [53838, 53836, 53839, 53837] by Demod 21547 with 210 at 2,1,1,2
5549 Id : 21549, {_}: multiply (inverse (multiply (inverse ?53837) ?53837)) (multiply ?53839 ?53837) =>= multiply ?53839 ?53837 [53839, 53837] by Demod 21548 with 210 at 2,3
5550 Id : 22063, {_}: multiply (inverse (multiply ?55325 ?55326)) (multiply ?55325 ?55326) =>= multiply (inverse ?55326) ?55326 [55326, 55325] by Super 1288 with 21549 at 3
5551 Id : 22073, {_}: multiply (inverse (multiply (inverse (multiply ?55370 (inverse (multiply (multiply ?55371 (inverse (multiply (inverse ?55372) ?55372))) ?55373)))) (multiply ?55370 (inverse ?55373)))) ?55371 =>= multiply (inverse (multiply ?55370 (inverse ?55373))) (multiply ?55370 (inverse ?55373)) [55373, 55372, 55371, 55370] by Super 22063 with 3957 at 2,2
5552 Id : 22230, {_}: multiply (inverse ?55371) ?55371 =?= multiply (inverse (multiply ?55370 (inverse ?55373))) (multiply ?55370 (inverse ?55373)) [55373, 55370, 55371] by Demod 22073 with 3957 at 1,1,2
5553 Id : 21784, {_}: multiply (inverse (multiply ?54500 ?54501)) (multiply ?54500 ?54501) =>= multiply (inverse ?54501) ?54501 [54501, 54500] by Super 1288 with 21549 at 3
5554 Id : 22543, {_}: multiply (inverse ?56820) ?56820 =?= multiply (inverse (inverse ?56821)) (inverse ?56821) [56821, 56820] by Demod 22230 with 21784 at 3
5555 Id : 22231, {_}: multiply (inverse ?55371) ?55371 =?= multiply (inverse (inverse ?55373)) (inverse ?55373) [55373, 55371] by Demod 22230 with 21784 at 3
5556 Id : 22585, {_}: multiply (inverse ?57023) ?57023 =?= multiply (inverse ?57024) ?57024 [57024, 57023] by Super 22543 with 22231 at 3
5557 Id : 22724, {_}: multiply (inverse (multiply (inverse ?57285) ?57285)) (multiply ?57286 ?57287) =>= multiply ?57286 ?57287 [57287, 57286, 57285] by Super 21549 with 22585 at 1,1,2
5558 Id : 23108, {_}: multiply (inverse (multiply ?58913 ?58914)) (multiply ?58913 ?58915) =>= multiply (inverse ?58914) ?58915 [58915, 58914, 58913] by Super 1288 with 22724 at 3
5559 Id : 23367, {_}: multiply (inverse (inverse (multiply (multiply (multiply ?5363 (multiply ?5364 (inverse ?5365))) (inverse (multiply (inverse ?5365) ?5365))) ?5365))) ?5366 =>= multiply ?5363 (multiply ?5364 ?5366) [5366, 5365, 5364, 5363] by Demod 1238 with 23108 at 2
5560 Id : 23366, {_}: multiply (inverse (inverse (multiply (multiply ?16894 (inverse (multiply (inverse ?16895) ?16895))) ?16896))) (inverse ?16896) =>= ?16894 [16896, 16895, 16894] by Demod 3957 with 23108 at 2
5561 Id : 23375, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =?= multiply (inverse (multiply ?18 (inverse (multiply ?16 ?17)))) (multiply ?18 (inverse ?17)) [18, 17, 16] by Demod 5 with 23108 at 1,2
5562 Id : 23376, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse (multiply (inverse ?17) ?17))) (inverse (multiply (inverse ?17) ?17)))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 23375 with 23108 at 3
5563 Id : 23410, {_}: multiply (multiply (inverse (inverse ?59640)) (inverse (inverse (multiply (inverse (multiply ?59641 ?59642)) (multiply ?59641 ?59642))))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?59641 ?59642)) (multiply ?59641 ?59642)))) (inverse (multiply (inverse ?59642) ?59642)))) =>= multiply (inverse (inverse (multiply ?59640 (multiply ?59641 ?59642)))) (inverse (multiply ?59641 ?59642)) [59642, 59641, 59640] by Super 23376 with 23108 at 1,2,1,2,2
5564 Id : 23543, {_}: multiply (multiply (inverse (inverse ?59640)) (inverse (inverse (multiply (inverse ?59642) ?59642)))) (inverse (multiply (inverse (inverse (multiply (inverse (multiply ?59641 ?59642)) (multiply ?59641 ?59642)))) (inverse (multiply (inverse ?59642) ?59642)))) =>= multiply (inverse (inverse (multiply ?59640 (multiply ?59641 ?59642)))) (inverse (multiply ?59641 ?59642)) [59641, 59642, 59640] by Demod 23410 with 23108 at 1,1,2,1,2
5565 Id : 23544, {_}: multiply (multiply (inverse (inverse ?59640)) (inverse (inverse (multiply (inverse ?59642) ?59642)))) (inverse (multiply (inverse (inverse (multiply (inverse ?59642) ?59642))) (inverse (multiply (inverse ?59642) ?59642)))) =?= multiply (inverse (inverse (multiply ?59640 (multiply ?59641 ?59642)))) (inverse (multiply ?59641 ?59642)) [59641, 59642, 59640] by Demod 23543 with 23108 at 1,1,1,1,2,2
5566 Id : 23545, {_}: multiply (inverse (inverse (multiply ?59640 ?59642))) (inverse ?59642) =<= multiply (inverse (inverse (multiply ?59640 (multiply ?59641 ?59642)))) (inverse (multiply ?59641 ?59642)) [59641, 59642, 59640] by Demod 23544 with 23376 at 2
5567 Id : 26221, {_}: multiply (inverse (inverse (multiply ?63681 (multiply (inverse ?63682) ?63682)))) (inverse (multiply (inverse ?63683) ?63683)) =>= multiply (inverse (inverse (multiply ?63681 ?63682))) (inverse ?63682) [63683, 63682, 63681] by Super 3510 with 23545 at 3
5568 Id : 23378, {_}: multiply (multiply (inverse (inverse (multiply ?17134 ?17135))) (inverse ?17135)) (inverse (multiply (inverse ?17136) ?17136)) =>= ?17134 [17136, 17135, 17134] by Demod 4003 with 23108 at 1,2
5569 Id : 1370, {_}: inverse (multiply ?6029 (inverse (multiply (multiply (multiply (inverse (multiply ?6030 ?6031)) (multiply ?6030 (inverse ?6032))) (inverse (multiply (inverse ?6032) ?6032))) ?6032))) =>= inverse (multiply ?6029 ?6031) [6032, 6031, 6030, 6029] by Super 210 with 1288 at 1,1,1,2,1,2
5570 Id : 4845, {_}: multiply (multiply (inverse ?21771) ?21771) (inverse (multiply (inverse ?21772) ?21772)) =?= inverse (multiply (inverse ?21773) ?21773) [21773, 21772, 21771] by Super 4810 with 3510 at 2
5571 Id : 7295, {_}: inverse (multiply ?28092 (inverse (multiply (inverse (multiply (inverse ?28093) ?28093)) ?28094))) =>= inverse (multiply ?28092 (inverse ?28094)) [28094, 28093, 28092] by Super 1370 with 4845 at 1,1,2,1,2
5572 Id : 22930, {_}: inverse (multiply (inverse ?58245) ?58245) =?= inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse ?58246) ?58246)) ?58247))) (inverse ?58247)) [58247, 58246, 58245] by Super 7295 with 22585 at 1,2
5573 Id : 8, {_}: multiply (multiply (inverse (multiply (multiply (inverse ?26) (multiply (multiply (inverse (multiply ?27 (inverse (multiply ?26 ?28)))) (multiply ?27 (inverse ?28))) (inverse ?28))) (inverse (multiply ?29 (multiply (inverse ?28) ?28))))) (inverse ?28)) (inverse (multiply (inverse (multiply (inverse ?28) ?28)) (multiply (inverse ?28) ?28))) =>= ?29 [29, 28, 27, 26] by Super 2 with 6 at 2,1,2
5574 Id : 7694, {_}: inverse (multiply ?30248 (inverse (multiply (inverse (multiply (inverse ?30249) ?30249)) ?30250))) =>= inverse (multiply ?30248 (inverse ?30250)) [30250, 30249, 30248] by Super 1370 with 4845 at 1,1,2,1,2
5575 Id : 9751, {_}: inverse (multiply ?34833 (inverse (multiply (inverse (multiply ?34834 ?34835)) (multiply ?34834 ?34836)))) =>= inverse (multiply ?34833 (inverse (multiply (inverse ?34835) ?34836))) [34836, 34835, 34834, 34833] by Super 7694 with 1288 at 1,2,1,2
5576 Id : 9799, {_}: inverse (multiply ?35157 (inverse (multiply (inverse (multiply ?35158 (inverse ?35159))) (multiply ?35158 ?35160)))) =?= inverse (multiply ?35157 (inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse ?35161) ?35161)) ?35159))) ?35160))) [35161, 35160, 35159, 35158, 35157] by Super 9751 with 7295 at 1,1,2,1,2
5577 Id : 7715, {_}: inverse (multiply ?30362 (inverse (multiply (inverse (multiply ?30363 ?30364)) (multiply ?30363 ?30365)))) =>= inverse (multiply ?30362 (inverse (multiply (inverse ?30364) ?30365))) [30365, 30364, 30363, 30362] by Super 7694 with 1288 at 1,2,1,2
5578 Id : 10327, {_}: inverse (multiply ?35157 (inverse (multiply (inverse (inverse ?35159)) ?35160))) =<= inverse (multiply ?35157 (inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse ?35161) ?35161)) ?35159))) ?35160))) [35161, 35160, 35159, 35157] by Demod 9799 with 7715 at 2
5579 Id : 14061, {_}: multiply (multiply (inverse (multiply (multiply (inverse ?43109) (multiply (multiply (inverse (multiply ?43110 (inverse (multiply ?43109 ?43111)))) (multiply ?43110 (inverse ?43111))) (inverse ?43111))) (inverse (multiply (inverse (inverse ?43112)) (multiply (inverse ?43111) ?43111))))) (inverse ?43111)) (inverse (multiply (inverse (multiply (inverse ?43111) ?43111)) (multiply (inverse ?43111) ?43111))) =?= inverse (inverse (multiply (inverse (multiply (inverse ?43113) ?43113)) ?43112)) [43113, 43112, 43111, 43110, 43109] by Super 8 with 10327 at 1,1,2
5580 Id : 14495, {_}: inverse (inverse ?43112) =<= inverse (inverse (multiply (inverse (multiply (inverse ?43113) ?43113)) ?43112)) [43113, 43112] by Demod 14061 with 8 at 2
5581 Id : 23770, {_}: inverse (multiply (inverse ?60796) ?60796) =?= inverse (multiply (inverse (inverse ?60797)) (inverse ?60797)) [60797, 60796] by Demod 22930 with 14495 at 1,1,3
5582 Id : 23801, {_}: inverse (multiply (inverse ?60931) ?60931) =?= inverse (multiply (inverse ?60932) ?60932) [60932, 60931] by Super 23770 with 22585 at 1,3
5583 Id : 25761, {_}: multiply (multiply (inverse (inverse (multiply (inverse ?63084) ?63084))) (inverse ?63085)) (inverse (multiply (inverse ?63086) ?63086)) =>= inverse ?63085 [63086, 63085, 63084] by Super 23378 with 23801 at 1,1,1,2
5584 Id : 27867, {_}: multiply (inverse (multiply (inverse ?66211) ?66211)) (inverse ?66212) =?= multiply (multiply (inverse (inverse (multiply (inverse ?66213) ?66213))) (inverse ?66212)) (inverse (multiply (inverse ?66214) ?66214)) [66214, 66213, 66212, 66211] by Super 22724 with 25761 at 2,2
5585 Id : 28152, {_}: multiply (inverse (multiply (inverse ?66849) ?66849)) (inverse ?66850) =>= inverse ?66850 [66850, 66849] by Demod 27867 with 25761 at 3
5586 Id : 28153, {_}: multiply (inverse (multiply (inverse ?66852) ?66852)) ?66853 =?= inverse (multiply ?66854 (inverse (multiply (multiply (multiply ?66853 (multiply ?66854 (inverse ?66855))) (inverse (multiply (inverse ?66855) ?66855))) ?66855))) [66855, 66854, 66853, 66852] by Super 28152 with 210 at 2,2
5587 Id : 28218, {_}: multiply (inverse (multiply (inverse ?66852) ?66852)) ?66853 =>= ?66853 [66853, 66852] by Demod 28153 with 210 at 3
5588 Id : 28331, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse ?67206) ?67206)) ?67207))) (inverse ?67207) =?= inverse (multiply (inverse ?67208) ?67208) [67208, 67207, 67206] by Super 23366 with 28218 at 1,1,1,1,2
5589 Id : 28438, {_}: multiply (inverse (inverse ?67207)) (inverse ?67207) =?= inverse (multiply (inverse ?67208) ?67208) [67208, 67207] by Demod 28331 with 28218 at 1,1,1,2
5590 Id : 28698, {_}: multiply (inverse (inverse (multiply (inverse ?68177) ?68177))) ?68178 =>= ?68178 [68178, 68177] by Super 28218 with 28438 at 1,1,2
5591 Id : 29246, {_}: multiply (inverse ?63085) (inverse (multiply (inverse ?63086) ?63086)) =>= inverse ?63085 [63086, 63085] by Demod 25761 with 28698 at 1,2
5592 Id : 29249, {_}: inverse (inverse (multiply ?63681 (multiply (inverse ?63682) ?63682))) =<= multiply (inverse (inverse (multiply ?63681 ?63682))) (inverse ?63682) [63682, 63681] by Demod 26221 with 29246 at 2
5593 Id : 29251, {_}: inverse (inverse (multiply (multiply ?16894 (inverse (multiply (inverse ?16895) ?16895))) (multiply (inverse ?16896) ?16896))) =>= ?16894 [16896, 16895, 16894] by Demod 23366 with 29249 at 2
5594 Id : 29250, {_}: multiply (inverse (inverse (multiply ?17134 (multiply (inverse ?17135) ?17135)))) (inverse (multiply (inverse ?17136) ?17136)) =>= ?17134 [17136, 17135, 17134] by Demod 23378 with 29249 at 1,2
5595 Id : 29258, {_}: inverse (inverse (multiply ?17134 (multiply (inverse ?17135) ?17135))) =>= ?17134 [17135, 17134] by Demod 29250 with 29246 at 2
5596 Id : 29259, {_}: multiply ?16894 (inverse (multiply (inverse ?16895) ?16895)) =>= ?16894 [16895, 16894] by Demod 29251 with 29258 at 2
5597 Id : 29266, {_}: multiply (inverse (inverse (multiply (multiply ?5363 (multiply ?5364 (inverse ?5365))) ?5365))) ?5366 =>= multiply ?5363 (multiply ?5364 ?5366) [5366, 5365, 5364, 5363] by Demod 23367 with 29259 at 1,1,1,1,2
5598 Id : 29298, {_}: inverse (inverse (multiply ?68838 (inverse (multiply (inverse ?68839) ?68839)))) =>= ?68838 [68839, 68838] by Super 29258 with 28698 at 2,1,1,2
5599 Id : 29399, {_}: inverse (inverse ?68838) =>= ?68838 [68838] by Demod 29298 with 29259 at 1,1,2
5600 Id : 32787, {_}: multiply (multiply (multiply ?5363 (multiply ?5364 (inverse ?5365))) ?5365) ?5366 =>= multiply ?5363 (multiply ?5364 ?5366) [5366, 5365, 5364, 5363] by Demod 29266 with 29399 at 1,2
5601 Id : 32817, {_}: multiply (multiply (multiply ?69480 (multiply ?69481 ?69482)) (inverse ?69482)) ?69483 =>= multiply ?69480 (multiply ?69481 ?69483) [69483, 69482, 69481, 69480] by Super 32787 with 29399 at 2,2,1,1,2
5602 Id : 27049, {_}: multiply (inverse (inverse (multiply ?65328 (multiply (inverse ?65329) ?65329)))) (inverse (multiply (inverse ?65330) ?65330)) =>= multiply (inverse (inverse (multiply ?65328 ?65329))) (inverse ?65329) [65330, 65329, 65328] by Super 3510 with 23545 at 3
5603 Id : 27102, {_}: multiply (inverse (inverse (multiply (inverse ?65600) ?65600))) (inverse (multiply (inverse ?65601) ?65601)) =?= multiply (inverse (inverse (multiply (inverse (multiply (inverse ?65602) ?65602)) ?65600))) (inverse ?65600) [65602, 65601, 65600] by Super 27049 with 22724 at 1,1,1,2
5604 Id : 27480, {_}: multiply (inverse (inverse (multiply (inverse ?65600) ?65600))) (inverse (multiply (inverse ?65601) ?65601)) =>= multiply (inverse (inverse ?65600)) (inverse ?65600) [65601, 65600] by Demod 27102 with 14495 at 1,3
5605 Id : 27499, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (multiply (inverse (inverse ?17)) (inverse ?17))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 23376 with 27480 at 1,2,2
5606 Id : 28687, {_}: multiply (multiply (inverse (multiply (inverse (inverse ?68131)) (inverse ?68131))) (inverse (inverse (multiply (inverse ?68132) ?68132)))) (inverse (multiply (inverse (inverse ?68132)) (inverse ?68132))) =?= multiply (inverse (inverse (multiply (multiply (inverse ?68133) ?68133) ?68132))) (inverse ?68132) [68133, 68132, 68131] by Super 27499 with 28438 at 1,1,1,2
5607 Id : 28770, {_}: multiply (inverse (inverse (multiply (inverse ?68132) ?68132))) (inverse (multiply (inverse (inverse ?68132)) (inverse ?68132))) =?= multiply (inverse (inverse (multiply (multiply (inverse ?68133) ?68133) ?68132))) (inverse ?68132) [68133, 68132] by Demod 28687 with 28218 at 1,2
5608 Id : 9, {_}: multiply (multiply (inverse (multiply ?31 (inverse (inverse ?32)))) (multiply ?31 (inverse (inverse (multiply (inverse ?32) ?32))))) (inverse (multiply (inverse (inverse (multiply (inverse ?32) ?32))) (inverse (multiply (inverse ?32) ?32)))) =?= multiply (inverse ?33) (multiply (multiply (inverse (multiply ?34 (inverse (multiply ?33 ?32)))) (multiply ?34 (inverse ?32))) (inverse ?32)) [34, 33, 32, 31] by Super 2 with 6 at 1,2,1,1,1,2
5609 Id : 23370, {_}: multiply (multiply (inverse (inverse (inverse ?32))) (inverse (inverse (multiply (inverse ?32) ?32)))) (inverse (multiply (inverse (inverse (multiply (inverse ?32) ?32))) (inverse (multiply (inverse ?32) ?32)))) =?= multiply (inverse ?33) (multiply (multiply (inverse (multiply ?34 (inverse (multiply ?33 ?32)))) (multiply ?34 (inverse ?32))) (inverse ?32)) [34, 33, 32] by Demod 9 with 23108 at 1,2
5610 Id : 23371, {_}: multiply (multiply (inverse (inverse (inverse ?32))) (inverse (inverse (multiply (inverse ?32) ?32)))) (inverse (multiply (inverse (inverse (multiply (inverse ?32) ?32))) (inverse (multiply (inverse ?32) ?32)))) =?= multiply (inverse ?33) (multiply (multiply (inverse (inverse (multiply ?33 ?32))) (inverse ?32)) (inverse ?32)) [33, 32] by Demod 23370 with 23108 at 1,2,3
5611 Id : 23387, {_}: multiply (inverse (inverse (multiply (inverse ?32) ?32))) (inverse ?32) =<= multiply (inverse ?33) (multiply (multiply (inverse (inverse (multiply ?33 ?32))) (inverse ?32)) (inverse ?32)) [33, 32] by Demod 23371 with 23376 at 2
5612 Id : 25785, {_}: multiply (inverse (inverse (multiply (inverse ?63178) ?63178))) (inverse ?63178) =<= multiply (inverse (multiply (inverse ?63179) ?63179)) (multiply (multiply (inverse (inverse (multiply (multiply (inverse ?63180) ?63180) ?63178))) (inverse ?63178)) (inverse ?63178)) [63180, 63179, 63178] by Super 23387 with 23801 at 1,3
5613 Id : 25940, {_}: multiply (inverse (inverse (multiply (inverse ?63178) ?63178))) (inverse ?63178) =<= multiply (multiply (inverse (inverse (multiply (multiply (inverse ?63180) ?63180) ?63178))) (inverse ?63178)) (inverse ?63178) [63180, 63178] by Demod 25785 with 22724 at 3
5614 Id : 26391, {_}: multiply (inverse (inverse (multiply (multiply (inverse (inverse (multiply (inverse (multiply (inverse ?64074) ?64074)) (multiply (inverse ?64074) ?64074)))) (inverse (multiply (inverse ?64074) ?64074))) ?64075))) (inverse ?64075) =?= multiply (inverse (inverse (multiply (multiply (inverse ?64076) ?64076) (multiply (inverse ?64074) ?64074)))) (inverse (multiply (inverse ?64074) ?64074)) [64076, 64075, 64074] by Super 23366 with 25940 at 1,1,1,1,2
5615 Id : 26476, {_}: inverse (inverse (multiply (inverse (multiply (inverse ?64074) ?64074)) (multiply (inverse ?64074) ?64074))) =<= multiply (inverse (inverse (multiply (multiply (inverse ?64076) ?64076) (multiply (inverse ?64074) ?64074)))) (inverse (multiply (inverse ?64074) ?64074)) [64076, 64074] by Demod 26391 with 23366 at 2
5616 Id : 26477, {_}: inverse (inverse (multiply (inverse (multiply (inverse ?64074) ?64074)) (multiply (inverse ?64074) ?64074))) =?= multiply (inverse (inverse (multiply (multiply (inverse ?64076) ?64076) ?64074))) (inverse ?64074) [64076, 64074] by Demod 26476 with 23545 at 3
5617 Id : 26478, {_}: inverse (inverse (multiply (inverse ?64074) ?64074)) =<= multiply (inverse (inverse (multiply (multiply (inverse ?64076) ?64076) ?64074))) (inverse ?64074) [64076, 64074] by Demod 26477 with 14495 at 2
5618 Id : 28771, {_}: multiply (inverse (inverse (multiply (inverse ?68132) ?68132))) (inverse (multiply (inverse (inverse ?68132)) (inverse ?68132))) =>= inverse (inverse (multiply (inverse ?68132) ?68132)) [68132] by Demod 28770 with 26478 at 3
5619 Id : 28772, {_}: multiply (inverse (inverse ?68132)) (inverse ?68132) =>= inverse (inverse (multiply (inverse ?68132) ?68132)) [68132] by Demod 28771 with 27480 at 2
5620 Id : 28931, {_}: inverse (multiply ?21768 (inverse (multiply (multiply (multiply ?21768 (inverse ?21769)) (inverse (multiply (inverse ?21769) ?21769))) ?21769))) =>= inverse (inverse (inverse (multiply (inverse ?21769) ?21769))) [21769, 21768] by Demod 4844 with 28772 at 1,3
5621 Id : 29275, {_}: inverse (multiply ?21768 (inverse (multiply (multiply ?21768 (inverse ?21769)) ?21769))) =>= inverse (inverse (inverse (multiply (inverse ?21769) ?21769))) [21769, 21768] by Demod 28931 with 29259 at 1,1,2,1,2
5622 Id : 32786, {_}: inverse (multiply ?21768 (inverse (multiply (multiply ?21768 (inverse ?21769)) ?21769))) =>= inverse (multiply (inverse ?21769) ?21769) [21769, 21768] by Demod 29275 with 29399 at 3
5623 Id : 32802, {_}: inverse (multiply ?69432 (inverse (multiply (multiply ?69432 ?69433) (inverse ?69433)))) =>= inverse (multiply (inverse (inverse ?69433)) (inverse ?69433)) [69433, 69432] by Super 32786 with 29399 at 2,1,1,2,1,2
5624 Id : 21975, {_}: multiply (multiply (inverse (multiply ?5995 (inverse ?5996))) (multiply ?5995 (inverse (multiply ?5997 (inverse ?5998))))) (inverse (multiply (inverse (inverse ?5998)) (inverse ?5998))) =>= inverse (multiply ?5997 (inverse (multiply (multiply ?5996 (inverse (multiply (inverse ?5998) ?5998))) ?5998))) [5998, 5997, 5996, 5995] by Demod 1364 with 21784 at 1,2,2
5625 Id : 23386, {_}: multiply (multiply (inverse (inverse ?5996)) (inverse (multiply ?5997 (inverse ?5998)))) (inverse (multiply (inverse (inverse ?5998)) (inverse ?5998))) =>= inverse (multiply ?5997 (inverse (multiply (multiply ?5996 (inverse (multiply (inverse ?5998) ?5998))) ?5998))) [5998, 5997, 5996] by Demod 21975 with 23108 at 1,2
5626 Id : 28932, {_}: multiply (multiply (inverse (inverse ?5996)) (inverse (multiply ?5997 (inverse ?5998)))) (inverse (inverse (inverse (multiply (inverse ?5998) ?5998)))) =>= inverse (multiply ?5997 (inverse (multiply (multiply ?5996 (inverse (multiply (inverse ?5998) ?5998))) ?5998))) [5998, 5997, 5996] by Demod 23386 with 28772 at 1,2,2
5627 Id : 29265, {_}: multiply (multiply (inverse (inverse ?5996)) (inverse (multiply ?5997 (inverse ?5998)))) (inverse (inverse (inverse (multiply (inverse ?5998) ?5998)))) =>= inverse (multiply ?5997 (inverse (multiply ?5996 ?5998))) [5998, 5997, 5996] by Demod 28932 with 29259 at 1,1,2,1,3
5628 Id : 32767, {_}: multiply (multiply ?5996 (inverse (multiply ?5997 (inverse ?5998)))) (inverse (inverse (inverse (multiply (inverse ?5998) ?5998)))) =>= inverse (multiply ?5997 (inverse (multiply ?5996 ?5998))) [5998, 5997, 5996] by Demod 29265 with 29399 at 1,1,2
5629 Id : 32768, {_}: multiply (multiply ?5996 (inverse (multiply ?5997 (inverse ?5998)))) (inverse (multiply (inverse ?5998) ?5998)) =>= inverse (multiply ?5997 (inverse (multiply ?5996 ?5998))) [5998, 5997, 5996] by Demod 32767 with 29399 at 2,2
5630 Id : 32797, {_}: multiply ?5996 (inverse (multiply ?5997 (inverse ?5998))) =>= inverse (multiply ?5997 (inverse (multiply ?5996 ?5998))) [5998, 5997, 5996] by Demod 32768 with 29259 at 2
5631 Id : 32841, {_}: inverse (inverse (multiply (multiply ?69432 ?69433) (inverse (multiply ?69432 ?69433)))) =>= inverse (multiply (inverse (inverse ?69433)) (inverse ?69433)) [69433, 69432] by Demod 32802 with 32797 at 1,2
5632 Id : 32842, {_}: inverse (inverse (multiply (multiply ?69432 ?69433) (inverse (multiply ?69432 ?69433)))) =>= inverse (multiply ?69433 (inverse ?69433)) [69433, 69432] by Demod 32841 with 29399 at 1,1,3
5633 Id : 32843, {_}: multiply (multiply ?69432 ?69433) (inverse (multiply ?69432 ?69433)) =>= inverse (multiply ?69433 (inverse ?69433)) [69433, 69432] by Demod 32842 with 29399 at 2
5634 Id : 10, {_}: multiply (multiply (inverse (inverse ?36)) (multiply (multiply (inverse ?37) (multiply (multiply (inverse (multiply ?38 (inverse (multiply ?37 ?36)))) (multiply ?38 (inverse ?36))) (inverse ?36))) (inverse ?36))) (inverse (multiply (inverse ?36) ?36)) =>= inverse ?36 [38, 37, 36] by Super 2 with 6 at 1,1,1,2
5635 Id : 37, {_}: multiply (multiply (inverse (multiply (inverse (inverse ?174)) (multiply (multiply (inverse ?175) (multiply (multiply (inverse (multiply ?176 (inverse (multiply ?175 ?174)))) (multiply ?176 (inverse ?174))) (inverse ?174))) (inverse ?174)))) (multiply (multiply (inverse (multiply ?177 (inverse (inverse ?174)))) (multiply ?177 (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [177, 176, 175, 174] by Super 6 with 10 at 1,2,1,1,1,2,1,2
5636 Id : 23364, {_}: multiply (multiply (inverse (multiply (inverse (inverse ?174)) (multiply (multiply (inverse ?175) (multiply (multiply (inverse (inverse (multiply ?175 ?174))) (inverse ?174)) (inverse ?174))) (inverse ?174)))) (multiply (multiply (inverse (multiply ?177 (inverse (inverse ?174)))) (multiply ?177 (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [177, 175, 174] by Demod 37 with 23108 at 1,2,1,2,1,1,1,2
5637 Id : 23365, {_}: multiply (multiply (inverse (multiply (inverse (inverse ?174)) (multiply (multiply (inverse ?175) (multiply (multiply (inverse (inverse (multiply ?175 ?174))) (inverse ?174)) (inverse ?174))) (inverse ?174)))) (multiply (multiply (inverse (inverse (inverse ?174))) (inverse (inverse (multiply (inverse ?174) ?174)))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [175, 174] by Demod 23364 with 23108 at 1,2,1,2
5638 Id : 23401, {_}: multiply (multiply (inverse (multiply (inverse (inverse ?174)) (multiply (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse ?174)) (inverse ?174)))) (multiply (multiply (inverse (inverse (inverse ?174))) (inverse (inverse (multiply (inverse ?174) ?174)))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 23365 with 23387 at 1,2,1,1,1,2
5639 Id : 23402, {_}: multiply (multiply (inverse (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse ?174))) (multiply (multiply (inverse (inverse (inverse ?174))) (inverse (inverse (multiply (inverse ?174) ?174)))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 23401 with 23387 at 1,1,1,2
5640 Id : 27500, {_}: multiply (multiply (inverse (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse ?174))) (multiply (multiply (inverse (inverse (inverse ?174))) (inverse (inverse (multiply (inverse ?174) ?174)))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (multiply (inverse (inverse ?174)) (inverse ?174))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 23402 with 27480 at 1,2,2
5641 Id : 28930, {_}: multiply (multiply (inverse (multiply (inverse (inverse (multiply (inverse ?174) ?174))) (inverse ?174))) (multiply (multiply (inverse (inverse (inverse ?174))) (inverse (inverse (multiply (inverse ?174) ?174)))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (inverse (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 27500 with 28772 at 1,2,2
5642 Id : 29247, {_}: multiply (multiply (inverse (inverse ?174)) (multiply (multiply (inverse (inverse (inverse ?174))) (inverse (inverse (multiply (inverse ?174) ?174)))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (inverse (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 28930 with 28698 at 1,1,1,2
5643 Id : 32772, {_}: multiply (multiply ?174 (multiply (multiply (inverse (inverse (inverse ?174))) (inverse (inverse (multiply (inverse ?174) ?174)))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (inverse (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 29247 with 29399 at 1,1,2
5644 Id : 32773, {_}: multiply (multiply ?174 (multiply (multiply (inverse ?174) (inverse (inverse (multiply (inverse ?174) ?174)))) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (inverse (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 32772 with 29399 at 1,1,2,1,2
5645 Id : 32774, {_}: multiply (multiply ?174 (multiply (multiply (inverse ?174) (multiply (inverse ?174) ?174)) (inverse (inverse (multiply (inverse ?174) ?174))))) (inverse (inverse (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 32773 with 29399 at 2,1,2,1,2
5646 Id : 32775, {_}: multiply (multiply ?174 (multiply (multiply (inverse ?174) (multiply (inverse ?174) ?174)) (multiply (inverse ?174) ?174))) (inverse (inverse (inverse (multiply (inverse ?174) ?174)))) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 32774 with 29399 at 2,2,1,2
5647 Id : 32776, {_}: multiply (multiply ?174 (multiply (multiply (inverse ?174) (multiply (inverse ?174) ?174)) (multiply (inverse ?174) ?174))) (inverse (multiply (inverse ?174) ?174)) =>= inverse (inverse (multiply (inverse ?174) ?174)) [174] by Demod 32775 with 29399 at 2,2
5648 Id : 32777, {_}: multiply (multiply ?174 (multiply (multiply (inverse ?174) (multiply (inverse ?174) ?174)) (multiply (inverse ?174) ?174))) (inverse (multiply (inverse ?174) ?174)) =>= multiply (inverse ?174) ?174 [174] by Demod 32776 with 29399 at 3
5649 Id : 32792, {_}: multiply ?174 (multiply (multiply (inverse ?174) (multiply (inverse ?174) ?174)) (multiply (inverse ?174) ?174)) =>= multiply (inverse ?174) ?174 [174] by Demod 32777 with 29259 at 2
5650 Id : 28933, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (inverse (inverse (multiply (inverse ?17) ?17)))) =>= multiply (inverse (inverse (multiply ?16 ?17))) (inverse ?17) [17, 16] by Demod 27499 with 28772 at 1,2,2
5651 Id : 29256, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (inverse (inverse (multiply (inverse ?17) ?17)))) =>= inverse (inverse (multiply ?16 (multiply (inverse ?17) ?17))) [17, 16] by Demod 28933 with 29249 at 3
5652 Id : 29262, {_}: multiply (multiply (inverse (inverse ?16)) (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (inverse (inverse (multiply (inverse ?17) ?17)))) =>= ?16 [17, 16] by Demod 29256 with 29258 at 3
5653 Id : 32782, {_}: multiply (multiply ?16 (inverse (inverse (multiply (inverse ?17) ?17)))) (inverse (inverse (inverse (multiply (inverse ?17) ?17)))) =>= ?16 [17, 16] by Demod 29262 with 29399 at 1,1,2
5654 Id : 32783, {_}: multiply (multiply ?16 (multiply (inverse ?17) ?17)) (inverse (inverse (inverse (multiply (inverse ?17) ?17)))) =>= ?16 [17, 16] by Demod 32782 with 29399 at 2,1,2
5655 Id : 32784, {_}: multiply (multiply ?16 (multiply (inverse ?17) ?17)) (inverse (multiply (inverse ?17) ?17)) =>= ?16 [17, 16] by Demod 32783 with 29399 at 2,2
5656 Id : 32789, {_}: multiply ?16 (multiply (inverse ?17) ?17) =>= ?16 [17, 16] by Demod 32784 with 29259 at 2
5657 Id : 32793, {_}: multiply ?174 (multiply (inverse ?174) (multiply (inverse ?174) ?174)) =>= multiply (inverse ?174) ?174 [174] by Demod 32792 with 32789 at 2,2
5658 Id : 32794, {_}: multiply ?174 (inverse ?174) =?= multiply (inverse ?174) ?174 [174] by Demod 32793 with 32789 at 2,2
5659 Id : 32844, {_}: multiply (inverse (multiply ?69432 ?69433)) (multiply ?69432 ?69433) =>= inverse (multiply ?69433 (inverse ?69433)) [69433, 69432] by Demod 32843 with 32794 at 2
5660 Id : 32845, {_}: multiply (inverse ?69433) ?69433 =<= inverse (multiply ?69433 (inverse ?69433)) [69433] by Demod 32844 with 23108 at 2
5661 Id : 32878, {_}: inverse (multiply (inverse ?69602) ?69602) =>= multiply ?69602 (inverse ?69602) [69602] by Super 29399 with 32845 at 1,2
5662 Id : 32984, {_}: multiply ?16894 (multiply ?16895 (inverse ?16895)) =>= ?16894 [16895, 16894] by Demod 29259 with 32878 at 2,2
5663 Id : 38023, {_}: multiply ?72734 (multiply ?72735 (multiply ?72736 (inverse ?72736))) =?= multiply (multiply ?72734 (multiply ?72735 ?72737)) (inverse ?72737) [72737, 72736, 72735, 72734] by Super 32984 with 32817 at 2
5664 Id : 38122, {_}: multiply ?72734 ?72735 =<= multiply (multiply ?72734 (multiply ?72735 ?72737)) (inverse ?72737) [72737, 72735, 72734] by Demod 38023 with 32984 at 2,2
5665 Id : 40272, {_}: multiply (multiply ?69480 ?69481) ?69483 =?= multiply ?69480 (multiply ?69481 ?69483) [69483, 69481, 69480] by Demod 32817 with 38122 at 1,2
5666 Id : 40468, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 40272 at 2
5667 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
5668 % SZS output end CNFRefutation for GRP411-1.p
5669 23552: solved GRP411-1.p in 26.617662 using nrkbo
5670 23552: status Unsatisfiable for GRP411-1.p
5671 NO CLASH, using fixed ground order
5679 (multiply (inverse ?3)
5681 (multiply ?4 (inverse (multiply (inverse ?4) ?4))))))))
5685 [4, 3, 2] by single_axiom ?2 ?3 ?4
5688 multiply (multiply (inverse b2) b2) a2 =>= a2
5689 [] by prove_these_axioms_2
5693 23570: b2 2 0 2 1,1,1,2
5695 23570: inverse 8 1 1 0,1,1,2
5696 23570: multiply 8 2 2 0,2
5697 NO CLASH, using fixed ground order
5705 (multiply (inverse ?3)
5707 (multiply ?4 (inverse (multiply (inverse ?4) ?4))))))))
5711 [4, 3, 2] by single_axiom ?2 ?3 ?4
5714 multiply (multiply (inverse b2) b2) a2 =>= a2
5715 [] by prove_these_axioms_2
5719 23571: b2 2 0 2 1,1,1,2
5721 23571: inverse 8 1 1 0,1,1,2
5722 23571: multiply 8 2 2 0,2
5723 NO CLASH, using fixed ground order
5731 (multiply (inverse ?3)
5733 (multiply ?4 (inverse (multiply (inverse ?4) ?4))))))))
5737 [4, 3, 2] by single_axiom ?2 ?3 ?4
5740 multiply (multiply (inverse b2) b2) a2 =>= a2
5741 [] by prove_these_axioms_2
5745 23572: b2 2 0 2 1,1,1,2
5747 23572: inverse 8 1 1 0,1,1,2
5748 23572: multiply 8 2 2 0,2
5751 Found proof, 75.766748s
5752 % SZS status Unsatisfiable for GRP419-1.p
5753 % SZS output start CNFRefutation for GRP419-1.p
5754 Id : 3, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (inverse (multiply ?8 (inverse (multiply (inverse ?8) ?8)))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8
5755 Id : 2, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (inverse (multiply ?4 (inverse (multiply (inverse ?4) ?4)))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
5756 Id : 31, {_}: inverse (multiply (inverse (multiply ?219 (inverse (multiply (inverse ?220) (inverse (multiply (multiply (inverse (multiply ?221 (inverse (multiply (inverse ?222) (inverse (multiply ?223 (inverse (multiply (inverse ?223) ?223)))))))) (multiply ?221 ?223)) (inverse (multiply ?222 (multiply (inverse (multiply ?221 (inverse (multiply (inverse ?222) (inverse (multiply ?223 (inverse (multiply (inverse ?223) ?223)))))))) (multiply ?221 ?223)))))))))) (multiply ?219 (multiply (inverse (multiply ?221 (inverse (multiply (inverse ?222) (inverse (multiply ?223 (inverse (multiply (inverse ?223) ?223)))))))) (multiply ?221 ?223)))) =>= ?220 [223, 222, 221, 220, 219] by Super 3 with 2 at 1,1,2,1,2,1,2,1,1,1,2
5757 Id : 5, {_}: inverse (multiply (inverse (multiply ?16 (inverse (multiply ?17 (inverse (multiply ?18 (inverse (multiply (inverse ?18) ?18)))))))) (multiply ?16 ?18)) =?= multiply (inverse (multiply ?19 (inverse (multiply (inverse ?17) (inverse (multiply ?20 (inverse (multiply (inverse ?20) ?20)))))))) (multiply ?19 ?20) [20, 19, 18, 17, 16] by Super 3 with 2 at 1,1,2,1,1,1,2
5758 Id : 39, {_}: inverse (multiply (inverse (multiply ?290 (inverse (multiply (inverse ?291) (inverse (multiply (multiply (inverse (multiply ?292 (inverse (multiply (inverse ?293) (inverse (multiply ?294 (inverse (multiply (inverse ?294) ?294)))))))) (multiply ?292 ?294)) (inverse (multiply ?293 (multiply (inverse (multiply ?292 (inverse (multiply (inverse ?293) (inverse (multiply ?294 (inverse (multiply (inverse ?294) ?294)))))))) (multiply ?292 ?294)))))))))) (multiply ?290 (inverse (multiply (inverse (multiply ?295 (inverse (multiply ?293 (inverse (multiply ?296 (inverse (multiply (inverse ?296) ?296)))))))) (multiply ?295 ?296))))) =>= ?291 [296, 295, 294, 293, 292, 291, 290] by Super 31 with 5 at 2,2,1,2
5759 Id : 11, {_}: multiply (inverse (multiply ?51 (inverse (multiply (inverse (inverse ?52)) (inverse (multiply ?53 (inverse (multiply (inverse ?53) ?53)))))))) (multiply ?51 ?53) =>= ?52 [53, 52, 51] by Super 2 with 5 at 2
5760 Id : 131, {_}: inverse (multiply (inverse (multiply (inverse (multiply ?678 (inverse (multiply (inverse (inverse ?679)) (inverse (multiply ?680 (inverse (multiply (inverse ?680) ?680)))))))) (inverse (multiply (inverse ?681) (inverse (multiply (multiply ?678 ?680) (inverse (multiply (inverse (multiply ?678 ?680)) (multiply ?678 ?680))))))))) ?679) =>= ?681 [681, 680, 679, 678] by Super 2 with 11 at 2,1,2
5761 Id : 592, {_}: inverse (multiply (inverse (multiply ?3887 ?3888)) (multiply ?3887 ?3889)) =?= multiply (inverse (multiply ?3890 (inverse (multiply (inverse (inverse (inverse (multiply ?3889 (inverse (multiply (inverse ?3889) ?3889)))))) (inverse (multiply ?3891 (inverse (multiply (inverse ?3891) ?3891)))))))) (inverse (multiply (inverse ?3888) (inverse (multiply (multiply ?3890 ?3891) (inverse (multiply (inverse (multiply ?3890 ?3891)) (multiply ?3890 ?3891))))))) [3891, 3890, 3889, 3888, 3887] by Super 2 with 131 at 2,1,1,1,2
5762 Id : 1723, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?12104 ?12105)) (multiply ?12104 ?12106)))) (inverse (multiply ?12106 (inverse (multiply (inverse ?12106) ?12106))))) =>= ?12105 [12106, 12105, 12104] by Super 131 with 592 at 1,1,1,2
5763 Id : 139, {_}: multiply (inverse (multiply ?714 (inverse (multiply (inverse (inverse ?715)) (inverse (multiply ?716 (inverse (multiply (inverse ?716) ?716)))))))) (multiply ?714 ?716) =>= ?715 [716, 715, 714] by Super 2 with 5 at 2
5764 Id : 140, {_}: multiply (inverse (multiply (inverse (multiply ?718 (inverse (multiply (inverse (inverse ?719)) (inverse (multiply ?720 (inverse (multiply (inverse ?720) ?720)))))))) (inverse (multiply (inverse (inverse ?721)) (inverse (multiply (multiply ?718 ?720) (inverse (multiply (inverse (multiply ?718 ?720)) (multiply ?718 ?720))))))))) ?719 =>= ?721 [721, 720, 719, 718] by Super 139 with 11 at 2,2
5765 Id : 1734, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?12189 (inverse ?12190))) (multiply ?12189 ?12191)))) (inverse (multiply ?12191 (inverse (multiply (inverse ?12191) ?12191)))) =>= ?12190 [12191, 12190, 12189] by Super 140 with 592 at 1,1,2
5766 Id : 10, {_}: inverse (inverse (multiply (inverse (multiply ?47 (inverse (multiply ?48 (inverse (multiply ?49 (inverse (multiply (inverse ?49) ?49)))))))) (multiply ?47 ?49))) =>= ?48 [49, 48, 47] by Super 2 with 5 at 1,2
5767 Id : 1746, {_}: inverse (multiply (inverse (multiply ?12293 ?12294)) (multiply ?12293 ?12295)) =?= multiply (inverse (multiply ?12296 (inverse (multiply (inverse (inverse (inverse (multiply ?12295 (inverse (multiply (inverse ?12295) ?12295)))))) (inverse (multiply ?12297 (inverse (multiply (inverse ?12297) ?12297)))))))) (inverse (multiply (inverse ?12294) (inverse (multiply (multiply ?12296 ?12297) (inverse (multiply (inverse (multiply ?12296 ?12297)) (multiply ?12296 ?12297))))))) [12297, 12296, 12295, 12294, 12293] by Super 2 with 131 at 2,1,1,1,2
5768 Id : 1828, {_}: inverse (multiply (inverse (multiply ?13070 ?13071)) (multiply ?13070 ?13072)) =?= inverse (multiply (inverse (multiply ?13073 ?13071)) (multiply ?13073 ?13072)) [13073, 13072, 13071, 13070] by Super 1746 with 592 at 3
5769 Id : 6984, {_}: inverse (inverse (multiply (inverse (multiply ?54958 (inverse (multiply ?54959 (inverse (multiply (multiply ?54960 ?54961) (inverse (multiply (inverse (multiply ?54962 ?54961)) (multiply ?54962 ?54961))))))))) (multiply ?54958 (multiply ?54960 ?54961)))) =>= ?54959 [54962, 54961, 54960, 54959, 54958] by Super 10 with 1828 at 2,1,2,1,2,1,1,1,1,2
5770 Id : 6987, {_}: inverse (inverse (multiply (inverse (multiply ?54980 (inverse (multiply ?54981 (inverse (multiply (multiply (inverse (multiply (inverse (multiply ?54982 (inverse (multiply (inverse (inverse ?54983)) (inverse (multiply ?54984 (inverse (multiply (inverse ?54984) ?54984)))))))) (inverse (multiply (inverse (inverse ?54985)) (inverse (multiply (multiply ?54982 ?54984) (inverse (multiply (inverse (multiply ?54982 ?54984)) (multiply ?54982 ?54984))))))))) ?54983) (inverse (multiply (inverse (multiply ?54986 ?54983)) (multiply ?54986 ?54983))))))))) (multiply ?54980 ?54985))) =>= ?54981 [54986, 54985, 54984, 54983, 54982, 54981, 54980] by Super 6984 with 140 at 2,2,1,1,2
5771 Id : 7283, {_}: inverse (inverse (multiply (inverse (multiply ?56997 (inverse (multiply ?56998 (inverse (multiply ?56999 (inverse (multiply (inverse (multiply ?57000 ?57001)) (multiply ?57000 ?57001))))))))) (multiply ?56997 ?56999))) =>= ?56998 [57001, 57000, 56999, 56998, 56997] by Demod 6987 with 140 at 1,1,2,1,2,1,1,1,1,2
5772 Id : 7302, {_}: inverse (inverse (multiply (inverse (multiply ?57173 (inverse (multiply ?57174 (inverse (multiply ?57175 (inverse (multiply (inverse (multiply (inverse (multiply ?57176 (inverse (multiply (inverse (inverse ?57177)) (inverse (multiply ?57178 (inverse (multiply (inverse ?57178) ?57178)))))))) (multiply ?57176 ?57178))) ?57177)))))))) (multiply ?57173 ?57175))) =>= ?57174 [57178, 57177, 57176, 57175, 57174, 57173] by Super 7283 with 11 at 2,1,2,1,2,1,2,1,1,1,1,2
5773 Id : 7433, {_}: inverse (inverse (multiply (inverse (multiply ?57173 (inverse (multiply ?57174 (inverse (multiply ?57175 (inverse (multiply (inverse ?57177) ?57177)))))))) (multiply ?57173 ?57175))) =>= ?57174 [57177, 57175, 57174, 57173] by Demod 7302 with 2 at 1,1,2,1,2,1,2,1,1,1,1,2
5774 Id : 7485, {_}: multiply ?58076 (inverse (multiply ?58077 (inverse (multiply (inverse ?58077) ?58077)))) =?= multiply ?58076 (inverse (multiply ?58077 (inverse (multiply (inverse ?58078) ?58078)))) [58078, 58077, 58076] by Super 1734 with 7433 at 1,2
5775 Id : 8374, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?64683 (inverse (multiply ?64684 (inverse (multiply (inverse ?64685) ?64685)))))) (multiply ?64683 ?64686)))) (inverse (multiply ?64686 (inverse (multiply (inverse ?64686) ?64686)))) =?= multiply ?64684 (inverse (multiply (inverse ?64684) ?64684)) [64686, 64685, 64684, 64683] by Super 1734 with 7485 at 1,1,1,1,1,2
5776 Id : 8749, {_}: multiply ?64684 (inverse (multiply (inverse ?64685) ?64685)) =?= multiply ?64684 (inverse (multiply (inverse ?64684) ?64684)) [64685, 64684] by Demod 8374 with 1734 at 2
5777 Id : 8815, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?67872 (inverse (multiply (inverse ?67872) ?67872)))) (multiply ?67872 ?67873)))) (inverse (multiply ?67873 (inverse (multiply (inverse ?67873) ?67873))))) =?= inverse (multiply (inverse ?67874) ?67874) [67874, 67873, 67872] by Super 1723 with 8749 at 1,1,1,1,1,1,2
5778 Id : 9225, {_}: inverse (multiply (inverse ?67872) ?67872) =?= inverse (multiply (inverse ?67874) ?67874) [67874, 67872] by Demod 8815 with 1723 at 2
5779 Id : 9030, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?69262 (inverse (multiply (inverse ?69262) ?69262)))) (multiply ?69262 ?69263)))) (inverse (multiply ?69263 (inverse (multiply (inverse ?69263) ?69263)))) =?= multiply (inverse ?69264) ?69264 [69264, 69263, 69262] by Super 1734 with 8749 at 1,1,1,1,1,2
5780 Id : 9183, {_}: multiply (inverse ?69262) ?69262 =?= multiply (inverse ?69264) ?69264 [69264, 69262] by Demod 9030 with 1734 at 2
5781 Id : 12179, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?88672) ?88672))) (inverse (multiply ?88673 (inverse (multiply (inverse ?88673) ?88673))))) =>= ?88673 [88673, 88672] by Super 1723 with 9183 at 1,1,1,1,2
5782 Id : 12213, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?88894) ?88894))) (inverse (multiply ?88895 (inverse (multiply (inverse ?88896) ?88896))))) =>= ?88895 [88896, 88895, 88894] by Super 12179 with 9183 at 1,2,1,2,1,2
5783 Id : 13701, {_}: inverse (multiply (inverse ?97964) ?97964) =?= inverse (inverse (multiply (inverse ?97965) ?97965)) [97965, 97964] by Super 9225 with 12213 at 3
5784 Id : 34411, {_}: inverse (multiply (inverse (multiply (inverse ?202408) ?202408)) (inverse (multiply ?202409 (inverse (multiply (inverse ?202409) ?202409))))) =>= ?202409 [202409, 202408] by Super 1723 with 13701 at 1,1,2
5785 Id : 9086, {_}: multiply ?69615 (inverse (multiply (inverse ?69616) ?69616)) =?= multiply ?69615 (inverse (multiply (inverse ?69615) ?69615)) [69616, 69615] by Demod 8374 with 1734 at 2
5786 Id : 9126, {_}: multiply ?69879 (inverse (multiply (inverse ?69880) ?69880)) =?= multiply ?69879 (inverse (multiply (inverse ?69881) ?69881)) [69881, 69880, 69879] by Super 9086 with 8749 at 3
5787 Id : 56, {_}: inverse (multiply (inverse (multiply ?444 (inverse (multiply (inverse ?445) (inverse (multiply (inverse (multiply (inverse (multiply ?446 (inverse (multiply ?447 (inverse (multiply ?448 (inverse (multiply (inverse ?448) ?448)))))))) (multiply ?446 ?448))) (inverse (multiply ?447 (multiply (inverse (multiply ?449 (inverse (multiply (inverse ?447) (inverse (multiply ?450 (inverse (multiply (inverse ?450) ?450)))))))) (multiply ?449 ?450)))))))))) (multiply ?444 (multiply (inverse (multiply ?449 (inverse (multiply (inverse ?447) (inverse (multiply ?450 (inverse (multiply (inverse ?450) ?450)))))))) (multiply ?449 ?450)))) =>= ?445 [450, 449, 448, 447, 446, 445, 444] by Super 31 with 5 at 1,1,2,1,2,1,1,1,2
5788 Id : 14563, {_}: inverse (multiply (inverse (multiply ?103053 (inverse (multiply (inverse (inverse (multiply (inverse ?103054) ?103054))) (inverse (multiply (inverse (multiply (inverse (multiply ?103055 (inverse (multiply ?103056 (inverse (multiply ?103057 (inverse (multiply (inverse ?103057) ?103057)))))))) (multiply ?103055 ?103057))) (inverse (multiply ?103056 (multiply (inverse (multiply ?103058 (inverse (multiply (inverse ?103056) (inverse (multiply ?103059 (inverse (multiply (inverse ?103059) ?103059)))))))) (multiply ?103058 ?103059)))))))))) (multiply ?103053 (multiply (inverse (multiply ?103058 (inverse (multiply (inverse ?103056) (inverse (multiply ?103059 (inverse (multiply (inverse ?103059) ?103059)))))))) (multiply ?103058 ?103059)))) =?= multiply (inverse ?103060) ?103060 [103060, 103059, 103058, 103057, 103056, 103055, 103054, 103053] by Super 56 with 13701 at 1,1,2,1,1,1,2
5789 Id : 14713, {_}: inverse (multiply (inverse ?103054) ?103054) =?= multiply (inverse ?103060) ?103060 [103060, 103054] by Demod 14563 with 56 at 2
5790 Id : 15410, {_}: multiply ?107836 (inverse (multiply (inverse ?107837) ?107837)) =?= multiply ?107836 (multiply (inverse ?107838) ?107838) [107838, 107837, 107836] by Super 9126 with 14713 at 2,3
5791 Id : 34485, {_}: inverse (multiply (inverse (multiply (inverse ?202808) ?202808)) (inverse (multiply (inverse (multiply (inverse ?202809) ?202809)) (inverse (multiply (inverse (inverse (multiply (inverse ?202809) ?202809))) (multiply (inverse ?202810) ?202810)))))) =>= inverse (multiply (inverse ?202809) ?202809) [202810, 202809, 202808] by Super 34411 with 15410 at 1,2,1,2,1,2
5792 Id : 14824, {_}: multiply (inverse ?103830) ?103830 =?= inverse (inverse (multiply (inverse ?103831) ?103831)) [103831, 103830] by Super 12213 with 14713 at 2
5793 Id : 24848, {_}: inverse (multiply (multiply (inverse ?160661) ?160661) (inverse (multiply ?160662 (inverse (multiply (inverse ?160662) ?160662))))) =>= ?160662 [160662, 160661] by Super 1723 with 14824 at 1,1,2
5794 Id : 25277, {_}: inverse (multiply (multiply (inverse ?163120) ?163120) (inverse (multiply ?163121 (multiply (inverse ?163122) ?163122)))) =>= ?163121 [163122, 163121, 163120] by Super 24848 with 14713 at 2,1,2,1,2
5795 Id : 25479, {_}: inverse (multiply (inverse (multiply (inverse ?164337) ?164337)) (inverse (multiply ?164338 (multiply (inverse ?164339) ?164339)))) =>= ?164338 [164339, 164338, 164337] by Super 25277 with 14713 at 1,1,2
5796 Id : 35006, {_}: inverse (multiply (inverse (multiply (inverse ?204646) ?204646)) (inverse (inverse (multiply (inverse ?204647) ?204647)))) =>= inverse (multiply (inverse ?204647) ?204647) [204647, 204646] by Demod 34485 with 25479 at 2,1,2
5797 Id : 35218, {_}: inverse (multiply (multiply (inverse ?205705) ?205705) (inverse (inverse (multiply (inverse ?205706) ?205706)))) =>= inverse (multiply (inverse ?205706) ?205706) [205706, 205705] by Super 35006 with 14713 at 1,1,2
5798 Id : 35602, {_}: inverse (multiply (inverse (multiply ?206697 (inverse (multiply (inverse (multiply (inverse ?206698) ?206698)) (inverse (multiply (multiply (inverse (multiply ?206699 (inverse (multiply (inverse ?206700) (inverse (multiply ?206701 (inverse (multiply (inverse ?206701) ?206701)))))))) (multiply ?206699 ?206701)) (inverse (multiply ?206700 (multiply (inverse (multiply ?206699 (inverse (multiply (inverse ?206700) (inverse (multiply ?206701 (inverse (multiply (inverse ?206701) ?206701)))))))) (multiply ?206699 ?206701)))))))))) (multiply ?206697 (inverse (multiply (inverse (multiply ?206702 (inverse (multiply ?206700 (inverse (multiply ?206703 (inverse (multiply (inverse ?206703) ?206703)))))))) (multiply ?206702 ?206703))))) =?= multiply (multiply (inverse ?206704) ?206704) (inverse (inverse (multiply (inverse ?206698) ?206698))) [206704, 206703, 206702, 206701, 206700, 206699, 206698, 206697] by Super 39 with 35218 at 1,1,2,1,1,1,2
5799 Id : 35866, {_}: multiply (inverse ?206698) ?206698 =<= multiply (multiply (inverse ?206704) ?206704) (inverse (inverse (multiply (inverse ?206698) ?206698))) [206704, 206698] by Demod 35602 with 39 at 2
5800 Id : 36115, {_}: inverse (multiply (inverse (multiply (multiply (inverse ?208195) ?208195) (inverse (multiply (inverse ?208196) (inverse (multiply (inverse (inverse (multiply (inverse ?208197) ?208197))) (inverse (multiply (inverse (inverse (inverse (multiply (inverse ?208197) ?208197)))) (inverse (inverse (multiply (inverse ?208197) ?208197))))))))))) (multiply (inverse ?208197) ?208197)) =>= ?208196 [208197, 208196, 208195] by Super 2 with 35866 at 2,1,2
5801 Id : 15929, {_}: inverse (multiply (multiply (inverse ?110579) ?110579) (inverse (multiply ?110580 (inverse (multiply (inverse ?110580) ?110580))))) =>= ?110580 [110580, 110579] by Super 1723 with 14824 at 1,1,2
5802 Id : 24931, {_}: inverse (multiply (multiply (inverse ?161104) ?161104) (inverse (multiply ?161105 (multiply (inverse ?161106) ?161106)))) =>= ?161105 [161106, 161105, 161104] by Super 24848 with 14713 at 2,1,2,1,2
5803 Id : 25816, {_}: inverse (multiply (multiply (inverse ?166039) ?166039) (inverse (multiply (inverse ?166040) ?166040))) =>= multiply (inverse ?166040) ?166040 [166040, 166039] by Super 15929 with 24931 at 2,1,2
5804 Id : 25967, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?166851) ?166851))) (inverse (multiply (inverse ?166852) ?166852))) =>= multiply (inverse ?166852) ?166852 [166852, 166851] by Super 25816 with 14824 at 1,1,2
5805 Id : 36557, {_}: inverse (multiply (inverse (multiply (multiply (inverse ?208195) ?208195) (inverse (multiply (inverse ?208196) (multiply (inverse (inverse (inverse (multiply (inverse ?208197) ?208197)))) (inverse (inverse (multiply (inverse ?208197) ?208197)))))))) (multiply (inverse ?208197) ?208197)) =>= ?208196 [208197, 208196, 208195] by Demod 36115 with 25967 at 2,1,2,1,1,1,2
5806 Id : 36558, {_}: inverse (multiply (inverse ?208196) (multiply (inverse ?208197) ?208197)) =>= ?208196 [208197, 208196] by Demod 36557 with 24931 at 1,1,2
5807 Id : 37252, {_}: inverse (multiply (multiply (inverse ?211410) ?211410) ?211411) =>= inverse ?211411 [211411, 211410] by Super 24931 with 36558 at 2,1,2
5808 Id : 40835, {_}: inverse (multiply (inverse ?231064) (multiply (inverse ?231065) ?231065)) =?= multiply (multiply (inverse ?231066) ?231066) ?231064 [231066, 231065, 231064] by Super 36558 with 37252 at 1,1,2
5809 Id : 40960, {_}: ?231064 =<= multiply (multiply (inverse ?231066) ?231066) ?231064 [231066, 231064] by Demod 40835 with 36558 at 2
5810 Id : 42184, {_}: a2 === a2 [] by Demod 1 with 40960 at 2
5811 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2
5812 % SZS output end CNFRefutation for GRP419-1.p
5813 23570: solved GRP419-1.p in 75.644727 using nrkbo
5814 23570: status Unsatisfiable for GRP419-1.p
5815 NO CLASH, using fixed ground order
5823 (multiply (inverse ?3)
5824 (multiply (inverse ?4)
5825 (inverse (multiply (inverse ?4) ?4)))))))
5829 [4, 3, 2] by single_axiom ?2 ?3 ?4
5832 multiply (multiply (inverse b2) b2) a2 =>= a2
5833 [] by prove_these_axioms_2
5837 23595: b2 2 0 2 1,1,1,2
5839 23595: inverse 8 1 1 0,1,1,2
5840 23595: multiply 8 2 2 0,2
5841 NO CLASH, using fixed ground order
5849 (multiply (inverse ?3)
5850 (multiply (inverse ?4)
5851 (inverse (multiply (inverse ?4) ?4)))))))
5855 [4, 3, 2] by single_axiom ?2 ?3 ?4
5858 multiply (multiply (inverse b2) b2) a2 =>= a2
5859 [] by prove_these_axioms_2
5863 23596: b2 2 0 2 1,1,1,2
5865 23596: inverse 8 1 1 0,1,1,2
5866 23596: multiply 8 2 2 0,2
5867 NO CLASH, using fixed ground order
5875 (multiply (inverse ?3)
5876 (multiply (inverse ?4)
5877 (inverse (multiply (inverse ?4) ?4)))))))
5881 [4, 3, 2] by single_axiom ?2 ?3 ?4
5884 multiply (multiply (inverse b2) b2) a2 =>= a2
5885 [] by prove_these_axioms_2
5889 23597: b2 2 0 2 1,1,1,2
5891 23597: inverse 8 1 1 0,1,1,2
5892 23597: multiply 8 2 2 0,2
5893 % SZS status Timeout for GRP422-1.p
5894 NO CLASH, using fixed ground order
5902 (multiply (inverse ?3)
5903 (multiply (inverse ?4)
5904 (inverse (multiply (inverse ?4) ?4)))))))
5908 [4, 3, 2] by single_axiom ?2 ?3 ?4
5911 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5912 [] by prove_these_axioms_3
5916 23629: a3 2 0 2 1,1,2
5917 23629: b3 2 0 2 2,1,2
5919 23629: inverse 7 1 0
5920 23629: multiply 10 2 4 0,2
5921 NO CLASH, using fixed ground order
5929 (multiply (inverse ?3)
5930 (multiply (inverse ?4)
5931 (inverse (multiply (inverse ?4) ?4)))))))
5935 [4, 3, 2] by single_axiom ?2 ?3 ?4
5938 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5939 [] by prove_these_axioms_3
5943 23630: a3 2 0 2 1,1,2
5944 23630: b3 2 0 2 2,1,2
5946 23630: inverse 7 1 0
5947 23630: multiply 10 2 4 0,2
5948 NO CLASH, using fixed ground order
5956 (multiply (inverse ?3)
5957 (multiply (inverse ?4)
5958 (inverse (multiply (inverse ?4) ?4)))))))
5962 [4, 3, 2] by single_axiom ?2 ?3 ?4
5965 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5966 [] by prove_these_axioms_3
5970 23631: a3 2 0 2 1,1,2
5971 23631: b3 2 0 2 2,1,2
5973 23631: inverse 7 1 0
5974 23631: multiply 10 2 4 0,2
5975 % SZS status Timeout for GRP423-1.p
5976 NO CLASH, using fixed ground order
5983 (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4)))
5984 ?5) (inverse (multiply ?3 ?5))))
5987 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
5990 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
5991 [] by prove_these_axioms_3
5995 23653: a3 2 0 2 1,1,2
5996 23653: b3 2 0 2 2,1,2
5998 23653: inverse 5 1 0
5999 23653: multiply 10 2 4 0,2
6000 NO CLASH, using fixed ground order
6007 (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4)))
6008 ?5) (inverse (multiply ?3 ?5))))
6011 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6014 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
6015 [] by prove_these_axioms_3
6019 23654: a3 2 0 2 1,1,2
6020 23654: b3 2 0 2 2,1,2
6022 23654: inverse 5 1 0
6023 23654: multiply 10 2 4 0,2
6024 NO CLASH, using fixed ground order
6031 (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4)))
6032 ?5) (inverse (multiply ?3 ?5))))
6035 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6038 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
6039 [] by prove_these_axioms_3
6043 23655: a3 2 0 2 1,1,2
6044 23655: b3 2 0 2 2,1,2
6046 23655: inverse 5 1 0
6047 23655: multiply 10 2 4 0,2
6050 Found proof, 11.852538s
6051 % SZS status Unsatisfiable for GRP429-1.p
6052 % SZS output start CNFRefutation for GRP429-1.p
6053 Id : 2, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6054 Id : 3, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by single_axiom ?7 ?8 ?9 ?10
6055 Id : 6, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (inverse (multiply (inverse ?29) (multiply (inverse (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?27))) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 30, 29, 28, 27, 26] by Super 3 with 2 at 1,1,2,2
6056 Id : 5, {_}: multiply ?19 (inverse (multiply (multiply (inverse (multiply (inverse ?20) ?21)) ?22) (inverse (multiply ?20 ?22)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?23) (multiply (inverse (inverse ?19)) ?21))) ?24) (inverse (multiply ?23 ?24))) [24, 23, 22, 21, 20, 19] by Super 3 with 2 at 2,1,1,1,1,2,2
6057 Id : 28, {_}: multiply (inverse ?215) (multiply ?215 (inverse (multiply (multiply (inverse (multiply (inverse ?216) ?217)) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 217, 216, 215] by Super 2 with 5 at 2,2
6058 Id : 29, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?220) (multiply (inverse (inverse ?221)) (multiply (inverse ?221) ?222)))) ?223) (inverse (multiply ?220 ?223))) =>= ?222 [223, 222, 221, 220] by Super 2 with 5 at 2
6059 Id : 287, {_}: multiply (inverse ?2293) (multiply ?2293 ?2294) =?= multiply (inverse (inverse ?2295)) (multiply (inverse ?2295) ?2294) [2295, 2294, 2293] by Super 28 with 29 at 2,2,2
6060 Id : 136, {_}: multiply (inverse ?1148) (multiply ?1148 ?1149) =?= multiply (inverse (inverse ?1150)) (multiply (inverse ?1150) ?1149) [1150, 1149, 1148] by Super 28 with 29 at 2,2,2
6061 Id : 301, {_}: multiply (inverse ?2384) (multiply ?2384 ?2385) =?= multiply (inverse ?2386) (multiply ?2386 ?2385) [2386, 2385, 2384] by Super 287 with 136 at 3
6062 Id : 356, {_}: multiply (inverse ?2583) (multiply ?2583 (inverse (multiply (multiply (inverse (multiply (inverse ?2584) (multiply ?2584 ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585, 2584, 2583] by Super 28 with 301 at 1,1,1,1,2,2,2
6063 Id : 679, {_}: multiply ?5168 (inverse (multiply (multiply (inverse (multiply (inverse ?5169) (multiply ?5169 ?5170))) ?5171) (inverse (multiply (inverse ?5168) ?5171)))) =>= ?5170 [5171, 5170, 5169, 5168] by Super 2 with 301 at 1,1,1,1,2,2
6064 Id : 2910, {_}: multiply ?23936 (inverse (multiply (multiply (inverse (multiply (inverse ?23937) (multiply ?23937 ?23938))) (multiply ?23936 ?23939)) (inverse (multiply (inverse ?23940) (multiply ?23940 ?23939))))) =>= ?23938 [23940, 23939, 23938, 23937, 23936] by Super 679 with 301 at 1,2,1,2,2
6065 Id : 2996, {_}: multiply (multiply (inverse ?24702) (multiply ?24702 ?24703)) (inverse (multiply ?24704 (inverse (multiply (inverse ?24705) (multiply ?24705 (inverse (multiply (multiply (inverse (multiply (inverse ?24706) ?24704)) ?24707) (inverse (multiply ?24706 ?24707))))))))) =>= ?24703 [24707, 24706, 24705, 24704, 24703, 24702] by Super 2910 with 28 at 1,1,2,2
6066 Id : 3034, {_}: multiply (multiply (inverse ?24702) (multiply ?24702 ?24703)) (inverse (multiply ?24704 (inverse ?24704))) =>= ?24703 [24704, 24703, 24702] by Demod 2996 with 28 at 1,2,1,2,2
6067 Id : 3426, {_}: multiply (inverse (multiply (inverse ?29536) (multiply ?29536 ?29537))) ?29537 =?= multiply (inverse (multiply (inverse ?29538) (multiply ?29538 ?29539))) ?29539 [29539, 29538, 29537, 29536] by Super 356 with 3034 at 2,2
6068 Id : 3726, {_}: multiply (inverse (inverse (multiply (inverse ?31745) (multiply ?31745 (inverse (multiply (multiply (inverse (multiply (inverse ?31746) ?31747)) ?31748) (inverse (multiply ?31746 ?31748)))))))) (multiply (inverse (multiply (inverse ?31749) (multiply ?31749 ?31750))) ?31750) =>= ?31747 [31750, 31749, 31748, 31747, 31746, 31745] by Super 28 with 3426 at 2,2
6069 Id : 3919, {_}: multiply (inverse (inverse ?31747)) (multiply (inverse (multiply (inverse ?31749) (multiply ?31749 ?31750))) ?31750) =>= ?31747 [31750, 31749, 31747] by Demod 3726 with 28 at 1,1,1,2
6070 Id : 91, {_}: multiply (inverse ?821) (multiply ?821 (inverse (multiply (multiply (inverse (multiply (inverse ?822) ?823)) ?824) (inverse (multiply ?822 ?824))))) =>= ?823 [824, 823, 822, 821] by Super 2 with 5 at 2,2
6071 Id : 107, {_}: multiply (inverse ?949) (multiply ?949 (multiply ?950 (inverse (multiply (multiply (inverse (multiply (inverse ?951) ?952)) ?953) (inverse (multiply ?951 ?953)))))) =>= multiply (inverse (inverse ?950)) ?952 [953, 952, 951, 950, 949] by Super 91 with 5 at 2,2,2
6072 Id : 3966, {_}: multiply (inverse (inverse (inverse ?33635))) ?33635 =?= multiply (inverse (inverse (inverse (multiply (inverse ?33636) (multiply ?33636 (inverse (multiply (multiply (inverse (multiply (inverse ?33637) ?33638)) ?33639) (inverse (multiply ?33637 ?33639))))))))) ?33638 [33639, 33638, 33637, 33636, 33635] by Super 107 with 3919 at 2,2
6073 Id : 4117, {_}: multiply (inverse (inverse (inverse ?33635))) ?33635 =?= multiply (inverse (inverse (inverse ?33638))) ?33638 [33638, 33635] by Demod 3966 with 28 at 1,1,1,1,3
6074 Id : 4346, {_}: multiply (inverse (inverse ?35898)) (multiply (inverse (multiply (inverse (inverse (inverse (inverse ?35899)))) (multiply (inverse (inverse (inverse ?35900))) ?35900))) ?35899) =>= ?35898 [35900, 35899, 35898] by Super 3919 with 4117 at 2,1,1,2,2
6075 Id : 3965, {_}: multiply (inverse ?33628) (multiply ?33628 (multiply ?33629 (inverse (multiply (multiply (inverse ?33630) ?33631) (inverse (multiply (inverse ?33630) ?33631)))))) =?= multiply (inverse (inverse ?33629)) (multiply (inverse (multiply (inverse ?33632) (multiply ?33632 ?33633))) ?33633) [33633, 33632, 33631, 33630, 33629, 33628] by Super 107 with 3919 at 1,1,1,1,2,2,2,2
6076 Id : 6632, {_}: multiply (inverse ?52916) (multiply ?52916 (multiply ?52917 (inverse (multiply (multiply (inverse ?52918) ?52919) (inverse (multiply (inverse ?52918) ?52919)))))) =>= ?52917 [52919, 52918, 52917, 52916] by Demod 3965 with 3919 at 3
6077 Id : 6641, {_}: multiply (inverse ?52992) (multiply ?52992 (multiply ?52993 (inverse (multiply (multiply (inverse ?52994) (inverse (multiply (multiply (inverse (multiply (inverse ?52995) (multiply (inverse (inverse ?52994)) ?52996))) ?52997) (inverse (multiply ?52995 ?52997))))) (inverse ?52996))))) =>= ?52993 [52997, 52996, 52995, 52994, 52993, 52992] by Super 6632 with 2 at 1,2,1,2,2,2,2
6078 Id : 6773, {_}: multiply (inverse ?52992) (multiply ?52992 (multiply ?52993 (inverse (multiply ?52996 (inverse ?52996))))) =>= ?52993 [52996, 52993, 52992] by Demod 6641 with 2 at 1,1,2,2,2,2
6079 Id : 6832, {_}: multiply (inverse (inverse ?53817)) (multiply (inverse ?53818) (multiply ?53818 (inverse (multiply ?53819 (inverse ?53819))))) =>= ?53817 [53819, 53818, 53817] by Super 4346 with 6773 at 1,1,2,2
6080 Id : 4, {_}: multiply ?12 (inverse (multiply (multiply (inverse (multiply (inverse ?13) (multiply (inverse ?12) ?14))) (inverse (multiply (multiply (inverse (multiply (inverse ?15) (multiply (inverse ?13) ?16))) ?17) (inverse (multiply ?15 ?17))))) (inverse ?16))) =>= ?14 [17, 16, 15, 14, 13, 12] by Super 3 with 2 at 1,2,1,2,2
6081 Id : 9, {_}: multiply ?44 (inverse (multiply (multiply (inverse (multiply (inverse ?45) ?46)) ?47) (inverse (multiply ?45 ?47)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?48) (multiply (inverse (inverse ?44)) ?46))) (inverse (multiply (multiply (inverse (multiply (inverse ?49) (multiply (inverse ?48) ?50))) ?51) (inverse (multiply ?49 ?51))))) (inverse ?50)) [51, 50, 49, 48, 47, 46, 45, 44] by Super 2 with 4 at 2,1,1,1,1,2,2
6082 Id : 7754, {_}: multiply ?63171 (inverse (multiply (multiply (inverse (multiply (inverse ?63172) (multiply (inverse ?63171) (inverse (multiply ?63173 (inverse ?63173)))))) ?63174) (inverse (multiply ?63172 ?63174)))) =?= inverse (multiply (multiply (inverse ?63175) (inverse (multiply (multiply (inverse (multiply (inverse ?63176) (multiply (inverse (inverse ?63175)) ?63177))) ?63178) (inverse (multiply ?63176 ?63178))))) (inverse ?63177)) [63178, 63177, 63176, 63175, 63174, 63173, 63172, 63171] by Super 9 with 6832 at 1,1,1,1,3
6083 Id : 7872, {_}: inverse (multiply ?63173 (inverse ?63173)) =?= inverse (multiply (multiply (inverse ?63175) (inverse (multiply (multiply (inverse (multiply (inverse ?63176) (multiply (inverse (inverse ?63175)) ?63177))) ?63178) (inverse (multiply ?63176 ?63178))))) (inverse ?63177)) [63178, 63177, 63176, 63175, 63173] by Demod 7754 with 2 at 2
6084 Id : 7873, {_}: inverse (multiply ?63173 (inverse ?63173)) =?= inverse (multiply ?63177 (inverse ?63177)) [63177, 63173] by Demod 7872 with 2 at 1,1,3
6085 Id : 8249, {_}: multiply (inverse (inverse (multiply ?66459 (inverse ?66459)))) (multiply (inverse ?66460) (multiply ?66460 (inverse (multiply ?66461 (inverse ?66461))))) =?= multiply ?66462 (inverse ?66462) [66462, 66461, 66460, 66459] by Super 6832 with 7873 at 1,1,2
6086 Id : 8282, {_}: multiply ?66459 (inverse ?66459) =?= multiply ?66462 (inverse ?66462) [66462, 66459] by Demod 8249 with 6832 at 2
6087 Id : 8520, {_}: multiply (multiply (inverse ?67970) (multiply ?67971 (inverse ?67971))) (inverse (multiply ?67972 (inverse ?67972))) =>= inverse ?67970 [67972, 67971, 67970] by Super 3034 with 8282 at 2,1,2
6088 Id : 380, {_}: multiply ?2743 (inverse (multiply (multiply (inverse ?2744) (multiply ?2744 ?2745)) (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745))))) =>= ?2747 [2747, 2746, 2745, 2744, 2743] by Super 2 with 301 at 1,1,2,2
6089 Id : 8912, {_}: multiply ?70596 (inverse (multiply (multiply (inverse ?70597) (multiply ?70597 (inverse (multiply ?70598 (inverse ?70598))))) (inverse (multiply ?70599 (inverse ?70599))))) =>= inverse (inverse ?70596) [70599, 70598, 70597, 70596] by Super 380 with 8520 at 2,1,2,1,2,2
6090 Id : 9021, {_}: multiply ?70596 (inverse (inverse (multiply ?70598 (inverse ?70598)))) =>= inverse (inverse ?70596) [70598, 70596] by Demod 8912 with 3034 at 1,2,2
6091 Id : 9165, {_}: multiply (inverse (inverse ?72171)) (multiply (inverse (multiply (inverse ?72172) (inverse (inverse ?72172)))) (inverse (inverse (multiply ?72173 (inverse ?72173))))) =>= ?72171 [72173, 72172, 72171] by Super 3919 with 9021 at 2,1,1,2,2
6092 Id : 10068, {_}: multiply (inverse (inverse ?76580)) (inverse (inverse (inverse (multiply (inverse ?76581) (inverse (inverse ?76581)))))) =>= ?76580 [76581, 76580] by Demod 9165 with 9021 at 2,2
6093 Id : 9180, {_}: multiply ?72234 (inverse ?72234) =?= inverse (inverse (inverse (multiply ?72235 (inverse ?72235)))) [72235, 72234] by Super 8282 with 9021 at 3
6094 Id : 10100, {_}: multiply (inverse (inverse ?76745)) (multiply ?76746 (inverse ?76746)) =>= ?76745 [76746, 76745] by Super 10068 with 9180 at 2,2
6095 Id : 10663, {_}: multiply ?82289 (inverse (multiply ?82290 (inverse ?82290))) =>= inverse (inverse ?82289) [82290, 82289] by Super 8520 with 10100 at 1,2
6096 Id : 10913, {_}: multiply (inverse (inverse ?83563)) (inverse (inverse (inverse (multiply (inverse ?83564) (multiply ?83564 (inverse (multiply ?83565 (inverse ?83565)))))))) =>= ?83563 [83565, 83564, 83563] by Super 3919 with 10663 at 2,2
6097 Id : 10892, {_}: inverse (inverse (multiply (inverse ?24702) (multiply ?24702 ?24703))) =>= ?24703 [24703, 24702] by Demod 3034 with 10663 at 2
6098 Id : 11238, {_}: multiply (inverse (inverse ?83563)) (inverse (inverse (multiply ?83565 (inverse ?83565)))) =>= ?83563 [83565, 83563] by Demod 10913 with 10892 at 1,2,2
6099 Id : 11239, {_}: inverse (inverse (inverse (inverse ?83563))) =>= ?83563 [83563] by Demod 11238 with 9021 at 2
6100 Id : 138, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1160) (multiply (inverse (inverse ?1161)) (multiply (inverse ?1161) ?1162)))) ?1163) (inverse (multiply ?1160 ?1163))) =>= ?1162 [1163, 1162, 1161, 1160] by Super 2 with 5 at 2
6101 Id : 145, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1213) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1214) (multiply (inverse (inverse ?1215)) (multiply (inverse ?1215) ?1216)))) ?1217) (inverse (multiply ?1214 ?1217))))) (multiply ?1216 ?1218)))) ?1219) (inverse (multiply ?1213 ?1219))) =>= ?1218 [1219, 1218, 1217, 1216, 1215, 1214, 1213] by Super 138 with 29 at 1,2,2,1,1,1,1,2
6102 Id : 168, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1213) (multiply (inverse ?1216) (multiply ?1216 ?1218)))) ?1219) (inverse (multiply ?1213 ?1219))) =>= ?1218 [1219, 1218, 1216, 1213] by Demod 145 with 29 at 1,1,2,1,1,1,1,2
6103 Id : 777, {_}: multiply (inverse ?5891) (multiply ?5891 (multiply ?5892 (inverse (multiply (multiply (inverse (multiply (inverse ?5893) ?5894)) ?5895) (inverse (multiply ?5893 ?5895)))))) =>= multiply (inverse (inverse ?5892)) ?5894 [5895, 5894, 5893, 5892, 5891] by Super 91 with 5 at 2,2,2
6104 Id : 813, {_}: multiply (inverse ?6211) (multiply ?6211 (multiply ?6212 ?6213)) =?= multiply (inverse (inverse ?6212)) (multiply (inverse ?6214) (multiply ?6214 ?6213)) [6214, 6213, 6212, 6211] by Super 777 with 168 at 2,2,2,2
6105 Id : 1401, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?11491) (multiply ?11491 (multiply ?11492 ?11493)))) ?11494) (inverse (multiply (inverse ?11492) ?11494))) =>= ?11493 [11494, 11493, 11492, 11491] by Super 168 with 813 at 1,1,1,1,2
6106 Id : 1427, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?11709) (multiply ?11709 (multiply (inverse ?11710) (multiply ?11710 ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711, 11710, 11709] by Super 1401 with 301 at 2,2,1,1,1,1,2
6107 Id : 10889, {_}: multiply (inverse ?52992) (multiply ?52992 (inverse (inverse ?52993))) =>= ?52993 [52993, 52992] by Demod 6773 with 10663 at 2,2,2
6108 Id : 11440, {_}: multiply (inverse ?85947) (multiply ?85947 ?85948) =>= inverse (inverse ?85948) [85948, 85947] by Super 10889 with 11239 at 2,2,2
6109 Id : 12070, {_}: inverse (multiply (multiply (inverse (inverse (inverse (multiply (inverse ?11710) (multiply ?11710 ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711, 11710] by Demod 1427 with 11440 at 1,1,1,1,2
6110 Id : 12071, {_}: inverse (multiply (multiply (inverse (inverse (inverse (inverse (inverse ?11711))))) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711] by Demod 12070 with 11440 at 1,1,1,1,1,1,2
6111 Id : 12086, {_}: inverse (multiply (multiply (inverse ?11711) ?11712) (inverse (multiply (inverse (inverse ?11713)) ?11712))) =>= multiply ?11713 ?11711 [11713, 11712, 11711] by Demod 12071 with 11239 at 1,1,1,2
6112 Id : 11284, {_}: multiply ?84907 (inverse (multiply (inverse (inverse (inverse ?84908))) ?84908)) =>= inverse (inverse ?84907) [84908, 84907] by Super 10663 with 11239 at 2,1,2,2
6113 Id : 12456, {_}: inverse (inverse (inverse (multiply (inverse ?89511) ?89512))) =>= multiply (inverse ?89512) ?89511 [89512, 89511] by Super 12086 with 11284 at 1,2
6114 Id : 12807, {_}: inverse (multiply (inverse ?89891) ?89892) =>= multiply (inverse ?89892) ?89891 [89892, 89891] by Super 11239 with 12456 at 1,2
6115 Id : 13084, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (inverse (multiply (inverse (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?27)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 6 with 12807 at 1,1,1,2,1,2,1,2,2
6116 Id : 13085, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (inverse (multiply (inverse ?28) (multiply (inverse ?26) ?30)))) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13084 with 12807 at 1,1,1,1,2,1,2,1,2,2
6117 Id : 13086, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (inverse (multiply (inverse ?26) ?30)) ?28)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13085 with 12807 at 2,1,1,1,1,2,1,2,1,2,2
6118 Id : 13087, {_}: multiply ?26 (inverse (multiply ?27 (inverse (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31) (inverse (multiply ?29 ?31)))))))) =>= ?30 [31, 29, 30, 28, 27, 26] by Demod 13086 with 12807 at 1,2,1,1,1,1,2,1,2,1,2,2
6119 Id : 12072, {_}: multiply ?2743 (inverse (multiply (inverse (inverse ?2745)) (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745))))) =>= ?2747 [2747, 2746, 2745, 2743] by Demod 380 with 11440 at 1,1,2,2
6120 Id : 13068, {_}: multiply ?2743 (multiply (inverse (inverse (multiply ?2746 (multiply (multiply (inverse ?2746) (multiply (inverse ?2743) ?2747)) ?2745)))) (inverse ?2745)) =>= ?2747 [2745, 2747, 2746, 2743] by Demod 12072 with 12807 at 2,2
6121 Id : 358, {_}: multiply (inverse ?2595) (multiply ?2595 (inverse (multiply (multiply (inverse ?2596) (multiply ?2596 ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597, 2596, 2595] by Super 28 with 301 at 1,1,2,2,2
6122 Id : 12055, {_}: inverse (inverse (inverse (multiply (multiply (inverse ?2596) (multiply ?2596 ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597, 2596] by Demod 358 with 11440 at 2
6123 Id : 12056, {_}: inverse (inverse (inverse (multiply (inverse (inverse ?2597)) (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))))) =>= ?2599 [2599, 2598, 2597] by Demod 12055 with 11440 at 1,1,1,1,2
6124 Id : 12778, {_}: multiply (inverse (inverse (multiply ?2598 (multiply (multiply (inverse ?2598) ?2599) ?2597)))) (inverse ?2597) =>= ?2599 [2597, 2599, 2598] by Demod 12056 with 12456 at 2
6125 Id : 13130, {_}: multiply ?2743 (multiply (inverse ?2743) ?2747) =>= ?2747 [2747, 2743] by Demod 13068 with 12778 at 2,2
6126 Id : 12068, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?2584) (multiply ?2584 ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585, 2584] by Demod 356 with 11440 at 2
6127 Id : 12069, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?2585))) ?2586) (inverse (multiply ?2587 ?2586))))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 12068 with 11440 at 1,1,1,1,1,1,2
6128 Id : 12343, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse ?88665))) ?88666))))) =>= multiply (inverse (inverse (inverse ?88666))) ?88665 [88666, 88665] by Super 12069 with 11284 at 1,1,1,2
6129 Id : 12705, {_}: inverse (multiply (inverse (inverse (inverse ?88665))) ?88666) =>= multiply (inverse (inverse (inverse ?88666))) ?88665 [88666, 88665] by Demod 12343 with 11239 at 2
6130 Id : 13398, {_}: multiply (inverse ?88666) (inverse (inverse ?88665)) =?= multiply (inverse (inverse (inverse ?88666))) ?88665 [88665, 88666] by Demod 12705 with 12807 at 2
6131 Id : 13591, {_}: multiply (inverse ?93455) (inverse (inverse (multiply (inverse (inverse (inverse (inverse ?93455)))) ?93456))) =>= ?93456 [93456, 93455] by Super 13130 with 13398 at 2
6132 Id : 13688, {_}: multiply (inverse ?93455) (inverse (multiply (inverse ?93456) (inverse (inverse (inverse ?93455))))) =>= ?93456 [93456, 93455] by Demod 13591 with 12807 at 1,2,2
6133 Id : 13689, {_}: multiply (inverse ?93455) (multiply (inverse (inverse (inverse (inverse ?93455)))) ?93456) =>= ?93456 [93456, 93455] by Demod 13688 with 12807 at 2,2
6134 Id : 13690, {_}: multiply (inverse ?93455) (multiply ?93455 ?93456) =>= ?93456 [93456, 93455] by Demod 13689 with 11239 at 1,2,2
6135 Id : 13691, {_}: inverse (inverse ?93456) =>= ?93456 [93456] by Demod 13690 with 11440 at 2
6136 Id : 14259, {_}: inverse (multiply ?94937 ?94938) =<= multiply (inverse ?94938) (inverse ?94937) [94938, 94937] by Super 12807 with 13691 at 1,1,2
6137 Id : 14272, {_}: inverse (multiply ?94994 (inverse ?94995)) =>= multiply ?94995 (inverse ?94994) [94995, 94994] by Super 14259 with 13691 at 1,3
6138 Id : 15113, {_}: multiply ?26 (multiply (multiply ?28 (inverse (multiply (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31) (inverse (multiply ?29 ?31))))) (inverse ?27)) =>= ?30 [31, 29, 30, 27, 28, 26] by Demod 13087 with 14272 at 2,2
6139 Id : 15114, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (multiply (inverse ?27) (multiply (multiply (inverse ?30) ?26) ?28)) ?29) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 15113 with 14272 at 2,1,2,2
6140 Id : 14099, {_}: inverse (multiply ?94283 ?94284) =<= multiply (inverse ?94284) (inverse ?94283) [94284, 94283] by Super 12807 with 13691 at 1,1,2
6141 Id : 15376, {_}: multiply ?101449 (inverse (multiply ?101450 ?101449)) =>= inverse ?101450 [101450, 101449] by Super 13130 with 14099 at 2,2
6142 Id : 14196, {_}: multiply ?94524 (inverse (multiply ?94525 ?94524)) =>= inverse ?94525 [94525, 94524] by Super 13130 with 14099 at 2,2
6143 Id : 15386, {_}: multiply (inverse (multiply ?101486 ?101487)) (inverse (inverse ?101486)) =>= inverse ?101487 [101487, 101486] by Super 15376 with 14196 at 1,2,2
6144 Id : 15574, {_}: inverse (multiply (inverse ?101486) (multiply ?101486 ?101487)) =>= inverse ?101487 [101487, 101486] by Demod 15386 with 14099 at 2
6145 Id : 16040, {_}: multiply (inverse (multiply ?103094 ?103095)) ?103094 =>= inverse ?103095 [103095, 103094] by Demod 15574 with 12807 at 2
6146 Id : 12061, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?216) ?217)) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 217, 216] by Demod 28 with 11440 at 2
6147 Id : 13066, {_}: inverse (inverse (inverse (multiply (multiply (multiply (inverse ?217) ?216) ?218) (inverse (multiply ?216 ?218))))) =>= ?217 [218, 216, 217] by Demod 12061 with 12807 at 1,1,1,1,1,2
6148 Id : 14035, {_}: inverse (multiply (multiply (multiply (inverse ?217) ?216) ?218) (inverse (multiply ?216 ?218))) =>= ?217 [218, 216, 217] by Demod 13066 with 13691 at 2
6149 Id : 15129, {_}: multiply (multiply ?216 ?218) (inverse (multiply (multiply (inverse ?217) ?216) ?218)) =>= ?217 [217, 218, 216] by Demod 14035 with 14272 at 2
6150 Id : 16059, {_}: multiply (inverse ?103200) (multiply ?103201 ?103202) =<= inverse (inverse (multiply (multiply (inverse ?103200) ?103201) ?103202)) [103202, 103201, 103200] by Super 16040 with 15129 at 1,1,2
6151 Id : 16156, {_}: multiply (inverse ?103200) (multiply ?103201 ?103202) =<= multiply (multiply (inverse ?103200) ?103201) ?103202 [103202, 103201, 103200] by Demod 16059 with 13691 at 3
6152 Id : 17066, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (multiply (inverse ?27) (multiply (multiply (multiply (inverse ?30) ?26) ?28) ?29)) ?31)))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 15114 with 16156 at 1,1,2,2,1,2,2
6153 Id : 17067, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (multiply (multiply (inverse ?30) ?26) ?28) ?29) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17066 with 16156 at 1,2,2,1,2,2
6154 Id : 17068, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (multiply (inverse ?30) (multiply ?26 ?28)) ?29) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17067 with 16156 at 1,1,2,1,2,2,1,2,2
6155 Id : 17069, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (multiply (inverse ?30) (multiply (multiply ?26 ?28) ?29)) ?31))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17068 with 16156 at 1,2,1,2,2,1,2,2
6156 Id : 17070, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (inverse (multiply (inverse ?27) (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31)))))) (inverse ?27)) =>= ?30 [30, 27, 31, 29, 28, 26] by Demod 17069 with 16156 at 2,1,2,2,1,2,2
6157 Id : 17075, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (inverse ?30) (multiply (multiply (multiply ?26 ?28) ?29) ?31))) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17070 with 12807 at 2,2,1,2,2
6158 Id : 17076, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) ?30) ?27))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17075 with 12807 at 1,2,2,1,2,2
6159 Id : 17077, {_}: multiply ?26 (multiply (multiply ?28 (multiply (multiply ?29 ?31) (multiply (inverse (multiply (multiply (multiply ?26 ?28) ?29) ?31)) (multiply ?30 ?27)))) (inverse ?27)) =>= ?30 [27, 30, 31, 29, 28, 26] by Demod 17076 with 16156 at 2,2,1,2,2
6160 Id : 14023, {_}: multiply (inverse ?33635) ?33635 =?= multiply (inverse (inverse (inverse ?33638))) ?33638 [33638, 33635] by Demod 4117 with 13691 at 1,2
6161 Id : 14024, {_}: multiply (inverse ?33635) ?33635 =?= multiply (inverse ?33638) ?33638 [33638, 33635] by Demod 14023 with 13691 at 1,3
6162 Id : 14053, {_}: multiply (inverse ?93965) ?93965 =?= multiply ?93966 (inverse ?93966) [93966, 93965] by Super 14024 with 13691 at 1,3
6163 Id : 19206, {_}: multiply ?108859 (multiply (multiply ?108860 (multiply (multiply ?108861 ?108862) (multiply ?108863 (inverse ?108863)))) (inverse ?108862)) =>= multiply (multiply ?108859 ?108860) ?108861 [108863, 108862, 108861, 108860, 108859] by Super 17077 with 14053 at 2,2,1,2,2
6164 Id : 14021, {_}: multiply ?70596 (multiply ?70598 (inverse ?70598)) =>= inverse (inverse ?70596) [70598, 70596] by Demod 9021 with 13691 at 2,2
6165 Id : 14022, {_}: multiply ?70596 (multiply ?70598 (inverse ?70598)) =>= ?70596 [70598, 70596] by Demod 14021 with 13691 at 3
6166 Id : 19669, {_}: multiply ?108859 (multiply (multiply ?108860 (multiply ?108861 ?108862)) (inverse ?108862)) =>= multiply (multiply ?108859 ?108860) ?108861 [108862, 108861, 108860, 108859] by Demod 19206 with 14022 at 2,1,2,2
6167 Id : 14028, {_}: inverse (multiply (multiply (inverse (inverse (inverse ?2585))) ?2586) (inverse (multiply ?2587 ?2586))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 12069 with 13691 at 2
6168 Id : 14029, {_}: inverse (multiply (multiply (inverse ?2585) ?2586) (inverse (multiply ?2587 ?2586))) =>= multiply ?2587 ?2585 [2587, 2586, 2585] by Demod 14028 with 13691 at 1,1,1,2
6169 Id : 15108, {_}: multiply (multiply ?2587 ?2586) (inverse (multiply (inverse ?2585) ?2586)) =>= multiply ?2587 ?2585 [2585, 2586, 2587] by Demod 14029 with 14272 at 2
6170 Id : 15134, {_}: multiply (multiply ?2587 ?2586) (multiply (inverse ?2586) ?2585) =>= multiply ?2587 ?2585 [2585, 2586, 2587] by Demod 15108 with 12807 at 2,2
6171 Id : 15575, {_}: multiply (inverse (multiply ?101486 ?101487)) ?101486 =>= inverse ?101487 [101487, 101486] by Demod 15574 with 12807 at 2
6172 Id : 16032, {_}: multiply (multiply ?103052 (multiply ?103053 ?103054)) (inverse ?103054) =>= multiply ?103052 ?103053 [103054, 103053, 103052] by Super 15134 with 15575 at 2,2
6173 Id : 32860, {_}: multiply ?108859 (multiply ?108860 ?108861) =?= multiply (multiply ?108859 ?108860) ?108861 [108861, 108860, 108859] by Demod 19669 with 16032 at 2,2
6174 Id : 33337, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 32860 at 2
6175 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
6176 % SZS output end CNFRefutation for GRP429-1.p
6177 23653: solved GRP429-1.p in 11.596724 using nrkbo
6178 23653: status Unsatisfiable for GRP429-1.p
6179 NO CLASH, using fixed ground order
6185 (multiply (multiply ?4 (inverse ?4))
6186 (inverse (multiply ?5 (multiply ?2 ?3))))))
6189 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6192 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
6193 [] by prove_these_axioms_3
6197 23669: a3 2 0 2 1,1,2
6198 23669: b3 2 0 2 2,1,2
6200 23669: inverse 3 1 0
6201 23669: multiply 10 2 4 0,2
6202 NO CLASH, using fixed ground order
6208 (multiply (multiply ?4 (inverse ?4))
6209 (inverse (multiply ?5 (multiply ?2 ?3))))))
6212 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6215 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
6216 [] by prove_these_axioms_3
6220 23670: a3 2 0 2 1,1,2
6221 23670: b3 2 0 2 2,1,2
6223 23670: inverse 3 1 0
6224 23670: multiply 10 2 4 0,2
6225 NO CLASH, using fixed ground order
6231 (multiply (multiply ?4 (inverse ?4))
6232 (inverse (multiply ?5 (multiply ?2 ?3))))))
6235 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6238 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
6239 [] by prove_these_axioms_3
6243 23671: a3 2 0 2 1,1,2
6244 23671: b3 2 0 2 2,1,2
6246 23671: inverse 3 1 0
6247 23671: multiply 10 2 4 0,2
6250 Found proof, 56.465480s
6251 % SZS status Unsatisfiable for GRP444-1.p
6252 % SZS output start CNFRefutation for GRP444-1.p
6253 Id : 3, {_}: inverse (multiply ?7 (multiply ?8 (multiply (multiply ?9 (inverse ?9)) (inverse (multiply ?10 (multiply ?7 ?8)))))) =>= ?10 [10, 9, 8, 7] by single_axiom ?7 ?8 ?9 ?10
6254 Id : 2, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6255 Id : 5, {_}: inverse (multiply ?18 (multiply ?19 (multiply (multiply (multiply ?20 (multiply ?21 (multiply (multiply ?22 (inverse ?22)) (inverse (multiply ?23 (multiply ?20 ?21)))))) ?23) (inverse (multiply ?24 (multiply ?18 ?19)))))) =>= ?24 [24, 23, 22, 21, 20, 19, 18] by Super 3 with 2 at 2,1,2,2,1,2
6256 Id : 4, {_}: inverse (multiply ?12 (multiply (multiply (multiply ?13 (inverse ?13)) (inverse (multiply ?14 (multiply ?15 ?12)))) (multiply (multiply ?16 (inverse ?16)) ?14))) =>= ?15 [16, 15, 14, 13, 12] by Super 3 with 2 at 2,2,2,1,2
6257 Id : 7, {_}: inverse (multiply (multiply (multiply ?28 (inverse ?28)) (inverse (multiply ?29 (multiply ?30 ?31)))) (multiply (multiply (multiply ?32 (inverse ?32)) ?29) (multiply (multiply ?33 (inverse ?33)) ?30))) =>= ?31 [33, 32, 31, 30, 29, 28] by Super 2 with 4 at 2,2,2,1,2
6258 Id : 9, {_}: inverse (multiply ?44 (multiply (multiply (multiply ?45 (inverse ?45)) (inverse (multiply ?46 (multiply ?47 ?44)))) (multiply (multiply ?48 (inverse ?48)) ?46))) =>= ?47 [48, 47, 46, 45, 44] by Super 3 with 2 at 2,2,2,1,2
6259 Id : 13, {_}: inverse (multiply (multiply (multiply ?76 (inverse ?76)) ?77) (multiply (multiply (multiply ?78 (inverse ?78)) ?79) (multiply (multiply ?80 (inverse ?80)) ?81))) =?= multiply (multiply ?82 (inverse ?82)) (inverse (multiply ?77 (multiply ?79 ?81))) [82, 81, 80, 79, 78, 77, 76] by Super 9 with 4 at 2,1,2,1,2
6260 Id : 178, {_}: multiply (multiply ?1864 (inverse ?1864)) (inverse (multiply (inverse (multiply ?1865 (multiply ?1866 ?1867))) (multiply ?1865 ?1866))) =>= ?1867 [1867, 1866, 1865, 1864] by Super 7 with 13 at 2
6261 Id : 184, {_}: multiply (multiply ?1909 (inverse ?1909)) (inverse (multiply ?1910 (multiply ?1911 (multiply (multiply ?1912 (inverse ?1912)) (inverse (multiply ?1913 (multiply ?1910 ?1911))))))) =?= multiply (multiply ?1914 (inverse ?1914)) ?1913 [1914, 1913, 1912, 1911, 1910, 1909] by Super 178 with 4 at 1,1,2,2
6262 Id : 205, {_}: multiply (multiply ?1909 (inverse ?1909)) ?1913 =?= multiply (multiply ?1914 (inverse ?1914)) ?1913 [1914, 1913, 1909] by Demod 184 with 2 at 2,2
6263 Id : 277, {_}: inverse (multiply ?2556 (multiply ?2557 (multiply (multiply (multiply ?2558 (multiply ?2559 (multiply (multiply ?2560 (inverse ?2560)) (inverse (multiply ?2561 (multiply ?2558 ?2559)))))) ?2561) (inverse (multiply (multiply ?2562 (inverse ?2562)) (multiply ?2556 ?2557)))))) =?= multiply ?2563 (inverse ?2563) [2563, 2562, 2561, 2560, 2559, 2558, 2557, 2556] by Super 5 with 205 at 1,2,2,2,1,2
6264 Id : 348, {_}: multiply ?2562 (inverse ?2562) =?= multiply ?2563 (inverse ?2563) [2563, 2562] by Demod 277 with 5 at 2
6265 Id : 1129, {_}: inverse (multiply ?9239 (multiply (inverse ?9239) (multiply (multiply ?9240 (inverse ?9240)) (inverse (multiply ?9241 (multiply ?9242 (inverse ?9242))))))) =>= ?9241 [9242, 9241, 9240, 9239] by Super 2 with 348 at 2,1,2,2,2,1,2
6266 Id : 86, {_}: multiply (multiply ?817 (inverse ?817)) (inverse (multiply (inverse (multiply ?818 (multiply ?819 ?820))) (multiply ?818 ?819))) =>= ?820 [820, 819, 818, 817] by Super 7 with 13 at 2
6267 Id : 1168, {_}: inverse (multiply ?9548 (multiply (inverse ?9548) ?9549)) =?= inverse (multiply ?9550 (multiply (inverse ?9550) ?9549)) [9550, 9549, 9548] by Super 1129 with 86 at 2,2,1,2
6268 Id : 3826, {_}: inverse (multiply (inverse ?28880) (multiply ?28881 (multiply (multiply ?28882 (inverse ?28882)) (inverse (multiply ?28883 (multiply (inverse ?28883) ?28881)))))) =>= ?28880 [28883, 28882, 28881, 28880] by Super 2 with 1168 at 2,2,2,1,2
6269 Id : 529, {_}: multiply (multiply ?4511 (inverse ?4511)) (inverse (multiply (inverse (multiply ?4512 (multiply (inverse ?4512) ?4513))) (multiply ?4514 (inverse ?4514)))) =>= ?4513 [4514, 4513, 4512, 4511] by Super 86 with 348 at 2,1,2,2
6270 Id : 3910, {_}: inverse (multiply (inverse ?29502) (multiply (inverse (inverse (inverse (multiply ?29503 (multiply (inverse ?29503) ?29504))))) ?29504)) =>= ?29502 [29504, 29503, 29502] by Super 3826 with 529 at 2,2,1,2
6271 Id : 5137, {_}: inverse (multiply (inverse (inverse (inverse (multiply ?39280 (multiply (inverse ?39280) ?39281))))) (multiply ?39281 (multiply (multiply ?39282 (inverse ?39282)) ?39283))) =>= inverse ?39283 [39283, 39282, 39281, 39280] by Super 2 with 3910 at 2,2,2,1,2
6272 Id : 17340, {_}: inverse (inverse (multiply ?127629 (multiply (inverse (inverse (inverse (multiply ?127630 (multiply (inverse ?127630) ?127631))))) ?127631))) =>= ?127629 [127631, 127630, 127629] by Super 2 with 5137 at 2
6273 Id : 5128, {_}: multiply (multiply ?39206 (inverse ?39206)) (multiply (inverse (inverse (inverse (multiply ?39207 (multiply (inverse ?39207) ?39208))))) (multiply ?39208 ?39209)) =>= ?39209 [39209, 39208, 39207, 39206] by Super 86 with 3910 at 2,2
6274 Id : 3928, {_}: inverse (multiply (inverse (multiply ?29660 (multiply (inverse ?29660) ?29661))) (multiply ?29662 (multiply (multiply ?29663 (inverse ?29663)) (inverse (multiply ?29664 (multiply (inverse ?29664) ?29662)))))) =?= multiply ?29665 (multiply (inverse ?29665) ?29661) [29665, 29664, 29663, 29662, 29661, 29660] by Super 3826 with 1168 at 1,1,2
6275 Id : 1246, {_}: inverse (multiply (inverse ?10029) (multiply ?10030 (multiply (multiply ?10031 (inverse ?10031)) (inverse (multiply ?10032 (multiply (inverse ?10032) ?10030)))))) =>= ?10029 [10032, 10031, 10030, 10029] by Super 2 with 1168 at 2,2,2,1,2
6276 Id : 3958, {_}: multiply ?29660 (multiply (inverse ?29660) ?29661) =?= multiply ?29665 (multiply (inverse ?29665) ?29661) [29665, 29661, 29660] by Demod 3928 with 1246 at 2
6277 Id : 531, {_}: multiply (multiply ?4521 (inverse ?4521)) (inverse (multiply (inverse (multiply ?4522 (multiply ?4523 (inverse ?4523)))) (multiply ?4522 ?4524))) =>= inverse ?4524 [4524, 4523, 4522, 4521] by Super 86 with 348 at 2,1,1,1,2,2
6278 Id : 737, {_}: multiply (multiply ?5774 (inverse ?5774)) (inverse (multiply (inverse (multiply ?5775 (multiply ?5776 (inverse ?5776)))) (multiply ?5775 ?5777))) =>= inverse ?5777 [5777, 5776, 5775, 5774] by Super 86 with 348 at 2,1,1,1,2,2
6279 Id : 1911, {_}: multiply (multiply ?15350 (inverse ?15350)) (inverse (multiply (inverse (multiply ?15351 (multiply ?15352 (inverse ?15352)))) (multiply ?15353 (inverse ?15353)))) =>= inverse (inverse ?15351) [15353, 15352, 15351, 15350] by Super 737 with 348 at 2,1,2,2
6280 Id : 1956, {_}: multiply (multiply ?15717 (inverse ?15717)) (inverse (multiply (inverse (multiply (multiply ?15718 (inverse ?15718)) (multiply ?15719 (inverse ?15719)))) (multiply ?15720 (inverse ?15720)))) =?= inverse (inverse (multiply ?15721 (inverse ?15721))) [15721, 15720, 15719, 15718, 15717] by Super 1911 with 205 at 1,1,1,2,2
6281 Id : 740, {_}: multiply (multiply ?5792 (inverse ?5792)) (inverse (multiply (inverse (multiply ?5793 (multiply ?5794 (inverse ?5794)))) (multiply ?5795 (inverse ?5795)))) =>= inverse (inverse ?5793) [5795, 5794, 5793, 5792] by Super 737 with 348 at 2,1,2,2
6282 Id : 2009, {_}: inverse (inverse (multiply ?15718 (inverse ?15718))) =?= inverse (inverse (multiply ?15721 (inverse ?15721))) [15721, 15718] by Demod 1956 with 740 at 2
6283 Id : 2083, {_}: multiply ?16427 (inverse ?16427) =?= multiply (inverse (multiply ?16428 (inverse ?16428))) (inverse (inverse (multiply ?16429 (inverse ?16429)))) [16429, 16428, 16427] by Super 348 with 2009 at 2,3
6284 Id : 2187, {_}: multiply (multiply ?17062 (inverse ?17062)) (inverse (multiply (inverse (multiply (inverse (multiply ?17063 (inverse ?17063))) (multiply ?17064 (inverse ?17064)))) (multiply ?17065 (inverse ?17065)))) =?= inverse (inverse (inverse (multiply ?17066 (inverse ?17066)))) [17066, 17065, 17064, 17063, 17062] by Super 531 with 2083 at 2,1,2,2
6285 Id : 2437, {_}: inverse (inverse (inverse (multiply ?17063 (inverse ?17063)))) =?= inverse (inverse (inverse (multiply ?17066 (inverse ?17066)))) [17066, 17063] by Demod 2187 with 740 at 2
6286 Id : 2507, {_}: multiply ?19079 (inverse ?19079) =?= multiply (inverse (inverse (multiply ?19080 (inverse ?19080)))) (inverse (inverse (inverse (multiply ?19081 (inverse ?19081))))) [19081, 19080, 19079] by Super 348 with 2437 at 2,3
6287 Id : 5155, {_}: multiply (multiply ?39417 (inverse ?39417)) (multiply (inverse (inverse (inverse (multiply ?39418 (multiply (inverse ?39418) ?39419))))) (multiply ?39420 (inverse ?39420))) =>= inverse ?39419 [39420, 39419, 39418, 39417] by Super 531 with 3910 at 2,2
6288 Id : 21348, {_}: inverse (inverse (inverse (multiply ?158881 (inverse ?158881)))) =?= multiply ?158882 (inverse ?158882) [158882, 158881] by Super 17340 with 5155 at 1,1,2
6289 Id : 21903, {_}: multiply ?162370 (inverse ?162370) =?= multiply (inverse (inverse (multiply ?162371 (inverse ?162371)))) (multiply ?162372 (inverse ?162372)) [162372, 162371, 162370] by Super 2507 with 21348 at 2,3
6290 Id : 27319, {_}: multiply ?194055 (multiply (inverse ?194055) (inverse (inverse (inverse (inverse (multiply ?194056 (inverse ?194056))))))) =?= multiply ?194057 (inverse ?194057) [194057, 194056, 194055] by Super 3958 with 21903 at 3
6291 Id : 38543, {_}: multiply (multiply ?266891 (inverse ?266891)) (multiply (inverse (inverse (inverse (multiply ?266892 (multiply (inverse ?266892) ?266893))))) (multiply ?266894 (inverse ?266894))) =?= multiply (inverse ?266893) (inverse (inverse (inverse (inverse (multiply ?266895 (inverse ?266895)))))) [266895, 266894, 266893, 266892, 266891] by Super 5128 with 27319 at 2,2,2
6292 Id : 39135, {_}: inverse ?270165 =<= multiply (inverse ?270165) (inverse (inverse (inverse (inverse (multiply ?270166 (inverse ?270166)))))) [270166, 270165] by Demod 38543 with 5155 at 2
6293 Id : 39578, {_}: inverse ?271815 =<= multiply (inverse ?271815) (inverse (multiply ?271816 (inverse ?271816))) [271816, 271815] by Super 39135 with 21348 at 1,2,3
6294 Id : 39704, {_}: inverse (multiply ?272432 (multiply ?272433 (multiply (multiply ?272434 (inverse ?272434)) (inverse (multiply ?272435 (multiply ?272432 ?272433)))))) =?= multiply ?272435 (inverse (multiply ?272436 (inverse ?272436))) [272436, 272435, 272434, 272433, 272432] by Super 39578 with 2 at 1,3
6295 Id : 39842, {_}: ?272435 =<= multiply ?272435 (inverse (multiply ?272436 (inverse ?272436))) [272436, 272435] by Demod 39704 with 2 at 2
6296 Id : 40136, {_}: inverse (inverse (multiply ?274147 (multiply (inverse (inverse (inverse (multiply ?274148 (inverse ?274148))))) (inverse (multiply ?274149 (inverse ?274149)))))) =>= ?274147 [274149, 274148, 274147] by Super 17340 with 39842 at 2,1,1,1,1,2,1,1,2
6297 Id : 42233, {_}: inverse (inverse (multiply ?290970 (inverse (inverse (inverse (multiply ?290971 (inverse ?290971))))))) =>= ?290970 [290971, 290970] by Demod 40136 with 39842 at 2,1,1,2
6298 Id : 42325, {_}: inverse (inverse (multiply ?291465 (inverse (inverse (inverse (inverse (inverse (inverse (multiply ?291466 (inverse ?291466)))))))))) =>= ?291465 [291466, 291465] by Super 42233 with 21348 at 1,1,1,2,1,1,2
6299 Id : 3911, {_}: inverse (multiply (inverse ?29506) (multiply (inverse (inverse (inverse (multiply ?29507 (multiply ?29508 (inverse ?29508)))))) (inverse (inverse ?29507)))) =>= ?29506 [29508, 29507, 29506] by Super 3826 with 740 at 2,2,1,2
6300 Id : 42355, {_}: inverse (inverse (multiply ?291566 (multiply ?291567 (inverse ?291567)))) =>= ?291566 [291567, 291566] by Super 42233 with 21348 at 2,1,1,2
6301 Id : 42465, {_}: inverse (multiply (inverse ?29506) (multiply (inverse ?29507) (inverse (inverse ?29507)))) =>= ?29506 [29507, 29506] by Demod 3911 with 42355 at 1,1,2,1,2
6302 Id : 42659, {_}: inverse (multiply (inverse ?292844) (multiply (inverse (inverse (multiply ?292845 (multiply ?292846 (inverse ?292846))))) (inverse ?292845))) =>= ?292844 [292846, 292845, 292844] by Super 42465 with 42355 at 1,2,2,1,2
6303 Id : 42797, {_}: inverse (multiply (inverse ?292844) (multiply ?292845 (inverse ?292845))) =>= ?292844 [292845, 292844] by Demod 42659 with 42355 at 1,2,1,2
6304 Id : 42874, {_}: multiply (multiply ?5792 (inverse ?5792)) (multiply ?5793 (multiply ?5794 (inverse ?5794))) =>= inverse (inverse ?5793) [5794, 5793, 5792] by Demod 740 with 42797 at 2,2
6305 Id : 46254, {_}: ?309013 =<= multiply ?309013 (inverse (multiply (inverse (multiply ?309014 (multiply ?309015 (inverse ?309015)))) ?309014)) [309015, 309014, 309013] by Super 39842 with 42355 at 2,1,2,3
6306 Id : 46402, {_}: ?309842 =<= multiply ?309842 (multiply (multiply ?309843 (inverse ?309843)) (multiply ?309844 (inverse ?309844))) [309844, 309843, 309842] by Super 46254 with 42797 at 2,3
6307 Id : 46563, {_}: multiply ?309963 (inverse ?309963) =?= inverse (inverse (multiply ?309964 (inverse ?309964))) [309964, 309963] by Super 42874 with 46402 at 2
6308 Id : 47597, {_}: inverse (inverse (multiply ?315584 (inverse (inverse (inverse (inverse (multiply ?315585 (inverse ?315585)))))))) =>= ?315584 [315585, 315584] by Super 42325 with 46563 at 1,1,1,1,2,1,1,2
6309 Id : 39281, {_}: inverse (multiply ?270847 (multiply ?270848 (multiply (multiply ?270849 (inverse ?270849)) (inverse (multiply ?270850 (multiply ?270847 ?270848)))))) =?= multiply ?270850 (inverse (inverse (inverse (inverse (multiply ?270851 (inverse ?270851)))))) [270851, 270850, 270849, 270848, 270847] by Super 39135 with 2 at 1,3
6310 Id : 39433, {_}: ?270850 =<= multiply ?270850 (inverse (inverse (inverse (inverse (multiply ?270851 (inverse ?270851)))))) [270851, 270850] by Demod 39281 with 2 at 2
6311 Id : 47849, {_}: inverse (inverse ?315584) =>= ?315584 [315584] by Demod 47597 with 39433 at 1,1,2
6312 Id : 48100, {_}: multiply (multiply ?5792 (inverse ?5792)) (multiply ?5793 (multiply ?5794 (inverse ?5794))) =>= ?5793 [5794, 5793, 5792] by Demod 42874 with 47849 at 3
6313 Id : 48103, {_}: multiply ?291465 (inverse (inverse (inverse (inverse (inverse (inverse (multiply ?291466 (inverse ?291466)))))))) =>= ?291465 [291466, 291465] by Demod 42325 with 47849 at 2
6314 Id : 48104, {_}: multiply ?291465 (inverse (inverse (inverse (inverse (multiply ?291466 (inverse ?291466)))))) =>= ?291465 [291466, 291465] by Demod 48103 with 47849 at 2,2
6315 Id : 48105, {_}: multiply ?291465 (inverse (inverse (multiply ?291466 (inverse ?291466)))) =>= ?291465 [291466, 291465] by Demod 48104 with 47849 at 2,2
6316 Id : 48106, {_}: multiply ?291465 (multiply ?291466 (inverse ?291466)) =>= ?291465 [291466, 291465] by Demod 48105 with 47849 at 2,2
6317 Id : 48126, {_}: multiply (multiply ?5792 (inverse ?5792)) ?5793 =>= ?5793 [5793, 5792] by Demod 48100 with 48106 at 2,2
6318 Id : 48146, {_}: inverse (multiply ?2 (multiply ?3 (inverse (multiply ?5 (multiply ?2 ?3))))) =>= ?5 [5, 3, 2] by Demod 2 with 48126 at 2,2,1,2
6319 Id : 48243, {_}: multiply (multiply (inverse ?316807) ?316807) ?316808 =>= ?316808 [316808, 316807] by Super 48126 with 47849 at 2,1,2
6320 Id : 48369, {_}: inverse (multiply (multiply (inverse ?317633) ?317633) (multiply ?317634 (inverse (multiply ?317635 ?317634)))) =>= ?317635 [317635, 317634, 317633] by Super 48146 with 48243 at 2,1,2,2,1,2
6321 Id : 48458, {_}: inverse (multiply ?317634 (inverse (multiply ?317635 ?317634))) =>= ?317635 [317635, 317634] by Demod 48369 with 48243 at 1,2
6322 Id : 49027, {_}: inverse ?319864 =<= multiply ?319865 (inverse (multiply ?319864 ?319865)) [319865, 319864] by Super 47849 with 48458 at 1,2
6323 Id : 48054, {_}: multiply (multiply ?39206 (inverse ?39206)) (multiply (inverse (multiply ?39207 (multiply (inverse ?39207) ?39208))) (multiply ?39208 ?39209)) =>= ?39209 [39209, 39208, 39207, 39206] by Demod 5128 with 47849 at 1,2,2
6324 Id : 48214, {_}: multiply (inverse (multiply ?39207 (multiply (inverse ?39207) ?39208))) (multiply ?39208 ?39209) =>= ?39209 [39209, 39208, 39207] by Demod 48054 with 48126 at 2
6325 Id : 42875, {_}: multiply (multiply ?4511 (inverse ?4511)) (multiply ?4512 (multiply (inverse ?4512) ?4513)) =>= ?4513 [4513, 4512, 4511] by Demod 529 with 42797 at 2,2
6326 Id : 48128, {_}: multiply ?4512 (multiply (inverse ?4512) ?4513) =>= ?4513 [4513, 4512] by Demod 42875 with 48126 at 2
6327 Id : 48215, {_}: multiply (inverse ?39208) (multiply ?39208 ?39209) =>= ?39209 [39209, 39208] by Demod 48214 with 48128 at 1,1,2
6328 Id : 49034, {_}: inverse (inverse ?319885) =<= multiply (multiply ?319885 ?319886) (inverse ?319886) [319886, 319885] by Super 49027 with 48215 at 1,2,3
6329 Id : 49824, {_}: ?323338 =<= multiply (multiply ?323338 ?323339) (inverse ?323339) [323339, 323338] by Demod 49034 with 47849 at 2
6330 Id : 48152, {_}: inverse (multiply (inverse (multiply ?818 (multiply ?819 ?820))) (multiply ?818 ?819)) =>= ?820 [820, 819, 818] by Demod 86 with 48126 at 2
6331 Id : 48896, {_}: inverse ?319286 =<= multiply ?319287 (inverse (multiply ?319286 ?319287)) [319287, 319286] by Super 47849 with 48458 at 1,2
6332 Id : 49169, {_}: multiply (inverse ?320479) (inverse ?320480) =>= inverse (multiply ?320480 ?320479) [320480, 320479] by Super 48215 with 48896 at 2,2
6333 Id : 49171, {_}: multiply (inverse ?320486) ?320487 =<= inverse (multiply (inverse ?320487) ?320486) [320487, 320486] by Super 49169 with 47849 at 2,2
6334 Id : 49369, {_}: multiply (inverse (multiply ?818 ?819)) (multiply ?818 (multiply ?819 ?820)) =>= ?820 [820, 819, 818] by Demod 48152 with 49171 at 2
6335 Id : 49850, {_}: inverse (multiply ?323494 ?323495) =<= multiply ?323496 (inverse (multiply ?323494 (multiply ?323495 ?323496))) [323496, 323495, 323494] by Super 49824 with 49369 at 1,3
6336 Id : 49041, {_}: inverse ?319906 =<= multiply (inverse (multiply ?319907 ?319906)) (inverse (inverse ?319907)) [319907, 319906] by Super 49027 with 48896 at 1,2,3
6337 Id : 49999, {_}: inverse ?323996 =<= multiply (inverse (multiply ?323997 ?323996)) ?323997 [323997, 323996] by Demod 49041 with 47849 at 2,3
6338 Id : 50016, {_}: inverse (multiply ?324063 (inverse (multiply ?324064 (multiply ?324065 ?324063)))) =>= multiply ?324064 ?324065 [324065, 324064, 324063] by Super 49999 with 48146 at 1,3
6339 Id : 49025, {_}: multiply ?319858 (inverse ?319859) =<= inverse (multiply ?319859 (inverse ?319858)) [319859, 319858] by Super 48128 with 48896 at 2,2
6340 Id : 53578, {_}: multiply (multiply ?332164 (multiply ?332165 ?332166)) (inverse ?332166) =>= multiply ?332164 ?332165 [332166, 332165, 332164] by Demod 50016 with 49025 at 2
6341 Id : 49088, {_}: inverse ?319906 =<= multiply (inverse (multiply ?319907 ?319906)) ?319907 [319907, 319906] by Demod 49041 with 47849 at 2,3
6342 Id : 53621, {_}: multiply (inverse ?332348) (inverse ?332349) =<= multiply (inverse (multiply (multiply ?332350 ?332349) ?332348)) ?332350 [332350, 332349, 332348] by Super 53578 with 49088 at 1,2
6343 Id : 48971, {_}: multiply (inverse ?319476) (inverse ?319477) =>= inverse (multiply ?319477 ?319476) [319477, 319476] by Super 48215 with 48896 at 2,2
6344 Id : 53698, {_}: inverse (multiply ?332349 ?332348) =<= multiply (inverse (multiply (multiply ?332350 ?332349) ?332348)) ?332350 [332350, 332348, 332349] by Demod 53621 with 48971 at 2
6345 Id : 55617, {_}: inverse (multiply (inverse (multiply (multiply (multiply ?335716 ?335717) ?335718) ?335719)) ?335716) =>= multiply ?335717 (inverse (inverse (multiply ?335718 ?335719))) [335719, 335718, 335717, 335716] by Super 49850 with 53698 at 1,2,3
6346 Id : 55728, {_}: multiply (inverse ?335716) (multiply (multiply (multiply ?335716 ?335717) ?335718) ?335719) =>= multiply ?335717 (inverse (inverse (multiply ?335718 ?335719))) [335719, 335718, 335717, 335716] by Demod 55617 with 49171 at 2
6347 Id : 55729, {_}: multiply (inverse ?335716) (multiply (multiply (multiply ?335716 ?335717) ?335718) ?335719) =>= multiply ?335717 (multiply ?335718 ?335719) [335719, 335718, 335717, 335716] by Demod 55728 with 47849 at 2,3
6348 Id : 53403, {_}: inverse (multiply ?331872 ?331873) =<= multiply ?331874 (inverse (multiply ?331872 (multiply ?331873 ?331874))) [331874, 331873, 331872] by Super 49824 with 49369 at 1,3
6349 Id : 49375, {_}: multiply (inverse ?321009) (multiply (inverse ?321010) ?321011) =>= inverse (multiply (multiply (inverse ?321011) ?321010) ?321009) [321011, 321010, 321009] by Super 48971 with 49171 at 2,2
6350 Id : 53436, {_}: inverse (multiply (inverse ?332006) (inverse ?332007)) =<= multiply ?332008 (inverse (inverse (multiply (multiply (inverse ?332008) ?332007) ?332006))) [332008, 332007, 332006] by Super 53403 with 49375 at 1,2,3
6351 Id : 53542, {_}: multiply ?332007 (inverse (inverse ?332006)) =<= multiply ?332008 (inverse (inverse (multiply (multiply (inverse ?332008) ?332007) ?332006))) [332008, 332006, 332007] by Demod 53436 with 49025 at 2
6352 Id : 53543, {_}: multiply ?332007 (inverse (inverse ?332006)) =<= multiply ?332008 (multiply (multiply (inverse ?332008) ?332007) ?332006) [332008, 332006, 332007] by Demod 53542 with 47849 at 2,3
6353 Id : 53544, {_}: multiply ?332007 ?332006 =<= multiply ?332008 (multiply (multiply (inverse ?332008) ?332007) ?332006) [332008, 332006, 332007] by Demod 53543 with 47849 at 2,2
6354 Id : 54357, {_}: multiply (inverse ?333550) (multiply ?333551 ?333552) =<= multiply (multiply (inverse ?333550) ?333551) ?333552 [333552, 333551, 333550] by Super 48215 with 53544 at 2,2
6355 Id : 53440, {_}: inverse (multiply (inverse (multiply (multiply ?332022 ?332023) ?332024)) ?332022) =>= multiply ?332023 (inverse (inverse ?332024)) [332024, 332023, 332022] by Super 53403 with 49088 at 1,2,3
6356 Id : 53553, {_}: multiply (inverse ?332022) (multiply (multiply ?332022 ?332023) ?332024) =>= multiply ?332023 (inverse (inverse ?332024)) [332024, 332023, 332022] by Demod 53440 with 49171 at 2
6357 Id : 53554, {_}: multiply (inverse ?332022) (multiply (multiply ?332022 ?332023) ?332024) =>= multiply ?332023 ?332024 [332024, 332023, 332022] by Demod 53553 with 47849 at 2,3
6358 Id : 54857, {_}: multiply (inverse ?334428) (multiply (multiply (multiply ?334428 ?334429) ?334430) ?334431) =>= multiply (multiply ?334429 ?334430) ?334431 [334431, 334430, 334429, 334428] by Super 54357 with 53554 at 1,3
6359 Id : 81835, {_}: multiply (multiply ?335717 ?335718) ?335719 =?= multiply ?335717 (multiply ?335718 ?335719) [335719, 335718, 335717] by Demod 55729 with 54857 at 2
6360 Id : 82672, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 81835 at 2
6361 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
6362 % SZS output end CNFRefutation for GRP444-1.p
6363 23669: solved GRP444-1.p in 49.195074 using nrkbo
6364 23669: status Unsatisfiable for GRP444-1.p
6365 NO CLASH, using fixed ground order
6369 (divide (divide ?2 ?2)
6370 (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4))))
6374 [4, 3, 2] by single_axiom ?2 ?3 ?4
6376 multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7)
6377 [8, 7, 6] by multiply ?6 ?7 ?8
6379 inverse ?10 =<= divide (divide ?11 ?11) ?10
6380 [11, 10] by inverse ?10 ?11
6383 multiply (multiply (inverse b2) b2) a2 =>= a2
6384 [] by prove_these_axioms_2
6388 23734: b2 2 0 2 1,1,1,2
6390 23734: inverse 2 1 1 0,1,1,2
6391 23734: multiply 3 2 2 0,2
6392 23734: divide 13 2 0
6393 NO CLASH, using fixed ground order
6397 (divide (divide ?2 ?2)
6398 (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4))))
6402 [4, 3, 2] by single_axiom ?2 ?3 ?4
6404 multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7)
6405 [8, 7, 6] by multiply ?6 ?7 ?8
6407 inverse ?10 =<= divide (divide ?11 ?11) ?10
6408 [11, 10] by inverse ?10 ?11
6411 multiply (multiply (inverse b2) b2) a2 =>= a2
6412 [] by prove_these_axioms_2
6416 23735: b2 2 0 2 1,1,1,2
6418 23735: inverse 2 1 1 0,1,1,2
6419 23735: multiply 3 2 2 0,2
6420 23735: divide 13 2 0
6421 NO CLASH, using fixed ground order
6425 (divide (divide ?2 ?2)
6426 (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4))))
6430 [4, 3, 2] by single_axiom ?2 ?3 ?4
6432 multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7)
6433 [8, 7, 6] by multiply ?6 ?7 ?8
6435 inverse ?10 =<= divide (divide ?11 ?11) ?10
6436 [11, 10] by inverse ?10 ?11
6439 multiply (multiply (inverse b2) b2) a2 =>= a2
6440 [] by prove_these_axioms_2
6444 23736: b2 2 0 2 1,1,1,2
6446 23736: inverse 2 1 1 0,1,1,2
6447 23736: multiply 3 2 2 0,2
6448 23736: divide 13 2 0
6451 Found proof, 0.373646s
6452 % SZS status Unsatisfiable for GRP452-1.p
6453 % SZS output start CNFRefutation for GRP452-1.p
6454 Id : 5, {_}: divide (divide (divide ?13 ?13) (divide ?13 (divide ?14 (divide (divide (divide ?13 ?13) ?13) ?15)))) ?15 =>= ?14 [15, 14, 13] by single_axiom ?13 ?14 ?15
6455 Id : 35, {_}: inverse ?90 =<= divide (divide ?91 ?91) ?90 [91, 90] by inverse ?90 ?91
6456 Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
6457 Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11
6458 Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8
6459 Id : 29, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 3 with 4 at 2,3
6460 Id : 41, {_}: multiply (divide ?104 ?104) ?105 =>= inverse (inverse ?105) [105, 104] by Super 29 with 4 at 3
6461 Id : 43, {_}: multiply (multiply (inverse ?110) ?110) ?111 =>= inverse (inverse ?111) [111, 110] by Super 41 with 29 at 1,2
6462 Id : 13, {_}: divide (multiply (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Super 2 with 3 at 1,2
6463 Id : 32, {_}: multiply (divide ?79 ?79) ?80 =>= inverse (inverse ?80) [80, 79] by Super 29 with 4 at 3
6464 Id : 205, {_}: divide (inverse (inverse (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50)))) ?50 =>= ?49 [50, 48, 49] by Demod 13 with 32 at 1,2
6465 Id : 206, {_}: divide (inverse (inverse (divide ?49 (divide (inverse (divide ?48 ?48)) ?50)))) ?50 =>= ?49 [50, 48, 49] by Demod 205 with 4 at 1,2,1,1,1,2
6466 Id : 36, {_}: inverse ?93 =<= divide (inverse (divide ?94 ?94)) ?93 [94, 93] by Super 35 with 4 at 1,3
6467 Id : 207, {_}: divide (inverse (inverse (divide ?49 (inverse ?50)))) ?50 =>= ?49 [50, 49] by Demod 206 with 36 at 2,1,1,1,2
6468 Id : 208, {_}: divide (inverse (inverse (multiply ?49 ?50))) ?50 =>= ?49 [50, 49] by Demod 207 with 29 at 1,1,1,2
6469 Id : 6, {_}: divide (divide (divide ?17 ?17) (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Super 5 with 2 at 2,2,1,2
6470 Id : 61, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 6 with 4 at 1,2
6471 Id : 62, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 61 with 4 at 3
6472 Id : 63, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 62 with 4 at 1,2,2,1,3
6473 Id : 68, {_}: divide (inverse (divide ?170 ?171)) ?172 =<= inverse (divide ?173 (divide ?171 (divide (inverse ?173) (divide (inverse ?170) ?172)))) [173, 172, 171, 170] by Demod 63 with 4 at 1,2,2,2,1,3
6474 Id : 75, {_}: divide (inverse (divide ?213 ?214)) ?215 =<= inverse (divide (divide ?216 ?216) (divide ?214 (inverse (divide (inverse ?213) ?215)))) [216, 215, 214, 213] by Super 68 with 36 at 2,2,1,3
6475 Id : 85, {_}: divide (inverse (divide ?213 ?214)) ?215 =<= inverse (inverse (divide ?214 (inverse (divide (inverse ?213) ?215)))) [215, 214, 213] by Demod 75 with 4 at 1,3
6476 Id : 329, {_}: divide (inverse (divide ?884 ?885)) ?886 =<= inverse (inverse (multiply ?885 (divide (inverse ?884) ?886))) [886, 885, 884] by Demod 85 with 29 at 1,1,3
6477 Id : 336, {_}: divide (inverse (divide (divide ?919 ?919) ?920)) ?921 =>= inverse (inverse (multiply ?920 (inverse ?921))) [921, 920, 919] by Super 329 with 36 at 2,1,1,3
6478 Id : 348, {_}: divide (inverse (inverse ?920)) ?921 =<= inverse (inverse (multiply ?920 (inverse ?921))) [921, 920] by Demod 336 with 4 at 1,1,2
6479 Id : 435, {_}: divide (inverse (inverse ?1126)) ?1127 =<= inverse (inverse (multiply ?1126 (inverse ?1127))) [1127, 1126] by Demod 336 with 4 at 1,1,2
6480 Id : 439, {_}: divide (inverse (inverse (divide ?1144 ?1144))) ?1145 =>= inverse (inverse (inverse (inverse (inverse ?1145)))) [1145, 1144] by Super 435 with 32 at 1,1,3
6481 Id : 46, {_}: inverse ?115 =<= divide (inverse (inverse (divide ?116 ?116))) ?115 [116, 115] by Super 4 with 36 at 1,3
6482 Id : 452, {_}: inverse ?1145 =<= inverse (inverse (inverse (inverse (inverse ?1145)))) [1145] by Demod 439 with 46 at 2
6483 Id : 461, {_}: multiply ?1187 (inverse (inverse (inverse (inverse ?1188)))) =>= divide ?1187 (inverse ?1188) [1188, 1187] by Super 29 with 452 at 2,3
6484 Id : 480, {_}: multiply ?1187 (inverse (inverse (inverse (inverse ?1188)))) =>= multiply ?1187 ?1188 [1188, 1187] by Demod 461 with 29 at 3
6485 Id : 490, {_}: divide (inverse (inverse ?1237)) (inverse (inverse (inverse ?1238))) =>= inverse (inverse (multiply ?1237 ?1238)) [1238, 1237] by Super 348 with 480 at 1,1,3
6486 Id : 543, {_}: multiply (inverse (inverse ?1237)) (inverse (inverse ?1238)) =>= inverse (inverse (multiply ?1237 ?1238)) [1238, 1237] by Demod 490 with 29 at 2
6487 Id : 564, {_}: divide (inverse (inverse (inverse (inverse ?1361)))) (inverse ?1362) =>= inverse (inverse (inverse (inverse (multiply ?1361 ?1362)))) [1362, 1361] by Super 348 with 543 at 1,1,3
6488 Id : 586, {_}: multiply (inverse (inverse (inverse (inverse ?1361)))) ?1362 =>= inverse (inverse (inverse (inverse (multiply ?1361 ?1362)))) [1362, 1361] by Demod 564 with 29 at 2
6489 Id : 608, {_}: divide (inverse (inverse (inverse (inverse (inverse (inverse (multiply ?1454 ?1455))))))) ?1455 =>= inverse (inverse (inverse (inverse ?1454))) [1455, 1454] by Super 208 with 586 at 1,1,1,2
6490 Id : 633, {_}: divide (inverse (inverse (multiply ?1454 ?1455))) ?1455 =>= inverse (inverse (inverse (inverse ?1454))) [1455, 1454] by Demod 608 with 452 at 1,2
6491 Id : 634, {_}: ?1454 =<= inverse (inverse (inverse (inverse ?1454))) [1454] by Demod 633 with 208 at 2
6492 Id : 755, {_}: multiply ?1763 (inverse (inverse (inverse ?1764))) =>= divide ?1763 ?1764 [1764, 1763] by Super 29 with 634 at 2,3
6493 Id : 797, {_}: divide (inverse (inverse ?1873)) (inverse (inverse ?1874)) =>= inverse (inverse (divide ?1873 ?1874)) [1874, 1873] by Super 348 with 755 at 1,1,3
6494 Id : 816, {_}: multiply (inverse (inverse ?1873)) (inverse ?1874) =>= inverse (inverse (divide ?1873 ?1874)) [1874, 1873] by Demod 797 with 29 at 2
6495 Id : 868, {_}: divide (inverse (inverse (inverse (inverse (divide ?1957 ?1958))))) (inverse ?1958) =>= inverse (inverse ?1957) [1958, 1957] by Super 208 with 816 at 1,1,1,2
6496 Id : 892, {_}: multiply (inverse (inverse (inverse (inverse (divide ?1957 ?1958))))) ?1958 =>= inverse (inverse ?1957) [1958, 1957] by Demod 868 with 29 at 2
6497 Id : 915, {_}: multiply (divide ?2055 ?2056) ?2056 =>= inverse (inverse ?2055) [2056, 2055] by Demod 892 with 634 at 1,2
6498 Id : 921, {_}: multiply (multiply ?2076 ?2077) (inverse ?2077) =>= inverse (inverse ?2076) [2077, 2076] by Super 915 with 29 at 1,2
6499 Id : 872, {_}: multiply (inverse (inverse ?1970)) (inverse ?1971) =>= inverse (inverse (divide ?1970 ?1971)) [1971, 1970] by Demod 797 with 29 at 2
6500 Id : 885, {_}: multiply ?2028 (inverse ?2029) =<= inverse (inverse (divide (inverse (inverse ?2028)) ?2029)) [2029, 2028] by Super 872 with 634 at 1,2
6501 Id : 86, {_}: divide (inverse (divide ?213 ?214)) ?215 =<= inverse (inverse (multiply ?214 (divide (inverse ?213) ?215))) [215, 214, 213] by Demod 85 with 29 at 1,1,3
6502 Id : 64, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 18, 17] by Demod 63 with 4 at 1,2,2,2,1,3
6503 Id : 893, {_}: multiply (divide ?1957 ?1958) ?1958 =>= inverse (inverse ?1957) [1958, 1957] by Demod 892 with 634 at 1,2
6504 Id : 910, {_}: inverse (inverse ?2040) =<= divide (divide ?2040 (inverse (inverse (inverse ?2041)))) ?2041 [2041, 2040] by Super 755 with 893 at 2
6505 Id : 1447, {_}: inverse (inverse ?3326) =<= divide (multiply ?3326 (inverse (inverse ?3327))) ?3327 [3327, 3326] by Demod 910 with 29 at 1,3
6506 Id : 51, {_}: multiply (inverse (inverse (divide ?133 ?133))) ?134 =>= inverse (inverse ?134) [134, 133] by Super 32 with 36 at 1,2
6507 Id : 1463, {_}: inverse (inverse (inverse (inverse (divide ?3389 ?3389)))) =?= divide (inverse (inverse (inverse (inverse ?3390)))) ?3390 [3390, 3389] by Super 1447 with 51 at 1,3
6508 Id : 1498, {_}: divide ?3389 ?3389 =?= divide (inverse (inverse (inverse (inverse ?3390)))) ?3390 [3390, 3389] by Demod 1463 with 634 at 2
6509 Id : 1499, {_}: divide ?3389 ?3389 =?= divide ?3390 ?3390 [3390, 3389] by Demod 1498 with 634 at 1,3
6510 Id : 1548, {_}: divide (inverse (divide ?3530 (divide (inverse ?3531) (divide (inverse ?3530) ?3532)))) ?3532 =?= inverse (divide ?3531 (divide ?3533 ?3533)) [3533, 3532, 3531, 3530] by Super 64 with 1499 at 2,1,3
6511 Id : 30, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 2 with 4 at 1,2
6512 Id : 31, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 30 with 4 at 1,2,2,1,1,2
6513 Id : 1619, {_}: inverse ?3531 =<= inverse (divide ?3531 (divide ?3533 ?3533)) [3533, 3531] by Demod 1548 with 31 at 2
6514 Id : 1667, {_}: divide ?3815 (divide ?3816 ?3816) =>= inverse (inverse (inverse (inverse ?3815))) [3816, 3815] by Super 634 with 1619 at 1,1,1,3
6515 Id : 1711, {_}: divide ?3815 (divide ?3816 ?3816) =>= ?3815 [3816, 3815] by Demod 1667 with 634 at 3
6516 Id : 1774, {_}: divide (inverse (divide ?4058 ?4059)) (divide ?4060 ?4060) =>= inverse (inverse (multiply ?4059 (inverse ?4058))) [4060, 4059, 4058] by Super 86 with 1711 at 2,1,1,3
6517 Id : 1809, {_}: inverse (divide ?4058 ?4059) =<= inverse (inverse (multiply ?4059 (inverse ?4058))) [4059, 4058] by Demod 1774 with 1711 at 2
6518 Id : 1810, {_}: inverse (divide ?4058 ?4059) =<= divide (inverse (inverse ?4059)) ?4058 [4059, 4058] by Demod 1809 with 348 at 3
6519 Id : 1856, {_}: multiply ?2028 (inverse ?2029) =<= inverse (inverse (inverse (divide ?2029 ?2028))) [2029, 2028] by Demod 885 with 1810 at 1,1,3
6520 Id : 52, {_}: inverse ?136 =<= divide (inverse (divide ?137 ?137)) ?136 [137, 136] by Super 35 with 4 at 1,3
6521 Id : 55, {_}: inverse ?145 =<= divide (inverse (inverse (inverse (divide ?146 ?146)))) ?145 [146, 145] by Super 52 with 36 at 1,1,3
6522 Id : 1858, {_}: inverse ?145 =<= inverse (divide ?145 (inverse (divide ?146 ?146))) [146, 145] by Demod 55 with 1810 at 3
6523 Id : 1862, {_}: inverse ?145 =<= inverse (multiply ?145 (divide ?146 ?146)) [146, 145] by Demod 1858 with 29 at 1,3
6524 Id : 1778, {_}: multiply ?4073 (divide ?4074 ?4074) =>= inverse (inverse ?4073) [4074, 4073] by Super 893 with 1711 at 1,2
6525 Id : 2425, {_}: inverse ?145 =<= inverse (inverse (inverse ?145)) [145] by Demod 1862 with 1778 at 1,3
6526 Id : 2428, {_}: multiply ?2028 (inverse ?2029) =>= inverse (divide ?2029 ?2028) [2029, 2028] by Demod 1856 with 2425 at 3
6527 Id : 2431, {_}: inverse (divide ?2077 (multiply ?2076 ?2077)) =>= inverse (inverse ?2076) [2076, 2077] by Demod 921 with 2428 at 2
6528 Id : 1860, {_}: inverse (divide ?50 (multiply ?49 ?50)) =>= ?49 [49, 50] by Demod 208 with 1810 at 2
6529 Id : 2432, {_}: ?2076 =<= inverse (inverse ?2076) [2076] by Demod 2431 with 1860 at 2
6530 Id : 2437, {_}: multiply (multiply (inverse ?110) ?110) ?111 =>= ?111 [111, 110] by Demod 43 with 2432 at 3
6531 Id : 2539, {_}: a2 === a2 [] by Demod 1 with 2437 at 2
6532 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2
6533 % SZS output end CNFRefutation for GRP452-1.p
6534 23734: solved GRP452-1.p in 0.388023 using nrkbo
6535 23734: status Unsatisfiable for GRP452-1.p
6536 NO CLASH, using fixed ground order
6539 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6540 (divide (divide ?5 ?4) ?2)
6543 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6544 NO CLASH, using fixed ground order
6547 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6548 (divide (divide ?5 ?4) ?2)
6551 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6553 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6554 [8, 7] by multiply ?7 ?8
6557 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
6558 [] by prove_these_axioms_1
6562 23742: a1 2 0 2 1,1,2
6563 23742: b1 2 0 2 1,1,3
6564 23742: inverse 4 1 2 0,1,2
6565 23742: multiply 3 2 2 0,2
6567 NO CLASH, using fixed ground order
6570 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6571 (divide (divide ?5 ?4) ?2)
6574 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6576 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6577 [8, 7] by multiply ?7 ?8
6580 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
6581 [] by prove_these_axioms_1
6585 23743: a1 2 0 2 1,1,2
6586 23743: b1 2 0 2 1,1,3
6587 23743: inverse 4 1 2 0,1,2
6588 23743: multiply 3 2 2 0,2
6591 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6592 [8, 7] by multiply ?7 ?8
6595 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
6596 [] by prove_these_axioms_1
6600 23741: a1 2 0 2 1,1,2
6601 23741: b1 2 0 2 1,1,3
6602 23741: inverse 4 1 2 0,1,2
6603 23741: multiply 3 2 2 0,2
6605 % SZS status Timeout for GRP469-1.p
6606 NO CLASH, using fixed ground order
6609 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6610 (divide (divide ?5 ?4) ?2)
6613 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6615 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6616 [8, 7] by multiply ?7 ?8
6619 multiply (multiply (inverse b2) b2) a2 =>= a2
6620 [] by prove_these_axioms_2
6624 23763: b2 2 0 2 1,1,1,2
6626 23763: inverse 3 1 1 0,1,1,2
6627 23763: multiply 3 2 2 0,2
6629 NO CLASH, using fixed ground order
6632 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6633 (divide (divide ?5 ?4) ?2)
6636 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6638 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6639 [8, 7] by multiply ?7 ?8
6642 multiply (multiply (inverse b2) b2) a2 =>= a2
6643 [] by prove_these_axioms_2
6647 23764: b2 2 0 2 1,1,1,2
6649 23764: inverse 3 1 1 0,1,1,2
6650 23764: multiply 3 2 2 0,2
6652 NO CLASH, using fixed ground order
6655 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6656 (divide (divide ?5 ?4) ?2)
6659 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6661 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6662 [8, 7] by multiply ?7 ?8
6665 multiply (multiply (inverse b2) b2) a2 =>= a2
6666 [] by prove_these_axioms_2
6670 23765: b2 2 0 2 1,1,1,2
6672 23765: inverse 3 1 1 0,1,1,2
6673 23765: multiply 3 2 2 0,2
6675 % SZS status Timeout for GRP470-1.p
6676 NO CLASH, using fixed ground order
6679 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6680 (divide (divide ?5 ?4) ?2)
6683 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6685 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6686 [8, 7] by multiply ?7 ?8
6689 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
6690 [] by prove_these_axioms_3
6694 23801: a3 2 0 2 1,1,2
6695 23801: b3 2 0 2 2,1,2
6697 23801: inverse 2 1 0
6698 23801: multiply 5 2 4 0,2
6700 NO CLASH, using fixed ground order
6703 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6704 (divide (divide ?5 ?4) ?2)
6707 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6709 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6710 [8, 7] by multiply ?7 ?8
6713 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
6714 [] by prove_these_axioms_3
6718 23802: a3 2 0 2 1,1,2
6719 23802: b3 2 0 2 2,1,2
6721 23802: inverse 2 1 0
6722 23802: multiply 5 2 4 0,2
6724 NO CLASH, using fixed ground order
6727 divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5))))
6728 (divide (divide ?5 ?4) ?2)
6731 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6733 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6734 [8, 7] by multiply ?7 ?8
6737 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
6738 [] by prove_these_axioms_3
6742 23803: a3 2 0 2 1,1,2
6743 23803: b3 2 0 2 2,1,2
6745 23803: inverse 2 1 0
6746 23803: multiply 5 2 4 0,2
6748 % SZS status Timeout for GRP471-1.p
6749 NO CLASH, using fixed ground order
6752 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
6756 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6758 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6759 [8, 7] by multiply ?7 ?8
6762 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
6763 [] by prove_these_axioms_1
6767 23910: a1 2 0 2 1,1,2
6768 23910: b1 2 0 2 1,1,3
6769 23910: inverse 4 1 2 0,1,2
6770 23910: multiply 3 2 2 0,2
6772 NO CLASH, using fixed ground order
6775 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
6779 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6781 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6782 [8, 7] by multiply ?7 ?8
6785 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
6786 [] by prove_these_axioms_1
6790 23911: a1 2 0 2 1,1,2
6791 23911: b1 2 0 2 1,1,3
6792 23911: inverse 4 1 2 0,1,2
6793 23911: multiply 3 2 2 0,2
6795 NO CLASH, using fixed ground order
6798 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
6802 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6804 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6805 [8, 7] by multiply ?7 ?8
6808 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
6809 [] by prove_these_axioms_1
6813 23912: a1 2 0 2 1,1,2
6814 23912: b1 2 0 2 1,1,3
6815 23912: inverse 4 1 2 0,1,2
6816 23912: multiply 3 2 2 0,2
6818 % SZS status Timeout for GRP475-1.p
6819 NO CLASH, using fixed ground order
6822 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
6826 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6828 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6829 [8, 7] by multiply ?7 ?8
6832 multiply (multiply (inverse b2) b2) a2 =>= a2
6833 [] by prove_these_axioms_2
6837 23945: b2 2 0 2 1,1,1,2
6839 23945: inverse 3 1 1 0,1,1,2
6840 23945: multiply 3 2 2 0,2
6842 NO CLASH, using fixed ground order
6845 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
6849 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6851 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6852 [8, 7] by multiply ?7 ?8
6855 multiply (multiply (inverse b2) b2) a2 =>= a2
6856 [] by prove_these_axioms_2
6860 23946: b2 2 0 2 1,1,1,2
6862 23946: inverse 3 1 1 0,1,1,2
6863 23946: multiply 3 2 2 0,2
6865 NO CLASH, using fixed ground order
6868 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
6872 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6874 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
6875 [8, 7] by multiply ?7 ?8
6878 multiply (multiply (inverse b2) b2) a2 =>= a2
6879 [] by prove_these_axioms_2
6883 23947: b2 2 0 2 1,1,1,2
6885 23947: inverse 3 1 1 0,1,1,2
6886 23947: multiply 3 2 2 0,2
6890 Found proof, 11.024829s
6891 % SZS status Unsatisfiable for GRP476-1.p
6892 % SZS output start CNFRefutation for GRP476-1.p
6893 Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
6894 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13
6895 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8
6896 Id : 5, {_}: divide (inverse (divide (divide (divide (divide ?15 ?16) (inverse (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17)))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2
6897 Id : 17, {_}: divide (inverse (divide (divide (multiply (divide ?15 ?16) (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,1,2
6898 Id : 18, {_}: multiply (inverse (divide (divide (multiply (divide ?64 ?65) (divide (divide (divide ?65 ?64) ?66) (divide (inverse ?67) ?66))) ?68) (divide ?69 ?68))) ?67 =>= ?69 [69, 68, 67, 66, 65, 64] by Super 3 with 17 at 3
6899 Id : 20, {_}: divide (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?81 ?80) =?= inverse (divide (divide (multiply (divide ?84 ?85) (divide (divide (divide ?85 ?84) ?86) (divide ?82 ?86))) ?87) (divide ?83 ?87)) [87, 86, 85, 84, 83, 82, 81, 80] by Super 2 with 17 at 2,1,1,2
6900 Id : 863, {_}: multiply (divide (inverse (divide (divide (divide ?4853 ?4854) (inverse ?4855)) ?4856)) (divide ?4854 ?4853)) ?4855 =>= ?4856 [4856, 4855, 4854, 4853] by Super 18 with 20 at 1,2
6901 Id : 978, {_}: multiply (divide (inverse (divide (multiply (divide ?4853 ?4854) ?4855) ?4856)) (divide ?4854 ?4853)) ?4855 =>= ?4856 [4856, 4855, 4854, 4853] by Demod 863 with 3 at 1,1,1,1,2
6902 Id : 1168, {_}: divide (divide (inverse (divide (divide (divide ?6497 ?6498) ?6499) ?6500)) (divide ?6498 ?6497)) ?6499 =>= ?6500 [6500, 6499, 6498, 6497] by Super 17 with 20 at 1,2
6903 Id : 1637, {_}: divide (divide (inverse (divide (divide (divide (inverse ?8641) ?8642) ?8643) ?8644)) (multiply ?8642 ?8641)) ?8643 =>= ?8644 [8644, 8643, 8642, 8641] by Super 1168 with 3 at 2,1,2
6904 Id : 1659, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?8819) ?8820) ?8821) ?8822)) (multiply (inverse ?8820) ?8819)) ?8821 =>= ?8822 [8822, 8821, 8820, 8819] by Super 1637 with 3 at 1,1,1,1,1,2
6905 Id : 7, {_}: divide (inverse (divide (divide ?29 ?30) (divide ?31 ?30))) (divide (divide ?32 ?33) (inverse (divide (divide (divide ?33 ?32) ?34) (divide ?29 ?34)))) =>= ?31 [34, 33, 32, 31, 30, 29] by Super 4 with 2 at 1,1,1,1,2
6906 Id : 292, {_}: divide (inverse (divide (divide ?1415 ?1416) (divide ?1417 ?1416))) (multiply (divide ?1418 ?1419) (divide (divide (divide ?1419 ?1418) ?1420) (divide ?1415 ?1420))) =>= ?1417 [1420, 1419, 1418, 1417, 1416, 1415] by Demod 7 with 3 at 2,2
6907 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?23) (divide ?24 ?25)) ?26)) (divide ?23 ?22) =?= inverse (divide (divide (divide ?25 ?24) ?27) (divide ?26 ?27)) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2
6908 Id : 117, {_}: inverse (divide (divide (divide ?560 ?561) ?562) (divide (divide ?563 (divide ?561 ?560)) ?562)) =>= ?563 [563, 562, 561, 560] by Super 2 with 6 at 2
6909 Id : 329, {_}: divide ?1764 (multiply (divide ?1765 ?1766) (divide (divide (divide ?1766 ?1765) ?1767) (divide (divide ?1768 ?1769) ?1767))) =>= divide ?1764 (divide ?1769 ?1768) [1769, 1768, 1767, 1766, 1765, 1764] by Super 292 with 117 at 1,2
6910 Id : 13692, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?74151) ?74152) ?74153) (divide ?74154 ?74155))) (multiply (inverse ?74152) ?74151)) ?74153 =?= multiply (divide ?74156 ?74157) (divide (divide (divide ?74157 ?74156) ?74158) (divide (divide ?74155 ?74154) ?74158)) [74158, 74157, 74156, 74155, 74154, 74153, 74152, 74151] by Super 1659 with 329 at 1,1,1,2
6911 Id : 13926, {_}: divide ?74154 ?74155 =<= multiply (divide ?74156 ?74157) (divide (divide (divide ?74157 ?74156) ?74158) (divide (divide ?74155 ?74154) ?74158)) [74158, 74157, 74156, 74155, 74154] by Demod 13692 with 1659 at 2
6912 Id : 1195, {_}: divide (divide (inverse (multiply (divide (divide ?6697 ?6698) ?6699) ?6700)) (divide ?6698 ?6697)) ?6699 =>= inverse ?6700 [6700, 6699, 6698, 6697] by Super 1168 with 3 at 1,1,1,2
6913 Id : 14284, {_}: divide (divide (inverse (divide ?76258 ?76259)) (divide ?76260 ?76261)) ?76262 =<= inverse (divide (divide (divide ?76262 (divide ?76261 ?76260)) ?76263) (divide (divide ?76259 ?76258) ?76263)) [76263, 76262, 76261, 76260, 76259, 76258] by Super 1195 with 13926 at 1,1,1,2
6914 Id : 14590, {_}: divide (divide (divide (inverse (divide ?77679 ?77680)) (divide ?77681 ?77682)) ?77683) (divide (divide ?77682 ?77681) ?77683) =>= divide ?77680 ?77679 [77683, 77682, 77681, 77680, 77679] by Super 2 with 14284 at 1,2
6915 Id : 21451, {_}: divide ?110293 ?110294 =<= multiply (divide (divide ?110293 ?110294) (inverse (divide ?110295 ?110296))) (divide ?110296 ?110295) [110296, 110295, 110294, 110293] by Super 13926 with 14590 at 2,3
6916 Id : 22065, {_}: divide ?114187 ?114188 =<= multiply (multiply (divide ?114187 ?114188) (divide ?114189 ?114190)) (divide ?114190 ?114189) [114190, 114189, 114188, 114187] by Demod 21451 with 3 at 1,3
6917 Id : 22122, {_}: divide (inverse (divide (divide (divide ?114646 ?114647) ?114648) (divide ?114649 ?114648))) (divide ?114647 ?114646) =?= multiply (multiply ?114649 (divide ?114650 ?114651)) (divide ?114651 ?114650) [114651, 114650, 114649, 114648, 114647, 114646] by Super 22065 with 2 at 1,1,3
6918 Id : 22268, {_}: ?114649 =<= multiply (multiply ?114649 (divide ?114650 ?114651)) (divide ?114651 ?114650) [114651, 114650, 114649] by Demod 22122 with 2 at 2
6919 Id : 202, {_}: inverse (divide (divide (divide ?946 ?947) ?948) (divide (divide ?949 (divide ?947 ?946)) ?948)) =>= ?949 [949, 948, 947, 946] by Super 2 with 6 at 2
6920 Id : 213, {_}: inverse (divide (divide (divide ?1024 ?1025) (inverse ?1026)) (multiply (divide ?1027 (divide ?1025 ?1024)) ?1026)) =>= ?1027 [1027, 1026, 1025, 1024] by Super 202 with 3 at 2,1,2
6921 Id : 232, {_}: inverse (divide (multiply (divide ?1024 ?1025) ?1026) (multiply (divide ?1027 (divide ?1025 ?1024)) ?1026)) =>= ?1027 [1027, 1026, 1025, 1024] by Demod 213 with 3 at 1,1,2
6922 Id : 21617, {_}: divide (divide (inverse (divide ?111842 ?111843)) (divide ?111843 ?111842)) (inverse (divide ?111844 ?111845)) =>= inverse (divide ?111845 ?111844) [111845, 111844, 111843, 111842] by Super 14284 with 14590 at 1,3
6923 Id : 21801, {_}: multiply (divide (inverse (divide ?111842 ?111843)) (divide ?111843 ?111842)) (divide ?111844 ?111845) =>= inverse (divide ?111845 ?111844) [111845, 111844, 111843, 111842] by Demod 21617 with 3 at 2
6924 Id : 24938, {_}: inverse (divide (inverse (divide ?127750 ?127751)) (multiply (divide ?127752 (divide (divide ?127753 ?127754) (inverse (divide ?127754 ?127753)))) (divide ?127751 ?127750))) =>= ?127752 [127754, 127753, 127752, 127751, 127750] by Super 232 with 21801 at 1,1,2
6925 Id : 9, {_}: divide (inverse (divide (divide (divide (inverse ?38) ?39) ?40) (divide ?41 ?40))) (multiply ?39 ?38) =>= ?41 [41, 40, 39, 38] by Super 2 with 3 at 2,2
6926 Id : 21516, {_}: divide (inverse (divide ?110895 ?110896)) (multiply (divide ?110897 ?110898) (divide ?110896 ?110895)) =>= divide ?110898 ?110897 [110898, 110897, 110896, 110895] by Super 9 with 14590 at 1,1,2
6927 Id : 25207, {_}: inverse (divide (divide (divide ?127753 ?127754) (inverse (divide ?127754 ?127753))) ?127752) =>= ?127752 [127752, 127754, 127753] by Demod 24938 with 21516 at 1,2
6928 Id : 25208, {_}: inverse (divide (multiply (divide ?127753 ?127754) (divide ?127754 ?127753)) ?127752) =>= ?127752 [127752, 127754, 127753] by Demod 25207 with 3 at 1,1,2
6929 Id : 25416, {_}: multiply (divide ?129668 (divide ?129669 ?129670)) (divide ?129669 ?129670) =>= ?129668 [129670, 129669, 129668] by Super 232 with 25208 at 2
6930 Id : 25599, {_}: divide ?130543 (divide ?130544 ?130545) =>= multiply ?130543 (divide ?130545 ?130544) [130545, 130544, 130543] by Super 22268 with 25416 at 1,3
6931 Id : 25966, {_}: multiply (multiply (inverse (divide (multiply (divide ?4853 ?4854) ?4855) ?4856)) (divide ?4853 ?4854)) ?4855 =>= ?4856 [4856, 4855, 4854, 4853] by Demod 978 with 25599 at 1,2
6932 Id : 26300, {_}: multiply (multiply (inverse (multiply (multiply (divide ?133704 ?133705) ?133706) (divide ?133707 ?133708))) (divide ?133704 ?133705)) ?133706 =>= divide ?133708 ?133707 [133708, 133707, 133706, 133705, 133704] by Super 25966 with 25599 at 1,1,1,2
6933 Id : 1261, {_}: multiply (divide (inverse (divide (multiply (divide ?6852 ?6853) ?6854) ?6855)) (divide ?6853 ?6852)) ?6854 =>= ?6855 [6855, 6854, 6853, 6852] by Demod 863 with 3 at 1,1,1,1,2
6934 Id : 1287, {_}: multiply (divide (inverse (multiply (multiply (divide ?7047 ?7048) ?7049) ?7050)) (divide ?7048 ?7047)) ?7049 =>= inverse ?7050 [7050, 7049, 7048, 7047] by Super 1261 with 3 at 1,1,1,2
6935 Id : 25965, {_}: multiply (multiply (inverse (multiply (multiply (divide ?7047 ?7048) ?7049) ?7050)) (divide ?7047 ?7048)) ?7049 =>= inverse ?7050 [7050, 7049, 7048, 7047] by Demod 1287 with 25599 at 1,2
6936 Id : 26721, {_}: inverse (divide ?134526 ?134527) =>= divide ?134527 ?134526 [134527, 134526] by Demod 26300 with 25965 at 2
6937 Id : 26764, {_}: inverse (multiply ?134789 ?134790) =<= divide (inverse ?134790) ?134789 [134790, 134789] by Super 26721 with 3 at 1,2
6938 Id : 26966, {_}: multiply (inverse ?135418) ?135419 =<= inverse (multiply (inverse ?135419) ?135418) [135419, 135418] by Super 3 with 26764 at 3
6939 Id : 26405, {_}: inverse (divide ?133707 ?133708) =>= divide ?133708 ?133707 [133708, 133707] by Demod 26300 with 25965 at 2
6940 Id : 26641, {_}: divide ?127752 (multiply (divide ?127753 ?127754) (divide ?127754 ?127753)) =>= ?127752 [127754, 127753, 127752] by Demod 25208 with 26405 at 2
6941 Id : 656, {_}: inverse (divide (divide (divide (inverse ?3361) ?3362) ?3363) (divide (divide ?3364 (multiply ?3362 ?3361)) ?3363)) =>= ?3364 [3364, 3363, 3362, 3361] by Super 202 with 3 at 2,1,2,1,2
6942 Id : 272, {_}: divide (inverse (divide (divide ?29 ?30) (divide ?31 ?30))) (multiply (divide ?32 ?33) (divide (divide (divide ?33 ?32) ?34) (divide ?29 ?34))) =>= ?31 [34, 33, 32, 31, 30, 29] by Demod 7 with 3 at 2,2
6943 Id : 661, {_}: inverse (divide (divide (divide (inverse (divide (divide (divide ?3396 ?3397) ?3398) (divide ?3399 ?3398))) (divide ?3397 ?3396)) ?3400) (divide ?3401 ?3400)) =?= inverse (divide (divide ?3399 ?3402) (divide ?3401 ?3402)) [3402, 3401, 3400, 3399, 3398, 3397, 3396] by Super 656 with 272 at 1,2,1,2
6944 Id : 5809, {_}: inverse (divide (divide ?31363 ?31364) (divide ?31365 ?31364)) =?= inverse (divide (divide ?31363 ?31366) (divide ?31365 ?31366)) [31366, 31365, 31364, 31363] by Demod 661 with 2 at 1,1,1,2
6945 Id : 5810, {_}: inverse (divide (divide ?31368 ?31369) (divide (inverse (divide (divide (divide ?31370 ?31371) ?31372) (divide ?31373 ?31372))) ?31369)) =>= inverse (divide (divide ?31368 (divide ?31371 ?31370)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Super 5809 with 2 at 2,1,3
6946 Id : 25948, {_}: inverse (multiply (divide ?31368 ?31369) (divide ?31369 (inverse (divide (divide (divide ?31370 ?31371) ?31372) (divide ?31373 ?31372))))) =>= inverse (divide (divide ?31368 (divide ?31371 ?31370)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 5810 with 25599 at 1,2
6947 Id : 25949, {_}: inverse (multiply (divide ?31368 ?31369) (divide ?31369 (inverse (divide (divide (divide ?31370 ?31371) ?31372) (divide ?31373 ?31372))))) =>= inverse (divide (multiply ?31368 (divide ?31370 ?31371)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 25948 with 25599 at 1,1,3
6948 Id : 25950, {_}: inverse (multiply (divide ?31368 ?31369) (divide ?31369 (inverse (multiply (divide (divide ?31370 ?31371) ?31372) (divide ?31372 ?31373))))) =>= inverse (divide (multiply ?31368 (divide ?31370 ?31371)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 25949 with 25599 at 1,2,2,1,2
6949 Id : 26071, {_}: inverse (multiply (divide ?31368 ?31369) (multiply ?31369 (multiply (divide (divide ?31370 ?31371) ?31372) (divide ?31372 ?31373)))) =>= inverse (divide (multiply ?31368 (divide ?31370 ?31371)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 25950 with 3 at 2,1,2
6950 Id : 26655, {_}: inverse (multiply (divide ?31368 ?31369) (multiply ?31369 (multiply (divide (divide ?31370 ?31371) ?31372) (divide ?31372 ?31373)))) =>= divide ?31373 (multiply ?31368 (divide ?31370 ?31371)) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 26071 with 26405 at 3
6951 Id : 5834, {_}: inverse (divide (divide (inverse (divide (divide (divide ?31556 ?31557) ?31558) (divide ?31559 ?31558))) ?31560) (divide ?31561 ?31560)) =>= inverse (divide ?31559 (divide ?31561 (divide ?31557 ?31556))) [31561, 31560, 31559, 31558, 31557, 31556] by Super 5809 with 2 at 1,1,3
6952 Id : 25943, {_}: inverse (multiply (divide (inverse (divide (divide (divide ?31556 ?31557) ?31558) (divide ?31559 ?31558))) ?31560) (divide ?31560 ?31561)) =>= inverse (divide ?31559 (divide ?31561 (divide ?31557 ?31556))) [31561, 31560, 31559, 31558, 31557, 31556] by Demod 5834 with 25599 at 1,2
6953 Id : 25944, {_}: inverse (multiply (divide (inverse (divide (divide (divide ?31556 ?31557) ?31558) (divide ?31559 ?31558))) ?31560) (divide ?31560 ?31561)) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31561, 31560, 31559, 31558, 31557, 31556] by Demod 25943 with 25599 at 1,3
6954 Id : 25945, {_}: inverse (multiply (divide (inverse (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) ?31560) (divide ?31560 ?31561)) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31561, 31560, 31559, 31558, 31557, 31556] by Demod 25944 with 25599 at 1,1,1,1,2
6955 Id : 26832, {_}: inverse (multiply (inverse (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559)))) (divide ?31560 ?31561)) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31561, 31559, 31558, 31557, 31556, 31560] by Demod 25945 with 26764 at 1,1,2
6956 Id : 27298, {_}: multiply (inverse (divide ?31560 ?31561)) (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31559, 31558, 31557, 31556, 31561, 31560] by Demod 26832 with 26966 at 2
6957 Id : 27299, {_}: multiply (divide ?31561 ?31560) (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31559, 31558, 31557, 31556, 31560, 31561] by Demod 27298 with 26405 at 1,2
6958 Id : 27300, {_}: inverse (inverse (multiply ?31373 (divide (divide ?31371 ?31370) ?31368))) =>= divide ?31373 (multiply ?31368 (divide ?31370 ?31371)) [31368, 31370, 31371, 31373] by Demod 26655 with 27299 at 1,2
6959 Id : 26900, {_}: inverse (inverse (multiply ?134958 ?134959)) =>= divide ?134958 (inverse ?134959) [134959, 134958] by Super 26405 with 26764 at 1,2
6960 Id : 27254, {_}: inverse (inverse (multiply ?134958 ?134959)) =>= multiply ?134958 ?134959 [134959, 134958] by Demod 26900 with 3 at 3
6961 Id : 27506, {_}: multiply ?31373 (divide (divide ?31371 ?31370) ?31368) =<= divide ?31373 (multiply ?31368 (divide ?31370 ?31371)) [31368, 31370, 31371, 31373] by Demod 27300 with 27254 at 2
6962 Id : 27507, {_}: multiply ?127752 (divide (divide ?127753 ?127754) (divide ?127753 ?127754)) =>= ?127752 [127754, 127753, 127752] by Demod 26641 with 27506 at 2
6963 Id : 27516, {_}: multiply ?127752 (multiply (divide ?127753 ?127754) (divide ?127754 ?127753)) =>= ?127752 [127754, 127753, 127752] by Demod 27507 with 25599 at 2,2
6964 Id : 22416, {_}: ?115848 =<= multiply (multiply ?115848 (divide ?115849 ?115850)) (divide ?115850 ?115849) [115850, 115849, 115848] by Demod 22122 with 2 at 2
6965 Id : 22472, {_}: ?116246 =<= multiply (multiply ?116246 (multiply ?116247 ?116248)) (divide (inverse ?116248) ?116247) [116248, 116247, 116246] by Super 22416 with 3 at 2,1,3
6966 Id : 26848, {_}: ?116246 =<= multiply (multiply ?116246 (multiply ?116247 ?116248)) (inverse (multiply ?116247 ?116248)) [116248, 116247, 116246] by Demod 22472 with 26764 at 2,3
6967 Id : 27552, {_}: inverse (inverse (multiply ?137012 ?137013)) =>= multiply ?137012 ?137013 [137013, 137012] by Demod 26900 with 3 at 3
6968 Id : 25980, {_}: multiply (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?2 ?3) =>= ?5 [5, 4, 3, 2] by Demod 2 with 25599 at 2
6969 Id : 25981, {_}: multiply (inverse (multiply (divide (divide ?2 ?3) ?4) (divide ?4 ?5))) (divide ?2 ?3) =>= ?5 [5, 4, 3, 2] by Demod 25980 with 25599 at 1,1,2
6970 Id : 27556, {_}: inverse (inverse ?137032) =<= multiply (inverse (multiply (divide (divide ?137033 ?137034) ?137035) (divide ?137035 ?137032))) (divide ?137033 ?137034) [137035, 137034, 137033, 137032] by Super 27552 with 25981 at 1,1,2
6971 Id : 27632, {_}: inverse (inverse ?137032) =>= ?137032 [137032] by Demod 27556 with 25981 at 3
6972 Id : 27734, {_}: multiply ?137511 (inverse ?137512) =>= divide ?137511 ?137512 [137512, 137511] by Super 3 with 27632 at 2,3
6973 Id : 27823, {_}: ?116246 =<= divide (multiply ?116246 (multiply ?116247 ?116248)) (multiply ?116247 ?116248) [116248, 116247, 116246] by Demod 26848 with 27734 at 3
6974 Id : 22, {_}: divide (inverse (divide (divide (multiply (divide ?98 ?99) (divide (divide (divide ?99 ?98) ?100) (divide ?101 ?100))) ?102) (divide ?103 ?102))) ?101 =>= ?103 [103, 102, 101, 100, 99, 98] by Demod 5 with 3 at 1,1,1,1,2
6975 Id : 26, {_}: divide (inverse (divide (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137) (divide ?138 ?137))) (inverse (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139))) =>= ?138 [139, 138, 137, 136, 135, 134, 133, 132] by Super 22 with 2 at 2,2,1,1,1,1,2
6976 Id : 42, {_}: multiply (inverse (divide (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137) (divide ?138 ?137))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 138, 137, 136, 135, 134, 133, 132] by Demod 26 with 3 at 2
6977 Id : 26984, {_}: inverse (multiply (divide ?135518 ?135519) ?135520) =<= multiply (inverse ?135520) (divide ?135519 ?135518) [135520, 135519, 135518] by Super 25599 with 26764 at 2
6978 Id : 31736, {_}: inverse (multiply (divide (divide ?136 ?139) (divide (divide ?135 ?134) ?139)) (divide (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137) (divide ?138 ?137))) =>= ?138 [138, 137, 133, 132, 134, 135, 139, 136] by Demod 42 with 26984 at 2
6979 Id : 26724, {_}: inverse (multiply ?134539 (divide ?134540 ?134541)) =>= divide (divide ?134541 ?134540) ?134539 [134541, 134540, 134539] by Super 26721 with 25599 at 1,2
6980 Id : 31737, {_}: divide (divide (divide ?138 ?137) (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137)) (divide (divide ?136 ?139) (divide (divide ?135 ?134) ?139)) =>= ?138 [139, 136, 135, 134, 133, 132, 137, 138] by Demod 31736 with 26724 at 2
6981 Id : 31738, {_}: multiply (divide (divide ?138 ?137) (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137)) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 136, 135, 134, 133, 132, 137, 138] by Demod 31737 with 25599 at 2
6982 Id : 31739, {_}: multiply (multiply (divide ?138 ?137) (divide ?137 (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 136, 135, 134, 133, 132, 137, 138] by Demod 31738 with 25599 at 1,2
6983 Id : 31740, {_}: multiply (multiply (divide ?138 ?137) (divide ?137 (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 136, 135, 134, 133, 132, 137, 138] by Demod 31739 with 25599 at 2,2
6984 Id : 31741, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (divide (divide ?136 (divide (divide ?133 ?132) (divide ?134 ?135))) (divide ?132 ?133)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 135, 134, 132, 133, 136, 137, 138] by Demod 31740 with 27506 at 2,1,2
6985 Id : 31742, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (multiply (divide ?136 (divide (divide ?133 ?132) (divide ?134 ?135))) (divide ?133 ?132)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 135, 134, 132, 133, 136, 137, 138] by Demod 31741 with 25599 at 2,2,1,2
6986 Id : 31743, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (multiply (multiply ?136 (divide (divide ?134 ?135) (divide ?133 ?132))) (divide ?133 ?132)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 132, 133, 135, 134, 136, 137, 138] by Demod 31742 with 25599 at 1,2,2,1,2
6987 Id : 31744, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (multiply (multiply ?136 (multiply (divide ?134 ?135) (divide ?132 ?133))) (divide ?133 ?132)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 133, 132, 135, 134, 136, 137, 138] by Demod 31743 with 25599 at 2,1,2,2,1,2
6988 Id : 31832, {_}: ?147291 =<= divide (multiply ?147291 (multiply (multiply (divide ?147292 ?147293) (multiply ?147293 (multiply (multiply ?147294 (multiply (divide ?147295 ?147296) (divide ?147297 ?147298))) (divide ?147298 ?147297)))) (multiply (divide (divide ?147296 ?147295) ?147299) (divide ?147299 ?147294)))) ?147292 [147299, 147298, 147297, 147296, 147295, 147294, 147293, 147292, 147291] by Super 27823 with 31744 at 2,3
6989 Id : 32203, {_}: ?147291 =<= divide (multiply ?147291 ?147292) ?147292 [147292, 147291] by Demod 31832 with 31744 at 2,1,3
6990 Id : 33094, {_}: inverse ?153200 =<= divide ?153201 (multiply ?153200 ?153201) [153201, 153200] by Super 26405 with 32203 at 1,2
6991 Id : 33479, {_}: multiply ?154885 (multiply (divide (multiply ?154886 ?154887) ?154887) (inverse ?154886)) =>= ?154885 [154887, 154886, 154885] by Super 27516 with 33094 at 2,2,2
6992 Id : 33980, {_}: multiply ?154885 (divide (divide (multiply ?154886 ?154887) ?154887) ?154886) =>= ?154885 [154887, 154886, 154885] by Demod 33479 with 27734 at 2,2
6993 Id : 33981, {_}: multiply ?154885 (divide ?154886 ?154886) =>= ?154885 [154886, 154885] by Demod 33980 with 32203 at 1,2,2
6994 Id : 34313, {_}: multiply (inverse (divide ?156478 ?156478)) ?156479 =>= inverse (inverse ?156479) [156479, 156478] by Super 26966 with 33981 at 1,3
6995 Id : 34773, {_}: multiply (divide ?156478 ?156478) ?156479 =>= inverse (inverse ?156479) [156479, 156478] by Demod 34313 with 26405 at 1,2
6996 Id : 36051, {_}: multiply (divide ?160644 ?160644) ?160645 =>= ?160645 [160645, 160644] by Demod 34773 with 27632 at 3
6997 Id : 36066, {_}: multiply (multiply (inverse ?160721) ?160721) ?160722 =>= ?160722 [160722, 160721] by Super 36051 with 3 at 1,2
6998 Id : 39894, {_}: a2 === a2 [] by Demod 1 with 36066 at 2
6999 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2
7000 % SZS output end CNFRefutation for GRP476-1.p
7001 23945: solved GRP476-1.p in 11.032689 using nrkbo
7002 23945: status Unsatisfiable for GRP476-1.p
7003 NO CLASH, using fixed ground order
7006 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
7010 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7012 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7013 [8, 7] by multiply ?7 ?8
7016 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
7017 [] by prove_these_axioms_3
7021 23952: a3 2 0 2 1,1,2
7022 23952: b3 2 0 2 2,1,2
7024 23952: inverse 2 1 0
7025 23952: multiply 5 2 4 0,2
7027 NO CLASH, using fixed ground order
7030 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
7034 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7036 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7037 [8, 7] by multiply ?7 ?8
7040 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
7041 [] by prove_these_axioms_3
7045 23953: a3 2 0 2 1,1,2
7046 23953: b3 2 0 2 2,1,2
7048 23953: inverse 2 1 0
7049 23953: multiply 5 2 4 0,2
7051 NO CLASH, using fixed ground order
7054 divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4)))
7058 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7060 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7061 [8, 7] by multiply ?7 ?8
7064 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
7065 [] by prove_these_axioms_3
7069 23954: a3 2 0 2 1,1,2
7070 23954: b3 2 0 2 2,1,2
7072 23954: inverse 2 1 0
7073 23954: multiply 5 2 4 0,2
7077 Found proof, 32.327095s
7078 % SZS status Unsatisfiable for GRP477-1.p
7079 % SZS output start CNFRefutation for GRP477-1.p
7080 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8
7081 Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7082 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13
7083 Id : 5, {_}: divide (inverse (divide (divide (divide (divide ?15 ?16) (inverse (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17)))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2
7084 Id : 17, {_}: divide (inverse (divide (divide (multiply (divide ?15 ?16) (divide (divide (divide ?16 ?15) ?17) (divide ?18 ?17))) ?19) (divide ?20 ?19))) ?18 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,1,2
7085 Id : 20, {_}: divide (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?81 ?80) =?= inverse (divide (divide (multiply (divide ?84 ?85) (divide (divide (divide ?85 ?84) ?86) (divide ?82 ?86))) ?87) (divide ?83 ?87)) [87, 86, 85, 84, 83, 82, 81, 80] by Super 2 with 17 at 2,1,1,2
7086 Id : 1168, {_}: divide (divide (inverse (divide (divide (divide ?6497 ?6498) ?6499) ?6500)) (divide ?6498 ?6497)) ?6499 =>= ?6500 [6500, 6499, 6498, 6497] by Super 17 with 20 at 1,2
7087 Id : 1637, {_}: divide (divide (inverse (divide (divide (divide (inverse ?8641) ?8642) ?8643) ?8644)) (multiply ?8642 ?8641)) ?8643 =>= ?8644 [8644, 8643, 8642, 8641] by Super 1168 with 3 at 2,1,2
7088 Id : 1659, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?8819) ?8820) ?8821) ?8822)) (multiply (inverse ?8820) ?8819)) ?8821 =>= ?8822 [8822, 8821, 8820, 8819] by Super 1637 with 3 at 1,1,1,1,1,2
7089 Id : 7, {_}: divide (inverse (divide (divide ?29 ?30) (divide ?31 ?30))) (divide (divide ?32 ?33) (inverse (divide (divide (divide ?33 ?32) ?34) (divide ?29 ?34)))) =>= ?31 [34, 33, 32, 31, 30, 29] by Super 4 with 2 at 1,1,1,1,2
7090 Id : 292, {_}: divide (inverse (divide (divide ?1415 ?1416) (divide ?1417 ?1416))) (multiply (divide ?1418 ?1419) (divide (divide (divide ?1419 ?1418) ?1420) (divide ?1415 ?1420))) =>= ?1417 [1420, 1419, 1418, 1417, 1416, 1415] by Demod 7 with 3 at 2,2
7091 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?23) (divide ?24 ?25)) ?26)) (divide ?23 ?22) =?= inverse (divide (divide (divide ?25 ?24) ?27) (divide ?26 ?27)) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2
7092 Id : 117, {_}: inverse (divide (divide (divide ?560 ?561) ?562) (divide (divide ?563 (divide ?561 ?560)) ?562)) =>= ?563 [563, 562, 561, 560] by Super 2 with 6 at 2
7093 Id : 329, {_}: divide ?1764 (multiply (divide ?1765 ?1766) (divide (divide (divide ?1766 ?1765) ?1767) (divide (divide ?1768 ?1769) ?1767))) =>= divide ?1764 (divide ?1769 ?1768) [1769, 1768, 1767, 1766, 1765, 1764] by Super 292 with 117 at 1,2
7094 Id : 13692, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?74151) ?74152) ?74153) (divide ?74154 ?74155))) (multiply (inverse ?74152) ?74151)) ?74153 =?= multiply (divide ?74156 ?74157) (divide (divide (divide ?74157 ?74156) ?74158) (divide (divide ?74155 ?74154) ?74158)) [74158, 74157, 74156, 74155, 74154, 74153, 74152, 74151] by Super 1659 with 329 at 1,1,1,2
7095 Id : 13926, {_}: divide ?74154 ?74155 =<= multiply (divide ?74156 ?74157) (divide (divide (divide ?74157 ?74156) ?74158) (divide (divide ?74155 ?74154) ?74158)) [74158, 74157, 74156, 74155, 74154] by Demod 13692 with 1659 at 2
7096 Id : 1195, {_}: divide (divide (inverse (multiply (divide (divide ?6697 ?6698) ?6699) ?6700)) (divide ?6698 ?6697)) ?6699 =>= inverse ?6700 [6700, 6699, 6698, 6697] by Super 1168 with 3 at 1,1,1,2
7097 Id : 14284, {_}: divide (divide (inverse (divide ?76258 ?76259)) (divide ?76260 ?76261)) ?76262 =<= inverse (divide (divide (divide ?76262 (divide ?76261 ?76260)) ?76263) (divide (divide ?76259 ?76258) ?76263)) [76263, 76262, 76261, 76260, 76259, 76258] by Super 1195 with 13926 at 1,1,1,2
7098 Id : 14590, {_}: divide (divide (divide (inverse (divide ?77679 ?77680)) (divide ?77681 ?77682)) ?77683) (divide (divide ?77682 ?77681) ?77683) =>= divide ?77680 ?77679 [77683, 77682, 77681, 77680, 77679] by Super 2 with 14284 at 1,2
7099 Id : 21451, {_}: divide ?110293 ?110294 =<= multiply (divide (divide ?110293 ?110294) (inverse (divide ?110295 ?110296))) (divide ?110296 ?110295) [110296, 110295, 110294, 110293] by Super 13926 with 14590 at 2,3
7100 Id : 22065, {_}: divide ?114187 ?114188 =<= multiply (multiply (divide ?114187 ?114188) (divide ?114189 ?114190)) (divide ?114190 ?114189) [114190, 114189, 114188, 114187] by Demod 21451 with 3 at 1,3
7101 Id : 22122, {_}: divide (inverse (divide (divide (divide ?114646 ?114647) ?114648) (divide ?114649 ?114648))) (divide ?114647 ?114646) =?= multiply (multiply ?114649 (divide ?114650 ?114651)) (divide ?114651 ?114650) [114651, 114650, 114649, 114648, 114647, 114646] by Super 22065 with 2 at 1,1,3
7102 Id : 22416, {_}: ?115848 =<= multiply (multiply ?115848 (divide ?115849 ?115850)) (divide ?115850 ?115849) [115850, 115849, 115848] by Demod 22122 with 2 at 2
7103 Id : 22444, {_}: ?116047 =<= multiply (multiply ?116047 (divide (inverse ?116048) ?116049)) (multiply ?116049 ?116048) [116049, 116048, 116047] by Super 22416 with 3 at 2,3
7104 Id : 18, {_}: multiply (inverse (divide (divide (multiply (divide ?64 ?65) (divide (divide (divide ?65 ?64) ?66) (divide (inverse ?67) ?66))) ?68) (divide ?69 ?68))) ?67 =>= ?69 [69, 68, 67, 66, 65, 64] by Super 3 with 17 at 3
7105 Id : 863, {_}: multiply (divide (inverse (divide (divide (divide ?4853 ?4854) (inverse ?4855)) ?4856)) (divide ?4854 ?4853)) ?4855 =>= ?4856 [4856, 4855, 4854, 4853] by Super 18 with 20 at 1,2
7106 Id : 978, {_}: multiply (divide (inverse (divide (multiply (divide ?4853 ?4854) ?4855) ?4856)) (divide ?4854 ?4853)) ?4855 =>= ?4856 [4856, 4855, 4854, 4853] by Demod 863 with 3 at 1,1,1,1,2
7107 Id : 22268, {_}: ?114649 =<= multiply (multiply ?114649 (divide ?114650 ?114651)) (divide ?114651 ?114650) [114651, 114650, 114649] by Demod 22122 with 2 at 2
7108 Id : 202, {_}: inverse (divide (divide (divide ?946 ?947) ?948) (divide (divide ?949 (divide ?947 ?946)) ?948)) =>= ?949 [949, 948, 947, 946] by Super 2 with 6 at 2
7109 Id : 213, {_}: inverse (divide (divide (divide ?1024 ?1025) (inverse ?1026)) (multiply (divide ?1027 (divide ?1025 ?1024)) ?1026)) =>= ?1027 [1027, 1026, 1025, 1024] by Super 202 with 3 at 2,1,2
7110 Id : 232, {_}: inverse (divide (multiply (divide ?1024 ?1025) ?1026) (multiply (divide ?1027 (divide ?1025 ?1024)) ?1026)) =>= ?1027 [1027, 1026, 1025, 1024] by Demod 213 with 3 at 1,1,2
7111 Id : 21617, {_}: divide (divide (inverse (divide ?111842 ?111843)) (divide ?111843 ?111842)) (inverse (divide ?111844 ?111845)) =>= inverse (divide ?111845 ?111844) [111845, 111844, 111843, 111842] by Super 14284 with 14590 at 1,3
7112 Id : 21801, {_}: multiply (divide (inverse (divide ?111842 ?111843)) (divide ?111843 ?111842)) (divide ?111844 ?111845) =>= inverse (divide ?111845 ?111844) [111845, 111844, 111843, 111842] by Demod 21617 with 3 at 2
7113 Id : 24938, {_}: inverse (divide (inverse (divide ?127750 ?127751)) (multiply (divide ?127752 (divide (divide ?127753 ?127754) (inverse (divide ?127754 ?127753)))) (divide ?127751 ?127750))) =>= ?127752 [127754, 127753, 127752, 127751, 127750] by Super 232 with 21801 at 1,1,2
7114 Id : 9, {_}: divide (inverse (divide (divide (divide (inverse ?38) ?39) ?40) (divide ?41 ?40))) (multiply ?39 ?38) =>= ?41 [41, 40, 39, 38] by Super 2 with 3 at 2,2
7115 Id : 21516, {_}: divide (inverse (divide ?110895 ?110896)) (multiply (divide ?110897 ?110898) (divide ?110896 ?110895)) =>= divide ?110898 ?110897 [110898, 110897, 110896, 110895] by Super 9 with 14590 at 1,1,2
7116 Id : 25207, {_}: inverse (divide (divide (divide ?127753 ?127754) (inverse (divide ?127754 ?127753))) ?127752) =>= ?127752 [127752, 127754, 127753] by Demod 24938 with 21516 at 1,2
7117 Id : 25208, {_}: inverse (divide (multiply (divide ?127753 ?127754) (divide ?127754 ?127753)) ?127752) =>= ?127752 [127752, 127754, 127753] by Demod 25207 with 3 at 1,1,2
7118 Id : 25416, {_}: multiply (divide ?129668 (divide ?129669 ?129670)) (divide ?129669 ?129670) =>= ?129668 [129670, 129669, 129668] by Super 232 with 25208 at 2
7119 Id : 25599, {_}: divide ?130543 (divide ?130544 ?130545) =>= multiply ?130543 (divide ?130545 ?130544) [130545, 130544, 130543] by Super 22268 with 25416 at 1,3
7120 Id : 25966, {_}: multiply (multiply (inverse (divide (multiply (divide ?4853 ?4854) ?4855) ?4856)) (divide ?4853 ?4854)) ?4855 =>= ?4856 [4856, 4855, 4854, 4853] by Demod 978 with 25599 at 1,2
7121 Id : 26300, {_}: multiply (multiply (inverse (multiply (multiply (divide ?133704 ?133705) ?133706) (divide ?133707 ?133708))) (divide ?133704 ?133705)) ?133706 =>= divide ?133708 ?133707 [133708, 133707, 133706, 133705, 133704] by Super 25966 with 25599 at 1,1,1,2
7122 Id : 1261, {_}: multiply (divide (inverse (divide (multiply (divide ?6852 ?6853) ?6854) ?6855)) (divide ?6853 ?6852)) ?6854 =>= ?6855 [6855, 6854, 6853, 6852] by Demod 863 with 3 at 1,1,1,1,2
7123 Id : 1287, {_}: multiply (divide (inverse (multiply (multiply (divide ?7047 ?7048) ?7049) ?7050)) (divide ?7048 ?7047)) ?7049 =>= inverse ?7050 [7050, 7049, 7048, 7047] by Super 1261 with 3 at 1,1,1,2
7124 Id : 25965, {_}: multiply (multiply (inverse (multiply (multiply (divide ?7047 ?7048) ?7049) ?7050)) (divide ?7047 ?7048)) ?7049 =>= inverse ?7050 [7050, 7049, 7048, 7047] by Demod 1287 with 25599 at 1,2
7125 Id : 26721, {_}: inverse (divide ?134526 ?134527) =>= divide ?134527 ?134526 [134527, 134526] by Demod 26300 with 25965 at 2
7126 Id : 26764, {_}: inverse (multiply ?134789 ?134790) =<= divide (inverse ?134790) ?134789 [134790, 134789] by Super 26721 with 3 at 1,2
7127 Id : 26849, {_}: ?116047 =<= multiply (multiply ?116047 (inverse (multiply ?116049 ?116048))) (multiply ?116049 ?116048) [116048, 116049, 116047] by Demod 22444 with 26764 at 2,1,3
7128 Id : 26405, {_}: inverse (divide ?133707 ?133708) =>= divide ?133708 ?133707 [133708, 133707] by Demod 26300 with 25965 at 2
7129 Id : 26900, {_}: inverse (inverse (multiply ?134958 ?134959)) =>= divide ?134958 (inverse ?134959) [134959, 134958] by Super 26405 with 26764 at 1,2
7130 Id : 27552, {_}: inverse (inverse (multiply ?137012 ?137013)) =>= multiply ?137012 ?137013 [137013, 137012] by Demod 26900 with 3 at 3
7131 Id : 25980, {_}: multiply (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?2 ?3) =>= ?5 [5, 4, 3, 2] by Demod 2 with 25599 at 2
7132 Id : 25981, {_}: multiply (inverse (multiply (divide (divide ?2 ?3) ?4) (divide ?4 ?5))) (divide ?2 ?3) =>= ?5 [5, 4, 3, 2] by Demod 25980 with 25599 at 1,1,2
7133 Id : 27556, {_}: inverse (inverse ?137032) =<= multiply (inverse (multiply (divide (divide ?137033 ?137034) ?137035) (divide ?137035 ?137032))) (divide ?137033 ?137034) [137035, 137034, 137033, 137032] by Super 27552 with 25981 at 1,1,2
7134 Id : 27632, {_}: inverse (inverse ?137032) =>= ?137032 [137032] by Demod 27556 with 25981 at 3
7135 Id : 27734, {_}: multiply ?137511 (inverse ?137512) =>= divide ?137511 ?137512 [137512, 137511] by Super 3 with 27632 at 2,3
7136 Id : 27821, {_}: ?116047 =<= multiply (divide ?116047 (multiply ?116049 ?116048)) (multiply ?116049 ?116048) [116048, 116049, 116047] by Demod 26849 with 27734 at 1,3
7137 Id : 22, {_}: divide (inverse (divide (divide (multiply (divide ?98 ?99) (divide (divide (divide ?99 ?98) ?100) (divide ?101 ?100))) ?102) (divide ?103 ?102))) ?101 =>= ?103 [103, 102, 101, 100, 99, 98] by Demod 5 with 3 at 1,1,1,1,2
7138 Id : 26, {_}: divide (inverse (divide (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137) (divide ?138 ?137))) (inverse (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139))) =>= ?138 [139, 138, 137, 136, 135, 134, 133, 132] by Super 22 with 2 at 2,2,1,1,1,1,2
7139 Id : 42, {_}: multiply (inverse (divide (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137) (divide ?138 ?137))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 138, 137, 136, 135, 134, 133, 132] by Demod 26 with 3 at 2
7140 Id : 26984, {_}: inverse (multiply (divide ?135518 ?135519) ?135520) =<= multiply (inverse ?135520) (divide ?135519 ?135518) [135520, 135519, 135518] by Super 25599 with 26764 at 2
7141 Id : 31736, {_}: inverse (multiply (divide (divide ?136 ?139) (divide (divide ?135 ?134) ?139)) (divide (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137) (divide ?138 ?137))) =>= ?138 [138, 137, 133, 132, 134, 135, 139, 136] by Demod 42 with 26984 at 2
7142 Id : 26724, {_}: inverse (multiply ?134539 (divide ?134540 ?134541)) =>= divide (divide ?134541 ?134540) ?134539 [134541, 134540, 134539] by Super 26721 with 25599 at 1,2
7143 Id : 31737, {_}: divide (divide (divide ?138 ?137) (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137)) (divide (divide ?136 ?139) (divide (divide ?135 ?134) ?139)) =>= ?138 [139, 136, 135, 134, 133, 132, 137, 138] by Demod 31736 with 26724 at 2
7144 Id : 31738, {_}: multiply (divide (divide ?138 ?137) (divide (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)) ?137)) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 136, 135, 134, 133, 132, 137, 138] by Demod 31737 with 25599 at 2
7145 Id : 31739, {_}: multiply (multiply (divide ?138 ?137) (divide ?137 (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)))) (divide (divide (divide ?135 ?134) ?139) (divide ?136 ?139)) =>= ?138 [139, 136, 135, 134, 133, 132, 137, 138] by Demod 31738 with 25599 at 1,2
7146 Id : 31740, {_}: multiply (multiply (divide ?138 ?137) (divide ?137 (multiply (divide ?132 ?133) (divide (divide (divide ?133 ?132) (divide ?134 ?135)) ?136)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 136, 135, 134, 133, 132, 137, 138] by Demod 31739 with 25599 at 2,2
7147 Id : 656, {_}: inverse (divide (divide (divide (inverse ?3361) ?3362) ?3363) (divide (divide ?3364 (multiply ?3362 ?3361)) ?3363)) =>= ?3364 [3364, 3363, 3362, 3361] by Super 202 with 3 at 2,1,2,1,2
7148 Id : 272, {_}: divide (inverse (divide (divide ?29 ?30) (divide ?31 ?30))) (multiply (divide ?32 ?33) (divide (divide (divide ?33 ?32) ?34) (divide ?29 ?34))) =>= ?31 [34, 33, 32, 31, 30, 29] by Demod 7 with 3 at 2,2
7149 Id : 661, {_}: inverse (divide (divide (divide (inverse (divide (divide (divide ?3396 ?3397) ?3398) (divide ?3399 ?3398))) (divide ?3397 ?3396)) ?3400) (divide ?3401 ?3400)) =?= inverse (divide (divide ?3399 ?3402) (divide ?3401 ?3402)) [3402, 3401, 3400, 3399, 3398, 3397, 3396] by Super 656 with 272 at 1,2,1,2
7150 Id : 5809, {_}: inverse (divide (divide ?31363 ?31364) (divide ?31365 ?31364)) =?= inverse (divide (divide ?31363 ?31366) (divide ?31365 ?31366)) [31366, 31365, 31364, 31363] by Demod 661 with 2 at 1,1,1,2
7151 Id : 5810, {_}: inverse (divide (divide ?31368 ?31369) (divide (inverse (divide (divide (divide ?31370 ?31371) ?31372) (divide ?31373 ?31372))) ?31369)) =>= inverse (divide (divide ?31368 (divide ?31371 ?31370)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Super 5809 with 2 at 2,1,3
7152 Id : 25948, {_}: inverse (multiply (divide ?31368 ?31369) (divide ?31369 (inverse (divide (divide (divide ?31370 ?31371) ?31372) (divide ?31373 ?31372))))) =>= inverse (divide (divide ?31368 (divide ?31371 ?31370)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 5810 with 25599 at 1,2
7153 Id : 25949, {_}: inverse (multiply (divide ?31368 ?31369) (divide ?31369 (inverse (divide (divide (divide ?31370 ?31371) ?31372) (divide ?31373 ?31372))))) =>= inverse (divide (multiply ?31368 (divide ?31370 ?31371)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 25948 with 25599 at 1,1,3
7154 Id : 25950, {_}: inverse (multiply (divide ?31368 ?31369) (divide ?31369 (inverse (multiply (divide (divide ?31370 ?31371) ?31372) (divide ?31372 ?31373))))) =>= inverse (divide (multiply ?31368 (divide ?31370 ?31371)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 25949 with 25599 at 1,2,2,1,2
7155 Id : 26071, {_}: inverse (multiply (divide ?31368 ?31369) (multiply ?31369 (multiply (divide (divide ?31370 ?31371) ?31372) (divide ?31372 ?31373)))) =>= inverse (divide (multiply ?31368 (divide ?31370 ?31371)) ?31373) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 25950 with 3 at 2,1,2
7156 Id : 26655, {_}: inverse (multiply (divide ?31368 ?31369) (multiply ?31369 (multiply (divide (divide ?31370 ?31371) ?31372) (divide ?31372 ?31373)))) =>= divide ?31373 (multiply ?31368 (divide ?31370 ?31371)) [31373, 31372, 31371, 31370, 31369, 31368] by Demod 26071 with 26405 at 3
7157 Id : 5834, {_}: inverse (divide (divide (inverse (divide (divide (divide ?31556 ?31557) ?31558) (divide ?31559 ?31558))) ?31560) (divide ?31561 ?31560)) =>= inverse (divide ?31559 (divide ?31561 (divide ?31557 ?31556))) [31561, 31560, 31559, 31558, 31557, 31556] by Super 5809 with 2 at 1,1,3
7158 Id : 25943, {_}: inverse (multiply (divide (inverse (divide (divide (divide ?31556 ?31557) ?31558) (divide ?31559 ?31558))) ?31560) (divide ?31560 ?31561)) =>= inverse (divide ?31559 (divide ?31561 (divide ?31557 ?31556))) [31561, 31560, 31559, 31558, 31557, 31556] by Demod 5834 with 25599 at 1,2
7159 Id : 25944, {_}: inverse (multiply (divide (inverse (divide (divide (divide ?31556 ?31557) ?31558) (divide ?31559 ?31558))) ?31560) (divide ?31560 ?31561)) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31561, 31560, 31559, 31558, 31557, 31556] by Demod 25943 with 25599 at 1,3
7160 Id : 25945, {_}: inverse (multiply (divide (inverse (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) ?31560) (divide ?31560 ?31561)) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31561, 31560, 31559, 31558, 31557, 31556] by Demod 25944 with 25599 at 1,1,1,1,2
7161 Id : 26832, {_}: inverse (multiply (inverse (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559)))) (divide ?31560 ?31561)) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31561, 31559, 31558, 31557, 31556, 31560] by Demod 25945 with 26764 at 1,1,2
7162 Id : 26966, {_}: multiply (inverse ?135418) ?135419 =<= inverse (multiply (inverse ?135419) ?135418) [135419, 135418] by Super 3 with 26764 at 3
7163 Id : 27298, {_}: multiply (inverse (divide ?31560 ?31561)) (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31559, 31558, 31557, 31556, 31561, 31560] by Demod 26832 with 26966 at 2
7164 Id : 27299, {_}: multiply (divide ?31561 ?31560) (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) =>= inverse (multiply ?31559 (divide (divide ?31557 ?31556) ?31561)) [31559, 31558, 31557, 31556, 31560, 31561] by Demod 27298 with 26405 at 1,2
7165 Id : 27300, {_}: inverse (inverse (multiply ?31373 (divide (divide ?31371 ?31370) ?31368))) =>= divide ?31373 (multiply ?31368 (divide ?31370 ?31371)) [31368, 31370, 31371, 31373] by Demod 26655 with 27299 at 1,2
7166 Id : 27254, {_}: inverse (inverse (multiply ?134958 ?134959)) =>= multiply ?134958 ?134959 [134959, 134958] by Demod 26900 with 3 at 3
7167 Id : 27506, {_}: multiply ?31373 (divide (divide ?31371 ?31370) ?31368) =<= divide ?31373 (multiply ?31368 (divide ?31370 ?31371)) [31368, 31370, 31371, 31373] by Demod 27300 with 27254 at 2
7168 Id : 31741, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (divide (divide ?136 (divide (divide ?133 ?132) (divide ?134 ?135))) (divide ?132 ?133)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 135, 134, 132, 133, 136, 137, 138] by Demod 31740 with 27506 at 2,1,2
7169 Id : 31742, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (multiply (divide ?136 (divide (divide ?133 ?132) (divide ?134 ?135))) (divide ?133 ?132)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 135, 134, 132, 133, 136, 137, 138] by Demod 31741 with 25599 at 2,2,1,2
7170 Id : 31743, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (multiply (multiply ?136 (divide (divide ?134 ?135) (divide ?133 ?132))) (divide ?133 ?132)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 132, 133, 135, 134, 136, 137, 138] by Demod 31742 with 25599 at 1,2,2,1,2
7171 Id : 31744, {_}: multiply (multiply (divide ?138 ?137) (multiply ?137 (multiply (multiply ?136 (multiply (divide ?134 ?135) (divide ?132 ?133))) (divide ?133 ?132)))) (multiply (divide (divide ?135 ?134) ?139) (divide ?139 ?136)) =>= ?138 [139, 133, 132, 135, 134, 136, 137, 138] by Demod 31743 with 25599 at 2,1,2,2,1,2
7172 Id : 31835, {_}: ?147320 =<= multiply (divide ?147320 (multiply (multiply (divide ?147321 ?147322) (multiply ?147322 (multiply (multiply ?147323 (multiply (divide ?147324 ?147325) (divide ?147326 ?147327))) (divide ?147327 ?147326)))) (multiply (divide (divide ?147325 ?147324) ?147328) (divide ?147328 ?147323)))) ?147321 [147328, 147327, 147326, 147325, 147324, 147323, 147322, 147321, 147320] by Super 27821 with 31744 at 2,3
7173 Id : 32201, {_}: ?147320 =<= multiply (divide ?147320 ?147321) ?147321 [147321, 147320] by Demod 31835 with 31744 at 2,1,3
7174 Id : 835, {_}: divide (divide (inverse (divide (divide (divide ?4527 ?4528) ?4529) ?4530)) (divide ?4528 ?4527)) ?4529 =>= ?4530 [4530, 4529, 4528, 4527] by Super 17 with 20 at 1,2
7175 Id : 25994, {_}: divide (multiply (inverse (divide (divide (divide ?4527 ?4528) ?4529) ?4530)) (divide ?4527 ?4528)) ?4529 =>= ?4530 [4530, 4529, 4528, 4527] by Demod 835 with 25599 at 1,2
7176 Id : 26651, {_}: divide (multiply (divide ?4530 (divide (divide ?4527 ?4528) ?4529)) (divide ?4527 ?4528)) ?4529 =>= ?4530 [4529, 4528, 4527, 4530] by Demod 25994 with 26405 at 1,1,2
7177 Id : 26667, {_}: divide (multiply (multiply ?4530 (divide ?4529 (divide ?4527 ?4528))) (divide ?4527 ?4528)) ?4529 =>= ?4530 [4528, 4527, 4529, 4530] by Demod 26651 with 25599 at 1,1,2
7178 Id : 26668, {_}: divide (multiply (multiply ?4530 (multiply ?4529 (divide ?4528 ?4527))) (divide ?4527 ?4528)) ?4529 =>= ?4530 [4527, 4528, 4529, 4530] by Demod 26667 with 25599 at 2,1,1,2
7179 Id : 32718, {_}: divide (multiply ?151970 (divide ?151971 ?151972)) ?151973 =?= divide ?151970 (multiply ?151973 (divide ?151972 ?151971)) [151973, 151972, 151971, 151970] by Super 26668 with 32201 at 1,1,2
7180 Id : 42767, {_}: divide (multiply ?174190 (divide ?174191 ?174192)) ?174193 =>= multiply ?174190 (divide (divide ?174191 ?174192) ?174193) [174193, 174192, 174191, 174190] by Demod 32718 with 27506 at 3
7181 Id : 25986, {_}: inverse (divide (multiply (divide ?1024 ?1025) ?1026) (multiply (multiply ?1027 (divide ?1024 ?1025)) ?1026)) =>= ?1027 [1027, 1026, 1025, 1024] by Demod 232 with 25599 at 1,2,1,2
7182 Id : 26619, {_}: divide (multiply (multiply ?1027 (divide ?1024 ?1025)) ?1026) (multiply (divide ?1024 ?1025) ?1026) =>= ?1027 [1026, 1025, 1024, 1027] by Demod 25986 with 26405 at 2
7183 Id : 42770, {_}: divide (multiply ?174208 ?174209) ?174210 =<= multiply ?174208 (divide (divide (multiply (multiply ?174209 (divide ?174211 ?174212)) ?174213) (multiply (divide ?174211 ?174212) ?174213)) ?174210) [174213, 174212, 174211, 174210, 174209, 174208] by Super 42767 with 26619 at 2,1,2
7184 Id : 43287, {_}: divide (multiply ?174208 ?174209) ?174210 =>= multiply ?174208 (divide ?174209 ?174210) [174210, 174209, 174208] by Demod 42770 with 26619 at 1,2,3
7185 Id : 45294, {_}: multiply ?177592 ?177593 =<= multiply (multiply ?177592 (divide ?177593 ?177594)) ?177594 [177594, 177593, 177592] by Super 32201 with 43287 at 1,3
7186 Id : 25967, {_}: multiply (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?80 ?81) =?= inverse (divide (divide (multiply (divide ?84 ?85) (divide (divide (divide ?85 ?84) ?86) (divide ?82 ?86))) ?87) (divide ?83 ?87)) [87, 86, 85, 84, 83, 82, 81, 80] by Demod 20 with 25599 at 2
7187 Id : 25968, {_}: multiply (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?80 ?81) =?= inverse (multiply (divide (multiply (divide ?84 ?85) (divide (divide (divide ?85 ?84) ?86) (divide ?82 ?86))) ?87) (divide ?87 ?83)) [87, 86, 85, 84, 83, 82, 81, 80] by Demod 25967 with 25599 at 1,3
7188 Id : 25969, {_}: multiply (inverse (divide (divide (divide ?80 ?81) ?82) ?83)) (divide ?80 ?81) =?= inverse (multiply (divide (multiply (divide ?84 ?85) (multiply (divide (divide ?85 ?84) ?86) (divide ?86 ?82))) ?87) (divide ?87 ?83)) [87, 86, 85, 84, 83, 82, 81, 80] by Demod 25968 with 25599 at 2,1,1,1,3
7189 Id : 26616, {_}: multiply (divide ?83 (divide (divide ?80 ?81) ?82)) (divide ?80 ?81) =?= inverse (multiply (divide (multiply (divide ?84 ?85) (multiply (divide (divide ?85 ?84) ?86) (divide ?86 ?82))) ?87) (divide ?87 ?83)) [87, 86, 85, 84, 82, 81, 80, 83] by Demod 25969 with 26405 at 1,2
7190 Id : 26679, {_}: multiply (multiply ?83 (divide ?82 (divide ?80 ?81))) (divide ?80 ?81) =?= inverse (multiply (divide (multiply (divide ?84 ?85) (multiply (divide (divide ?85 ?84) ?86) (divide ?86 ?82))) ?87) (divide ?87 ?83)) [87, 86, 85, 84, 81, 80, 82, 83] by Demod 26616 with 25599 at 1,2
7191 Id : 26680, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =?= inverse (multiply (divide (multiply (divide ?84 ?85) (multiply (divide (divide ?85 ?84) ?86) (divide ?86 ?82))) ?87) (divide ?87 ?83)) [87, 86, 85, 84, 80, 81, 82, 83] by Demod 26679 with 25599 at 2,1,2
7192 Id : 28666, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =?= divide (divide ?83 ?87) (divide (multiply (divide ?84 ?85) (multiply (divide (divide ?85 ?84) ?86) (divide ?86 ?82))) ?87) [86, 85, 84, 87, 80, 81, 82, 83] by Demod 26680 with 26724 at 3
7193 Id : 28715, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =?= multiply (divide ?83 ?87) (divide ?87 (multiply (divide ?84 ?85) (multiply (divide (divide ?85 ?84) ?86) (divide ?86 ?82)))) [86, 85, 84, 87, 80, 81, 82, 83] by Demod 28666 with 25599 at 3
7194 Id : 28664, {_}: multiply (divide ?31561 ?31560) (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) =>= divide (divide ?31561 (divide ?31557 ?31556)) ?31559 [31559, 31558, 31557, 31556, 31560, 31561] by Demod 27299 with 26724 at 3
7195 Id : 28717, {_}: multiply (divide ?31561 ?31560) (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) =>= divide (multiply ?31561 (divide ?31556 ?31557)) ?31559 [31559, 31558, 31557, 31556, 31560, 31561] by Demod 28664 with 25599 at 1,3
7196 Id : 32902, {_}: divide (multiply ?151970 (divide ?151971 ?151972)) ?151973 =>= multiply ?151970 (divide (divide ?151971 ?151972) ?151973) [151973, 151972, 151971, 151970] by Demod 32718 with 27506 at 3
7197 Id : 42552, {_}: multiply (divide ?31561 ?31560) (multiply ?31560 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559))) =>= multiply ?31561 (divide (divide ?31556 ?31557) ?31559) [31559, 31558, 31557, 31556, 31560, 31561] by Demod 28717 with 32902 at 3
7198 Id : 10, {_}: divide (inverse (divide (divide (divide ?43 ?44) (inverse ?45)) (multiply ?46 ?45))) (divide ?44 ?43) =>= ?46 [46, 45, 44, 43] by Super 2 with 3 at 2,1,1,2
7199 Id : 58, {_}: divide (inverse (divide (multiply (divide ?293 ?294) ?295) (multiply ?296 ?295))) (divide ?294 ?293) =>= ?296 [296, 295, 294, 293] by Demod 10 with 3 at 1,1,1,2
7200 Id : 66, {_}: divide (inverse (divide (multiply (multiply ?349 ?350) ?351) (multiply ?352 ?351))) (divide (inverse ?350) ?349) =>= ?352 [352, 351, 350, 349] by Super 58 with 3 at 1,1,1,1,2
7201 Id : 5845, {_}: inverse (divide (divide (inverse (divide (multiply (multiply ?31653 ?31654) ?31655) (multiply ?31656 ?31655))) ?31657) (divide ?31658 ?31657)) =>= inverse (divide ?31656 (divide ?31658 (divide (inverse ?31654) ?31653))) [31658, 31657, 31656, 31655, 31654, 31653] by Super 5809 with 66 at 1,1,3
7202 Id : 25939, {_}: inverse (multiply (divide (inverse (divide (multiply (multiply ?31653 ?31654) ?31655) (multiply ?31656 ?31655))) ?31657) (divide ?31657 ?31658)) =>= inverse (divide ?31656 (divide ?31658 (divide (inverse ?31654) ?31653))) [31658, 31657, 31656, 31655, 31654, 31653] by Demod 5845 with 25599 at 1,2
7203 Id : 25940, {_}: inverse (multiply (divide (inverse (divide (multiply (multiply ?31653 ?31654) ?31655) (multiply ?31656 ?31655))) ?31657) (divide ?31657 ?31658)) =>= inverse (multiply ?31656 (divide (divide (inverse ?31654) ?31653) ?31658)) [31658, 31657, 31656, 31655, 31654, 31653] by Demod 25939 with 25599 at 1,3
7204 Id : 26656, {_}: inverse (multiply (divide (divide (multiply ?31656 ?31655) (multiply (multiply ?31653 ?31654) ?31655)) ?31657) (divide ?31657 ?31658)) =>= inverse (multiply ?31656 (divide (divide (inverse ?31654) ?31653) ?31658)) [31658, 31657, 31654, 31653, 31655, 31656] by Demod 25940 with 26405 at 1,1,1,2
7205 Id : 26874, {_}: inverse (multiply (divide (divide (multiply ?31656 ?31655) (multiply (multiply ?31653 ?31654) ?31655)) ?31657) (divide ?31657 ?31658)) =>= inverse (multiply ?31656 (divide (inverse (multiply ?31653 ?31654)) ?31658)) [31658, 31657, 31654, 31653, 31655, 31656] by Demod 26656 with 26764 at 1,2,1,3
7206 Id : 26875, {_}: inverse (multiply (divide (divide (multiply ?31656 ?31655) (multiply (multiply ?31653 ?31654) ?31655)) ?31657) (divide ?31657 ?31658)) =>= inverse (multiply ?31656 (inverse (multiply ?31658 (multiply ?31653 ?31654)))) [31658, 31657, 31654, 31653, 31655, 31656] by Demod 26874 with 26764 at 2,1,3
7207 Id : 11, {_}: divide (inverse (divide (divide (multiply ?48 ?49) ?50) (divide ?51 ?50))) (divide (inverse ?49) ?48) =>= ?51 [51, 50, 49, 48] by Super 2 with 3 at 1,1,1,1,2
7208 Id : 5813, {_}: inverse (divide (divide ?31391 ?31392) (divide (inverse (divide (divide (multiply ?31393 ?31394) ?31395) (divide ?31396 ?31395))) ?31392)) =>= inverse (divide (divide ?31391 (divide (inverse ?31394) ?31393)) ?31396) [31396, 31395, 31394, 31393, 31392, 31391] by Super 5809 with 11 at 2,1,3
7209 Id : 26012, {_}: inverse (multiply (divide ?31391 ?31392) (divide ?31392 (inverse (divide (divide (multiply ?31393 ?31394) ?31395) (divide ?31396 ?31395))))) =>= inverse (divide (divide ?31391 (divide (inverse ?31394) ?31393)) ?31396) [31396, 31395, 31394, 31393, 31392, 31391] by Demod 5813 with 25599 at 1,2
7210 Id : 26013, {_}: inverse (multiply (divide ?31391 ?31392) (divide ?31392 (inverse (divide (divide (multiply ?31393 ?31394) ?31395) (divide ?31396 ?31395))))) =>= inverse (divide (multiply ?31391 (divide ?31393 (inverse ?31394))) ?31396) [31396, 31395, 31394, 31393, 31392, 31391] by Demod 26012 with 25599 at 1,1,3
7211 Id : 26014, {_}: inverse (multiply (divide ?31391 ?31392) (divide ?31392 (inverse (multiply (divide (multiply ?31393 ?31394) ?31395) (divide ?31395 ?31396))))) =>= inverse (divide (multiply ?31391 (divide ?31393 (inverse ?31394))) ?31396) [31396, 31395, 31394, 31393, 31392, 31391] by Demod 26013 with 25599 at 1,2,2,1,2
7212 Id : 26060, {_}: inverse (multiply (divide ?31391 ?31392) (multiply ?31392 (multiply (divide (multiply ?31393 ?31394) ?31395) (divide ?31395 ?31396)))) =>= inverse (divide (multiply ?31391 (divide ?31393 (inverse ?31394))) ?31396) [31396, 31395, 31394, 31393, 31392, 31391] by Demod 26014 with 3 at 2,1,2
7213 Id : 26061, {_}: inverse (multiply (divide ?31391 ?31392) (multiply ?31392 (multiply (divide (multiply ?31393 ?31394) ?31395) (divide ?31395 ?31396)))) =>= inverse (divide (multiply ?31391 (multiply ?31393 ?31394)) ?31396) [31396, 31395, 31394, 31393, 31392, 31391] by Demod 26060 with 3 at 2,1,1,3
7214 Id : 26649, {_}: inverse (multiply (divide ?31391 ?31392) (multiply ?31392 (multiply (divide (multiply ?31393 ?31394) ?31395) (divide ?31395 ?31396)))) =>= divide ?31396 (multiply ?31391 (multiply ?31393 ?31394)) [31396, 31395, 31394, 31393, 31392, 31391] by Demod 26061 with 26405 at 3
7215 Id : 5837, {_}: inverse (divide (divide (inverse (divide (divide (multiply ?31579 ?31580) ?31581) (divide ?31582 ?31581))) ?31583) (divide ?31584 ?31583)) =>= inverse (divide ?31582 (divide ?31584 (divide (inverse ?31580) ?31579))) [31584, 31583, 31582, 31581, 31580, 31579] by Super 5809 with 11 at 1,1,3
7216 Id : 26017, {_}: inverse (multiply (divide (inverse (divide (divide (multiply ?31579 ?31580) ?31581) (divide ?31582 ?31581))) ?31583) (divide ?31583 ?31584)) =>= inverse (divide ?31582 (divide ?31584 (divide (inverse ?31580) ?31579))) [31584, 31583, 31582, 31581, 31580, 31579] by Demod 5837 with 25599 at 1,2
7217 Id : 26018, {_}: inverse (multiply (divide (inverse (divide (divide (multiply ?31579 ?31580) ?31581) (divide ?31582 ?31581))) ?31583) (divide ?31583 ?31584)) =>= inverse (multiply ?31582 (divide (divide (inverse ?31580) ?31579) ?31584)) [31584, 31583, 31582, 31581, 31580, 31579] by Demod 26017 with 25599 at 1,3
7218 Id : 26019, {_}: inverse (multiply (divide (inverse (multiply (divide (multiply ?31579 ?31580) ?31581) (divide ?31581 ?31582))) ?31583) (divide ?31583 ?31584)) =>= inverse (multiply ?31582 (divide (divide (inverse ?31580) ?31579) ?31584)) [31584, 31583, 31582, 31581, 31580, 31579] by Demod 26018 with 25599 at 1,1,1,1,2
7219 Id : 26844, {_}: inverse (multiply (inverse (multiply ?31583 (multiply (divide (multiply ?31579 ?31580) ?31581) (divide ?31581 ?31582)))) (divide ?31583 ?31584)) =>= inverse (multiply ?31582 (divide (divide (inverse ?31580) ?31579) ?31584)) [31584, 31582, 31581, 31580, 31579, 31583] by Demod 26019 with 26764 at 1,1,2
7220 Id : 26845, {_}: inverse (multiply (inverse (multiply ?31583 (multiply (divide (multiply ?31579 ?31580) ?31581) (divide ?31581 ?31582)))) (divide ?31583 ?31584)) =>= inverse (multiply ?31582 (divide (inverse (multiply ?31579 ?31580)) ?31584)) [31584, 31582, 31581, 31580, 31579, 31583] by Demod 26844 with 26764 at 1,2,1,3
7221 Id : 26846, {_}: inverse (multiply (inverse (multiply ?31583 (multiply (divide (multiply ?31579 ?31580) ?31581) (divide ?31581 ?31582)))) (divide ?31583 ?31584)) =>= inverse (multiply ?31582 (inverse (multiply ?31584 (multiply ?31579 ?31580)))) [31584, 31582, 31581, 31580, 31579, 31583] by Demod 26845 with 26764 at 2,1,3
7222 Id : 27296, {_}: multiply (inverse (divide ?31583 ?31584)) (multiply ?31583 (multiply (divide (multiply ?31579 ?31580) ?31581) (divide ?31581 ?31582))) =>= inverse (multiply ?31582 (inverse (multiply ?31584 (multiply ?31579 ?31580)))) [31582, 31581, 31580, 31579, 31584, 31583] by Demod 26846 with 26966 at 2
7223 Id : 27301, {_}: multiply (divide ?31584 ?31583) (multiply ?31583 (multiply (divide (multiply ?31579 ?31580) ?31581) (divide ?31581 ?31582))) =>= inverse (multiply ?31582 (inverse (multiply ?31584 (multiply ?31579 ?31580)))) [31582, 31581, 31580, 31579, 31583, 31584] by Demod 27296 with 26405 at 1,2
7224 Id : 27302, {_}: inverse (inverse (multiply ?31396 (inverse (multiply ?31391 (multiply ?31393 ?31394))))) =>= divide ?31396 (multiply ?31391 (multiply ?31393 ?31394)) [31394, 31393, 31391, 31396] by Demod 26649 with 27301 at 1,2
7225 Id : 27505, {_}: multiply ?31396 (inverse (multiply ?31391 (multiply ?31393 ?31394))) =>= divide ?31396 (multiply ?31391 (multiply ?31393 ?31394)) [31394, 31393, 31391, 31396] by Demod 27302 with 27254 at 2
7226 Id : 27520, {_}: inverse (multiply (divide (divide (multiply ?31656 ?31655) (multiply (multiply ?31653 ?31654) ?31655)) ?31657) (divide ?31657 ?31658)) =>= inverse (divide ?31656 (multiply ?31658 (multiply ?31653 ?31654))) [31658, 31657, 31654, 31653, 31655, 31656] by Demod 26875 with 27505 at 1,3
7227 Id : 27523, {_}: inverse (multiply (divide (divide (multiply ?31656 ?31655) (multiply (multiply ?31653 ?31654) ?31655)) ?31657) (divide ?31657 ?31658)) =>= divide (multiply ?31658 (multiply ?31653 ?31654)) ?31656 [31658, 31657, 31654, 31653, 31655, 31656] by Demod 27520 with 26405 at 3
7228 Id : 28682, {_}: divide (divide ?31658 ?31657) (divide (divide (multiply ?31656 ?31655) (multiply (multiply ?31653 ?31654) ?31655)) ?31657) =>= divide (multiply ?31658 (multiply ?31653 ?31654)) ?31656 [31654, 31653, 31655, 31656, 31657, 31658] by Demod 27523 with 26724 at 2
7229 Id : 28683, {_}: multiply (divide ?31658 ?31657) (divide ?31657 (divide (multiply ?31656 ?31655) (multiply (multiply ?31653 ?31654) ?31655))) =>= divide (multiply ?31658 (multiply ?31653 ?31654)) ?31656 [31654, 31653, 31655, 31656, 31657, 31658] by Demod 28682 with 25599 at 2
7230 Id : 28684, {_}: multiply (divide ?31658 ?31657) (multiply ?31657 (divide (multiply (multiply ?31653 ?31654) ?31655) (multiply ?31656 ?31655))) =>= divide (multiply ?31658 (multiply ?31653 ?31654)) ?31656 [31656, 31655, 31654, 31653, 31657, 31658] by Demod 28683 with 25599 at 2,2
7231 Id : 43520, {_}: multiply (divide ?31658 ?31657) (multiply ?31657 (multiply (multiply ?31653 ?31654) (divide ?31655 (multiply ?31656 ?31655)))) =>= divide (multiply ?31658 (multiply ?31653 ?31654)) ?31656 [31656, 31655, 31654, 31653, 31657, 31658] by Demod 28684 with 43287 at 2,2,2
7232 Id : 43521, {_}: multiply (divide ?31658 ?31657) (multiply ?31657 (multiply (multiply ?31653 ?31654) (divide ?31655 (multiply ?31656 ?31655)))) =>= multiply ?31658 (divide (multiply ?31653 ?31654) ?31656) [31656, 31655, 31654, 31653, 31657, 31658] by Demod 43520 with 43287 at 3
7233 Id : 43522, {_}: multiply (divide ?31658 ?31657) (multiply ?31657 (multiply (multiply ?31653 ?31654) (divide ?31655 (multiply ?31656 ?31655)))) =>= multiply ?31658 (multiply ?31653 (divide ?31654 ?31656)) [31656, 31655, 31654, 31653, 31657, 31658] by Demod 43521 with 43287 at 2,3
7234 Id : 22472, {_}: ?116246 =<= multiply (multiply ?116246 (multiply ?116247 ?116248)) (divide (inverse ?116248) ?116247) [116248, 116247, 116246] by Super 22416 with 3 at 2,1,3
7235 Id : 26848, {_}: ?116246 =<= multiply (multiply ?116246 (multiply ?116247 ?116248)) (inverse (multiply ?116247 ?116248)) [116248, 116247, 116246] by Demod 22472 with 26764 at 2,3
7236 Id : 27823, {_}: ?116246 =<= divide (multiply ?116246 (multiply ?116247 ?116248)) (multiply ?116247 ?116248) [116248, 116247, 116246] by Demod 26848 with 27734 at 3
7237 Id : 31832, {_}: ?147291 =<= divide (multiply ?147291 (multiply (multiply (divide ?147292 ?147293) (multiply ?147293 (multiply (multiply ?147294 (multiply (divide ?147295 ?147296) (divide ?147297 ?147298))) (divide ?147298 ?147297)))) (multiply (divide (divide ?147296 ?147295) ?147299) (divide ?147299 ?147294)))) ?147292 [147299, 147298, 147297, 147296, 147295, 147294, 147293, 147292, 147291] by Super 27823 with 31744 at 2,3
7238 Id : 32203, {_}: ?147291 =<= divide (multiply ?147291 ?147292) ?147292 [147292, 147291] by Demod 31832 with 31744 at 2,1,3
7239 Id : 33094, {_}: inverse ?153200 =<= divide ?153201 (multiply ?153200 ?153201) [153201, 153200] by Super 26405 with 32203 at 1,2
7240 Id : 43571, {_}: multiply (divide ?31658 ?31657) (multiply ?31657 (multiply (multiply ?31653 ?31654) (inverse ?31656))) =>= multiply ?31658 (multiply ?31653 (divide ?31654 ?31656)) [31656, 31654, 31653, 31657, 31658] by Demod 43522 with 33094 at 2,2,2,2
7241 Id : 43572, {_}: multiply (divide ?31658 ?31657) (multiply ?31657 (divide (multiply ?31653 ?31654) ?31656)) =>= multiply ?31658 (multiply ?31653 (divide ?31654 ?31656)) [31656, 31654, 31653, 31657, 31658] by Demod 43571 with 27734 at 2,2,2
7242 Id : 43573, {_}: multiply (divide ?31658 ?31657) (multiply ?31657 (multiply ?31653 (divide ?31654 ?31656))) =>= multiply ?31658 (multiply ?31653 (divide ?31654 ?31656)) [31656, 31654, 31653, 31657, 31658] by Demod 43572 with 43287 at 2,2,2
7243 Id : 43575, {_}: multiply ?31561 (multiply (divide (divide ?31556 ?31557) ?31558) (divide ?31558 ?31559)) =>= multiply ?31561 (divide (divide ?31556 ?31557) ?31559) [31559, 31558, 31557, 31556, 31561] by Demod 42552 with 43573 at 2
7244 Id : 43578, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =?= multiply (divide ?83 ?87) (divide ?87 (multiply (divide ?84 ?85) (divide (divide ?85 ?84) ?82))) [85, 84, 87, 80, 81, 82, 83] by Demod 28715 with 43575 at 2,2,3
7245 Id : 43604, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =?= multiply (divide ?83 ?87) (multiply ?87 (divide (divide ?82 (divide ?85 ?84)) (divide ?84 ?85))) [84, 85, 87, 80, 81, 82, 83] by Demod 43578 with 27506 at 2,3
7246 Id : 243, {_}: inverse (divide (multiply (divide ?1104 ?1105) ?1106) (multiply (divide ?1107 (divide ?1105 ?1104)) ?1106)) =>= ?1107 [1107, 1106, 1105, 1104] by Demod 213 with 3 at 1,1,2
7247 Id : 748, {_}: inverse (divide (multiply (divide (inverse ?3864) ?3865) ?3866) (multiply (divide ?3867 (multiply ?3865 ?3864)) ?3866)) =>= ?3867 [3867, 3866, 3865, 3864] by Super 243 with 3 at 2,1,2,1,2
7248 Id : 753, {_}: inverse (divide (multiply (divide (inverse (divide (divide (divide ?3899 ?3900) ?3901) (divide ?3902 ?3901))) (divide ?3900 ?3899)) ?3903) (multiply ?3904 ?3903)) =?= inverse (divide (divide ?3902 ?3905) (divide ?3904 ?3905)) [3905, 3904, 3903, 3902, 3901, 3900, 3899] by Super 748 with 272 at 1,2,1,2
7249 Id : 773, {_}: inverse (divide (multiply ?3902 ?3903) (multiply ?3904 ?3903)) =?= inverse (divide (divide ?3902 ?3905) (divide ?3904 ?3905)) [3905, 3904, 3903, 3902] by Demod 753 with 2 at 1,1,1,2
7250 Id : 15665, {_}: inverse (divide (multiply (divide ?84988 (divide ?84989 ?84990)) ?84991) (multiply (divide ?84992 ?84993) ?84991)) =>= divide (divide (inverse (divide ?84993 ?84992)) (divide ?84990 ?84989)) ?84988 [84993, 84992, 84991, 84990, 84989, 84988] by Super 773 with 14284 at 3
7251 Id : 15692, {_}: inverse (divide (multiply (divide ?85261 (divide ?85262 ?85263)) ?85264) (multiply (multiply ?85265 ?85266) ?85264)) =>= divide (divide (inverse (divide (inverse ?85266) ?85265)) (divide ?85263 ?85262)) ?85261 [85266, 85265, 85264, 85263, 85262, 85261] by Super 15665 with 3 at 1,2,1,2
7252 Id : 25923, {_}: inverse (divide (multiply (multiply ?85261 (divide ?85263 ?85262)) ?85264) (multiply (multiply ?85265 ?85266) ?85264)) =>= divide (divide (inverse (divide (inverse ?85266) ?85265)) (divide ?85263 ?85262)) ?85261 [85266, 85265, 85264, 85262, 85263, 85261] by Demod 15692 with 25599 at 1,1,1,2
7253 Id : 25924, {_}: inverse (divide (multiply (multiply ?85261 (divide ?85263 ?85262)) ?85264) (multiply (multiply ?85265 ?85266) ?85264)) =>= divide (multiply (inverse (divide (inverse ?85266) ?85265)) (divide ?85262 ?85263)) ?85261 [85266, 85265, 85264, 85262, 85263, 85261] by Demod 25923 with 25599 at 1,3
7254 Id : 26606, {_}: divide (multiply (multiply ?85265 ?85266) ?85264) (multiply (multiply ?85261 (divide ?85263 ?85262)) ?85264) =>= divide (multiply (inverse (divide (inverse ?85266) ?85265)) (divide ?85262 ?85263)) ?85261 [85262, 85263, 85261, 85264, 85266, 85265] by Demod 25924 with 26405 at 2
7255 Id : 26607, {_}: divide (multiply (multiply ?85265 ?85266) ?85264) (multiply (multiply ?85261 (divide ?85263 ?85262)) ?85264) =>= divide (multiply (divide ?85265 (inverse ?85266)) (divide ?85262 ?85263)) ?85261 [85262, 85263, 85261, 85264, 85266, 85265] by Demod 26606 with 26405 at 1,1,3
7256 Id : 26682, {_}: divide (multiply (multiply ?85265 ?85266) ?85264) (multiply (multiply ?85261 (divide ?85263 ?85262)) ?85264) =>= divide (multiply (multiply ?85265 ?85266) (divide ?85262 ?85263)) ?85261 [85262, 85263, 85261, 85264, 85266, 85265] by Demod 26607 with 3 at 1,1,3
7257 Id : 42547, {_}: divide (multiply (multiply ?85265 ?85266) ?85264) (multiply (multiply ?85261 (divide ?85263 ?85262)) ?85264) =>= multiply (multiply ?85265 ?85266) (divide (divide ?85262 ?85263) ?85261) [85262, 85263, 85261, 85264, 85266, 85265] by Demod 26682 with 32902 at 3
7258 Id : 43537, {_}: multiply (multiply ?85265 ?85266) (divide ?85264 (multiply (multiply ?85261 (divide ?85263 ?85262)) ?85264)) =>= multiply (multiply ?85265 ?85266) (divide (divide ?85262 ?85263) ?85261) [85262, 85263, 85261, 85264, 85266, 85265] by Demod 42547 with 43287 at 2
7259 Id : 43538, {_}: multiply (multiply ?85265 ?85266) (inverse (multiply ?85261 (divide ?85263 ?85262))) =>= multiply (multiply ?85265 ?85266) (divide (divide ?85262 ?85263) ?85261) [85262, 85263, 85261, 85266, 85265] by Demod 43537 with 33094 at 2,2
7260 Id : 43539, {_}: divide (multiply ?85265 ?85266) (multiply ?85261 (divide ?85263 ?85262)) =>= multiply (multiply ?85265 ?85266) (divide (divide ?85262 ?85263) ?85261) [85262, 85263, 85261, 85266, 85265] by Demod 43538 with 27734 at 2
7261 Id : 43540, {_}: multiply ?85265 (divide ?85266 (multiply ?85261 (divide ?85263 ?85262))) =?= multiply (multiply ?85265 ?85266) (divide (divide ?85262 ?85263) ?85261) [85262, 85263, 85261, 85266, 85265] by Demod 43539 with 43287 at 2
7262 Id : 43541, {_}: multiply ?85265 (multiply ?85266 (divide (divide ?85262 ?85263) ?85261)) =?= multiply (multiply ?85265 ?85266) (divide (divide ?85262 ?85263) ?85261) [85261, 85263, 85262, 85266, 85265] by Demod 43540 with 27506 at 2,2
7263 Id : 43605, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =?= multiply (multiply (divide ?83 ?87) ?87) (divide (divide ?82 (divide ?85 ?84)) (divide ?84 ?85)) [84, 85, 87, 80, 81, 82, 83] by Demod 43604 with 43541 at 3
7264 Id : 43606, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =?= multiply ?83 (divide (divide ?82 (divide ?85 ?84)) (divide ?84 ?85)) [84, 85, 80, 81, 82, 83] by Demod 43605 with 32201 at 1,3
7265 Id : 43607, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =?= multiply ?83 (multiply (divide ?82 (divide ?85 ?84)) (divide ?85 ?84)) [84, 85, 80, 81, 82, 83] by Demod 43606 with 25599 at 2,3
7266 Id : 43608, {_}: multiply (multiply ?83 (multiply ?82 (divide ?81 ?80))) (divide ?80 ?81) =>= multiply ?83 ?82 [80, 81, 82, 83] by Demod 43607 with 32201 at 2,3
7267 Id : 45322, {_}: multiply (multiply ?177731 (multiply ?177732 (divide ?177733 ?177734))) ?177734 =>= multiply (multiply ?177731 ?177732) ?177733 [177734, 177733, 177732, 177731] by Super 45294 with 43608 at 1,3
7268 Id : 45299, {_}: multiply ?177614 (multiply ?177615 ?177616) =<= multiply (multiply ?177614 (multiply ?177615 (divide ?177616 ?177617))) ?177617 [177617, 177616, 177615, 177614] by Super 45294 with 43287 at 2,1,3
7269 Id : 64505, {_}: multiply ?177731 (multiply ?177732 ?177733) =?= multiply (multiply ?177731 ?177732) ?177733 [177733, 177732, 177731] by Demod 45322 with 45299 at 2
7270 Id : 64928, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 64505 at 2
7271 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
7272 % SZS output end CNFRefutation for GRP477-1.p
7273 23952: solved GRP477-1.p in 16.221013 using nrkbo
7274 23952: status Unsatisfiable for GRP477-1.p
7275 NO CLASH, using fixed ground order
7280 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7284 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7286 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7287 [8, 7] by multiply ?7 ?8
7290 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
7291 [] by prove_these_axioms_1
7295 23966: a1 2 0 2 1,1,2
7296 23966: b1 2 0 2 1,1,3
7297 23966: inverse 4 1 2 0,1,2
7298 23966: multiply 3 2 2 0,2
7300 NO CLASH, using fixed ground order
7305 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7309 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7311 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7312 [8, 7] by multiply ?7 ?8
7315 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
7316 [] by prove_these_axioms_1
7320 23967: a1 2 0 2 1,1,2
7321 23967: b1 2 0 2 1,1,3
7322 23967: inverse 4 1 2 0,1,2
7323 23967: multiply 3 2 2 0,2
7325 NO CLASH, using fixed ground order
7330 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7334 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7336 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7337 [8, 7] by multiply ?7 ?8
7340 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
7341 [] by prove_these_axioms_1
7345 23968: a1 2 0 2 1,1,2
7346 23968: b1 2 0 2 1,1,3
7347 23968: inverse 4 1 2 0,1,2
7348 23968: multiply 3 2 2 0,2
7350 % SZS status Timeout for GRP478-1.p
7351 NO CLASH, using fixed ground order
7356 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7360 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7362 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7363 [8, 7] by multiply ?7 ?8
7366 multiply (multiply (inverse b2) b2) a2 =>= a2
7367 [] by prove_these_axioms_2
7371 23995: b2 2 0 2 1,1,1,2
7373 23995: inverse 3 1 1 0,1,1,2
7374 23995: multiply 3 2 2 0,2
7376 NO CLASH, using fixed ground order
7381 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7385 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7387 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7388 [8, 7] by multiply ?7 ?8
7391 multiply (multiply (inverse b2) b2) a2 =>= a2
7392 [] by prove_these_axioms_2
7396 23996: b2 2 0 2 1,1,1,2
7398 23996: inverse 3 1 1 0,1,1,2
7399 23996: multiply 3 2 2 0,2
7401 NO CLASH, using fixed ground order
7406 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7410 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7412 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7413 [8, 7] by multiply ?7 ?8
7416 multiply (multiply (inverse b2) b2) a2 =>= a2
7417 [] by prove_these_axioms_2
7421 23997: b2 2 0 2 1,1,1,2
7423 23997: inverse 3 1 1 0,1,1,2
7424 23997: multiply 3 2 2 0,2
7428 Found proof, 37.151334s
7429 % SZS status Unsatisfiable for GRP479-1.p
7430 % SZS output start CNFRefutation for GRP479-1.p
7431 Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7432 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?10) ?11) (divide ?12 (divide ?11 ?13)))) ?13 =>= ?12 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13
7433 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8
7434 Id : 5, {_}: divide (inverse (divide (divide (divide ?15 ?15) (inverse (divide (divide (divide ?16 ?16) ?17) (divide ?18 (divide ?17 ?19))))) (divide ?20 ?18))) ?19 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2,1,1,2
7435 Id : 22, {_}: divide (inverse (divide (multiply (divide ?87 ?87) (divide (divide (divide ?88 ?88) ?89) (divide ?90 (divide ?89 ?91)))) (divide ?92 ?90))) ?91 =>= ?92 [92, 91, 90, 89, 88, 87] by Demod 5 with 3 at 1,1,1,2
7436 Id : 18, {_}: divide (inverse (divide (multiply (divide ?15 ?15) (divide (divide (divide ?16 ?16) ?17) (divide ?18 (divide ?17 ?19)))) (divide ?20 ?18))) ?19 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,2
7437 Id : 30, {_}: divide (inverse (divide (multiply (divide ?157 ?157) (divide (divide (divide ?158 ?158) ?159) ?160)) (divide ?161 (inverse (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165)))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158, 157] by Super 22 with 18 at 2,2,1,1,1,2
7438 Id : 42, {_}: divide (inverse (divide (multiply (divide ?157 ?157) (divide (divide (divide ?158 ?158) ?159) ?160)) (multiply ?161 (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158, 157] by Demod 30 with 3 at 2,1,1,2
7439 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?22) ?23) ?24)) ?25 =?= inverse (divide (divide (divide ?26 ?26) ?27) (divide ?24 (divide ?27 (divide ?23 ?25)))) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2
7440 Id : 202, {_}: divide (divide (inverse (divide (divide (divide ?974 ?974) ?975) ?976)) ?977) (divide ?975 ?977) =>= ?976 [977, 976, 975, 974] by Super 2 with 6 at 1,2
7441 Id : 208, {_}: divide (divide (inverse (divide (divide (divide ?1018 ?1018) ?1019) ?1020)) (inverse ?1021)) (multiply ?1019 ?1021) =>= ?1020 [1021, 1020, 1019, 1018] by Super 202 with 3 at 2,2
7442 Id : 372, {_}: divide (multiply (inverse (divide (divide (divide ?1664 ?1664) ?1665) ?1666)) ?1667) (multiply ?1665 ?1667) =>= ?1666 [1667, 1666, 1665, 1664] by Demod 208 with 3 at 1,2
7443 Id : 378, {_}: divide (multiply (inverse (divide (multiply (divide ?1702 ?1702) ?1703) ?1704)) ?1705) (multiply (inverse ?1703) ?1705) =>= ?1704 [1705, 1704, 1703, 1702] by Super 372 with 3 at 1,1,1,1,2
7444 Id : 8, {_}: divide (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) (inverse ?34) =>= ?33 [34, 33, 32, 31] by Super 2 with 3 at 2,2,1,1,2
7445 Id : 15, {_}: multiply (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) ?34 =>= ?33 [34, 33, 32, 31] by Demod 8 with 3 at 2
7446 Id : 86, {_}: divide (divide (inverse (divide (divide (divide ?404 ?404) ?405) ?406)) ?407) (divide ?405 ?407) =>= ?406 [407, 406, 405, 404] by Super 2 with 6 at 1,2
7447 Id : 193, {_}: multiply (inverse (divide ?902 (divide ?903 (multiply (divide ?904 (inverse (divide (divide (divide ?905 ?905) ?904) ?902))) ?906)))) ?906 =>= ?903 [906, 905, 904, 903, 902] by Super 15 with 86 at 1,1,1,2
7448 Id : 223, {_}: multiply (inverse (divide ?902 (divide ?903 (multiply (multiply ?904 (divide (divide (divide ?905 ?905) ?904) ?902)) ?906)))) ?906 =>= ?903 [906, 905, 904, 903, 902] by Demod 193 with 3 at 1,2,2,1,1,2
7449 Id : 88082, {_}: divide ?485240 (multiply (inverse ?485241) ?485242) =<= divide ?485240 (multiply (multiply ?485243 (divide (divide (divide ?485244 ?485244) ?485243) (multiply (divide ?485245 ?485245) ?485241))) ?485242) [485245, 485244, 485243, 485242, 485241, 485240] by Super 378 with 223 at 1,2
7450 Id : 89234, {_}: divide (inverse (divide (multiply (divide ?494319 ?494319) (divide (divide (divide ?494320 ?494320) ?494321) ?494322)) (multiply (inverse ?494323) (divide (multiply (divide ?494324 ?494324) (divide (divide (divide ?494325 ?494325) ?494326) (divide ?494327 (divide ?494326 (divide ?494321 ?494328))))) (divide ?494322 ?494327))))) ?494328 =?= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (multiply (divide ?494331 ?494331) ?494323)) [494331, 494330, 494329, 494328, 494327, 494326, 494325, 494324, 494323, 494322, 494321, 494320, 494319] by Super 42 with 88082 at 1,1,2
7451 Id : 89554, {_}: inverse ?494323 =<= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (multiply (divide ?494331 ?494331) ?494323)) [494331, 494330, 494329, 494323] by Demod 89234 with 42 at 2
7452 Id : 23, {_}: divide (inverse (divide (multiply (divide ?94 ?94) (divide (divide (divide ?95 ?95) ?96) (divide ?97 (divide ?96 ?98)))) ?99)) ?98 =?= inverse (divide (divide (divide ?100 ?100) ?101) (divide ?99 (divide ?101 ?97))) [101, 100, 99, 98, 97, 96, 95, 94] by Super 22 with 2 at 2,1,1,2
7453 Id : 1304, {_}: inverse (divide (divide (divide ?6515 ?6515) ?6516) (divide (divide ?6517 ?6518) (divide ?6516 ?6518))) =>= ?6517 [6518, 6517, 6516, 6515] by Super 18 with 23 at 2
7454 Id : 2998, {_}: inverse (divide (divide (multiply (inverse ?16319) ?16319) ?16320) (divide (divide ?16321 ?16322) (divide ?16320 ?16322))) =>= ?16321 [16322, 16321, 16320, 16319] by Super 1304 with 3 at 1,1,1,2
7455 Id : 3072, {_}: inverse (divide (multiply (multiply (inverse ?16865) ?16865) ?16866) (divide (divide ?16867 ?16868) (divide (inverse ?16866) ?16868))) =>= ?16867 [16868, 16867, 16866, 16865] by Super 2998 with 3 at 1,1,2
7456 Id : 1319, {_}: inverse (divide (divide (divide ?6630 ?6630) ?6631) (divide (divide ?6632 (inverse ?6633)) (multiply ?6631 ?6633))) =>= ?6632 [6633, 6632, 6631, 6630] by Super 1304 with 3 at 2,2,1,2
7457 Id : 1369, {_}: inverse (divide (divide (divide ?6630 ?6630) ?6631) (divide (multiply ?6632 ?6633) (multiply ?6631 ?6633))) =>= ?6632 [6633, 6632, 6631, 6630] by Demod 1319 with 3 at 1,2,1,2
7458 Id : 1389, {_}: multiply ?6881 (divide (divide (divide ?6882 ?6882) ?6883) (divide (multiply ?6884 ?6885) (multiply ?6883 ?6885))) =>= divide ?6881 ?6884 [6885, 6884, 6883, 6882, 6881] by Super 3 with 1369 at 2,3
7459 Id : 90512, {_}: multiply (inverse (divide ?497368 (divide ?497369 (inverse ?497370)))) (divide (divide (divide ?497371 ?497371) (multiply ?497372 (divide (divide (divide ?497373 ?497373) ?497372) ?497368))) (multiply (divide ?497374 ?497374) ?497370)) =>= ?497369 [497374, 497373, 497372, 497371, 497370, 497369, 497368] by Super 223 with 89554 at 2,2,1,1,2
7460 Id : 196, {_}: divide (inverse (divide (divide (divide ?925 ?925) ?926) (divide (inverse (divide (divide (divide ?927 ?927) ?928) ?929)) (divide ?926 ?930)))) ?930 =?= inverse (divide (divide (divide ?931 ?931) ?928) ?929) [931, 930, 929, 928, 927, 926, 925] by Super 6 with 86 at 2,1,3
7461 Id : 6409, {_}: inverse (divide (divide (divide ?34204 ?34204) ?34205) ?34206) =?= inverse (divide (divide (divide ?34207 ?34207) ?34205) ?34206) [34207, 34206, 34205, 34204] by Demod 196 with 2 at 2
7462 Id : 6420, {_}: inverse (divide (divide (divide ?34278 ?34278) (divide ?34279 (inverse (divide (divide (divide ?34280 ?34280) ?34279) ?34281)))) ?34282) =>= inverse (divide ?34281 ?34282) [34282, 34281, 34280, 34279, 34278] by Super 6409 with 86 at 1,1,3
7463 Id : 6497, {_}: inverse (divide (divide (divide ?34278 ?34278) (multiply ?34279 (divide (divide (divide ?34280 ?34280) ?34279) ?34281))) ?34282) =>= inverse (divide ?34281 ?34282) [34282, 34281, 34280, 34279, 34278] by Demod 6420 with 3 at 2,1,1,2
7464 Id : 28325, {_}: multiply ?153090 (divide (divide (divide ?153091 ?153091) (multiply ?153092 (divide (divide (divide ?153093 ?153093) ?153092) ?153094))) ?153095) =>= divide ?153090 (inverse (divide ?153094 ?153095)) [153095, 153094, 153093, 153092, 153091, 153090] by Super 3 with 6497 at 2,3
7465 Id : 28522, {_}: multiply ?153090 (divide (divide (divide ?153091 ?153091) (multiply ?153092 (divide (divide (divide ?153093 ?153093) ?153092) ?153094))) ?153095) =>= multiply ?153090 (divide ?153094 ?153095) [153095, 153094, 153093, 153092, 153091, 153090] by Demod 28325 with 3 at 3
7466 Id : 91190, {_}: multiply (inverse (divide ?497368 (divide ?497369 (inverse ?497370)))) (divide ?497368 (multiply (divide ?497374 ?497374) ?497370)) =>= ?497369 [497374, 497370, 497369, 497368] by Demod 90512 with 28522 at 2
7467 Id : 91665, {_}: multiply (inverse (divide ?503116 (multiply ?503117 ?503118))) (divide ?503116 (multiply (divide ?503119 ?503119) ?503118)) =>= ?503117 [503119, 503118, 503117, 503116] by Demod 91190 with 3 at 2,1,1,2
7468 Id : 231, {_}: divide (multiply (inverse (divide (divide (divide ?1018 ?1018) ?1019) ?1020)) ?1021) (multiply ?1019 ?1021) =>= ?1020 [1021, 1020, 1019, 1018] by Demod 208 with 3 at 1,2
7469 Id : 1057, {_}: inverse (divide (divide (divide ?5280 ?5280) ?5281) (divide (divide ?5282 ?5283) (divide ?5281 ?5283))) =>= ?5282 [5283, 5282, 5281, 5280] by Super 18 with 23 at 2
7470 Id : 1292, {_}: divide (divide ?6440 ?6441) (divide ?6442 ?6441) =?= divide (divide ?6440 ?6443) (divide ?6442 ?6443) [6443, 6442, 6441, 6440] by Super 86 with 1057 at 1,1,2
7471 Id : 2334, {_}: divide (multiply (inverse (divide (divide (divide ?12626 ?12626) ?12627) (divide ?12628 ?12627))) ?12629) (multiply ?12630 ?12629) =>= divide ?12628 ?12630 [12630, 12629, 12628, 12627, 12626] by Super 231 with 1292 at 1,1,1,2
7472 Id : 91784, {_}: multiply (inverse (divide (multiply (inverse (divide (divide (divide ?504066 ?504066) ?504067) (divide ?504068 ?504067))) ?504069) (multiply ?504070 ?504069))) (divide ?504068 (divide ?504071 ?504071)) =>= ?504070 [504071, 504070, 504069, 504068, 504067, 504066] by Super 91665 with 2334 at 2,2
7473 Id : 92186, {_}: multiply (inverse (divide ?504068 ?504070)) (divide ?504068 (divide ?504071 ?504071)) =>= ?504070 [504071, 504070, 504068] by Demod 91784 with 2334 at 1,1,2
7474 Id : 92346, {_}: ?505751 =<= divide (inverse (divide (divide (divide ?505752 ?505752) ?505753) ?505751)) ?505753 [505753, 505752, 505751] by Super 1389 with 92186 at 2
7475 Id : 93111, {_}: divide ?509269 (divide ?509270 ?509270) =>= ?509269 [509270, 509269] by Super 2 with 92346 at 2
7476 Id : 100321, {_}: inverse (multiply (multiply (inverse ?535124) ?535124) ?535125) =>= inverse ?535125 [535125, 535124] by Super 3072 with 93111 at 1,2
7477 Id : 100420, {_}: inverse (inverse ?535740) =<= inverse (divide (divide (divide ?535741 ?535741) (multiply (inverse ?535742) ?535742)) (multiply (divide ?535743 ?535743) ?535740)) [535743, 535742, 535741, 535740] by Super 100321 with 89554 at 1,2
7478 Id : 94282, {_}: divide ?515515 (divide ?515516 ?515516) =>= ?515515 [515516, 515515] by Super 2 with 92346 at 2
7479 Id : 94361, {_}: divide ?515973 (multiply (inverse ?515974) ?515974) =>= ?515973 [515974, 515973] by Super 94282 with 3 at 2,2
7480 Id : 100488, {_}: inverse (inverse ?535740) =<= inverse (divide (divide ?535741 ?535741) (multiply (divide ?535743 ?535743) ?535740)) [535743, 535741, 535740] by Demod 100420 with 94361 at 1,1,3
7481 Id : 93886, {_}: inverse (divide (divide ?513000 ?513000) ?513001) =>= ?513001 [513001, 513000] by Super 1369 with 93111 at 1,2
7482 Id : 100489, {_}: inverse (inverse ?535740) =<= multiply (divide ?535743 ?535743) ?535740 [535743, 535740] by Demod 100488 with 93886 at 3
7483 Id : 100491, {_}: inverse ?494323 =<= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (inverse (inverse ?494323))) [494330, 494329, 494323] by Demod 89554 with 100489 at 2,2,3
7484 Id : 100612, {_}: inverse ?494323 =<= multiply ?494329 (multiply (divide (divide ?494330 ?494330) ?494329) (inverse ?494323)) [494330, 494329, 494323] by Demod 100491 with 3 at 2,3
7485 Id : 1348, {_}: inverse (divide (multiply (divide ?6830 ?6830) ?6831) (divide (divide ?6832 ?6833) (divide (inverse ?6831) ?6833))) =>= ?6832 [6833, 6832, 6831, 6830] by Super 1304 with 3 at 1,1,2
7486 Id : 3107, {_}: multiply ?16917 (divide (multiply (divide ?16918 ?16918) ?16919) (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16918, 16917] by Super 3 with 1348 at 2,3
7487 Id : 100541, {_}: multiply ?16917 (divide (inverse (inverse ?16919)) (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16917] by Demod 3107 with 100489 at 1,2,2
7488 Id : 100747, {_}: inverse (inverse (divide (inverse (inverse ?536517)) (divide (divide ?536518 ?536519) (divide (inverse ?536517) ?536519)))) =?= divide (divide ?536520 ?536520) ?536518 [536520, 536519, 536518, 536517] by Super 100541 with 100489 at 2
7489 Id : 100526, {_}: inverse (divide (inverse (inverse ?6831)) (divide (divide ?6832 ?6833) (divide (inverse ?6831) ?6833))) =>= ?6832 [6833, 6832, 6831] by Demod 1348 with 100489 at 1,1,2
7490 Id : 100849, {_}: inverse ?536518 =<= divide (divide ?536520 ?536520) ?536518 [536520, 536518] by Demod 100747 with 100526 at 1,2
7491 Id : 101341, {_}: inverse ?494323 =<= multiply ?494329 (multiply (inverse ?494329) (inverse ?494323)) [494329, 494323] by Demod 100612 with 100849 at 1,2,3
7492 Id : 101328, {_}: inverse (inverse ?513001) =>= ?513001 [513001] by Demod 93886 with 100849 at 1,2
7493 Id : 101357, {_}: multiply ?16917 (divide ?16919 (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16917] by Demod 100541 with 101328 at 1,2,2
7494 Id : 210, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?1032) ?1032) ?1033) ?1034)) ?1035) (divide ?1033 ?1035) =>= ?1034 [1035, 1034, 1033, 1032] by Super 202 with 3 at 1,1,1,1,1,2
7495 Id : 2224, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?11772) ?11772) ?11773) (divide ?11774 ?11773))) ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774, 11773, 11772] by Super 210 with 1292 at 1,1,1,2
7496 Id : 778, {_}: divide (inverse (divide (divide (divide ?3892 ?3892) ?3893) (divide (inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896)) (divide ?3893 ?3897)))) ?3897 =?= inverse (divide (divide (divide ?3898 ?3898) ?3895) ?3896) [3898, 3897, 3896, 3895, 3894, 3893, 3892] by Super 6 with 210 at 2,1,3
7497 Id : 811, {_}: inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896) =?= inverse (divide (divide (divide ?3898 ?3898) ?3895) ?3896) [3898, 3896, 3895, 3894] by Demod 778 with 2 at 2
7498 Id : 101312, {_}: inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896) =>= inverse (divide (inverse ?3895) ?3896) [3896, 3895, 3894] by Demod 811 with 100849 at 1,1,3
7499 Id : 101430, {_}: divide (divide (inverse (divide (inverse ?11773) (divide ?11774 ?11773))) ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774, 11773] by Demod 2224 with 101312 at 1,1,2
7500 Id : 375, {_}: divide (multiply (inverse (divide (divide (multiply (inverse ?1685) ?1685) ?1686) ?1687)) ?1688) (multiply ?1686 ?1688) =>= ?1687 [1688, 1687, 1686, 1685] by Super 372 with 3 at 1,1,1,1,1,2
7501 Id : 2362, {_}: divide (multiply (inverse (divide (divide (multiply (inverse ?12860) ?12860) ?12861) (divide ?12862 ?12861))) ?12863) (multiply ?12864 ?12863) =>= divide ?12862 ?12864 [12864, 12863, 12862, 12861, 12860] by Super 375 with 1292 at 1,1,1,2
7502 Id : 101423, {_}: divide (multiply (inverse (divide (inverse ?12861) (divide ?12862 ?12861))) ?12863) (multiply ?12864 ?12863) =>= divide ?12862 ?12864 [12864, 12863, 12862, 12861] by Demod 2362 with 101312 at 1,1,2
7503 Id : 1298, {_}: divide (multiply ?6472 ?6473) (multiply ?6474 ?6473) =?= divide (divide ?6472 ?6475) (divide ?6474 ?6475) [6475, 6474, 6473, 6472] by Super 231 with 1057 at 1,1,2
7504 Id : 2653, {_}: divide (multiply (inverse (divide (multiply (divide ?14473 ?14473) ?14474) (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474, 14473] by Super 231 with 1298 at 1,1,1,2
7505 Id : 100505, {_}: divide (multiply (inverse (divide (inverse (inverse ?14474)) (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474] by Demod 2653 with 100489 at 1,1,1,1,2
7506 Id : 101382, {_}: divide (multiply (inverse (divide ?14474 (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474] by Demod 100505 with 101328 at 1,1,1,1,2
7507 Id : 101429, {_}: divide (multiply (inverse (divide (inverse ?1686) ?1687)) ?1688) (multiply ?1686 ?1688) =>= ?1687 [1688, 1687, 1686] by Demod 375 with 101312 at 1,1,2
7508 Id : 101386, {_}: ?535740 =<= multiply (divide ?535743 ?535743) ?535740 [535743, 535740] by Demod 100489 with 101328 at 2
7509 Id : 101594, {_}: ?537458 =<= multiply (inverse (divide ?537459 ?537459)) ?537458 [537459, 537458] by Super 101386 with 100849 at 1,3
7510 Id : 101980, {_}: divide ?538112 (multiply ?538113 ?538112) =>= inverse ?538113 [538113, 538112] by Super 101429 with 101594 at 1,2
7511 Id : 102412, {_}: divide (multiply (inverse (inverse ?14475)) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475] by Demod 101382 with 101980 at 1,1,1,2
7512 Id : 102413, {_}: divide (multiply ?14475 ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475] by Demod 102412 with 101328 at 1,1,2
7513 Id : 102434, {_}: divide (inverse (divide (inverse ?12861) (divide ?12862 ?12861))) ?12864 =>= divide ?12862 ?12864 [12864, 12862, 12861] by Demod 101423 with 102413 at 2
7514 Id : 102436, {_}: divide (divide ?11774 ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774] by Demod 101430 with 102434 at 1,2
7515 Id : 102441, {_}: multiply ?16917 (divide ?16919 (divide ?16920 (inverse ?16919))) =>= divide ?16917 ?16920 [16920, 16919, 16917] by Demod 101357 with 102436 at 2,2,2
7516 Id : 102470, {_}: multiply ?16917 (divide ?16919 (multiply ?16920 ?16919)) =>= divide ?16917 ?16920 [16920, 16919, 16917] by Demod 102441 with 3 at 2,2,2
7517 Id : 102471, {_}: multiply ?16917 (inverse ?16920) =>= divide ?16917 ?16920 [16920, 16917] by Demod 102470 with 101980 at 2,2
7518 Id : 102472, {_}: inverse ?494323 =<= multiply ?494329 (divide (inverse ?494329) ?494323) [494329, 494323] by Demod 101341 with 102471 at 2,3
7519 Id : 102516, {_}: inverse (multiply ?538987 (inverse ?538988)) =>= multiply ?538988 (inverse ?538987) [538988, 538987] by Super 102472 with 101980 at 2,3
7520 Id : 102787, {_}: inverse (divide ?538987 ?538988) =<= multiply ?538988 (inverse ?538987) [538988, 538987] by Demod 102516 with 102471 at 1,2
7521 Id : 102959, {_}: inverse (divide ?539857 ?539858) =>= divide ?539858 ?539857 [539858, 539857] by Demod 102787 with 102471 at 3
7522 Id : 102980, {_}: inverse (multiply ?539955 ?539956) =<= divide (inverse ?539956) ?539955 [539956, 539955] by Super 102959 with 3 at 1,2
7523 Id : 103330, {_}: multiply (inverse ?540510) ?540511 =<= inverse (multiply (inverse ?540511) ?540510) [540511, 540510] by Super 3 with 102980 at 3
7524 Id : 93587, {_}: multiply (inverse (divide ?504068 ?504070)) ?504068 =>= ?504070 [504070, 504068] by Demod 92186 with 93111 at 2,2
7525 Id : 96346, {_}: multiply ?522565 (divide ?522566 ?522566) =>= ?522565 [522566, 522565] by Super 93587 with 93886 at 1,2
7526 Id : 96425, {_}: multiply ?523023 (multiply (inverse ?523024) ?523024) =>= ?523023 [523024, 523023] by Super 96346 with 3 at 2,2
7527 Id : 103339, {_}: multiply (inverse (multiply (inverse ?540545) ?540545)) ?540546 =>= inverse (inverse ?540546) [540546, 540545] by Super 103330 with 96425 at 1,3
7528 Id : 103110, {_}: multiply (inverse ?540161) ?540162 =<= inverse (multiply (inverse ?540162) ?540161) [540162, 540161] by Super 3 with 102980 at 3
7529 Id : 103424, {_}: multiply (multiply (inverse ?540545) ?540545) ?540546 =>= inverse (inverse ?540546) [540546, 540545] by Demod 103339 with 103110 at 1,2
7530 Id : 103425, {_}: multiply (multiply (inverse ?540545) ?540545) ?540546 =>= ?540546 [540546, 540545] by Demod 103424 with 101328 at 3
7531 Id : 104863, {_}: a2 === a2 [] by Demod 1 with 103425 at 2
7532 Id : 1, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2
7533 % SZS output end CNFRefutation for GRP479-1.p
7534 23995: solved GRP479-1.p in 37.162321 using nrkbo
7535 23995: status Unsatisfiable for GRP479-1.p
7536 NO CLASH, using fixed ground order
7541 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7545 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7547 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7548 [8, 7] by multiply ?7 ?8
7551 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
7552 [] by prove_these_axioms_3
7556 24007: a3 2 0 2 1,1,2
7557 24007: b3 2 0 2 2,1,2
7559 24007: inverse 2 1 0
7560 24007: multiply 5 2 4 0,2
7562 NO CLASH, using fixed ground order
7567 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7571 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7573 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7574 [8, 7] by multiply ?7 ?8
7577 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
7578 [] by prove_these_axioms_3
7582 24008: a3 2 0 2 1,1,2
7583 24008: b3 2 0 2 2,1,2
7585 24008: inverse 2 1 0
7586 24008: multiply 5 2 4 0,2
7588 NO CLASH, using fixed ground order
7593 (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5))))
7597 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7599 multiply ?7 ?8 =<= divide ?7 (inverse ?8)
7600 [8, 7] by multiply ?7 ?8
7603 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
7604 [] by prove_these_axioms_3
7608 24009: a3 2 0 2 1,1,2
7609 24009: b3 2 0 2 2,1,2
7611 24009: inverse 2 1 0
7612 24009: multiply 5 2 4 0,2
7616 Found proof, 40.781292s
7617 % SZS status Unsatisfiable for GRP480-1.p
7618 % SZS output start CNFRefutation for GRP480-1.p
7619 Id : 3, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8
7620 Id : 2, {_}: divide (inverse (divide (divide (divide ?2 ?2) ?3) (divide ?4 (divide ?3 ?5)))) ?5 =>= ?4 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5
7621 Id : 4, {_}: divide (inverse (divide (divide (divide ?10 ?10) ?11) (divide ?12 (divide ?11 ?13)))) ?13 =>= ?12 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13
7622 Id : 5, {_}: divide (inverse (divide (divide (divide ?15 ?15) (inverse (divide (divide (divide ?16 ?16) ?17) (divide ?18 (divide ?17 ?19))))) (divide ?20 ?18))) ?19 =>= ?20 [20, 19, 18, 17, 16, 15] by Super 4 with 2 at 2,2,1,1,2
7623 Id : 22, {_}: divide (inverse (divide (multiply (divide ?87 ?87) (divide (divide (divide ?88 ?88) ?89) (divide ?90 (divide ?89 ?91)))) (divide ?92 ?90))) ?91 =>= ?92 [92, 91, 90, 89, 88, 87] by Demod 5 with 3 at 1,1,1,2
7624 Id : 23, {_}: divide (inverse (divide (multiply (divide ?94 ?94) (divide (divide (divide ?95 ?95) ?96) (divide ?97 (divide ?96 ?98)))) ?99)) ?98 =?= inverse (divide (divide (divide ?100 ?100) ?101) (divide ?99 (divide ?101 ?97))) [101, 100, 99, 98, 97, 96, 95, 94] by Super 22 with 2 at 2,1,1,2
7625 Id : 18, {_}: divide (inverse (divide (multiply (divide ?15 ?15) (divide (divide (divide ?16 ?16) ?17) (divide ?18 (divide ?17 ?19)))) (divide ?20 ?18))) ?19 =>= ?20 [20, 19, 18, 17, 16, 15] by Demod 5 with 3 at 1,1,1,2
7626 Id : 1304, {_}: inverse (divide (divide (divide ?6515 ?6515) ?6516) (divide (divide ?6517 ?6518) (divide ?6516 ?6518))) =>= ?6517 [6518, 6517, 6516, 6515] by Super 18 with 23 at 2
7627 Id : 2998, {_}: inverse (divide (divide (multiply (inverse ?16319) ?16319) ?16320) (divide (divide ?16321 ?16322) (divide ?16320 ?16322))) =>= ?16321 [16322, 16321, 16320, 16319] by Super 1304 with 3 at 1,1,1,2
7628 Id : 3072, {_}: inverse (divide (multiply (multiply (inverse ?16865) ?16865) ?16866) (divide (divide ?16867 ?16868) (divide (inverse ?16866) ?16868))) =>= ?16867 [16868, 16867, 16866, 16865] by Super 2998 with 3 at 1,1,2
7629 Id : 1319, {_}: inverse (divide (divide (divide ?6630 ?6630) ?6631) (divide (divide ?6632 (inverse ?6633)) (multiply ?6631 ?6633))) =>= ?6632 [6633, 6632, 6631, 6630] by Super 1304 with 3 at 2,2,1,2
7630 Id : 1369, {_}: inverse (divide (divide (divide ?6630 ?6630) ?6631) (divide (multiply ?6632 ?6633) (multiply ?6631 ?6633))) =>= ?6632 [6633, 6632, 6631, 6630] by Demod 1319 with 3 at 1,2,1,2
7631 Id : 1389, {_}: multiply ?6881 (divide (divide (divide ?6882 ?6882) ?6883) (divide (multiply ?6884 ?6885) (multiply ?6883 ?6885))) =>= divide ?6881 ?6884 [6885, 6884, 6883, 6882, 6881] by Super 3 with 1369 at 2,3
7632 Id : 8, {_}: divide (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) (inverse ?34) =>= ?33 [34, 33, 32, 31] by Super 2 with 3 at 2,2,1,1,2
7633 Id : 15, {_}: multiply (inverse (divide (divide (divide ?31 ?31) ?32) (divide ?33 (multiply ?32 ?34)))) ?34 =>= ?33 [34, 33, 32, 31] by Demod 8 with 3 at 2
7634 Id : 6, {_}: divide (inverse (divide (divide (divide ?22 ?22) ?23) ?24)) ?25 =?= inverse (divide (divide (divide ?26 ?26) ?27) (divide ?24 (divide ?27 (divide ?23 ?25)))) [27, 26, 25, 24, 23, 22] by Super 4 with 2 at 2,1,1,2
7635 Id : 86, {_}: divide (divide (inverse (divide (divide (divide ?404 ?404) ?405) ?406)) ?407) (divide ?405 ?407) =>= ?406 [407, 406, 405, 404] by Super 2 with 6 at 1,2
7636 Id : 193, {_}: multiply (inverse (divide ?902 (divide ?903 (multiply (divide ?904 (inverse (divide (divide (divide ?905 ?905) ?904) ?902))) ?906)))) ?906 =>= ?903 [906, 905, 904, 903, 902] by Super 15 with 86 at 1,1,1,2
7637 Id : 223, {_}: multiply (inverse (divide ?902 (divide ?903 (multiply (multiply ?904 (divide (divide (divide ?905 ?905) ?904) ?902)) ?906)))) ?906 =>= ?903 [906, 905, 904, 903, 902] by Demod 193 with 3 at 1,2,2,1,1,2
7638 Id : 30, {_}: divide (inverse (divide (multiply (divide ?157 ?157) (divide (divide (divide ?158 ?158) ?159) ?160)) (divide ?161 (inverse (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165)))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158, 157] by Super 22 with 18 at 2,2,1,1,1,2
7639 Id : 42, {_}: divide (inverse (divide (multiply (divide ?157 ?157) (divide (divide (divide ?158 ?158) ?159) ?160)) (multiply ?161 (divide (multiply (divide ?162 ?162) (divide (divide (divide ?163 ?163) ?164) (divide ?165 (divide ?164 (divide ?159 ?166))))) (divide ?160 ?165))))) ?166 =>= ?161 [166, 165, 164, 163, 162, 161, 160, 159, 158, 157] by Demod 30 with 3 at 2,1,1,2
7640 Id : 202, {_}: divide (divide (inverse (divide (divide (divide ?974 ?974) ?975) ?976)) ?977) (divide ?975 ?977) =>= ?976 [977, 976, 975, 974] by Super 2 with 6 at 1,2
7641 Id : 208, {_}: divide (divide (inverse (divide (divide (divide ?1018 ?1018) ?1019) ?1020)) (inverse ?1021)) (multiply ?1019 ?1021) =>= ?1020 [1021, 1020, 1019, 1018] by Super 202 with 3 at 2,2
7642 Id : 372, {_}: divide (multiply (inverse (divide (divide (divide ?1664 ?1664) ?1665) ?1666)) ?1667) (multiply ?1665 ?1667) =>= ?1666 [1667, 1666, 1665, 1664] by Demod 208 with 3 at 1,2
7643 Id : 378, {_}: divide (multiply (inverse (divide (multiply (divide ?1702 ?1702) ?1703) ?1704)) ?1705) (multiply (inverse ?1703) ?1705) =>= ?1704 [1705, 1704, 1703, 1702] by Super 372 with 3 at 1,1,1,1,2
7644 Id : 88082, {_}: divide ?485240 (multiply (inverse ?485241) ?485242) =<= divide ?485240 (multiply (multiply ?485243 (divide (divide (divide ?485244 ?485244) ?485243) (multiply (divide ?485245 ?485245) ?485241))) ?485242) [485245, 485244, 485243, 485242, 485241, 485240] by Super 378 with 223 at 1,2
7645 Id : 89234, {_}: divide (inverse (divide (multiply (divide ?494319 ?494319) (divide (divide (divide ?494320 ?494320) ?494321) ?494322)) (multiply (inverse ?494323) (divide (multiply (divide ?494324 ?494324) (divide (divide (divide ?494325 ?494325) ?494326) (divide ?494327 (divide ?494326 (divide ?494321 ?494328))))) (divide ?494322 ?494327))))) ?494328 =?= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (multiply (divide ?494331 ?494331) ?494323)) [494331, 494330, 494329, 494328, 494327, 494326, 494325, 494324, 494323, 494322, 494321, 494320, 494319] by Super 42 with 88082 at 1,1,2
7646 Id : 89554, {_}: inverse ?494323 =<= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (multiply (divide ?494331 ?494331) ?494323)) [494331, 494330, 494329, 494323] by Demod 89234 with 42 at 2
7647 Id : 90512, {_}: multiply (inverse (divide ?497368 (divide ?497369 (inverse ?497370)))) (divide (divide (divide ?497371 ?497371) (multiply ?497372 (divide (divide (divide ?497373 ?497373) ?497372) ?497368))) (multiply (divide ?497374 ?497374) ?497370)) =>= ?497369 [497374, 497373, 497372, 497371, 497370, 497369, 497368] by Super 223 with 89554 at 2,2,1,1,2
7648 Id : 196, {_}: divide (inverse (divide (divide (divide ?925 ?925) ?926) (divide (inverse (divide (divide (divide ?927 ?927) ?928) ?929)) (divide ?926 ?930)))) ?930 =?= inverse (divide (divide (divide ?931 ?931) ?928) ?929) [931, 930, 929, 928, 927, 926, 925] by Super 6 with 86 at 2,1,3
7649 Id : 6409, {_}: inverse (divide (divide (divide ?34204 ?34204) ?34205) ?34206) =?= inverse (divide (divide (divide ?34207 ?34207) ?34205) ?34206) [34207, 34206, 34205, 34204] by Demod 196 with 2 at 2
7650 Id : 6420, {_}: inverse (divide (divide (divide ?34278 ?34278) (divide ?34279 (inverse (divide (divide (divide ?34280 ?34280) ?34279) ?34281)))) ?34282) =>= inverse (divide ?34281 ?34282) [34282, 34281, 34280, 34279, 34278] by Super 6409 with 86 at 1,1,3
7651 Id : 6497, {_}: inverse (divide (divide (divide ?34278 ?34278) (multiply ?34279 (divide (divide (divide ?34280 ?34280) ?34279) ?34281))) ?34282) =>= inverse (divide ?34281 ?34282) [34282, 34281, 34280, 34279, 34278] by Demod 6420 with 3 at 2,1,1,2
7652 Id : 28325, {_}: multiply ?153090 (divide (divide (divide ?153091 ?153091) (multiply ?153092 (divide (divide (divide ?153093 ?153093) ?153092) ?153094))) ?153095) =>= divide ?153090 (inverse (divide ?153094 ?153095)) [153095, 153094, 153093, 153092, 153091, 153090] by Super 3 with 6497 at 2,3
7653 Id : 28522, {_}: multiply ?153090 (divide (divide (divide ?153091 ?153091) (multiply ?153092 (divide (divide (divide ?153093 ?153093) ?153092) ?153094))) ?153095) =>= multiply ?153090 (divide ?153094 ?153095) [153095, 153094, 153093, 153092, 153091, 153090] by Demod 28325 with 3 at 3
7654 Id : 91190, {_}: multiply (inverse (divide ?497368 (divide ?497369 (inverse ?497370)))) (divide ?497368 (multiply (divide ?497374 ?497374) ?497370)) =>= ?497369 [497374, 497370, 497369, 497368] by Demod 90512 with 28522 at 2
7655 Id : 91665, {_}: multiply (inverse (divide ?503116 (multiply ?503117 ?503118))) (divide ?503116 (multiply (divide ?503119 ?503119) ?503118)) =>= ?503117 [503119, 503118, 503117, 503116] by Demod 91190 with 3 at 2,1,1,2
7656 Id : 231, {_}: divide (multiply (inverse (divide (divide (divide ?1018 ?1018) ?1019) ?1020)) ?1021) (multiply ?1019 ?1021) =>= ?1020 [1021, 1020, 1019, 1018] by Demod 208 with 3 at 1,2
7657 Id : 1057, {_}: inverse (divide (divide (divide ?5280 ?5280) ?5281) (divide (divide ?5282 ?5283) (divide ?5281 ?5283))) =>= ?5282 [5283, 5282, 5281, 5280] by Super 18 with 23 at 2
7658 Id : 1292, {_}: divide (divide ?6440 ?6441) (divide ?6442 ?6441) =?= divide (divide ?6440 ?6443) (divide ?6442 ?6443) [6443, 6442, 6441, 6440] by Super 86 with 1057 at 1,1,2
7659 Id : 2334, {_}: divide (multiply (inverse (divide (divide (divide ?12626 ?12626) ?12627) (divide ?12628 ?12627))) ?12629) (multiply ?12630 ?12629) =>= divide ?12628 ?12630 [12630, 12629, 12628, 12627, 12626] by Super 231 with 1292 at 1,1,1,2
7660 Id : 91784, {_}: multiply (inverse (divide (multiply (inverse (divide (divide (divide ?504066 ?504066) ?504067) (divide ?504068 ?504067))) ?504069) (multiply ?504070 ?504069))) (divide ?504068 (divide ?504071 ?504071)) =>= ?504070 [504071, 504070, 504069, 504068, 504067, 504066] by Super 91665 with 2334 at 2,2
7661 Id : 92186, {_}: multiply (inverse (divide ?504068 ?504070)) (divide ?504068 (divide ?504071 ?504071)) =>= ?504070 [504071, 504070, 504068] by Demod 91784 with 2334 at 1,1,2
7662 Id : 92346, {_}: ?505751 =<= divide (inverse (divide (divide (divide ?505752 ?505752) ?505753) ?505751)) ?505753 [505753, 505752, 505751] by Super 1389 with 92186 at 2
7663 Id : 93111, {_}: divide ?509269 (divide ?509270 ?509270) =>= ?509269 [509270, 509269] by Super 2 with 92346 at 2
7664 Id : 100321, {_}: inverse (multiply (multiply (inverse ?535124) ?535124) ?535125) =>= inverse ?535125 [535125, 535124] by Super 3072 with 93111 at 1,2
7665 Id : 100420, {_}: inverse (inverse ?535740) =<= inverse (divide (divide (divide ?535741 ?535741) (multiply (inverse ?535742) ?535742)) (multiply (divide ?535743 ?535743) ?535740)) [535743, 535742, 535741, 535740] by Super 100321 with 89554 at 1,2
7666 Id : 94282, {_}: divide ?515515 (divide ?515516 ?515516) =>= ?515515 [515516, 515515] by Super 2 with 92346 at 2
7667 Id : 94361, {_}: divide ?515973 (multiply (inverse ?515974) ?515974) =>= ?515973 [515974, 515973] by Super 94282 with 3 at 2,2
7668 Id : 100488, {_}: inverse (inverse ?535740) =<= inverse (divide (divide ?535741 ?535741) (multiply (divide ?535743 ?535743) ?535740)) [535743, 535741, 535740] by Demod 100420 with 94361 at 1,1,3
7669 Id : 93886, {_}: inverse (divide (divide ?513000 ?513000) ?513001) =>= ?513001 [513001, 513000] by Super 1369 with 93111 at 1,2
7670 Id : 100489, {_}: inverse (inverse ?535740) =<= multiply (divide ?535743 ?535743) ?535740 [535743, 535740] by Demod 100488 with 93886 at 3
7671 Id : 100522, {_}: divide (inverse (divide (inverse (inverse (divide (divide (divide ?95 ?95) ?96) (divide ?97 (divide ?96 ?98))))) ?99)) ?98 =?= inverse (divide (divide (divide ?100 ?100) ?101) (divide ?99 (divide ?101 ?97))) [101, 100, 99, 98, 97, 96, 95] by Demod 23 with 100489 at 1,1,1,2
7672 Id : 1348, {_}: inverse (divide (multiply (divide ?6830 ?6830) ?6831) (divide (divide ?6832 ?6833) (divide (inverse ?6831) ?6833))) =>= ?6832 [6833, 6832, 6831, 6830] by Super 1304 with 3 at 1,1,2
7673 Id : 3107, {_}: multiply ?16917 (divide (multiply (divide ?16918 ?16918) ?16919) (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16918, 16917] by Super 3 with 1348 at 2,3
7674 Id : 100541, {_}: multiply ?16917 (divide (inverse (inverse ?16919)) (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16917] by Demod 3107 with 100489 at 1,2,2
7675 Id : 100747, {_}: inverse (inverse (divide (inverse (inverse ?536517)) (divide (divide ?536518 ?536519) (divide (inverse ?536517) ?536519)))) =?= divide (divide ?536520 ?536520) ?536518 [536520, 536519, 536518, 536517] by Super 100541 with 100489 at 2
7676 Id : 100526, {_}: inverse (divide (inverse (inverse ?6831)) (divide (divide ?6832 ?6833) (divide (inverse ?6831) ?6833))) =>= ?6832 [6833, 6832, 6831] by Demod 1348 with 100489 at 1,1,2
7677 Id : 100849, {_}: inverse ?536518 =<= divide (divide ?536520 ?536520) ?536518 [536520, 536518] by Demod 100747 with 100526 at 1,2
7678 Id : 101259, {_}: divide (inverse (divide (inverse (inverse (divide (inverse ?96) (divide ?97 (divide ?96 ?98))))) ?99)) ?98 =?= inverse (divide (divide (divide ?100 ?100) ?101) (divide ?99 (divide ?101 ?97))) [101, 100, 99, 98, 97, 96] by Demod 100522 with 100849 at 1,1,1,1,1,1,2
7679 Id : 101260, {_}: divide (inverse (divide (inverse (inverse (divide (inverse ?96) (divide ?97 (divide ?96 ?98))))) ?99)) ?98 =?= inverse (divide (inverse ?101) (divide ?99 (divide ?101 ?97))) [101, 99, 98, 97, 96] by Demod 101259 with 100849 at 1,1,3
7680 Id : 101328, {_}: inverse (inverse ?513001) =>= ?513001 [513001] by Demod 93886 with 100849 at 1,2
7681 Id : 101498, {_}: divide (inverse (divide (divide (inverse ?96) (divide ?97 (divide ?96 ?98))) ?99)) ?98 =?= inverse (divide (inverse ?101) (divide ?99 (divide ?101 ?97))) [101, 99, 98, 97, 96] by Demod 101260 with 101328 at 1,1,1,2
7682 Id : 100491, {_}: inverse ?494323 =<= multiply ?494329 (divide (divide (divide ?494330 ?494330) ?494329) (inverse (inverse ?494323))) [494330, 494329, 494323] by Demod 89554 with 100489 at 2,2,3
7683 Id : 100612, {_}: inverse ?494323 =<= multiply ?494329 (multiply (divide (divide ?494330 ?494330) ?494329) (inverse ?494323)) [494330, 494329, 494323] by Demod 100491 with 3 at 2,3
7684 Id : 101341, {_}: inverse ?494323 =<= multiply ?494329 (multiply (inverse ?494329) (inverse ?494323)) [494329, 494323] by Demod 100612 with 100849 at 1,2,3
7685 Id : 101357, {_}: multiply ?16917 (divide ?16919 (divide (divide ?16920 ?16921) (divide (inverse ?16919) ?16921))) =>= divide ?16917 ?16920 [16921, 16920, 16919, 16917] by Demod 100541 with 101328 at 1,2,2
7686 Id : 210, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?1032) ?1032) ?1033) ?1034)) ?1035) (divide ?1033 ?1035) =>= ?1034 [1035, 1034, 1033, 1032] by Super 202 with 3 at 1,1,1,1,1,2
7687 Id : 2224, {_}: divide (divide (inverse (divide (divide (multiply (inverse ?11772) ?11772) ?11773) (divide ?11774 ?11773))) ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774, 11773, 11772] by Super 210 with 1292 at 1,1,1,2
7688 Id : 778, {_}: divide (inverse (divide (divide (divide ?3892 ?3892) ?3893) (divide (inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896)) (divide ?3893 ?3897)))) ?3897 =?= inverse (divide (divide (divide ?3898 ?3898) ?3895) ?3896) [3898, 3897, 3896, 3895, 3894, 3893, 3892] by Super 6 with 210 at 2,1,3
7689 Id : 811, {_}: inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896) =?= inverse (divide (divide (divide ?3898 ?3898) ?3895) ?3896) [3898, 3896, 3895, 3894] by Demod 778 with 2 at 2
7690 Id : 101312, {_}: inverse (divide (divide (multiply (inverse ?3894) ?3894) ?3895) ?3896) =>= inverse (divide (inverse ?3895) ?3896) [3896, 3895, 3894] by Demod 811 with 100849 at 1,1,3
7691 Id : 101430, {_}: divide (divide (inverse (divide (inverse ?11773) (divide ?11774 ?11773))) ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774, 11773] by Demod 2224 with 101312 at 1,1,2
7692 Id : 375, {_}: divide (multiply (inverse (divide (divide (multiply (inverse ?1685) ?1685) ?1686) ?1687)) ?1688) (multiply ?1686 ?1688) =>= ?1687 [1688, 1687, 1686, 1685] by Super 372 with 3 at 1,1,1,1,1,2
7693 Id : 2362, {_}: divide (multiply (inverse (divide (divide (multiply (inverse ?12860) ?12860) ?12861) (divide ?12862 ?12861))) ?12863) (multiply ?12864 ?12863) =>= divide ?12862 ?12864 [12864, 12863, 12862, 12861, 12860] by Super 375 with 1292 at 1,1,1,2
7694 Id : 101423, {_}: divide (multiply (inverse (divide (inverse ?12861) (divide ?12862 ?12861))) ?12863) (multiply ?12864 ?12863) =>= divide ?12862 ?12864 [12864, 12863, 12862, 12861] by Demod 2362 with 101312 at 1,1,2
7695 Id : 1298, {_}: divide (multiply ?6472 ?6473) (multiply ?6474 ?6473) =?= divide (divide ?6472 ?6475) (divide ?6474 ?6475) [6475, 6474, 6473, 6472] by Super 231 with 1057 at 1,1,2
7696 Id : 2653, {_}: divide (multiply (inverse (divide (multiply (divide ?14473 ?14473) ?14474) (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474, 14473] by Super 231 with 1298 at 1,1,1,2
7697 Id : 100505, {_}: divide (multiply (inverse (divide (inverse (inverse ?14474)) (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474] by Demod 2653 with 100489 at 1,1,1,1,2
7698 Id : 101382, {_}: divide (multiply (inverse (divide ?14474 (multiply ?14475 ?14474))) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475, 14474] by Demod 100505 with 101328 at 1,1,1,1,2
7699 Id : 101429, {_}: divide (multiply (inverse (divide (inverse ?1686) ?1687)) ?1688) (multiply ?1686 ?1688) =>= ?1687 [1688, 1687, 1686] by Demod 375 with 101312 at 1,1,2
7700 Id : 101386, {_}: ?535740 =<= multiply (divide ?535743 ?535743) ?535740 [535743, 535740] by Demod 100489 with 101328 at 2
7701 Id : 101594, {_}: ?537458 =<= multiply (inverse (divide ?537459 ?537459)) ?537458 [537459, 537458] by Super 101386 with 100849 at 1,3
7702 Id : 101980, {_}: divide ?538112 (multiply ?538113 ?538112) =>= inverse ?538113 [538113, 538112] by Super 101429 with 101594 at 1,2
7703 Id : 102412, {_}: divide (multiply (inverse (inverse ?14475)) ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475] by Demod 101382 with 101980 at 1,1,1,2
7704 Id : 102413, {_}: divide (multiply ?14475 ?14476) (multiply ?14477 ?14476) =>= divide ?14475 ?14477 [14477, 14476, 14475] by Demod 102412 with 101328 at 1,1,2
7705 Id : 102434, {_}: divide (inverse (divide (inverse ?12861) (divide ?12862 ?12861))) ?12864 =>= divide ?12862 ?12864 [12864, 12862, 12861] by Demod 101423 with 102413 at 2
7706 Id : 102436, {_}: divide (divide ?11774 ?11775) (divide ?11776 ?11775) =>= divide ?11774 ?11776 [11776, 11775, 11774] by Demod 101430 with 102434 at 1,2
7707 Id : 102441, {_}: multiply ?16917 (divide ?16919 (divide ?16920 (inverse ?16919))) =>= divide ?16917 ?16920 [16920, 16919, 16917] by Demod 101357 with 102436 at 2,2,2
7708 Id : 102470, {_}: multiply ?16917 (divide ?16919 (multiply ?16920 ?16919)) =>= divide ?16917 ?16920 [16920, 16919, 16917] by Demod 102441 with 3 at 2,2,2
7709 Id : 102471, {_}: multiply ?16917 (inverse ?16920) =>= divide ?16917 ?16920 [16920, 16917] by Demod 102470 with 101980 at 2,2
7710 Id : 102472, {_}: inverse ?494323 =<= multiply ?494329 (divide (inverse ?494329) ?494323) [494329, 494323] by Demod 101341 with 102471 at 2,3
7711 Id : 102516, {_}: inverse (multiply ?538987 (inverse ?538988)) =>= multiply ?538988 (inverse ?538987) [538988, 538987] by Super 102472 with 101980 at 2,3
7712 Id : 102787, {_}: inverse (divide ?538987 ?538988) =<= multiply ?538988 (inverse ?538987) [538988, 538987] by Demod 102516 with 102471 at 1,2
7713 Id : 102788, {_}: inverse (divide ?538987 ?538988) =>= divide ?538988 ?538987 [538988, 538987] by Demod 102787 with 102471 at 3
7714 Id : 102815, {_}: divide (divide ?99 (divide (inverse ?96) (divide ?97 (divide ?96 ?98)))) ?98 =?= inverse (divide (inverse ?101) (divide ?99 (divide ?101 ?97))) [101, 98, 97, 96, 99] by Demod 101498 with 102788 at 1,2
7715 Id : 102816, {_}: divide (divide ?99 (divide (inverse ?96) (divide ?97 (divide ?96 ?98)))) ?98 =?= divide (divide ?99 (divide ?101 ?97)) (inverse ?101) [101, 98, 97, 96, 99] by Demod 102815 with 102788 at 3
7716 Id : 2390, {_}: divide (divide ?13180 ?13181) (divide ?13182 ?13181) =?= divide (divide ?13180 ?13183) (divide ?13182 ?13183) [13183, 13182, 13181, 13180] by Super 86 with 1057 at 1,1,2
7717 Id : 212, {_}: divide (divide (inverse (divide (multiply (divide ?1043 ?1043) ?1044) ?1045)) ?1046) (divide (inverse ?1044) ?1046) =>= ?1045 [1046, 1045, 1044, 1043] by Super 202 with 3 at 1,1,1,1,2
7718 Id : 2401, {_}: divide (divide ?13273 ?13274) (divide (divide (inverse (divide (multiply (divide ?13275 ?13275) ?13276) ?13277)) ?13278) ?13274) =>= divide (divide ?13273 (divide (inverse ?13276) ?13278)) ?13277 [13278, 13277, 13276, 13275, 13274, 13273] by Super 2390 with 212 at 2,3
7719 Id : 100530, {_}: divide (divide ?13273 ?13274) (divide (divide (inverse (divide (inverse (inverse ?13276)) ?13277)) ?13278) ?13274) =>= divide (divide ?13273 (divide (inverse ?13276) ?13278)) ?13277 [13278, 13277, 13276, 13274, 13273] by Demod 2401 with 100489 at 1,1,1,1,2,2
7720 Id : 101375, {_}: divide (divide ?13273 ?13274) (divide (divide (inverse (divide ?13276 ?13277)) ?13278) ?13274) =>= divide (divide ?13273 (divide (inverse ?13276) ?13278)) ?13277 [13278, 13277, 13276, 13274, 13273] by Demod 100530 with 101328 at 1,1,1,1,2,2
7721 Id : 102446, {_}: divide ?13273 (divide (inverse (divide ?13276 ?13277)) ?13278) =?= divide (divide ?13273 (divide (inverse ?13276) ?13278)) ?13277 [13278, 13277, 13276, 13273] by Demod 101375 with 102436 at 2
7722 Id : 102862, {_}: divide ?13273 (divide (divide ?13277 ?13276) ?13278) =<= divide (divide ?13273 (divide (inverse ?13276) ?13278)) ?13277 [13278, 13276, 13277, 13273] by Demod 102446 with 102788 at 1,2,2
7723 Id : 102906, {_}: divide ?99 (divide (divide ?98 ?96) (divide ?97 (divide ?96 ?98))) =?= divide (divide ?99 (divide ?101 ?97)) (inverse ?101) [101, 97, 96, 98, 99] by Demod 102816 with 102862 at 2
7724 Id : 102907, {_}: divide ?99 (divide (divide ?98 ?96) (divide ?97 (divide ?96 ?98))) =?= multiply (divide ?99 (divide ?101 ?97)) ?101 [101, 97, 96, 98, 99] by Demod 102906 with 3 at 3
7725 Id : 102924, {_}: multiply ?539666 (divide ?539667 ?539668) =<= divide ?539666 (divide ?539668 ?539667) [539668, 539667, 539666] by Super 102471 with 102788 at 2,2
7726 Id : 103472, {_}: multiply ?99 (divide (divide ?97 (divide ?96 ?98)) (divide ?98 ?96)) =?= multiply (divide ?99 (divide ?101 ?97)) ?101 [101, 98, 96, 97, 99] by Demod 102907 with 102924 at 2
7727 Id : 103473, {_}: multiply ?99 (divide (divide ?97 (divide ?96 ?98)) (divide ?98 ?96)) =?= multiply (multiply ?99 (divide ?97 ?101)) ?101 [101, 98, 96, 97, 99] by Demod 103472 with 102924 at 1,3
7728 Id : 103474, {_}: multiply ?99 (multiply (divide ?97 (divide ?96 ?98)) (divide ?96 ?98)) =?= multiply (multiply ?99 (divide ?97 ?101)) ?101 [101, 98, 96, 97, 99] by Demod 103473 with 102924 at 2,2
7729 Id : 103475, {_}: multiply ?99 (multiply (multiply ?97 (divide ?98 ?96)) (divide ?96 ?98)) =?= multiply (multiply ?99 (divide ?97 ?101)) ?101 [101, 96, 98, 97, 99] by Demod 103474 with 102924 at 1,2,2
7730 Id : 9, {_}: divide (inverse (divide (divide (multiply (inverse ?36) ?36) ?37) (divide ?38 (divide ?37 ?39)))) ?39 =>= ?38 [39, 38, 37, 36] by Super 2 with 3 at 1,1,1,1,2
7731 Id : 101427, {_}: divide (inverse (divide (inverse ?37) (divide ?38 (divide ?37 ?39)))) ?39 =>= ?38 [39, 38, 37] by Demod 9 with 101312 at 1,2
7732 Id : 102819, {_}: divide (divide (divide ?38 (divide ?37 ?39)) (inverse ?37)) ?39 =>= ?38 [39, 37, 38] by Demod 101427 with 102788 at 1,2
7733 Id : 102903, {_}: divide (multiply (divide ?38 (divide ?37 ?39)) ?37) ?39 =>= ?38 [39, 37, 38] by Demod 102819 with 3 at 1,2
7734 Id : 103476, {_}: divide (multiply (multiply ?38 (divide ?39 ?37)) ?37) ?39 =>= ?38 [37, 39, 38] by Demod 102903 with 102924 at 1,1,2
7735 Id : 2408, {_}: divide (divide ?13322 ?13323) (divide (multiply (inverse (divide (multiply (divide ?13324 ?13324) ?13325) ?13326)) ?13327) ?13323) =>= divide (divide ?13322 (multiply (inverse ?13325) ?13327)) ?13326 [13327, 13326, 13325, 13324, 13323, 13322] by Super 2390 with 378 at 2,3
7736 Id : 100531, {_}: divide (divide ?13322 ?13323) (divide (multiply (inverse (divide (inverse (inverse ?13325)) ?13326)) ?13327) ?13323) =>= divide (divide ?13322 (multiply (inverse ?13325) ?13327)) ?13326 [13327, 13326, 13325, 13323, 13322] by Demod 2408 with 100489 at 1,1,1,1,2,2
7737 Id : 101355, {_}: divide (divide ?13322 ?13323) (divide (multiply (inverse (divide ?13325 ?13326)) ?13327) ?13323) =>= divide (divide ?13322 (multiply (inverse ?13325) ?13327)) ?13326 [13327, 13326, 13325, 13323, 13322] by Demod 100531 with 101328 at 1,1,1,1,2,2
7738 Id : 102440, {_}: divide ?13322 (multiply (inverse (divide ?13325 ?13326)) ?13327) =?= divide (divide ?13322 (multiply (inverse ?13325) ?13327)) ?13326 [13327, 13326, 13325, 13322] by Demod 101355 with 102436 at 2
7739 Id : 102864, {_}: divide ?13322 (multiply (divide ?13326 ?13325) ?13327) =<= divide (divide ?13322 (multiply (inverse ?13325) ?13327)) ?13326 [13327, 13325, 13326, 13322] by Demod 102440 with 102788 at 1,2,2
7740 Id : 102611, {_}: divide ?539467 (multiply ?539468 ?539467) =>= inverse ?539468 [539468, 539467] by Super 101429 with 101594 at 1,2
7741 Id : 102625, {_}: divide (inverse ?539525) (divide ?539526 ?539525) =>= inverse ?539526 [539526, 539525] by Super 102611 with 102471 at 2,2
7742 Id : 103817, {_}: multiply (inverse ?539525) (divide ?539525 ?539526) =>= inverse ?539526 [539526, 539525] by Demod 102625 with 102924 at 2
7743 Id : 103831, {_}: divide ?541233 (multiply (divide ?541234 ?541235) (divide ?541235 ?541236)) =>= divide (divide ?541233 (inverse ?541236)) ?541234 [541236, 541235, 541234, 541233] by Super 102864 with 103817 at 2,1,3
7744 Id : 103478, {_}: multiply (divide ?11774 ?11775) (divide ?11775 ?11776) =>= divide ?11774 ?11776 [11776, 11775, 11774] by Demod 102436 with 102924 at 2
7745 Id : 103925, {_}: divide ?541233 (divide ?541234 ?541236) =<= divide (divide ?541233 (inverse ?541236)) ?541234 [541236, 541234, 541233] by Demod 103831 with 103478 at 2,2
7746 Id : 103926, {_}: divide ?541233 (divide ?541234 ?541236) =?= divide (multiply ?541233 ?541236) ?541234 [541236, 541234, 541233] by Demod 103925 with 3 at 1,3
7747 Id : 103927, {_}: multiply ?541233 (divide ?541236 ?541234) =<= divide (multiply ?541233 ?541236) ?541234 [541234, 541236, 541233] by Demod 103926 with 102924 at 2
7748 Id : 103998, {_}: multiply (multiply ?38 (divide ?39 ?37)) (divide ?37 ?39) =>= ?38 [37, 39, 38] by Demod 103476 with 103927 at 2
7749 Id : 104001, {_}: multiply ?99 ?97 =<= multiply (multiply ?99 (divide ?97 ?101)) ?101 [101, 97, 99] by Demod 103475 with 103998 at 2,2
7750 Id : 104034, {_}: multiply ?541526 (multiply ?541527 ?541528) =<= multiply (multiply ?541526 (multiply ?541527 (divide ?541528 ?541529))) ?541529 [541529, 541528, 541527, 541526] by Super 104001 with 103927 at 2,1,3
7751 Id : 44, {_}: multiply (inverse (divide (divide (divide ?198 ?198) ?199) (divide ?200 (multiply ?199 ?201)))) ?201 =>= ?200 [201, 200, 199, 198] by Demod 8 with 3 at 2
7752 Id : 46, {_}: multiply (inverse (divide (divide (divide ?210 ?210) ?211) ?212)) ?213 =?= inverse (divide (divide (divide ?214 ?214) ?215) (divide ?212 (divide ?215 (multiply ?211 ?213)))) [215, 214, 213, 212, 211, 210] by Super 44 with 2 at 2,1,1,2
7753 Id : 104145, {_}: multiply (divide ?212 (divide (divide ?210 ?210) ?211)) ?213 =?= inverse (divide (divide (divide ?214 ?214) ?215) (divide ?212 (divide ?215 (multiply ?211 ?213)))) [215, 214, 213, 211, 210, 212] by Demod 46 with 102788 at 1,2
7754 Id : 104146, {_}: multiply (divide ?212 (divide (divide ?210 ?210) ?211)) ?213 =?= divide (divide ?212 (divide ?215 (multiply ?211 ?213))) (divide (divide ?214 ?214) ?215) [214, 215, 213, 211, 210, 212] by Demod 104145 with 102788 at 3
7755 Id : 104147, {_}: multiply (multiply ?212 (divide ?211 (divide ?210 ?210))) ?213 =?= divide (divide ?212 (divide ?215 (multiply ?211 ?213))) (divide (divide ?214 ?214) ?215) [214, 215, 213, 210, 211, 212] by Demod 104146 with 102924 at 1,2
7756 Id : 104148, {_}: multiply (multiply ?212 (divide ?211 (divide ?210 ?210))) ?213 =?= multiply (divide ?212 (divide ?215 (multiply ?211 ?213))) (divide ?215 (divide ?214 ?214)) [214, 215, 213, 210, 211, 212] by Demod 104147 with 102924 at 3
7757 Id : 104149, {_}: multiply (multiply ?212 (multiply ?211 (divide ?210 ?210))) ?213 =?= multiply (divide ?212 (divide ?215 (multiply ?211 ?213))) (divide ?215 (divide ?214 ?214)) [214, 215, 213, 210, 211, 212] by Demod 104148 with 102924 at 2,1,2
7758 Id : 104150, {_}: multiply (multiply ?212 (multiply ?211 (divide ?210 ?210))) ?213 =?= multiply (multiply ?212 (divide (multiply ?211 ?213) ?215)) (divide ?215 (divide ?214 ?214)) [214, 215, 213, 210, 211, 212] by Demod 104149 with 102924 at 1,3
7759 Id : 104151, {_}: multiply (multiply ?212 (multiply ?211 (divide ?210 ?210))) ?213 =?= multiply (multiply ?212 (divide (multiply ?211 ?213) ?215)) (multiply ?215 (divide ?214 ?214)) [214, 215, 213, 210, 211, 212] by Demod 104150 with 102924 at 2,3
7760 Id : 93587, {_}: multiply (inverse (divide ?504068 ?504070)) ?504068 =>= ?504070 [504070, 504068] by Demod 92186 with 93111 at 2,2
7761 Id : 95434, {_}: multiply ?517965 (divide ?517966 ?517966) =>= ?517965 [517966, 517965] by Super 93587 with 93886 at 1,2
7762 Id : 104152, {_}: multiply (multiply ?212 ?211) ?213 =<= multiply (multiply ?212 (divide (multiply ?211 ?213) ?215)) (multiply ?215 (divide ?214 ?214)) [214, 215, 213, 211, 212] by Demod 104151 with 95434 at 2,1,2
7763 Id : 104153, {_}: multiply (multiply ?212 ?211) ?213 =<= multiply (multiply ?212 (multiply ?211 (divide ?213 ?215))) (multiply ?215 (divide ?214 ?214)) [214, 215, 213, 211, 212] by Demod 104152 with 103927 at 2,1,3
7764 Id : 104154, {_}: multiply (multiply ?212 ?211) ?213 =<= multiply (multiply ?212 (multiply ?211 (divide ?213 ?215))) ?215 [215, 213, 211, 212] by Demod 104153 with 95434 at 2,3
7765 Id : 115019, {_}: multiply ?541526 (multiply ?541527 ?541528) =?= multiply (multiply ?541526 ?541527) ?541528 [541528, 541527, 541526] by Demod 104034 with 104154 at 3
7766 Id : 115288, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 1 with 115019 at 2
7767 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
7768 % SZS output end CNFRefutation for GRP480-1.p
7769 24007: solved GRP480-1.p in 40.758547 using nrkbo
7770 24007: status Unsatisfiable for GRP480-1.p
7771 NO CLASH, using fixed ground order
7773 24021: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
7774 24021: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
7775 24021: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
7776 24021: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
7778 meet ?12 ?13 =?= meet ?13 ?12
7779 [13, 12] by commutativity_of_meet ?12 ?13
7781 join ?15 ?16 =?= join ?16 ?15
7782 [16, 15] by commutativity_of_join ?15 ?16
7784 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
7785 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
7787 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
7788 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
7789 24021: Id : 10, {_}:
7790 meet (join ?26 ?27) (join ?26 ?28)
7793 (meet (join ?26 ?27)
7794 (meet (join ?26 ?28) (join ?27 (meet ?26 ?28))))
7795 [28, 27, 26] by equation_H18_dual ?26 ?27 ?28
7800 meet a (join b (meet (join a b) (join c (meet a b))))
7805 24021: c 2 0 2 2,2,2
7807 24021: b 4 0 4 1,2,2
7808 24021: meet 17 2 4 0,2
7809 24021: join 19 2 4 0,2,2
7810 NO CLASH, using fixed ground order
7812 24022: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
7813 24022: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
7814 24022: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
7815 24022: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
7817 meet ?12 ?13 =?= meet ?13 ?12
7818 [13, 12] by commutativity_of_meet ?12 ?13
7820 join ?15 ?16 =?= join ?16 ?15
7821 [16, 15] by commutativity_of_join ?15 ?16
7823 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
7824 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
7826 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
7827 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
7828 24022: Id : 10, {_}:
7829 meet (join ?26 ?27) (join ?26 ?28)
7832 (meet (join ?26 ?27)
7833 (meet (join ?26 ?28) (join ?27 (meet ?26 ?28))))
7834 [28, 27, 26] by equation_H18_dual ?26 ?27 ?28
7839 meet a (join b (meet (join a b) (join c (meet a b))))
7844 24022: c 2 0 2 2,2,2
7846 24022: b 4 0 4 1,2,2
7847 24022: meet 17 2 4 0,2
7848 24022: join 19 2 4 0,2,2
7849 NO CLASH, using fixed ground order
7851 24023: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
7852 24023: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
7853 24023: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
7854 24023: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
7856 meet ?12 ?13 =?= meet ?13 ?12
7857 [13, 12] by commutativity_of_meet ?12 ?13
7859 join ?15 ?16 =?= join ?16 ?15
7860 [16, 15] by commutativity_of_join ?15 ?16
7862 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
7863 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
7865 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
7866 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
7867 24023: Id : 10, {_}:
7868 meet (join ?26 ?27) (join ?26 ?28)
7871 (meet (join ?26 ?27)
7872 (meet (join ?26 ?28) (join ?27 (meet ?26 ?28))))
7873 [28, 27, 26] by equation_H18_dual ?26 ?27 ?28
7878 meet a (join b (meet (join a b) (join c (meet a b))))
7883 24023: c 2 0 2 2,2,2
7885 24023: b 4 0 4 1,2,2
7886 24023: meet 17 2 4 0,2
7887 24023: join 19 2 4 0,2,2
7888 % SZS status Timeout for LAT168-1.p
7889 NO CLASH, using fixed ground order
7891 24053: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
7893 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
7896 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
7898 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
7899 [9, 8] by wajsberg_3 ?8 ?9
7901 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
7902 [12, 11] by wajsberg_4 ?11 ?12
7905 implies (implies (implies a b) (implies b a)) (implies b a) =>= truth
7906 [] by prove_wajsberg_mv_4
7910 24053: a 3 0 3 1,1,1,2
7911 24053: b 3 0 3 2,1,1,2
7912 24053: truth 4 0 1 3
7914 24053: implies 18 2 5 0,2
7915 NO CLASH, using fixed ground order
7917 24054: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
7919 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
7922 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
7924 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
7925 [9, 8] by wajsberg_3 ?8 ?9
7927 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
7928 [12, 11] by wajsberg_4 ?11 ?12
7931 implies (implies (implies a b) (implies b a)) (implies b a) =>= truth
7932 [] by prove_wajsberg_mv_4
7936 24054: a 3 0 3 1,1,1,2
7937 24054: b 3 0 3 2,1,1,2
7938 24054: truth 4 0 1 3
7940 24054: implies 18 2 5 0,2
7941 NO CLASH, using fixed ground order
7943 24052: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
7945 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
7948 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
7950 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
7951 [9, 8] by wajsberg_3 ?8 ?9
7953 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
7954 [12, 11] by wajsberg_4 ?11 ?12
7957 implies (implies (implies a b) (implies b a)) (implies b a) =>= truth
7958 [] by prove_wajsberg_mv_4
7962 24052: a 3 0 3 1,1,1,2
7963 24052: b 3 0 3 2,1,1,2
7964 24052: truth 4 0 1 3
7966 24052: implies 18 2 5 0,2
7967 % SZS status Timeout for LCL109-2.p
7968 NO CLASH, using fixed ground order
7970 24075: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
7972 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
7975 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
7977 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
7978 [9, 8] by wajsberg_3 ?8 ?9
7980 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
7981 [12, 11] by wajsberg_4 ?11 ?12
7984 implies x (implies y z) =<= implies y (implies x z)
7985 [] by prove_wajsberg_lemma
7990 24075: y 2 0 2 1,2,2
7991 24075: z 2 0 2 2,2,2
7994 24075: implies 17 2 4 0,2
7995 NO CLASH, using fixed ground order
7997 24076: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
7999 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
8002 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
8004 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
8005 [9, 8] by wajsberg_3 ?8 ?9
8007 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
8008 [12, 11] by wajsberg_4 ?11 ?12
8011 implies x (implies y z) =<= implies y (implies x z)
8012 [] by prove_wajsberg_lemma
8017 24076: y 2 0 2 1,2,2
8018 24076: z 2 0 2 2,2,2
8021 24076: implies 17 2 4 0,2
8022 NO CLASH, using fixed ground order
8024 24077: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
8026 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
8029 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
8031 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
8032 [9, 8] by wajsberg_3 ?8 ?9
8034 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
8035 [12, 11] by wajsberg_4 ?11 ?12
8038 implies x (implies y z) =<= implies y (implies x z)
8039 [] by prove_wajsberg_lemma
8044 24077: y 2 0 2 1,2,2
8045 24077: z 2 0 2 2,2,2
8048 24077: implies 17 2 4 0,2
8049 % SZS status Timeout for LCL138-1.p
8050 NO CLASH, using fixed ground order
8052 24160: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
8054 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
8057 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
8059 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
8060 [9, 8] by wajsberg_3 ?8 ?9
8062 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
8063 [12, 11] by wajsberg_4 ?11 ?12
8065 or ?14 ?15 =<= implies (not ?14) ?15
8066 [15, 14] by or_definition ?14 ?15
8068 or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19)
8069 [19, 18, 17] by or_associativity ?17 ?18 ?19
8070 24160: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
8072 and ?24 ?25 =<= not (or (not ?24) (not ?25))
8073 [25, 24] by and_definition ?24 ?25
8074 24160: Id : 10, {_}:
8075 and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29)
8076 [29, 28, 27] by and_associativity ?27 ?28 ?29
8077 24160: Id : 11, {_}:
8078 and ?31 ?32 =?= and ?32 ?31
8079 [32, 31] by and_commutativity ?31 ?32
8080 24160: Id : 12, {_}:
8081 xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35)
8082 [35, 34] by xor_definition ?34 ?35
8083 24160: Id : 13, {_}:
8084 xor ?37 ?38 =?= xor ?38 ?37
8085 [38, 37] by xor_commutativity ?37 ?38
8086 24160: Id : 14, {_}:
8087 and_star ?40 ?41 =<= not (or (not ?40) (not ?41))
8088 [41, 40] by and_star_definition ?40 ?41
8089 24160: Id : 15, {_}:
8090 and_star (and_star ?43 ?44) ?45 =?= and_star ?43 (and_star ?44 ?45)
8091 [45, 44, 43] by and_star_associativity ?43 ?44 ?45
8092 24160: Id : 16, {_}:
8093 and_star ?47 ?48 =?= and_star ?48 ?47
8094 [48, 47] by and_star_commutativity ?47 ?48
8095 24160: Id : 17, {_}: not truth =>= falsehood [] by false_definition
8098 xor x (xor truth y) =<= xor (xor x truth) y
8099 [] by prove_alternative_wajsberg_axiom
8103 24160: falsehood 1 0 0
8105 24160: y 2 0 2 2,2,2
8106 24160: truth 6 0 2 1,2,2
8108 24160: and_star 7 2 0
8109 24160: xor 7 2 4 0,2
8112 24160: implies 14 2 0
8113 NO CLASH, using fixed ground order
8115 24161: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
8117 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
8120 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
8122 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
8123 [9, 8] by wajsberg_3 ?8 ?9
8125 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
8126 [12, 11] by wajsberg_4 ?11 ?12
8128 or ?14 ?15 =<= implies (not ?14) ?15
8129 [15, 14] by or_definition ?14 ?15
8131 or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19)
8132 [19, 18, 17] by or_associativity ?17 ?18 ?19
8133 24161: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
8135 and ?24 ?25 =<= not (or (not ?24) (not ?25))
8136 [25, 24] by and_definition ?24 ?25
8137 24161: Id : 10, {_}:
8138 and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29)
8139 [29, 28, 27] by and_associativity ?27 ?28 ?29
8140 24161: Id : 11, {_}:
8141 and ?31 ?32 =?= and ?32 ?31
8142 [32, 31] by and_commutativity ?31 ?32
8143 24161: Id : 12, {_}:
8144 xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35)
8145 [35, 34] by xor_definition ?34 ?35
8146 24161: Id : 13, {_}:
8147 xor ?37 ?38 =?= xor ?38 ?37
8148 [38, 37] by xor_commutativity ?37 ?38
8149 24161: Id : 14, {_}:
8150 and_star ?40 ?41 =<= not (or (not ?40) (not ?41))
8151 [41, 40] by and_star_definition ?40 ?41
8152 24161: Id : 15, {_}:
8153 and_star (and_star ?43 ?44) ?45 =>= and_star ?43 (and_star ?44 ?45)
8154 [45, 44, 43] by and_star_associativity ?43 ?44 ?45
8155 24161: Id : 16, {_}:
8156 and_star ?47 ?48 =?= and_star ?48 ?47
8157 [48, 47] by and_star_commutativity ?47 ?48
8158 24161: Id : 17, {_}: not truth =>= falsehood [] by false_definition
8161 xor x (xor truth y) =<= xor (xor x truth) y
8162 [] by prove_alternative_wajsberg_axiom
8166 24161: falsehood 1 0 0
8168 24161: y 2 0 2 2,2,2
8169 24161: truth 6 0 2 1,2,2
8171 24161: and_star 7 2 0
8172 24161: xor 7 2 4 0,2
8175 24161: implies 14 2 0
8176 NO CLASH, using fixed ground order
8178 24162: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
8180 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
8183 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
8185 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
8186 [9, 8] by wajsberg_3 ?8 ?9
8188 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
8189 [12, 11] by wajsberg_4 ?11 ?12
8191 or ?14 ?15 =<= implies (not ?14) ?15
8192 [15, 14] by or_definition ?14 ?15
8194 or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19)
8195 [19, 18, 17] by or_associativity ?17 ?18 ?19
8196 24162: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
8198 and ?24 ?25 =<= not (or (not ?24) (not ?25))
8199 [25, 24] by and_definition ?24 ?25
8200 24162: Id : 10, {_}:
8201 and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29)
8202 [29, 28, 27] by and_associativity ?27 ?28 ?29
8203 24162: Id : 11, {_}:
8204 and ?31 ?32 =?= and ?32 ?31
8205 [32, 31] by and_commutativity ?31 ?32
8206 24162: Id : 12, {_}:
8207 xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35)
8208 [35, 34] by xor_definition ?34 ?35
8209 24162: Id : 13, {_}:
8210 xor ?37 ?38 =?= xor ?38 ?37
8211 [38, 37] by xor_commutativity ?37 ?38
8212 24162: Id : 14, {_}:
8213 and_star ?40 ?41 =<= not (or (not ?40) (not ?41))
8214 [41, 40] by and_star_definition ?40 ?41
8215 24162: Id : 15, {_}:
8216 and_star (and_star ?43 ?44) ?45 =>= and_star ?43 (and_star ?44 ?45)
8217 [45, 44, 43] by and_star_associativity ?43 ?44 ?45
8218 24162: Id : 16, {_}:
8219 and_star ?47 ?48 =?= and_star ?48 ?47
8220 [48, 47] by and_star_commutativity ?47 ?48
8221 24162: Id : 17, {_}: not truth =>= falsehood [] by false_definition
8224 xor x (xor truth y) =<= xor (xor x truth) y
8225 [] by prove_alternative_wajsberg_axiom
8229 24162: falsehood 1 0 0
8231 24162: y 2 0 2 2,2,2
8232 24162: truth 6 0 2 1,2,2
8234 24162: and_star 7 2 0
8235 24162: xor 7 2 4 0,2
8238 24162: implies 14 2 0
8241 Found proof, 8.845379s
8242 % SZS status Unsatisfiable for LCL159-1.p
8243 % SZS output start CNFRefutation for LCL159-1.p
8244 Id : 11, {_}: and ?31 ?32 =?= and ?32 ?31 [32, 31] by and_commutativity ?31 ?32
8245 Id : 10, {_}: and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29) [29, 28, 27] by and_associativity ?27 ?28 ?29
8246 Id : 13, {_}: xor ?37 ?38 =?= xor ?38 ?37 [38, 37] by xor_commutativity ?37 ?38
8247 Id : 5, {_}: implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by wajsberg_4 ?11 ?12
8248 Id : 7, {_}: or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19) [19, 18, 17] by or_associativity ?17 ?18 ?19
8249 Id : 39, {_}: implies (implies ?111 ?112) ?112 =?= implies (implies ?112 ?111) ?111 [112, 111] by wajsberg_3 ?111 ?112
8250 Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
8251 Id : 3, {_}: implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6)) =>= truth [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
8252 Id : 20, {_}: implies (implies ?55 ?56) (implies (implies ?56 ?57) (implies ?55 ?57)) =>= truth [57, 56, 55] by wajsberg_2 ?55 ?56 ?57
8253 Id : 17, {_}: not truth =>= falsehood [] by false_definition
8254 Id : 4, {_}: implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8 [9, 8] by wajsberg_3 ?8 ?9
8255 Id : 6, {_}: or ?14 ?15 =<= implies (not ?14) ?15 [15, 14] by or_definition ?14 ?15
8256 Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
8257 Id : 9, {_}: and ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by and_definition ?24 ?25
8258 Id : 14, {_}: and_star ?40 ?41 =<= not (or (not ?40) (not ?41)) [41, 40] by and_star_definition ?40 ?41
8259 Id : 12, {_}: xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by xor_definition ?34 ?35
8260 Id : 154, {_}: and_star ?40 ?41 =<= and ?40 ?41 [41, 40] by Demod 14 with 9 at 3
8261 Id : 162, {_}: xor ?34 ?35 =<= or (and_star ?34 (not ?35)) (and (not ?34) ?35) [35, 34] by Demod 12 with 154 at 1,3
8262 Id : 163, {_}: xor ?34 ?35 =<= or (and_star ?34 (not ?35)) (and_star (not ?34) ?35) [35, 34] by Demod 162 with 154 at 2,3
8263 Id : 173, {_}: or truth ?418 =<= implies falsehood ?418 [418] by Super 6 with 17 at 1,3
8264 Id : 183, {_}: implies (implies ?424 falsehood) falsehood =>= implies (or truth ?424) ?424 [424] by Super 4 with 173 at 1,3
8265 Id : 22, {_}: implies (implies (implies ?62 ?63) ?64) (implies (implies ?64 (implies (implies ?63 ?65) (implies ?62 ?65))) truth) =>= truth [65, 64, 63, 62] by Super 20 with 3 at 2,2,2
8266 Id : 437, {_}: implies (implies ?923 truth) (implies ?924 (implies ?923 ?924)) =>= truth [924, 923] by Super 20 with 2 at 1,2,2
8267 Id : 438, {_}: implies (implies truth truth) (implies ?926 ?926) =>= truth [926] by Super 437 with 2 at 2,2,2
8268 Id : 471, {_}: implies truth (implies ?926 ?926) =>= truth [926] by Demod 438 with 2 at 1,2
8269 Id : 472, {_}: implies ?926 ?926 =>= truth [926] by Demod 471 with 2 at 2
8270 Id : 501, {_}: implies (implies (implies ?1003 ?1003) ?1004) (implies (implies ?1004 truth) truth) =>= truth [1004, 1003] by Super 22 with 472 at 2,1,2,2
8271 Id : 529, {_}: implies (implies truth ?1004) (implies (implies ?1004 truth) truth) =>= truth [1004] by Demod 501 with 472 at 1,1,2
8272 Id : 40, {_}: implies (implies ?114 truth) truth =>= implies ?114 ?114 [114] by Super 39 with 2 at 1,3
8273 Id : 495, {_}: implies (implies ?114 truth) truth =>= truth [114] by Demod 40 with 472 at 3
8274 Id : 530, {_}: implies (implies truth ?1004) truth =>= truth [1004] by Demod 529 with 495 at 2,2
8275 Id : 531, {_}: implies ?1004 truth =>= truth [1004] by Demod 530 with 2 at 1,2
8276 Id : 567, {_}: or ?1050 truth =>= truth [1050] by Super 6 with 531 at 3
8277 Id : 621, {_}: or truth ?1090 =>= truth [1090] by Super 8 with 567 at 3
8278 Id : 637, {_}: implies (implies ?424 falsehood) falsehood =>= implies truth ?424 [424] by Demod 183 with 621 at 1,3
8279 Id : 638, {_}: implies (implies ?424 falsehood) falsehood =>= ?424 [424] by Demod 637 with 2 at 3
8280 Id : 157, {_}: and_star ?24 ?25 =<= not (or (not ?24) (not ?25)) [25, 24] by Demod 9 with 154 at 2
8281 Id : 327, {_}: and_star truth ?755 =<= not (or falsehood (not ?755)) [755] by Super 157 with 17 at 1,1,3
8282 Id : 328, {_}: and_star truth truth =<= not (or falsehood falsehood) [] by Super 327 with 17 at 2,1,3
8283 Id : 341, {_}: or (or falsehood falsehood) ?773 =<= implies (and_star truth truth) ?773 [773] by Super 6 with 328 at 1,3
8284 Id : 346, {_}: or falsehood (or falsehood ?773) =<= implies (and_star truth truth) ?773 [773] by Demod 341 with 7 at 2
8285 Id : 750, {_}: implies (or falsehood (or falsehood falsehood)) falsehood =>= and_star truth truth [] by Super 638 with 346 at 1,2
8286 Id : 69, {_}: implies (or ?11 (not ?12)) (implies ?12 ?11) =>= truth [12, 11] by Demod 5 with 6 at 1,2
8287 Id : 174, {_}: implies (or ?420 falsehood) (implies truth ?420) =>= truth [420] by Super 69 with 17 at 2,1,2
8288 Id : 177, {_}: implies (or ?420 falsehood) ?420 =>= truth [420] by Demod 174 with 2 at 2,2
8289 Id : 777, {_}: implies truth falsehood =>= or falsehood falsehood [] by Super 638 with 177 at 1,2
8290 Id : 799, {_}: falsehood =<= or falsehood falsehood [] by Demod 777 with 2 at 2
8291 Id : 805, {_}: and_star truth truth =>= not falsehood [] by Demod 328 with 799 at 1,3
8292 Id : 809, {_}: or falsehood (or falsehood ?773) =<= implies (not falsehood) ?773 [773] by Demod 346 with 805 at 1,3
8293 Id : 810, {_}: or falsehood (or falsehood ?773) =>= or falsehood ?773 [773] by Demod 809 with 6 at 3
8294 Id : 898, {_}: implies (or falsehood falsehood) falsehood =>= and_star truth truth [] by Demod 750 with 810 at 1,2
8295 Id : 899, {_}: implies (or falsehood falsehood) falsehood =>= not falsehood [] by Demod 898 with 805 at 3
8296 Id : 900, {_}: truth =<= not falsehood [] by Demod 899 with 177 at 2
8297 Id : 904, {_}: or falsehood ?1384 =<= implies truth ?1384 [1384] by Super 6 with 900 at 1,3
8298 Id : 919, {_}: or falsehood ?1384 =>= ?1384 [1384] by Demod 904 with 2 at 3
8299 Id : 1209, {_}: or ?1836 falsehood =>= ?1836 [1836] by Super 8 with 919 at 3
8300 Id : 908, {_}: and_star falsehood ?1392 =<= not (or truth (not ?1392)) [1392] by Super 157 with 900 at 1,1,3
8301 Id : 916, {_}: and_star falsehood ?1392 =>= not truth [1392] by Demod 908 with 621 at 1,3
8302 Id : 917, {_}: and_star falsehood ?1392 =>= falsehood [1392] by Demod 916 with 17 at 3
8303 Id : 1175, {_}: xor falsehood ?1822 =<= or falsehood (and_star (not falsehood) ?1822) [1822] by Super 163 with 917 at 1,3
8304 Id : 1182, {_}: xor falsehood ?1822 =<= or falsehood (and_star truth ?1822) [1822] by Demod 1175 with 900 at 1,2,3
8305 Id : 907, {_}: and_star ?1390 falsehood =<= not (or (not ?1390) truth) [1390] by Super 157 with 900 at 2,1,3
8306 Id : 913, {_}: and_star ?1390 falsehood =<= not (or truth (not ?1390)) [1390] by Demod 907 with 8 at 1,3
8307 Id : 914, {_}: and_star ?1390 falsehood =>= not truth [1390] by Demod 913 with 621 at 1,3
8308 Id : 915, {_}: and_star ?1390 falsehood =>= falsehood [1390] by Demod 914 with 17 at 3
8309 Id : 1144, {_}: xor ?1792 falsehood =<= or (and_star ?1792 (not falsehood)) falsehood [1792] by Super 163 with 915 at 2,3
8310 Id : 1161, {_}: xor ?1792 falsehood =<= or falsehood (and_star ?1792 (not falsehood)) [1792] by Demod 1144 with 8 at 3
8311 Id : 1162, {_}: xor ?1792 falsehood =<= or falsehood (and_star ?1792 truth) [1792] by Demod 1161 with 900 at 2,2,3
8312 Id : 1257, {_}: xor ?1792 falsehood =>= and_star ?1792 truth [1792] by Demod 1162 with 919 at 3
8313 Id : 1258, {_}: xor falsehood ?1880 =>= and_star ?1880 truth [1880] by Super 13 with 1257 at 3
8314 Id : 1283, {_}: and_star ?1822 truth =<= or falsehood (and_star truth ?1822) [1822] by Demod 1182 with 1258 at 2
8315 Id : 1284, {_}: and_star ?1822 truth =?= and_star truth ?1822 [1822] by Demod 1283 with 919 at 3
8316 Id : 170, {_}: and_star truth ?412 =<= not (or falsehood (not ?412)) [412] by Super 157 with 17 at 1,1,3
8317 Id : 1193, {_}: and_star truth ?412 =>= not (not ?412) [412] by Demod 170 with 919 at 1,3
8318 Id : 1285, {_}: and_star ?1822 truth =>= not (not ?1822) [1822] by Demod 1284 with 1193 at 3
8319 Id : 158, {_}: and_star (and ?27 ?28) ?29 =<= and ?27 (and ?28 ?29) [29, 28, 27] by Demod 10 with 154 at 2
8320 Id : 159, {_}: and_star (and ?27 ?28) ?29 =?= and_star ?27 (and ?28 ?29) [29, 28, 27] by Demod 158 with 154 at 3
8321 Id : 160, {_}: and_star (and_star ?27 ?28) ?29 =?= and_star ?27 (and ?28 ?29) [29, 28, 27] by Demod 159 with 154 at 1,2
8322 Id : 161, {_}: and_star (and_star ?27 ?28) ?29 =>= and_star ?27 (and_star ?28 ?29) [29, 28, 27] by Demod 160 with 154 at 2,3
8323 Id : 1290, {_}: and_star (not (not ?1909)) ?1910 =>= and_star ?1909 (and_star truth ?1910) [1910, 1909] by Super 161 with 1285 at 1,2
8324 Id : 1306, {_}: and_star (not (not ?1909)) ?1910 =>= and_star ?1909 (not (not ?1910)) [1910, 1909] by Demod 1290 with 1193 at 2,3
8325 Id : 1659, {_}: and_star ?2411 (not (not truth)) =>= not (not (not (not ?2411))) [2411] by Super 1285 with 1306 at 2
8326 Id : 1669, {_}: and_star ?2411 (not falsehood) =>= not (not (not (not ?2411))) [2411] by Demod 1659 with 17 at 1,2,2
8327 Id : 1670, {_}: and_star ?2411 truth =>= not (not (not (not ?2411))) [2411] by Demod 1669 with 900 at 2,2
8328 Id : 1671, {_}: not (not ?2411) =<= not (not (not (not ?2411))) [2411] by Demod 1670 with 1285 at 2
8329 Id : 1703, {_}: or (not (not (not ?2451))) ?2452 =<= implies (not (not ?2451)) ?2452 [2452, 2451] by Super 6 with 1671 at 1,3
8330 Id : 1722, {_}: or (not (not (not ?2451))) ?2452 =>= or (not ?2451) ?2452 [2452, 2451] by Demod 1703 with 6 at 3
8331 Id : 1999, {_}: or (not ?2759) falsehood =>= not (not (not ?2759)) [2759] by Super 1209 with 1722 at 2
8332 Id : 2014, {_}: or falsehood (not ?2759) =>= not (not (not ?2759)) [2759] by Demod 1999 with 8 at 2
8333 Id : 2015, {_}: not ?2759 =<= not (not (not ?2759)) [2759] by Demod 2014 with 919 at 2
8334 Id : 2063, {_}: or (not (not ?2816)) ?2817 =<= implies (not ?2816) ?2817 [2817, 2816] by Super 6 with 2015 at 1,3
8335 Id : 2088, {_}: or (not (not ?2816)) ?2817 =>= or ?2816 ?2817 [2817, 2816] by Demod 2063 with 6 at 3
8336 Id : 2169, {_}: or ?2929 falsehood =>= not (not ?2929) [2929] by Super 1209 with 2088 at 2
8337 Id : 2202, {_}: ?2929 =<= not (not ?2929) [2929] by Demod 2169 with 1209 at 2
8338 Id : 2232, {_}: and_star ?2997 (not ?2998) =<= not (or (not ?2997) ?2998) [2998, 2997] by Super 157 with 2202 at 2,1,3
8339 Id : 2716, {_}: or (not ?3623) ?3624 =>= not (and_star ?3623 (not ?3624)) [3624, 3623] by Super 2202 with 2232 at 1,3
8340 Id : 2722, {_}: or ?3642 ?3643 =>= not (and_star (not ?3642) (not ?3643)) [3643, 3642] by Super 2716 with 2202 at 1,2
8341 Id : 2787, {_}: xor ?34 ?35 =>= not (and_star (not (and_star ?34 (not ?35))) (not (and_star (not ?34) ?35))) [35, 34] by Demod 163 with 2722 at 3
8342 Id : 2819, {_}: not (and_star (not (and_star ?37 (not ?38))) (not (and_star (not ?37) ?38))) =<= xor ?38 ?37 [38, 37] by Demod 13 with 2787 at 2
8343 Id : 2820, {_}: not (and_star (not (and_star ?37 (not ?38))) (not (and_star (not ?37) ?38))) =?= not (and_star (not (and_star ?38 (not ?37))) (not (and_star (not ?38) ?37))) [38, 37] by Demod 2819 with 2787 at 3
8344 Id : 2785, {_}: not (and_star (not ?21) (not ?22)) =<= or ?22 ?21 [22, 21] by Demod 8 with 2722 at 2
8345 Id : 2786, {_}: not (and_star (not ?21) (not ?22)) =?= not (and_star (not ?22) (not ?21)) [22, 21] by Demod 2785 with 2722 at 3
8346 Id : 155, {_}: and_star ?31 ?32 =<= and ?32 ?31 [32, 31] by Demod 11 with 154 at 2
8347 Id : 156, {_}: and_star ?31 ?32 =?= and_star ?32 ?31 [32, 31] by Demod 155 with 154 at 3
8348 Id : 2226, {_}: and_star truth ?412 =>= ?412 [412] by Demod 1193 with 2202 at 3
8349 Id : 2228, {_}: and_star ?1822 truth =>= ?1822 [1822] by Demod 1285 with 2202 at 3
8350 Id : 2921, {_}: not (and_star (not (and_star x y)) (not (and_star (not x) (not y)))) === not (and_star (not (and_star x y)) (not (and_star (not x) (not y)))) [] by Demod 2920 with 156 at 1,1,1,3
8351 Id : 2920, {_}: not (and_star (not (and_star x y)) (not (and_star (not x) (not y)))) =<= not (and_star (not (and_star y x)) (not (and_star (not x) (not y)))) [] by Demod 2919 with 2786 at 2,1,3
8352 Id : 2919, {_}: not (and_star (not (and_star x y)) (not (and_star (not x) (not y)))) =<= not (and_star (not (and_star y x)) (not (and_star (not y) (not x)))) [] by Demod 2918 with 2228 at 2,1,1,1,3
8353 Id : 2918, {_}: not (and_star (not (and_star x y)) (not (and_star (not x) (not y)))) =<= not (and_star (not (and_star y (and_star x truth))) (not (and_star (not y) (not x)))) [] by Demod 2917 with 2228 at 1,2,1,2,1,3
8354 Id : 2917, {_}: not (and_star (not (and_star x y)) (not (and_star (not x) (not y)))) =<= not (and_star (not (and_star y (and_star x truth))) (not (and_star (not y) (not (and_star x truth))))) [] by Demod 2916 with 900 at 2,2,1,1,1,3
8355 Id : 2916, {_}: not (and_star (not (and_star x y)) (not (and_star (not x) (not y)))) =<= not (and_star (not (and_star y (and_star x (not falsehood)))) (not (and_star (not y) (not (and_star x truth))))) [] by Demod 2915 with 2228 at 1,2,1,2,1,2
8356 Id : 2915, {_}: not (and_star (not (and_star x y)) (not (and_star (not x) (not (and_star y truth))))) =<= not (and_star (not (and_star y (and_star x (not falsehood)))) (not (and_star (not y) (not (and_star x truth))))) [] by Demod 2914 with 2228 at 2,1,1,1,2
8357 Id : 2914, {_}: not (and_star (not (and_star x (and_star y truth))) (not (and_star (not x) (not (and_star y truth))))) =<= not (and_star (not (and_star y (and_star x (not falsehood)))) (not (and_star (not y) (not (and_star x truth))))) [] by Demod 2913 with 2786 at 3
8358 Id : 2913, {_}: not (and_star (not (and_star x (and_star y truth))) (not (and_star (not x) (not (and_star y truth))))) =<= not (and_star (not (and_star (not y) (not (and_star x truth)))) (not (and_star y (and_star x (not falsehood))))) [] by Demod 2912 with 900 at 2,1,2,1,2,1,2
8359 Id : 2912, {_}: not (and_star (not (and_star x (and_star y truth))) (not (and_star (not x) (not (and_star y (not falsehood)))))) =<= not (and_star (not (and_star (not y) (not (and_star x truth)))) (not (and_star y (and_star x (not falsehood))))) [] by Demod 2911 with 900 at 2,2,1,1,1,2
8360 Id : 2911, {_}: not (and_star (not (and_star x (and_star y (not falsehood)))) (not (and_star (not x) (not (and_star y (not falsehood)))))) =<= not (and_star (not (and_star (not y) (not (and_star x truth)))) (not (and_star y (and_star x (not falsehood))))) [] by Demod 2910 with 917 at 1,2,2,1,2,1,3
8361 Id : 2910, {_}: not (and_star (not (and_star x (and_star y (not falsehood)))) (not (and_star (not x) (not (and_star y (not falsehood)))))) =<= not (and_star (not (and_star (not y) (not (and_star x truth)))) (not (and_star y (and_star x (not (and_star falsehood x)))))) [] by Demod 2909 with 2202 at 1,2,1,2,1,3
8362 Id : 2909, {_}: not (and_star (not (and_star x (and_star y (not falsehood)))) (not (and_star (not x) (not (and_star y (not falsehood)))))) =<= not (and_star (not (and_star (not y) (not (and_star x truth)))) (not (and_star y (and_star (not (not x)) (not (and_star falsehood x)))))) [] by Demod 2908 with 900 at 2,1,2,1,1,1,3
8363 Id : 2908, {_}: not (and_star (not (and_star x (and_star y (not falsehood)))) (not (and_star (not x) (not (and_star y (not falsehood)))))) =<= not (and_star (not (and_star (not y) (not (and_star x (not falsehood))))) (not (and_star y (and_star (not (not x)) (not (and_star falsehood x)))))) [] by Demod 2907 with 917 at 1,2,1,2,1,2,1,2
8364 Id : 2907, {_}: not (and_star (not (and_star x (and_star y (not falsehood)))) (not (and_star (not x) (not (and_star y (not (and_star falsehood y))))))) =<= not (and_star (not (and_star (not y) (not (and_star x (not falsehood))))) (not (and_star y (and_star (not (not x)) (not (and_star falsehood x)))))) [] by Demod 2906 with 2202 at 1,1,2,1,2,1,2
8365 Id : 2906, {_}: not (and_star (not (and_star x (and_star y (not falsehood)))) (not (and_star (not x) (not (and_star (not (not y)) (not (and_star falsehood y))))))) =<= not (and_star (not (and_star (not y) (not (and_star x (not falsehood))))) (not (and_star y (and_star (not (not x)) (not (and_star falsehood x)))))) [] by Demod 2905 with 917 at 1,2,2,1,1,1,2
8366 Id : 2905, {_}: not (and_star (not (and_star x (and_star y (not (and_star falsehood y))))) (not (and_star (not x) (not (and_star (not (not y)) (not (and_star falsehood y))))))) =<= not (and_star (not (and_star (not y) (not (and_star x (not falsehood))))) (not (and_star y (and_star (not (not x)) (not (and_star falsehood x)))))) [] by Demod 2904 with 156 at 2,1,2,1,3
8367 Id : 2904, {_}: not (and_star (not (and_star x (and_star y (not (and_star falsehood y))))) (not (and_star (not x) (not (and_star (not (not y)) (not (and_star falsehood y))))))) =<= not (and_star (not (and_star (not y) (not (and_star x (not falsehood))))) (not (and_star y (and_star (not (and_star falsehood x)) (not (not x)))))) [] by Demod 2903 with 917 at 1,2,1,2,1,1,1,3
8368 Id : 2903, {_}: not (and_star (not (and_star x (and_star y (not (and_star falsehood y))))) (not (and_star (not x) (not (and_star (not (not y)) (not (and_star falsehood y))))))) =<= not (and_star (not (and_star (not y) (not (and_star x (not (and_star falsehood x)))))) (not (and_star y (and_star (not (and_star falsehood x)) (not (not x)))))) [] by Demod 2902 with 2202 at 1,1,2,1,1,1,3
8369 Id : 2902, {_}: not (and_star (not (and_star x (and_star y (not (and_star falsehood y))))) (not (and_star (not x) (not (and_star (not (not y)) (not (and_star falsehood y))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (not x)) (not (and_star falsehood x)))))) (not (and_star y (and_star (not (and_star falsehood x)) (not (not x)))))) [] by Demod 2901 with 2786 at 2,1,2,1,2
8370 Id : 2901, {_}: not (and_star (not (and_star x (and_star y (not (and_star falsehood y))))) (not (and_star (not x) (not (and_star (not (and_star falsehood y)) (not (not y))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (not x)) (not (and_star falsehood x)))))) (not (and_star y (and_star (not (and_star falsehood x)) (not (not x)))))) [] by Demod 2900 with 156 at 1,2,2,1,1,1,2
8371 Id : 2900, {_}: not (and_star (not (and_star x (and_star y (not (and_star y falsehood))))) (not (and_star (not x) (not (and_star (not (and_star falsehood y)) (not (not y))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (not x)) (not (and_star falsehood x)))))) (not (and_star y (and_star (not (and_star falsehood x)) (not (not x)))))) [] by Demod 2899 with 2226 at 1,2,2,1,2,1,3
8372 Id : 2899, {_}: not (and_star (not (and_star x (and_star y (not (and_star y falsehood))))) (not (and_star (not x) (not (and_star (not (and_star falsehood y)) (not (not y))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (not x)) (not (and_star falsehood x)))))) (not (and_star y (and_star (not (and_star falsehood x)) (not (and_star truth (not x))))))) [] by Demod 2898 with 156 at 1,1,2,1,2,1,3
8373 Id : 2898, {_}: not (and_star (not (and_star x (and_star y (not (and_star y falsehood))))) (not (and_star (not x) (not (and_star (not (and_star falsehood y)) (not (not y))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (not x)) (not (and_star falsehood x)))))) (not (and_star y (and_star (not (and_star x falsehood)) (not (and_star truth (not x))))))) [] by Demod 2897 with 2786 at 2,1,1,1,3
8374 Id : 2897, {_}: not (and_star (not (and_star x (and_star y (not (and_star y falsehood))))) (not (and_star (not x) (not (and_star (not (and_star falsehood y)) (not (not y))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star falsehood x)) (not (not x)))))) (not (and_star y (and_star (not (and_star x falsehood)) (not (and_star truth (not x))))))) [] by Demod 2896 with 2226 at 1,2,1,2,1,2,1,2
8375 Id : 2896, {_}: not (and_star (not (and_star x (and_star y (not (and_star y falsehood))))) (not (and_star (not x) (not (and_star (not (and_star falsehood y)) (not (and_star truth (not y)))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star falsehood x)) (not (not x)))))) (not (and_star y (and_star (not (and_star x falsehood)) (not (and_star truth (not x))))))) [] by Demod 2895 with 156 at 1,1,1,2,1,2,1,2
8376 Id : 2895, {_}: not (and_star (not (and_star x (and_star y (not (and_star y falsehood))))) (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y)))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star falsehood x)) (not (not x)))))) (not (and_star y (and_star (not (and_star x falsehood)) (not (and_star truth (not x))))))) [] by Demod 2894 with 17 at 2,1,2,2,1,1,1,2
8377 Id : 2894, {_}: not (and_star (not (and_star x (and_star y (not (and_star y (not truth)))))) (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y)))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star falsehood x)) (not (not x)))))) (not (and_star y (and_star (not (and_star x falsehood)) (not (and_star truth (not x))))))) [] by Demod 2893 with 2202 at 1,2,1,1,1,2
8378 Id : 2893, {_}: not (and_star (not (and_star x (and_star (not (not y)) (not (and_star y (not truth)))))) (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y)))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star falsehood x)) (not (not x)))))) (not (and_star y (and_star (not (and_star x falsehood)) (not (and_star truth (not x))))))) [] by Demod 2892 with 156 at 1,2,2,1,2,1,3
8379 Id : 2892, {_}: not (and_star (not (and_star x (and_star (not (not y)) (not (and_star y (not truth)))))) (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y)))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star falsehood x)) (not (not x)))))) (not (and_star y (and_star (not (and_star x falsehood)) (not (and_star (not x) truth)))))) [] by Demod 2891 with 17 at 2,1,1,2,1,2,1,3
8380 Id : 2891, {_}: not (and_star (not (and_star x (and_star (not (not y)) (not (and_star y (not truth)))))) (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y)))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star falsehood x)) (not (not x)))))) (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth)))))) [] by Demod 2890 with 2226 at 1,2,1,2,1,1,1,3
8381 Id : 2890, {_}: not (and_star (not (and_star x (and_star (not (not y)) (not (and_star y (not truth)))))) (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y)))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star falsehood x)) (not (and_star truth (not x))))))) (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth)))))) [] by Demod 2889 with 156 at 1,1,1,2,1,1,1,3
8382 Id : 2889, {_}: not (and_star (not (and_star x (and_star (not (not y)) (not (and_star y (not truth)))))) (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y)))))))) =<= not (and_star (not (and_star (not y) (not (and_star (not (and_star x falsehood)) (not (and_star truth (not x))))))) (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth)))))) [] by Demod 2888 with 2786 at 2
8383 Id : 2888, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y))))))) (not (and_star x (and_star (not (not y)) (not (and_star y (not truth))))))) =>= not (and_star (not (and_star (not y) (not (and_star (not (and_star x falsehood)) (not (and_star truth (not x))))))) (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth)))))) [] by Demod 2887 with 2786 at 3
8384 Id : 2887, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y))))))) (not (and_star x (and_star (not (not y)) (not (and_star y (not truth))))))) =>= not (and_star (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))) (not (and_star (not y) (not (and_star (not (and_star x falsehood)) (not (and_star truth (not x)))))))) [] by Demod 2886 with 156 at 1,2,2,1,2,1,2
8385 Id : 2886, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y))))))) (not (and_star x (and_star (not (not y)) (not (and_star (not truth) y)))))) =>= not (and_star (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))) (not (and_star (not y) (not (and_star (not (and_star x falsehood)) (not (and_star truth (not x)))))))) [] by Demod 2885 with 2226 at 1,1,2,1,2,1,2
8386 Id : 2885, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star truth (not y))))))) (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y)))))) =>= not (and_star (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))) (not (and_star (not y) (not (and_star (not (and_star x falsehood)) (not (and_star truth (not x)))))))) [] by Demod 2884 with 156 at 1,2,1,2,1,1,1,2
8387 Id : 2884, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y falsehood)) (not (and_star (not y) truth)))))) (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y)))))) =>= not (and_star (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))) (not (and_star (not y) (not (and_star (not (and_star x falsehood)) (not (and_star truth (not x)))))))) [] by Demod 2883 with 17 at 2,1,1,1,2,1,1,1,2
8388 Id : 2883, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y (not truth))) (not (and_star (not y) truth)))))) (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y)))))) =>= not (and_star (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))) (not (and_star (not y) (not (and_star (not (and_star x falsehood)) (not (and_star truth (not x)))))))) [] by Demod 2882 with 156 at 1,2,1,2,1,2,1,3
8389 Id : 2882, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y (not truth))) (not (and_star (not y) truth)))))) (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y)))))) =>= not (and_star (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))) (not (and_star (not y) (not (and_star (not (and_star x falsehood)) (not (and_star (not x) truth))))))) [] by Demod 2881 with 17 at 2,1,1,1,2,1,2,1,3
8390 Id : 2881, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y (not truth))) (not (and_star (not y) truth)))))) (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y)))))) =>= not (and_star (not (and_star y (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))) (not (and_star (not y) (not (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))))) [] by Demod 2880 with 2202 at 2,1,1,1,3
8391 Id : 2880, {_}: not (and_star (not (and_star (not x) (not (and_star (not (and_star y (not truth))) (not (and_star (not y) truth)))))) (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y)))))) =>= not (and_star (not (and_star y (not (not (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))))) (not (and_star (not y) (not (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))))) [] by Demod 2879 with 2786 at 2
8392 Id : 2879, {_}: not (and_star (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))) (not (and_star (not x) (not (and_star (not (and_star y (not truth))) (not (and_star (not y) truth))))))) =>= not (and_star (not (and_star y (not (not (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))))) (not (and_star (not y) (not (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))))) [] by Demod 2878 with 2787 at 2,1,2,1,3
8393 Id : 2878, {_}: not (and_star (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))) (not (and_star (not x) (not (and_star (not (and_star y (not truth))) (not (and_star (not y) truth))))))) =<= not (and_star (not (and_star y (not (not (and_star (not (and_star x (not truth))) (not (and_star (not x) truth))))))) (not (and_star (not y) (xor x truth)))) [] by Demod 2877 with 2787 at 1,2,1,1,1,3
8394 Id : 2877, {_}: not (and_star (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))) (not (and_star (not x) (not (and_star (not (and_star y (not truth))) (not (and_star (not y) truth))))))) =<= not (and_star (not (and_star y (not (xor x truth)))) (not (and_star (not y) (xor x truth)))) [] by Demod 2876 with 2820 at 2,1,2,1,2
8395 Id : 2876, {_}: not (and_star (not (and_star x (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))) (not (and_star (not x) (not (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))))) =<= not (and_star (not (and_star y (not (xor x truth)))) (not (and_star (not y) (xor x truth)))) [] by Demod 2875 with 2202 at 2,1,1,1,2
8396 Id : 2875, {_}: not (and_star (not (and_star x (not (not (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))))) (not (and_star (not x) (not (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))))) =<= not (and_star (not (and_star y (not (xor x truth)))) (not (and_star (not y) (xor x truth)))) [] by Demod 2874 with 2820 at 3
8397 Id : 2874, {_}: not (and_star (not (and_star x (not (not (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))))) (not (and_star (not x) (not (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))))) =<= not (and_star (not (and_star (xor x truth) (not y))) (not (and_star (not (xor x truth)) y))) [] by Demod 2873 with 2787 at 2,1,2,1,2
8398 Id : 2873, {_}: not (and_star (not (and_star x (not (not (and_star (not (and_star truth (not y))) (not (and_star (not truth) y))))))) (not (and_star (not x) (xor truth y)))) =>= not (and_star (not (and_star (xor x truth) (not y))) (not (and_star (not (xor x truth)) y))) [] by Demod 2872 with 2787 at 1,2,1,1,1,2
8399 Id : 2872, {_}: not (and_star (not (and_star x (not (xor truth y)))) (not (and_star (not x) (xor truth y)))) =>= not (and_star (not (and_star (xor x truth) (not y))) (not (and_star (not (xor x truth)) y))) [] by Demod 2871 with 2787 at 3
8400 Id : 2871, {_}: not (and_star (not (and_star x (not (xor truth y)))) (not (and_star (not x) (xor truth y)))) =<= xor (xor x truth) y [] by Demod 1 with 2787 at 2
8401 Id : 1, {_}: xor x (xor truth y) =<= xor (xor x truth) y [] by prove_alternative_wajsberg_axiom
8402 % SZS output end CNFRefutation for LCL159-1.p
8403 24162: solved LCL159-1.p in 4.49628 using lpo
8404 24162: status Unsatisfiable for LCL159-1.p
8405 NO CLASH, using fixed ground order
8407 24168: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8409 add ?4 additive_identity =>= ?4
8410 [4] by right_additive_identity ?4
8412 multiply additive_identity ?6 =>= additive_identity
8413 [6] by left_multiplicative_zero ?6
8415 multiply ?8 additive_identity =>= additive_identity
8416 [8] by right_multiplicative_zero ?8
8418 add (additive_inverse ?10) ?10 =>= additive_identity
8419 [10] by left_additive_inverse ?10
8421 add ?12 (additive_inverse ?12) =>= additive_identity
8422 [12] by right_additive_inverse ?12
8424 additive_inverse (additive_inverse ?14) =>= ?14
8425 [14] by additive_inverse_additive_inverse ?14
8427 multiply ?16 (add ?17 ?18)
8429 add (multiply ?16 ?17) (multiply ?16 ?18)
8430 [18, 17, 16] by distribute1 ?16 ?17 ?18
8431 24168: Id : 10, {_}:
8432 multiply (add ?20 ?21) ?22
8434 add (multiply ?20 ?22) (multiply ?21 ?22)
8435 [22, 21, 20] by distribute2 ?20 ?21 ?22
8436 24168: Id : 11, {_}:
8437 add ?24 ?25 =?= add ?25 ?24
8438 [25, 24] by commutativity_for_addition ?24 ?25
8439 24168: Id : 12, {_}:
8440 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
8441 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
8442 24168: Id : 13, {_}:
8443 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
8444 [32, 31] by right_alternative ?31 ?32
8445 NO CLASH, using fixed ground order
8447 24169: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8449 add ?4 additive_identity =>= ?4
8450 [4] by right_additive_identity ?4
8452 multiply additive_identity ?6 =>= additive_identity
8453 [6] by left_multiplicative_zero ?6
8455 multiply ?8 additive_identity =>= additive_identity
8456 [8] by right_multiplicative_zero ?8
8458 add (additive_inverse ?10) ?10 =>= additive_identity
8459 [10] by left_additive_inverse ?10
8461 add ?12 (additive_inverse ?12) =>= additive_identity
8462 [12] by right_additive_inverse ?12
8464 additive_inverse (additive_inverse ?14) =>= ?14
8465 [14] by additive_inverse_additive_inverse ?14
8467 multiply ?16 (add ?17 ?18)
8469 add (multiply ?16 ?17) (multiply ?16 ?18)
8470 [18, 17, 16] by distribute1 ?16 ?17 ?18
8471 24169: Id : 10, {_}:
8472 multiply (add ?20 ?21) ?22
8474 add (multiply ?20 ?22) (multiply ?21 ?22)
8475 [22, 21, 20] by distribute2 ?20 ?21 ?22
8476 24169: Id : 11, {_}:
8477 add ?24 ?25 =?= add ?25 ?24
8478 [25, 24] by commutativity_for_addition ?24 ?25
8479 24169: Id : 12, {_}:
8480 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
8481 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
8482 24169: Id : 13, {_}:
8483 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
8484 [32, 31] by right_alternative ?31 ?32
8485 24169: Id : 14, {_}:
8486 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
8487 [35, 34] by left_alternative ?34 ?35
8488 24169: Id : 15, {_}:
8489 associator ?37 ?38 ?39
8491 add (multiply (multiply ?37 ?38) ?39)
8492 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
8493 [39, 38, 37] by associator ?37 ?38 ?39
8494 24169: Id : 16, {_}:
8497 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
8498 [42, 41] by commutator ?41 ?42
8501 associator x y (add u v)
8503 add (associator x y u) (associator x y v)
8504 [] by prove_linearised_form1
8508 24169: u 2 0 2 1,3,2
8509 24169: v 2 0 2 2,3,2
8512 24169: additive_identity 8 0 0
8513 24169: additive_inverse 6 1 0
8514 24169: commutator 1 2 0
8515 24169: add 18 2 2 0,3,2
8516 24169: multiply 22 2 0
8517 24169: associator 4 3 3 0,2
8518 NO CLASH, using fixed ground order
8520 24167: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8522 add ?4 additive_identity =>= ?4
8523 [4] by right_additive_identity ?4
8525 multiply additive_identity ?6 =>= additive_identity
8526 [6] by left_multiplicative_zero ?6
8528 multiply ?8 additive_identity =>= additive_identity
8529 [8] by right_multiplicative_zero ?8
8531 add (additive_inverse ?10) ?10 =>= additive_identity
8532 [10] by left_additive_inverse ?10
8534 add ?12 (additive_inverse ?12) =>= additive_identity
8535 [12] by right_additive_inverse ?12
8537 additive_inverse (additive_inverse ?14) =>= ?14
8538 [14] by additive_inverse_additive_inverse ?14
8540 multiply ?16 (add ?17 ?18)
8542 add (multiply ?16 ?17) (multiply ?16 ?18)
8543 [18, 17, 16] by distribute1 ?16 ?17 ?18
8544 24167: Id : 10, {_}:
8545 multiply (add ?20 ?21) ?22
8547 add (multiply ?20 ?22) (multiply ?21 ?22)
8548 [22, 21, 20] by distribute2 ?20 ?21 ?22
8549 24167: Id : 11, {_}:
8550 add ?24 ?25 =?= add ?25 ?24
8551 [25, 24] by commutativity_for_addition ?24 ?25
8552 24167: Id : 12, {_}:
8553 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
8554 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
8555 24167: Id : 13, {_}:
8556 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
8557 [32, 31] by right_alternative ?31 ?32
8558 24167: Id : 14, {_}:
8559 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
8560 [35, 34] by left_alternative ?34 ?35
8561 24167: Id : 15, {_}:
8562 associator ?37 ?38 ?39
8564 add (multiply (multiply ?37 ?38) ?39)
8565 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
8566 [39, 38, 37] by associator ?37 ?38 ?39
8567 24167: Id : 16, {_}:
8570 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
8571 [42, 41] by commutator ?41 ?42
8574 associator x y (add u v)
8576 add (associator x y u) (associator x y v)
8577 [] by prove_linearised_form1
8581 24167: u 2 0 2 1,3,2
8582 24167: v 2 0 2 2,3,2
8585 24167: additive_identity 8 0 0
8586 24167: additive_inverse 6 1 0
8587 24167: commutator 1 2 0
8588 24167: add 18 2 2 0,3,2
8589 24167: multiply 22 2 0
8590 24167: associator 4 3 3 0,2
8591 24168: Id : 14, {_}:
8592 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
8593 [35, 34] by left_alternative ?34 ?35
8594 24168: Id : 15, {_}:
8595 associator ?37 ?38 ?39
8597 add (multiply (multiply ?37 ?38) ?39)
8598 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
8599 [39, 38, 37] by associator ?37 ?38 ?39
8600 24168: Id : 16, {_}:
8603 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
8604 [42, 41] by commutator ?41 ?42
8607 associator x y (add u v)
8609 add (associator x y u) (associator x y v)
8610 [] by prove_linearised_form1
8614 24168: u 2 0 2 1,3,2
8615 24168: v 2 0 2 2,3,2
8618 24168: additive_identity 8 0 0
8619 24168: additive_inverse 6 1 0
8620 24168: commutator 1 2 0
8621 24168: add 18 2 2 0,3,2
8622 24168: multiply 22 2 0
8623 24168: associator 4 3 3 0,2
8624 % SZS status Timeout for RNG019-6.p
8625 NO CLASH, using fixed ground order
8627 24186: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8629 add ?4 additive_identity =>= ?4
8630 [4] by right_additive_identity ?4
8632 multiply additive_identity ?6 =>= additive_identity
8633 [6] by left_multiplicative_zero ?6
8635 multiply ?8 additive_identity =>= additive_identity
8636 [8] by right_multiplicative_zero ?8
8638 add (additive_inverse ?10) ?10 =>= additive_identity
8639 [10] by left_additive_inverse ?10
8641 add ?12 (additive_inverse ?12) =>= additive_identity
8642 [12] by right_additive_inverse ?12
8644 additive_inverse (additive_inverse ?14) =>= ?14
8645 [14] by additive_inverse_additive_inverse ?14
8647 multiply ?16 (add ?17 ?18)
8649 add (multiply ?16 ?17) (multiply ?16 ?18)
8650 [18, 17, 16] by distribute1 ?16 ?17 ?18
8651 24186: Id : 10, {_}:
8652 multiply (add ?20 ?21) ?22
8654 add (multiply ?20 ?22) (multiply ?21 ?22)
8655 [22, 21, 20] by distribute2 ?20 ?21 ?22
8656 24186: Id : 11, {_}:
8657 add ?24 ?25 =?= add ?25 ?24
8658 [25, 24] by commutativity_for_addition ?24 ?25
8659 24186: Id : 12, {_}:
8660 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
8661 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
8662 24186: Id : 13, {_}:
8663 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
8664 [32, 31] by right_alternative ?31 ?32
8665 24186: Id : 14, {_}:
8666 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
8667 [35, 34] by left_alternative ?34 ?35
8668 24186: Id : 15, {_}:
8669 associator ?37 ?38 ?39
8671 add (multiply (multiply ?37 ?38) ?39)
8672 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
8673 [39, 38, 37] by associator ?37 ?38 ?39
8674 24186: Id : 16, {_}:
8677 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
8678 [42, 41] by commutator ?41 ?42
8681 associator (add u v) x y
8683 add (associator u x y) (associator v x y)
8684 [] by prove_linearised_form3
8688 24186: u 2 0 2 1,1,2
8689 24186: v 2 0 2 2,1,2
8692 24186: additive_identity 8 0 0
8693 24186: additive_inverse 6 1 0
8694 24186: commutator 1 2 0
8695 24186: add 18 2 2 0,1,2
8696 24186: multiply 22 2 0
8697 24186: associator 4 3 3 0,2
8698 NO CLASH, using fixed ground order
8700 24185: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8702 add ?4 additive_identity =>= ?4
8703 [4] by right_additive_identity ?4
8705 multiply additive_identity ?6 =>= additive_identity
8706 [6] by left_multiplicative_zero ?6
8708 multiply ?8 additive_identity =>= additive_identity
8709 [8] by right_multiplicative_zero ?8
8711 add (additive_inverse ?10) ?10 =>= additive_identity
8712 [10] by left_additive_inverse ?10
8714 add ?12 (additive_inverse ?12) =>= additive_identity
8715 [12] by right_additive_inverse ?12
8717 additive_inverse (additive_inverse ?14) =>= ?14
8718 [14] by additive_inverse_additive_inverse ?14
8720 multiply ?16 (add ?17 ?18)
8722 add (multiply ?16 ?17) (multiply ?16 ?18)
8723 [18, 17, 16] by distribute1 ?16 ?17 ?18
8724 24185: Id : 10, {_}:
8725 multiply (add ?20 ?21) ?22
8727 add (multiply ?20 ?22) (multiply ?21 ?22)
8728 [22, 21, 20] by distribute2 ?20 ?21 ?22
8729 24185: Id : 11, {_}:
8730 add ?24 ?25 =?= add ?25 ?24
8731 [25, 24] by commutativity_for_addition ?24 ?25
8732 24185: Id : 12, {_}:
8733 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
8734 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
8735 24185: Id : 13, {_}:
8736 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
8737 [32, 31] by right_alternative ?31 ?32
8738 24185: Id : 14, {_}:
8739 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
8740 [35, 34] by left_alternative ?34 ?35
8741 24185: Id : 15, {_}:
8742 associator ?37 ?38 ?39
8744 add (multiply (multiply ?37 ?38) ?39)
8745 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
8746 [39, 38, 37] by associator ?37 ?38 ?39
8747 24185: Id : 16, {_}:
8750 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
8751 [42, 41] by commutator ?41 ?42
8754 associator (add u v) x y
8756 add (associator u x y) (associator v x y)
8757 [] by prove_linearised_form3
8761 24185: u 2 0 2 1,1,2
8762 24185: v 2 0 2 2,1,2
8765 24185: additive_identity 8 0 0
8766 24185: additive_inverse 6 1 0
8767 24185: commutator 1 2 0
8768 24185: add 18 2 2 0,1,2
8769 24185: multiply 22 2 0
8770 24185: associator 4 3 3 0,2
8771 NO CLASH, using fixed ground order
8773 24187: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8775 add ?4 additive_identity =>= ?4
8776 [4] by right_additive_identity ?4
8778 multiply additive_identity ?6 =>= additive_identity
8779 [6] by left_multiplicative_zero ?6
8781 multiply ?8 additive_identity =>= additive_identity
8782 [8] by right_multiplicative_zero ?8
8784 add (additive_inverse ?10) ?10 =>= additive_identity
8785 [10] by left_additive_inverse ?10
8787 add ?12 (additive_inverse ?12) =>= additive_identity
8788 [12] by right_additive_inverse ?12
8790 additive_inverse (additive_inverse ?14) =>= ?14
8791 [14] by additive_inverse_additive_inverse ?14
8793 multiply ?16 (add ?17 ?18)
8795 add (multiply ?16 ?17) (multiply ?16 ?18)
8796 [18, 17, 16] by distribute1 ?16 ?17 ?18
8797 24187: Id : 10, {_}:
8798 multiply (add ?20 ?21) ?22
8800 add (multiply ?20 ?22) (multiply ?21 ?22)
8801 [22, 21, 20] by distribute2 ?20 ?21 ?22
8802 24187: Id : 11, {_}:
8803 add ?24 ?25 =?= add ?25 ?24
8804 [25, 24] by commutativity_for_addition ?24 ?25
8805 24187: Id : 12, {_}:
8806 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
8807 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
8808 24187: Id : 13, {_}:
8809 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
8810 [32, 31] by right_alternative ?31 ?32
8811 24187: Id : 14, {_}:
8812 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
8813 [35, 34] by left_alternative ?34 ?35
8814 24187: Id : 15, {_}:
8815 associator ?37 ?38 ?39
8817 add (multiply (multiply ?37 ?38) ?39)
8818 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
8819 [39, 38, 37] by associator ?37 ?38 ?39
8820 24187: Id : 16, {_}:
8823 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
8824 [42, 41] by commutator ?41 ?42
8827 associator (add u v) x y
8829 add (associator u x y) (associator v x y)
8830 [] by prove_linearised_form3
8834 24187: u 2 0 2 1,1,2
8835 24187: v 2 0 2 2,1,2
8838 24187: additive_identity 8 0 0
8839 24187: additive_inverse 6 1 0
8840 24187: commutator 1 2 0
8841 24187: add 18 2 2 0,1,2
8842 24187: multiply 22 2 0
8843 24187: associator 4 3 3 0,2
8844 % SZS status Timeout for RNG021-6.p
8845 NO CLASH, using fixed ground order
8847 24214: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8849 add ?4 additive_identity =>= ?4
8850 [4] by right_additive_identity ?4
8852 multiply additive_identity ?6 =>= additive_identity
8853 [6] by left_multiplicative_zero ?6
8855 multiply ?8 additive_identity =>= additive_identity
8856 [8] by right_multiplicative_zero ?8
8858 add (additive_inverse ?10) ?10 =>= additive_identity
8859 [10] by left_additive_inverse ?10
8861 add ?12 (additive_inverse ?12) =>= additive_identity
8862 [12] by right_additive_inverse ?12
8864 additive_inverse (additive_inverse ?14) =>= ?14
8865 [14] by additive_inverse_additive_inverse ?14
8867 multiply ?16 (add ?17 ?18)
8869 add (multiply ?16 ?17) (multiply ?16 ?18)
8870 [18, 17, 16] by distribute1 ?16 ?17 ?18
8871 24214: Id : 10, {_}:
8872 multiply (add ?20 ?21) ?22
8874 add (multiply ?20 ?22) (multiply ?21 ?22)
8875 [22, 21, 20] by distribute2 ?20 ?21 ?22
8876 24214: Id : 11, {_}:
8877 add ?24 ?25 =?= add ?25 ?24
8878 [25, 24] by commutativity_for_addition ?24 ?25
8879 24214: Id : 12, {_}:
8880 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
8881 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
8882 24214: Id : 13, {_}:
8883 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
8884 [32, 31] by right_alternative ?31 ?32
8885 24214: Id : 14, {_}:
8886 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
8887 [35, 34] by left_alternative ?34 ?35
8888 24214: Id : 15, {_}:
8889 associator ?37 ?38 ?39
8891 add (multiply (multiply ?37 ?38) ?39)
8892 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
8893 [39, 38, 37] by associator ?37 ?38 ?39
8894 24214: Id : 16, {_}:
8897 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
8898 [42, 41] by commutator ?41 ?42
8900 24214: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law
8906 24214: additive_identity 9 0 1 3
8907 24214: additive_inverse 6 1 0
8908 24214: commutator 1 2 0
8910 24214: multiply 22 2 0
8911 24214: associator 2 3 1 0,2
8912 NO CLASH, using fixed ground order
8914 24215: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8916 add ?4 additive_identity =>= ?4
8917 [4] by right_additive_identity ?4
8919 multiply additive_identity ?6 =>= additive_identity
8920 [6] by left_multiplicative_zero ?6
8922 multiply ?8 additive_identity =>= additive_identity
8923 [8] by right_multiplicative_zero ?8
8925 add (additive_inverse ?10) ?10 =>= additive_identity
8926 [10] by left_additive_inverse ?10
8928 add ?12 (additive_inverse ?12) =>= additive_identity
8929 [12] by right_additive_inverse ?12
8931 additive_inverse (additive_inverse ?14) =>= ?14
8932 [14] by additive_inverse_additive_inverse ?14
8934 multiply ?16 (add ?17 ?18)
8936 add (multiply ?16 ?17) (multiply ?16 ?18)
8937 [18, 17, 16] by distribute1 ?16 ?17 ?18
8938 24215: Id : 10, {_}:
8939 multiply (add ?20 ?21) ?22
8941 add (multiply ?20 ?22) (multiply ?21 ?22)
8942 [22, 21, 20] by distribute2 ?20 ?21 ?22
8943 24215: Id : 11, {_}:
8944 add ?24 ?25 =?= add ?25 ?24
8945 [25, 24] by commutativity_for_addition ?24 ?25
8946 24215: Id : 12, {_}:
8947 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
8948 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
8949 24215: Id : 13, {_}:
8950 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
8951 [32, 31] by right_alternative ?31 ?32
8952 24215: Id : 14, {_}:
8953 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
8954 [35, 34] by left_alternative ?34 ?35
8955 24215: Id : 15, {_}:
8956 associator ?37 ?38 ?39
8958 add (multiply (multiply ?37 ?38) ?39)
8959 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
8960 [39, 38, 37] by associator ?37 ?38 ?39
8961 24215: Id : 16, {_}:
8964 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
8965 [42, 41] by commutator ?41 ?42
8967 24215: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law
8973 24215: additive_identity 9 0 1 3
8974 24215: additive_inverse 6 1 0
8975 24215: commutator 1 2 0
8977 24215: multiply 22 2 0
8978 24215: associator 2 3 1 0,2
8979 NO CLASH, using fixed ground order
8981 24216: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
8983 add ?4 additive_identity =>= ?4
8984 [4] by right_additive_identity ?4
8986 multiply additive_identity ?6 =>= additive_identity
8987 [6] by left_multiplicative_zero ?6
8989 multiply ?8 additive_identity =>= additive_identity
8990 [8] by right_multiplicative_zero ?8
8992 add (additive_inverse ?10) ?10 =>= additive_identity
8993 [10] by left_additive_inverse ?10
8995 add ?12 (additive_inverse ?12) =>= additive_identity
8996 [12] by right_additive_inverse ?12
8998 additive_inverse (additive_inverse ?14) =>= ?14
8999 [14] by additive_inverse_additive_inverse ?14
9001 multiply ?16 (add ?17 ?18)
9003 add (multiply ?16 ?17) (multiply ?16 ?18)
9004 [18, 17, 16] by distribute1 ?16 ?17 ?18
9005 24216: Id : 10, {_}:
9006 multiply (add ?20 ?21) ?22
9008 add (multiply ?20 ?22) (multiply ?21 ?22)
9009 [22, 21, 20] by distribute2 ?20 ?21 ?22
9010 24216: Id : 11, {_}:
9011 add ?24 ?25 =?= add ?25 ?24
9012 [25, 24] by commutativity_for_addition ?24 ?25
9013 24216: Id : 12, {_}:
9014 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
9015 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
9016 24216: Id : 13, {_}:
9017 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
9018 [32, 31] by right_alternative ?31 ?32
9019 24216: Id : 14, {_}:
9020 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
9021 [35, 34] by left_alternative ?34 ?35
9022 24216: Id : 15, {_}:
9023 associator ?37 ?38 ?39
9025 add (multiply (multiply ?37 ?38) ?39)
9026 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
9027 [39, 38, 37] by associator ?37 ?38 ?39
9028 24216: Id : 16, {_}:
9031 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
9032 [42, 41] by commutator ?41 ?42
9034 24216: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law
9040 24216: additive_identity 9 0 1 3
9041 24216: additive_inverse 6 1 0
9042 24216: commutator 1 2 0
9044 24216: multiply 22 2 0
9045 24216: associator 2 3 1 0,2
9046 % SZS status Timeout for RNG025-6.p
9047 NO CLASH, using fixed ground order
9049 24240: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
9051 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
9052 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
9054 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
9057 [10, 9] by robbins_axiom ?9 ?10
9058 24240: Id : 5, {_}: add c c =>= c [] by idempotence
9061 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
9064 [] by prove_huntingtons_axiom
9068 24240: a 2 0 2 1,1,1,2
9070 24240: b 3 0 3 1,2,1,1,2
9071 24240: negate 9 1 5 0,1,2
9072 24240: add 13 2 3 0,2
9073 NO CLASH, using fixed ground order
9075 24239: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
9077 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
9078 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
9080 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
9083 [10, 9] by robbins_axiom ?9 ?10
9084 24239: Id : 5, {_}: add c c =>= c [] by idempotence
9087 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
9090 [] by prove_huntingtons_axiom
9094 24239: a 2 0 2 1,1,1,2
9096 24239: b 3 0 3 1,2,1,1,2
9097 24239: negate 9 1 5 0,1,2
9098 24239: add 13 2 3 0,2
9099 NO CLASH, using fixed ground order
9101 24241: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
9103 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
9104 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
9106 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
9109 [10, 9] by robbins_axiom ?9 ?10
9110 24241: Id : 5, {_}: add c c =>= c [] by idempotence
9113 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
9116 [] by prove_huntingtons_axiom
9120 24241: a 2 0 2 1,1,1,2
9122 24241: b 3 0 3 1,2,1,1,2
9123 24241: negate 9 1 5 0,1,2
9124 24241: add 13 2 3 0,2
9125 % SZS status Timeout for ROB005-1.p
9126 NO CLASH, using fixed ground order
9129 multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6)
9131 multiply ?2 ?3 (multiply ?4 ?5 ?6)
9132 [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
9133 24337: Id : 3, {_}: multiply ?8 ?8 ?9 =>= ?8 [9, 8] by ternary_multiply_2 ?8 ?9
9135 multiply (inverse ?11) ?11 ?12 =>= ?12
9136 [12, 11] by left_inverse ?11 ?12
9138 multiply ?14 ?15 (inverse ?15) =>= ?14
9139 [15, 14] by right_inverse ?14 ?15
9141 24337: Id : 1, {_}: multiply y x x =>= x [] by prove_ternary_multiply_1_independant
9147 24337: inverse 2 1 0
9148 24337: multiply 9 3 1 0,2
9149 NO CLASH, using fixed ground order
9152 multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6)
9154 multiply ?2 ?3 (multiply ?4 ?5 ?6)
9155 [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
9156 24338: Id : 3, {_}: multiply ?8 ?8 ?9 =>= ?8 [9, 8] by ternary_multiply_2 ?8 ?9
9158 multiply (inverse ?11) ?11 ?12 =>= ?12
9159 [12, 11] by left_inverse ?11 ?12
9161 multiply ?14 ?15 (inverse ?15) =>= ?14
9162 [15, 14] by right_inverse ?14 ?15
9164 24338: Id : 1, {_}: multiply y x x =>= x [] by prove_ternary_multiply_1_independant
9170 24338: inverse 2 1 0
9171 24338: multiply 9 3 1 0,2
9172 NO CLASH, using fixed ground order
9175 multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6)
9177 multiply ?2 ?3 (multiply ?4 ?5 ?6)
9178 [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
9179 24339: Id : 3, {_}: multiply ?8 ?8 ?9 =>= ?8 [9, 8] by ternary_multiply_2 ?8 ?9
9181 multiply (inverse ?11) ?11 ?12 =>= ?12
9182 [12, 11] by left_inverse ?11 ?12
9184 multiply ?14 ?15 (inverse ?15) =>= ?14
9185 [15, 14] by right_inverse ?14 ?15
9187 24339: Id : 1, {_}: multiply y x x =>= x [] by prove_ternary_multiply_1_independant
9193 24339: inverse 2 1 0
9194 24339: multiply 9 3 1 0,2
9195 % SZS status Timeout for BOO019-1.p
9196 CLASH, statistics insufficient
9199 add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2
9200 [4, 3, 2] by l1 ?2 ?3 ?4
9202 add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7
9203 [8, 7, 6] by l3 ?6 ?7 ?8
9205 multiply (add ?10 ?11) (add ?10 (inverse ?11)) =>= ?10
9206 [11, 10] by b1 ?10 ?11
9208 multiply (add (multiply ?13 ?14) ?13) (add ?13 ?14) =>= ?13
9209 [14, 13] by majority1 ?13 ?14
9211 multiply (add (multiply ?16 ?16) ?17) (add ?16 ?16) =>= ?16
9212 [17, 16] by majority2 ?16 ?17
9214 multiply (add (multiply ?19 ?20) ?20) (add ?19 ?20) =>= ?20
9215 [20, 19] by majority3 ?19 ?20
9217 25312: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9221 25312: a 2 0 2 1,1,2
9222 25312: inverse 3 1 2 0,2
9223 25312: multiply 11 2 0
9225 CLASH, statistics insufficient
9228 add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2
9229 [4, 3, 2] by l1 ?2 ?3 ?4
9231 add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7
9232 [8, 7, 6] by l3 ?6 ?7 ?8
9234 multiply (add ?10 ?11) (add ?10 (inverse ?11)) =>= ?10
9235 [11, 10] by b1 ?10 ?11
9237 multiply (add (multiply ?13 ?14) ?13) (add ?13 ?14) =>= ?13
9238 [14, 13] by majority1 ?13 ?14
9240 multiply (add (multiply ?16 ?16) ?17) (add ?16 ?16) =>= ?16
9241 [17, 16] by majority2 ?16 ?17
9243 multiply (add (multiply ?19 ?20) ?20) (add ?19 ?20) =>= ?20
9244 [20, 19] by majority3 ?19 ?20
9246 25313: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9250 25313: a 2 0 2 1,1,2
9251 25313: inverse 3 1 2 0,2
9252 25313: multiply 11 2 0
9254 CLASH, statistics insufficient
9257 add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2
9258 [4, 3, 2] by l1 ?2 ?3 ?4
9260 add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7
9261 [8, 7, 6] by l3 ?6 ?7 ?8
9263 multiply (add ?10 ?11) (add ?10 (inverse ?11)) =>= ?10
9264 [11, 10] by b1 ?10 ?11
9266 multiply (add (multiply ?13 ?14) ?13) (add ?13 ?14) =>= ?13
9267 [14, 13] by majority1 ?13 ?14
9269 multiply (add (multiply ?16 ?16) ?17) (add ?16 ?16) =>= ?16
9270 [17, 16] by majority2 ?16 ?17
9272 multiply (add (multiply ?19 ?20) ?20) (add ?19 ?20) =>= ?20
9273 [20, 19] by majority3 ?19 ?20
9275 25314: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9279 25314: a 2 0 2 1,1,2
9280 25314: inverse 3 1 2 0,2
9281 25314: multiply 11 2 0
9283 % SZS status Timeout for BOO030-1.p
9284 CLASH, statistics insufficient
9287 add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2
9288 [4, 3, 2] by l1 ?2 ?3 ?4
9290 add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7
9291 [8, 7, 6] by l3 ?6 ?7 ?8
9293 multiply (add ?10 (inverse ?10)) ?11 =>= ?11
9294 [11, 10] by property3 ?10 ?11
9296 multiply ?13 (add ?14 (add ?13 ?15)) =>= ?13
9297 [15, 14, 13] by l2 ?13 ?14 ?15
9299 multiply (multiply (add ?17 ?18) (add ?18 ?19)) ?18 =>= ?18
9300 [19, 18, 17] by l4 ?17 ?18 ?19
9302 add (multiply ?21 (inverse ?21)) ?22 =>= ?22
9303 [22, 21] by property3_dual ?21 ?22
9305 add (multiply (add ?24 ?25) ?24) (multiply ?24 ?25) =>= ?24
9306 [25, 24] by majority1 ?24 ?25
9308 add (multiply (add ?27 ?27) ?28) (multiply ?27 ?27) =>= ?27
9309 [28, 27] by majority2 ?27 ?28
9310 25341: Id : 10, {_}:
9311 add (multiply (add ?30 ?31) ?31) (multiply ?30 ?31) =>= ?31
9312 [31, 30] by majority3 ?30 ?31
9313 25341: Id : 11, {_}:
9314 multiply (add (multiply ?33 ?34) ?33) (add ?33 ?34) =>= ?33
9315 [34, 33] by majority1_dual ?33 ?34
9316 25341: Id : 12, {_}:
9317 multiply (add (multiply ?36 ?36) ?37) (add ?36 ?36) =>= ?36
9318 [37, 36] by majority2_dual ?36 ?37
9319 25341: Id : 13, {_}:
9320 multiply (add (multiply ?39 ?40) ?40) (add ?39 ?40) =>= ?40
9321 [40, 39] by majority3_dual ?39 ?40
9323 25341: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9327 25341: a 2 0 2 1,1,2
9328 25341: inverse 4 1 2 0,2
9329 25341: multiply 21 2 0
9331 CLASH, statistics insufficient
9334 add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2
9335 [4, 3, 2] by l1 ?2 ?3 ?4
9337 add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7
9338 [8, 7, 6] by l3 ?6 ?7 ?8
9340 multiply (add ?10 (inverse ?10)) ?11 =>= ?11
9341 [11, 10] by property3 ?10 ?11
9343 multiply ?13 (add ?14 (add ?13 ?15)) =>= ?13
9344 [15, 14, 13] by l2 ?13 ?14 ?15
9346 multiply (multiply (add ?17 ?18) (add ?18 ?19)) ?18 =>= ?18
9347 [19, 18, 17] by l4 ?17 ?18 ?19
9349 add (multiply ?21 (inverse ?21)) ?22 =>= ?22
9350 [22, 21] by property3_dual ?21 ?22
9352 add (multiply (add ?24 ?25) ?24) (multiply ?24 ?25) =>= ?24
9353 [25, 24] by majority1 ?24 ?25
9355 add (multiply (add ?27 ?27) ?28) (multiply ?27 ?27) =>= ?27
9356 [28, 27] by majority2 ?27 ?28
9357 25342: Id : 10, {_}:
9358 add (multiply (add ?30 ?31) ?31) (multiply ?30 ?31) =>= ?31
9359 [31, 30] by majority3 ?30 ?31
9360 25342: Id : 11, {_}:
9361 multiply (add (multiply ?33 ?34) ?33) (add ?33 ?34) =>= ?33
9362 [34, 33] by majority1_dual ?33 ?34
9363 25342: Id : 12, {_}:
9364 multiply (add (multiply ?36 ?36) ?37) (add ?36 ?36) =>= ?36
9365 [37, 36] by majority2_dual ?36 ?37
9366 25342: Id : 13, {_}:
9367 multiply (add (multiply ?39 ?40) ?40) (add ?39 ?40) =>= ?40
9368 [40, 39] by majority3_dual ?39 ?40
9370 25342: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9374 25342: a 2 0 2 1,1,2
9375 25342: inverse 4 1 2 0,2
9376 25342: multiply 21 2 0
9378 CLASH, statistics insufficient
9381 add ?2 (multiply ?3 (multiply ?2 ?4)) =>= ?2
9382 [4, 3, 2] by l1 ?2 ?3 ?4
9384 add (add (multiply ?6 ?7) (multiply ?7 ?8)) ?7 =>= ?7
9385 [8, 7, 6] by l3 ?6 ?7 ?8
9387 multiply (add ?10 (inverse ?10)) ?11 =>= ?11
9388 [11, 10] by property3 ?10 ?11
9390 multiply ?13 (add ?14 (add ?13 ?15)) =>= ?13
9391 [15, 14, 13] by l2 ?13 ?14 ?15
9393 multiply (multiply (add ?17 ?18) (add ?18 ?19)) ?18 =>= ?18
9394 [19, 18, 17] by l4 ?17 ?18 ?19
9396 add (multiply ?21 (inverse ?21)) ?22 =>= ?22
9397 [22, 21] by property3_dual ?21 ?22
9399 add (multiply (add ?24 ?25) ?24) (multiply ?24 ?25) =>= ?24
9400 [25, 24] by majority1 ?24 ?25
9402 add (multiply (add ?27 ?27) ?28) (multiply ?27 ?27) =>= ?27
9403 [28, 27] by majority2 ?27 ?28
9404 25343: Id : 10, {_}:
9405 add (multiply (add ?30 ?31) ?31) (multiply ?30 ?31) =>= ?31
9406 [31, 30] by majority3 ?30 ?31
9407 25343: Id : 11, {_}:
9408 multiply (add (multiply ?33 ?34) ?33) (add ?33 ?34) =>= ?33
9409 [34, 33] by majority1_dual ?33 ?34
9410 25343: Id : 12, {_}:
9411 multiply (add (multiply ?36 ?36) ?37) (add ?36 ?36) =>= ?36
9412 [37, 36] by majority2_dual ?36 ?37
9413 25343: Id : 13, {_}:
9414 multiply (add (multiply ?39 ?40) ?40) (add ?39 ?40) =>= ?40
9415 [40, 39] by majority3_dual ?39 ?40
9417 25343: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9421 25343: a 2 0 2 1,1,2
9422 25343: inverse 4 1 2 0,2
9423 25343: multiply 21 2 0
9425 % SZS status Timeout for BOO032-1.p
9426 NO CLASH, using fixed ground order
9429 add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2))
9431 multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2))
9432 [4, 3, 2] by distributivity ?2 ?3 ?4
9434 add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6
9435 [8, 7, 6] by l1 ?6 ?7 ?8
9437 add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11
9438 [12, 11, 10] by l3 ?10 ?11 ?12
9440 multiply (add ?14 (inverse ?14)) ?15 =>= ?15
9441 [15, 14] by property3 ?14 ?15
9443 multiply (add (multiply ?17 ?18) ?17) (add ?17 ?18) =>= ?17
9444 [18, 17] by majority1 ?17 ?18
9446 multiply (add (multiply ?20 ?20) ?21) (add ?20 ?20) =>= ?20
9447 [21, 20] by majority2 ?20 ?21
9449 multiply (add (multiply ?23 ?24) ?24) (add ?23 ?24) =>= ?24
9450 [24, 23] by majority3 ?23 ?24
9452 25370: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9456 25370: a 2 0 2 1,1,2
9457 25370: inverse 3 1 2 0,2
9458 25370: add 15 2 0 multiply
9459 25370: multiply 16 2 0 add
9460 NO CLASH, using fixed ground order
9463 add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2))
9465 multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2))
9466 [4, 3, 2] by distributivity ?2 ?3 ?4
9468 add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6
9469 [8, 7, 6] by l1 ?6 ?7 ?8
9471 add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11
9472 [12, 11, 10] by l3 ?10 ?11 ?12
9474 multiply (add ?14 (inverse ?14)) ?15 =>= ?15
9475 [15, 14] by property3 ?14 ?15
9477 multiply (add (multiply ?17 ?18) ?17) (add ?17 ?18) =>= ?17
9478 [18, 17] by majority1 ?17 ?18
9480 multiply (add (multiply ?20 ?20) ?21) (add ?20 ?20) =>= ?20
9481 [21, 20] by majority2 ?20 ?21
9483 multiply (add (multiply ?23 ?24) ?24) (add ?23 ?24) =>= ?24
9484 [24, 23] by majority3 ?23 ?24
9486 25371: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9490 25371: a 2 0 2 1,1,2
9491 25371: inverse 3 1 2 0,2
9492 25371: add 15 2 0 multiply
9493 25371: multiply 16 2 0 add
9494 NO CLASH, using fixed ground order
9497 add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2))
9499 multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2))
9500 [4, 3, 2] by distributivity ?2 ?3 ?4
9502 add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6
9503 [8, 7, 6] by l1 ?6 ?7 ?8
9505 add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11
9506 [12, 11, 10] by l3 ?10 ?11 ?12
9508 multiply (add ?14 (inverse ?14)) ?15 =>= ?15
9509 [15, 14] by property3 ?14 ?15
9511 multiply (add (multiply ?17 ?18) ?17) (add ?17 ?18) =>= ?17
9512 [18, 17] by majority1 ?17 ?18
9514 multiply (add (multiply ?20 ?20) ?21) (add ?20 ?20) =>= ?20
9515 [21, 20] by majority2 ?20 ?21
9517 multiply (add (multiply ?23 ?24) ?24) (add ?23 ?24) =>= ?24
9518 [24, 23] by majority3 ?23 ?24
9520 25372: Id : 1, {_}: inverse (inverse a) =>= a [] by prove_inverse_involution
9524 25372: a 2 0 2 1,1,2
9525 25372: inverse 3 1 2 0,2
9526 25372: add 15 2 0 multiply
9527 25372: multiply 16 2 0 add
9528 % SZS status Timeout for BOO033-1.p
9529 NO CLASH, using fixed ground order
9532 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
9533 [4, 3, 2] by b_definition ?2 ?3 ?4
9535 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
9536 [7, 6] by w_definition ?6 ?7
9540 apply (apply b (apply w w))
9541 (apply (apply b (apply b w)) (apply (apply b b) b))
9542 [] by strong_fixed_point
9545 apply strong_fixed_point fixed_pt
9547 apply fixed_pt (apply strong_fixed_point fixed_pt)
9548 [] by prove_strong_fixed_point
9552 25403: strong_fixed_point 3 0 2 1,2
9553 25403: fixed_pt 3 0 3 2,2
9556 25403: apply 20 2 3 0,2
9557 NO CLASH, using fixed ground order
9560 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
9561 [4, 3, 2] by b_definition ?2 ?3 ?4
9563 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
9564 [7, 6] by w_definition ?6 ?7
9568 apply (apply b (apply w w))
9569 (apply (apply b (apply b w)) (apply (apply b b) b))
9570 [] by strong_fixed_point
9573 apply strong_fixed_point fixed_pt
9575 apply fixed_pt (apply strong_fixed_point fixed_pt)
9576 [] by prove_strong_fixed_point
9580 25404: strong_fixed_point 3 0 2 1,2
9581 25404: fixed_pt 3 0 3 2,2
9584 25404: apply 20 2 3 0,2
9585 NO CLASH, using fixed ground order
9588 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
9589 [4, 3, 2] by b_definition ?2 ?3 ?4
9591 apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7
9592 [7, 6] by w_definition ?6 ?7
9596 apply (apply b (apply w w))
9597 (apply (apply b (apply b w)) (apply (apply b b) b))
9598 [] by strong_fixed_point
9601 apply strong_fixed_point fixed_pt
9603 apply fixed_pt (apply strong_fixed_point fixed_pt)
9604 [] by prove_strong_fixed_point
9608 25405: strong_fixed_point 3 0 2 1,2
9609 25405: fixed_pt 3 0 3 2,2
9612 25405: apply 20 2 3 0,2
9613 % SZS status Timeout for COL003-20.p
9614 NO CLASH, using fixed ground order
9617 apply (apply (apply s ?2) ?3) ?4
9619 apply (apply ?2 ?4) (apply ?3 ?4)
9620 [4, 3, 2] by s_definition ?2 ?3 ?4
9621 25421: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
9626 (apply (apply s (apply k (apply s (apply (apply s k) k))))
9627 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))
9630 apply y (apply (apply x x) y)
9631 [] by prove_u_combinator
9635 25421: x 3 0 3 2,1,2
9637 25421: s 7 0 6 1,1,1,1,2
9638 25421: k 8 0 7 1,2,1,1,1,2
9639 25421: apply 25 2 17 0,2
9640 NO CLASH, using fixed ground order
9643 apply (apply (apply s ?2) ?3) ?4
9645 apply (apply ?2 ?4) (apply ?3 ?4)
9646 [4, 3, 2] by s_definition ?2 ?3 ?4
9647 25422: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
9652 (apply (apply s (apply k (apply s (apply (apply s k) k))))
9653 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))
9656 apply y (apply (apply x x) y)
9657 [] by prove_u_combinator
9661 25422: x 3 0 3 2,1,2
9663 25422: s 7 0 6 1,1,1,1,2
9664 25422: k 8 0 7 1,2,1,1,1,2
9665 25422: apply 25 2 17 0,2
9666 NO CLASH, using fixed ground order
9669 apply (apply (apply s ?2) ?3) ?4
9671 apply (apply ?2 ?4) (apply ?3 ?4)
9672 [4, 3, 2] by s_definition ?2 ?3 ?4
9673 25423: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
9678 (apply (apply s (apply k (apply s (apply (apply s k) k))))
9679 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))
9682 apply y (apply (apply x x) y)
9683 [] by prove_u_combinator
9687 25423: x 3 0 3 2,1,2
9689 25423: s 7 0 6 1,1,1,1,2
9690 25423: k 8 0 7 1,2,1,1,1,2
9691 25423: apply 25 2 17 0,2
9694 Found proof, 0.116079s
9695 % SZS status Unsatisfiable for COL004-3.p
9696 % SZS output start CNFRefutation for COL004-3.p
9697 Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
9698 Id : 2, {_}: apply (apply (apply s ?2) ?3) ?4 =?= apply (apply ?2 ?4) (apply ?3 ?4) [4, 3, 2] by s_definition ?2 ?3 ?4
9699 Id : 35, {_}: apply y (apply (apply x x) y) === apply y (apply (apply x x) y) [] by Demod 34 with 3 at 1,2
9700 Id : 34, {_}: apply (apply (apply k y) (apply k y)) (apply (apply x x) y) =>= apply y (apply (apply x x) y) [] by Demod 33 with 2 at 1,2
9701 Id : 33, {_}: apply (apply (apply (apply s k) k) y) (apply (apply x x) y) =>= apply y (apply (apply x x) y) [] by Demod 32 with 2 at 2
9702 Id : 32, {_}: apply (apply (apply s (apply (apply s k) k)) (apply x x)) y =>= apply y (apply (apply x x) y) [] by Demod 31 with 3 at 2,2,1,2
9703 Id : 31, {_}: apply (apply (apply s (apply (apply s k) k)) (apply x (apply (apply k x) (apply k x)))) y =>= apply y (apply (apply x x) y) [] by Demod 30 with 3 at 1,2,1,2
9704 Id : 30, {_}: apply (apply (apply s (apply (apply s k) k)) (apply (apply (apply k x) (apply k x)) (apply (apply k x) (apply k x)))) y =>= apply y (apply (apply x x) y) [] by Demod 20 with 3 at 1,1,2
9705 Id : 20, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply k x) (apply k x)) (apply (apply k x) (apply k x)))) y =>= apply y (apply (apply x x) y) [] by Demod 19 with 2 at 2,2,1,2
9706 Id : 19, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply k x) (apply k x)) (apply (apply (apply s k) k) x))) y =>= apply y (apply (apply x x) y) [] by Demod 18 with 2 at 1,2,1,2
9707 Id : 18, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply (apply s k) k) x) (apply (apply (apply s k) k) x))) y =>= apply y (apply (apply x x) y) [] by Demod 17 with 2 at 2,1,2
9708 Id : 17, {_}: apply (apply (apply (apply k (apply s (apply (apply s k) k))) x) (apply (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)) x)) y =>= apply y (apply (apply x x) y) [] by Demod 1 with 2 at 1,2
9709 Id : 1, {_}: apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y =>= apply y (apply (apply x x) y) [] by prove_u_combinator
9710 % SZS output end CNFRefutation for COL004-3.p
9711 25423: solved COL004-3.p in 0.020001 using lpo
9712 25423: status Unsatisfiable for COL004-3.p
9713 CLASH, statistics insufficient
9716 apply (apply (apply s ?3) ?4) ?5
9718 apply (apply ?3 ?5) (apply ?4 ?5)
9719 [5, 4, 3] by s_definition ?3 ?4 ?5
9721 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
9722 [8, 7] by w_definition ?7 ?8
9724 25428: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_model ?1
9730 25428: combinator 1 0 1 1,3
9731 25428: apply 11 2 1 0,3
9732 CLASH, statistics insufficient
9735 apply (apply (apply s ?3) ?4) ?5
9737 apply (apply ?3 ?5) (apply ?4 ?5)
9738 [5, 4, 3] by s_definition ?3 ?4 ?5
9740 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
9741 [8, 7] by w_definition ?7 ?8
9743 25429: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_model ?1
9749 25429: combinator 1 0 1 1,3
9750 25429: apply 11 2 1 0,3
9751 CLASH, statistics insufficient
9754 apply (apply (apply s ?3) ?4) ?5
9756 apply (apply ?3 ?5) (apply ?4 ?5)
9757 [5, 4, 3] by s_definition ?3 ?4 ?5
9759 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
9760 [8, 7] by w_definition ?7 ?8
9762 25430: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_model ?1
9768 25430: combinator 1 0 1 1,3
9769 25430: apply 11 2 1 0,3
9770 % SZS status Timeout for COL005-1.p
9771 CLASH, statistics insufficient
9774 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
9775 [5, 4, 3] by b_definition ?3 ?4 ?5
9776 25470: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
9778 apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10
9779 [11, 10, 9] by v_definition ?9 ?10 ?11
9781 CLASH, statistics insufficient
9784 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
9785 [5, 4, 3] by b_definition ?3 ?4 ?5
9786 25471: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
9788 apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10
9789 [11, 10, 9] by v_definition ?9 ?10 ?11
9792 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9793 [1] by prove_fixed_point ?1
9800 25471: f 3 1 3 0,2,2
9801 25471: apply 15 2 3 0,2
9803 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9804 [1] by prove_fixed_point ?1
9811 25470: f 3 1 3 0,2,2
9812 25470: apply 15 2 3 0,2
9813 CLASH, statistics insufficient
9816 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
9817 [5, 4, 3] by b_definition ?3 ?4 ?5
9818 25472: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
9820 apply (apply (apply v ?9) ?10) ?11 =?= apply (apply ?11 ?9) ?10
9821 [11, 10, 9] by v_definition ?9 ?10 ?11
9824 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9825 [1] by prove_fixed_point ?1
9832 25472: f 3 1 3 0,2,2
9833 25472: apply 15 2 3 0,2
9837 Found proof, 6.291189s
9838 % SZS status Unsatisfiable for COL038-1.p
9839 % SZS output start CNFRefutation for COL038-1.p
9840 Id : 4, {_}: apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10 [11, 10, 9] by v_definition ?9 ?10 ?11
9841 Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7
9842 Id : 19, {_}: apply (apply (apply v ?47) ?48) ?49 =>= apply (apply ?49 ?47) ?48 [49, 48, 47] by v_definition ?47 ?48 ?49
9843 Id : 5, {_}: apply (apply (apply b ?13) ?14) ?15 =>= apply ?13 (apply ?14 ?15) [15, 14, 13] by b_definition ?13 ?14 ?15
9844 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
9845 Id : 6, {_}: apply ?17 (apply ?18 ?19) =?= apply ?17 (apply ?18 ?19) [19, 18, 17] by Super 5 with 2 at 2
9846 Id : 1244, {_}: apply (apply m (apply v ?1596)) ?1597 =?= apply (apply ?1597 ?1596) (apply v ?1596) [1597, 1596] by Super 19 with 3 at 1,2
9847 Id : 18, {_}: apply m (apply (apply v ?44) ?45) =<= apply (apply (apply (apply v ?44) ?45) ?44) ?45 [45, 44] by Super 3 with 4 at 3
9848 Id : 224, {_}: apply m (apply (apply v ?485) ?486) =<= apply (apply (apply ?485 ?485) ?486) ?486 [486, 485] by Demod 18 with 4 at 1,3
9849 Id : 232, {_}: apply m (apply (apply v ?509) ?510) =<= apply (apply (apply m ?509) ?510) ?510 [510, 509] by Super 224 with 3 at 1,1,3
9850 Id : 7751, {_}: apply (apply m (apply v ?7787)) (apply (apply m ?7788) ?7787) =<= apply (apply m (apply (apply v ?7788) ?7787)) (apply v ?7787) [7788, 7787] by Super 1244 with 232 at 1,3
9851 Id : 9, {_}: apply (apply (apply m b) ?24) ?25 =>= apply b (apply ?24 ?25) [25, 24] by Super 2 with 3 at 1,1,2
9852 Id : 236, {_}: apply m (apply (apply v (apply v ?521)) ?522) =<= apply (apply (apply ?522 ?521) (apply v ?521)) ?522 [522, 521] by Super 224 with 4 at 1,3
9853 Id : 2866, {_}: apply m (apply (apply v (apply v b)) m) =>= apply b (apply (apply v b) m) [] by Super 9 with 236 at 2
9854 Id : 7790, {_}: apply (apply m (apply v m)) (apply (apply m (apply v b)) m) =>= apply (apply b (apply (apply v b) m)) (apply v m) [] by Super 7751 with 2866 at 1,3
9855 Id : 20, {_}: apply (apply m (apply v ?51)) ?52 =?= apply (apply ?52 ?51) (apply v ?51) [52, 51] by Super 19 with 3 at 1,2
9856 Id : 7860, {_}: apply (apply m (apply v m)) (apply (apply m b) (apply v b)) =>= apply (apply b (apply (apply v b) m)) (apply v m) [] by Demod 7790 with 20 at 2,2
9857 Id : 11, {_}: apply m (apply (apply b ?30) ?31) =<= apply ?30 (apply ?31 (apply (apply b ?30) ?31)) [31, 30] by Super 2 with 3 at 2
9858 Id : 9568, {_}: apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) b)) (apply m (apply (apply b (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) b))) m)) =?= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) b)) (apply m (apply (apply b (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) b))) m)) [] by Super 9567 with 11 at 2
9859 Id : 9567, {_}: apply m (apply (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) m) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply m (apply (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) m)) [8771] by Demod 9566 with 2 at 2,3
9860 Id : 9566, {_}: apply m (apply (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) m) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply b m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) m) [8771] by Demod 9565 with 2 at 2
9861 Id : 9565, {_}: apply (apply (apply b m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) m =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply b m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) m) [8771] by Demod 9564 with 4 at 1,2,3
9862 Id : 9564, {_}: apply (apply (apply b m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) m =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) b) m) [8771] by Demod 9563 with 4 at 1,2
9863 Id : 9563, {_}: apply (apply (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) b) m =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) b) m) [8771] by Demod 9562 with 4 at 2,3
9864 Id : 9562, {_}: apply (apply (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) b) m =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply v b) m) (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))))) [8771] by Demod 9561 with 4 at 2
9865 Id : 9561, {_}: apply (apply (apply v b) m) (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply v b) m) (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))))) [8771] by Demod 9560 with 2 at 2,3
9866 Id : 9560, {_}: apply (apply (apply v b) m) (apply (apply v m) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9559 with 2 at 2
9867 Id : 9559, {_}: apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9558 with 7860 at 1,2,3
9868 Id : 9558, {_}: apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) =<= apply (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)) (apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9557 with 7860 at 2,1,1,1,3
9869 Id : 9557, {_}: apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771))) =<= apply (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771)) (apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9556 with 7860 at 2,1,1,2,2,2
9870 Id : 9556, {_}: apply (apply (apply b (apply (apply v b) m)) (apply v m)) (apply ?8771 (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771))) =<= apply (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771)) (apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Demod 9078 with 7860 at 1,2
9871 Id : 9078, {_}: apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771))) =<= apply (f (apply (apply b (apply (apply m (apply v m)) (apply (apply m b) (apply v b)))) ?8771)) (apply (apply (apply m (apply v m)) (apply (apply m b) (apply v b))) (apply ?8771 (f (apply (apply b (apply (apply b (apply (apply v b) m)) (apply v m))) ?8771)))) [8771] by Super 174 with 7860 at 2,1,1,2,2,2,3
9872 Id : 174, {_}: apply (apply ?379 ?380) (apply ?381 (f (apply (apply b (apply ?379 ?380)) ?381))) =<= apply (f (apply (apply b (apply ?379 ?380)) ?381)) (apply (apply ?379 ?380) (apply ?381 (f (apply (apply b (apply ?379 ?380)) ?381)))) [381, 380, 379] by Super 8 with 6 at 1,1,2,2,2,3
9873 Id : 8, {_}: apply ?21 (apply ?22 (f (apply (apply b ?21) ?22))) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Demod 7 with 2 at 2
9874 Id : 7, {_}: apply (apply (apply b ?21) ?22) (f (apply (apply b ?21) ?22)) =<= apply (f (apply (apply b ?21) ?22)) (apply ?21 (apply ?22 (f (apply (apply b ?21) ?22)))) [22, 21] by Super 1 with 2 at 2,3
9875 Id : 1, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_fixed_point ?1
9876 % SZS output end CNFRefutation for COL038-1.p
9877 25471: solved COL038-1.p in 3.192199 using kbo
9878 25471: status Unsatisfiable for COL038-1.p
9879 CLASH, statistics insufficient
9882 apply (apply (apply s ?3) ?4) ?5
9884 apply (apply ?3 ?5) (apply ?4 ?5)
9885 [5, 4, 3] by s_definition ?3 ?4 ?5
9887 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
9888 [9, 8, 7] by b_definition ?7 ?8 ?9
9889 25477: Id : 4, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11
9892 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9893 [1] by prove_fixed_point ?1
9900 25477: f 3 1 3 0,2,2
9901 25477: apply 16 2 3 0,2
9902 CLASH, statistics insufficient
9905 apply (apply (apply s ?3) ?4) ?5
9907 apply (apply ?3 ?5) (apply ?4 ?5)
9908 [5, 4, 3] by s_definition ?3 ?4 ?5
9910 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
9911 [9, 8, 7] by b_definition ?7 ?8 ?9
9912 25478: Id : 4, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11
9915 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9916 [1] by prove_fixed_point ?1
9923 25478: f 3 1 3 0,2,2
9924 25478: apply 16 2 3 0,2
9925 CLASH, statistics insufficient
9928 apply (apply (apply s ?3) ?4) ?5
9930 apply (apply ?3 ?5) (apply ?4 ?5)
9931 [5, 4, 3] by s_definition ?3 ?4 ?5
9933 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
9934 [9, 8, 7] by b_definition ?7 ?8 ?9
9935 25479: Id : 4, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11
9938 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9939 [1] by prove_fixed_point ?1
9946 25479: f 3 1 3 0,2,2
9947 25479: apply 16 2 3 0,2
9948 % SZS status Timeout for COL046-1.p
9949 CLASH, statistics insufficient
9952 apply (apply l ?3) ?4 =?= apply ?3 (apply ?4 ?4)
9953 [4, 3] by l_definition ?3 ?4
9955 apply (apply (apply q ?6) ?7) ?8 =>= apply ?7 (apply ?6 ?8)
9956 [8, 7, 6] by q_definition ?6 ?7 ?8
9959 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9960 [1] by prove_model ?1
9966 25500: f 3 1 3 0,2,2
9967 25500: apply 12 2 3 0,2
9968 CLASH, statistics insufficient
9971 apply (apply l ?3) ?4 =?= apply ?3 (apply ?4 ?4)
9972 [4, 3] by l_definition ?3 ?4
9974 apply (apply (apply q ?6) ?7) ?8 =>= apply ?7 (apply ?6 ?8)
9975 [8, 7, 6] by q_definition ?6 ?7 ?8
9978 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9979 [1] by prove_model ?1
9985 25501: f 3 1 3 0,2,2
9986 25501: apply 12 2 3 0,2
9987 CLASH, statistics insufficient
9990 apply (apply l ?3) ?4 =?= apply ?3 (apply ?4 ?4)
9991 [4, 3] by l_definition ?3 ?4
9993 apply (apply (apply q ?6) ?7) ?8 =>= apply ?7 (apply ?6 ?8)
9994 [8, 7, 6] by q_definition ?6 ?7 ?8
9997 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
9998 [1] by prove_model ?1
10004 25502: f 3 1 3 0,2,2
10005 25502: apply 12 2 3 0,2
10006 % SZS status Timeout for COL047-1.p
10007 CLASH, statistics insufficient
10009 25526: Id : 2, {_}:
10010 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10011 [5, 4, 3] by b_definition ?3 ?4 ?5
10012 25526: Id : 3, {_}:
10013 apply (apply t ?7) ?8 =>= apply ?8 ?7
10014 [8, 7] by t_definition ?7 ?8
10016 25526: Id : 1, {_}:
10017 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10019 apply (g ?1) (apply (f ?1) (h ?1))
10020 [1] by prove_q_combinator ?1
10026 25526: f 2 1 2 0,2,1,1,2
10027 25526: g 2 1 2 0,2,1,2
10028 25526: h 2 1 2 0,2,2
10029 25526: apply 13 2 5 0,2
10030 CLASH, statistics insufficient
10032 25527: Id : 2, {_}:
10033 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10034 [5, 4, 3] by b_definition ?3 ?4 ?5
10035 25527: Id : 3, {_}:
10036 apply (apply t ?7) ?8 =>= apply ?8 ?7
10037 [8, 7] by t_definition ?7 ?8
10039 25527: Id : 1, {_}:
10040 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10042 apply (g ?1) (apply (f ?1) (h ?1))
10043 [1] by prove_q_combinator ?1
10049 25527: f 2 1 2 0,2,1,1,2
10050 25527: g 2 1 2 0,2,1,2
10051 25527: h 2 1 2 0,2,2
10052 25527: apply 13 2 5 0,2
10053 CLASH, statistics insufficient
10055 25528: Id : 2, {_}:
10056 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10057 [5, 4, 3] by b_definition ?3 ?4 ?5
10058 25528: Id : 3, {_}:
10059 apply (apply t ?7) ?8 =?= apply ?8 ?7
10060 [8, 7] by t_definition ?7 ?8
10062 25528: Id : 1, {_}:
10063 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10065 apply (g ?1) (apply (f ?1) (h ?1))
10066 [1] by prove_q_combinator ?1
10072 25528: f 2 1 2 0,2,1,1,2
10073 25528: g 2 1 2 0,2,1,2
10074 25528: h 2 1 2 0,2,2
10075 25528: apply 13 2 5 0,2
10079 Found proof, 0.356753s
10080 % SZS status Unsatisfiable for COL060-1.p
10081 % SZS output start CNFRefutation for COL060-1.p
10082 Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
10083 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
10084 Id : 447, {_}: apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) === apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) [] by Super 445 with 2 at 2
10085 Id : 445, {_}: apply (apply (apply ?1404 (g (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t))) =>= apply (g (apply (apply b (apply t ?1404)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t ?1404)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) [1404] by Super 277 with 3 at 1,2
10086 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (apply (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) [901, 900] by Super 29 with 2 at 1,2
10087 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (apply (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) [87, 86, 85] by Super 13 with 3 at 1,1,2
10088 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (g (apply (apply b ?33) (apply (apply b ?34) ?35))) (apply (f (apply (apply b ?33) (apply (apply b ?34) ?35))) (h (apply (apply b ?33) (apply (apply b ?34) ?35)))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2
10089 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (g (apply (apply b ?18) ?19)) (apply (f (apply (apply b ?18) ?19)) (h (apply (apply b ?18) ?19))) [19, 18] by Super 1 with 2 at 1,1,2
10090 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1
10091 % SZS output end CNFRefutation for COL060-1.p
10092 25526: solved COL060-1.p in 0.368022 using nrkbo
10093 25526: status Unsatisfiable for COL060-1.p
10094 CLASH, statistics insufficient
10096 25533: Id : 2, {_}:
10097 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10098 [5, 4, 3] by b_definition ?3 ?4 ?5
10099 25533: Id : 3, {_}:
10100 apply (apply t ?7) ?8 =>= apply ?8 ?7
10101 [8, 7] by t_definition ?7 ?8
10103 25533: Id : 1, {_}:
10104 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10106 apply (f ?1) (apply (h ?1) (g ?1))
10107 [1] by prove_q1_combinator ?1
10113 25533: f 2 1 2 0,2,1,1,2
10114 25533: g 2 1 2 0,2,1,2
10115 25533: h 2 1 2 0,2,2
10116 25533: apply 13 2 5 0,2
10117 CLASH, statistics insufficient
10119 25534: Id : 2, {_}:
10120 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10121 [5, 4, 3] by b_definition ?3 ?4 ?5
10122 25534: Id : 3, {_}:
10123 apply (apply t ?7) ?8 =>= apply ?8 ?7
10124 [8, 7] by t_definition ?7 ?8
10126 25534: Id : 1, {_}:
10127 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10129 apply (f ?1) (apply (h ?1) (g ?1))
10130 [1] by prove_q1_combinator ?1
10136 25534: f 2 1 2 0,2,1,1,2
10137 25534: g 2 1 2 0,2,1,2
10138 25534: h 2 1 2 0,2,2
10139 25534: apply 13 2 5 0,2
10140 CLASH, statistics insufficient
10142 25535: Id : 2, {_}:
10143 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10144 [5, 4, 3] by b_definition ?3 ?4 ?5
10145 25535: Id : 3, {_}:
10146 apply (apply t ?7) ?8 =?= apply ?8 ?7
10147 [8, 7] by t_definition ?7 ?8
10149 25535: Id : 1, {_}:
10150 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10152 apply (f ?1) (apply (h ?1) (g ?1))
10153 [1] by prove_q1_combinator ?1
10159 25535: f 2 1 2 0,2,1,1,2
10160 25535: g 2 1 2 0,2,1,2
10161 25535: h 2 1 2 0,2,2
10162 25535: apply 13 2 5 0,2
10166 Found proof, 0.641348s
10167 % SZS status Unsatisfiable for COL061-1.p
10168 % SZS output start CNFRefutation for COL061-1.p
10169 Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
10170 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
10171 Id : 447, {_}: apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) === apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) [] by Super 446 with 3 at 2,2
10172 Id : 446, {_}: apply (f (apply (apply b (apply t ?1406)) (apply (apply b b) b))) (apply (apply ?1406 (g (apply (apply b (apply t ?1406)) (apply (apply b b) b)))) (h (apply (apply b (apply t ?1406)) (apply (apply b b) b)))) =>= apply (f (apply (apply b (apply t ?1406)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t ?1406)) (apply (apply b b) b))) (g (apply (apply b (apply t ?1406)) (apply (apply b b) b)))) [1406] by Super 277 with 2 at 2
10173 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (apply (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) [901, 900] by Super 29 with 2 at 1,2
10174 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (apply (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) [87, 86, 85] by Super 13 with 3 at 1,1,2
10175 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (f (apply (apply b ?33) (apply (apply b ?34) ?35))) (apply (h (apply (apply b ?33) (apply (apply b ?34) ?35))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2
10176 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (f (apply (apply b ?18) ?19)) (apply (h (apply (apply b ?18) ?19)) (g (apply (apply b ?18) ?19))) [19, 18] by Super 1 with 2 at 1,1,2
10177 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1
10178 % SZS output end CNFRefutation for COL061-1.p
10179 25533: solved COL061-1.p in 0.344021 using nrkbo
10180 25533: status Unsatisfiable for COL061-1.p
10181 CLASH, statistics insufficient
10183 25541: Id : 2, {_}:
10184 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10185 [5, 4, 3] by b_definition ?3 ?4 ?5
10186 25541: Id : 3, {_}:
10187 apply (apply t ?7) ?8 =>= apply ?8 ?7
10188 [8, 7] by t_definition ?7 ?8
10190 25541: Id : 1, {_}:
10191 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10193 apply (apply (f ?1) (h ?1)) (g ?1)
10194 [1] by prove_c_combinator ?1
10200 25541: f 2 1 2 0,2,1,1,2
10201 25541: g 2 1 2 0,2,1,2
10202 25541: h 2 1 2 0,2,2
10203 25541: apply 13 2 5 0,2
10204 CLASH, statistics insufficient
10206 25540: Id : 2, {_}:
10207 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10208 [5, 4, 3] by b_definition ?3 ?4 ?5
10209 25540: Id : 3, {_}:
10210 apply (apply t ?7) ?8 =>= apply ?8 ?7
10211 [8, 7] by t_definition ?7 ?8
10213 25540: Id : 1, {_}:
10214 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10216 apply (apply (f ?1) (h ?1)) (g ?1)
10217 [1] by prove_c_combinator ?1
10223 25540: f 2 1 2 0,2,1,1,2
10224 25540: g 2 1 2 0,2,1,2
10225 25540: h 2 1 2 0,2,2
10226 25540: apply 13 2 5 0,2
10227 CLASH, statistics insufficient
10229 25542: Id : 2, {_}:
10230 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
10231 [5, 4, 3] by b_definition ?3 ?4 ?5
10232 25542: Id : 3, {_}:
10233 apply (apply t ?7) ?8 =?= apply ?8 ?7
10234 [8, 7] by t_definition ?7 ?8
10236 25542: Id : 1, {_}:
10237 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
10239 apply (apply (f ?1) (h ?1)) (g ?1)
10240 [1] by prove_c_combinator ?1
10246 25542: f 2 1 2 0,2,1,1,2
10247 25542: g 2 1 2 0,2,1,2
10248 25542: h 2 1 2 0,2,2
10249 25542: apply 13 2 5 0,2
10253 Found proof, 1.793493s
10254 % SZS status Unsatisfiable for COL062-1.p
10255 % SZS output start CNFRefutation for COL062-1.p
10256 Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
10257 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
10258 Id : 1574, {_}: apply (apply (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) === apply (apply (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))) [] by Super 1573 with 3 at 2
10259 Id : 1573, {_}: apply (apply ?5215 (g (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) (apply (f (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b b) ?5215))) (apply (apply b b) t))) [5215] by Super 447 with 2 at 2
10260 Id : 447, {_}: apply (apply (apply ?1408 (apply ?1409 (g (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t)))) (h (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) =>= apply (apply (f (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) (h (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t)))) (g (apply (apply b (apply t (apply (apply b ?1408) ?1409))) (apply (apply b b) t))) [1409, 1408] by Super 445 with 2 at 1,1,2
10261 Id : 445, {_}: apply (apply (apply ?1404 (g (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t))) =>= apply (apply (f (apply (apply b (apply t ?1404)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1404)) (apply (apply b b) t)))) (g (apply (apply b (apply t ?1404)) (apply (apply b b) t))) [1404] by Super 277 with 3 at 1,2
10262 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (apply (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) [901, 900] by Super 29 with 2 at 1,2
10263 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (apply (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) [87, 86, 85] by Super 13 with 3 at 1,1,2
10264 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (apply (f (apply (apply b ?33) (apply (apply b ?34) ?35))) (h (apply (apply b ?33) (apply (apply b ?34) ?35)))) (g (apply (apply b ?33) (apply (apply b ?34) ?35))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2
10265 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (apply (f (apply (apply b ?18) ?19)) (h (apply (apply b ?18) ?19))) (g (apply (apply b ?18) ?19)) [19, 18] by Super 1 with 2 at 1,1,2
10266 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (f ?1) (h ?1)) (g ?1) [1] by prove_c_combinator ?1
10267 % SZS output end CNFRefutation for COL062-1.p
10268 25540: solved COL062-1.p in 1.808112 using nrkbo
10269 25540: status Unsatisfiable for COL062-1.p
10270 CLASH, statistics insufficient
10272 25547: Id : 2, {_}:
10273 apply (apply (apply n ?3) ?4) ?5
10275 apply (apply (apply ?3 ?5) ?4) ?5
10276 [5, 4, 3] by n_definition ?3 ?4 ?5
10277 25547: Id : 3, {_}:
10278 apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9)
10279 [9, 8, 7] by q_definition ?7 ?8 ?9
10281 25547: Id : 1, {_}:
10282 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
10283 [1] by prove_fixed_point ?1
10289 25547: f 3 1 3 0,2,2
10290 25547: apply 14 2 3 0,2
10291 CLASH, statistics insufficient
10293 25548: Id : 2, {_}:
10294 apply (apply (apply n ?3) ?4) ?5
10296 apply (apply (apply ?3 ?5) ?4) ?5
10297 [5, 4, 3] by n_definition ?3 ?4 ?5
10298 25548: Id : 3, {_}:
10299 apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9)
10300 [9, 8, 7] by q_definition ?7 ?8 ?9
10302 25548: Id : 1, {_}:
10303 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
10304 [1] by prove_fixed_point ?1
10310 25548: f 3 1 3 0,2,2
10311 25548: apply 14 2 3 0,2
10312 CLASH, statistics insufficient
10314 25549: Id : 2, {_}:
10315 apply (apply (apply n ?3) ?4) ?5
10317 apply (apply (apply ?3 ?5) ?4) ?5
10318 [5, 4, 3] by n_definition ?3 ?4 ?5
10319 25549: Id : 3, {_}:
10320 apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9)
10321 [9, 8, 7] by q_definition ?7 ?8 ?9
10323 25549: Id : 1, {_}:
10324 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
10325 [1] by prove_fixed_point ?1
10331 25549: f 3 1 3 0,2,2
10332 25549: apply 14 2 3 0,2
10333 % SZS status Timeout for COL071-1.p
10334 CLASH, statistics insufficient
10336 25572: Id : 2, {_}:
10337 apply (apply (apply n1 ?3) ?4) ?5
10339 apply (apply (apply ?3 ?4) ?4) ?5
10340 [5, 4, 3] by n1_definition ?3 ?4 ?5
10341 25572: Id : 3, {_}:
10342 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
10343 [9, 8, 7] by b_definition ?7 ?8 ?9
10345 25572: Id : 1, {_}:
10346 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
10347 [1] by prove_strong_fixed_point ?1
10353 25572: f 3 1 3 0,2,2
10354 25572: apply 14 2 3 0,2
10355 CLASH, statistics insufficient
10357 25573: Id : 2, {_}:
10358 apply (apply (apply n1 ?3) ?4) ?5
10360 apply (apply (apply ?3 ?4) ?4) ?5
10361 [5, 4, 3] by n1_definition ?3 ?4 ?5
10362 25573: Id : 3, {_}:
10363 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
10364 [9, 8, 7] by b_definition ?7 ?8 ?9
10366 25573: Id : 1, {_}:
10367 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
10368 [1] by prove_strong_fixed_point ?1
10374 25573: f 3 1 3 0,2,2
10375 25573: apply 14 2 3 0,2
10376 CLASH, statistics insufficient
10378 25574: Id : 2, {_}:
10379 apply (apply (apply n1 ?3) ?4) ?5
10381 apply (apply (apply ?3 ?4) ?4) ?5
10382 [5, 4, 3] by n1_definition ?3 ?4 ?5
10383 25574: Id : 3, {_}:
10384 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
10385 [9, 8, 7] by b_definition ?7 ?8 ?9
10387 25574: Id : 1, {_}:
10388 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
10389 [1] by prove_strong_fixed_point ?1
10395 25574: f 3 1 3 0,2,2
10396 25574: apply 14 2 3 0,2
10397 % SZS status Timeout for COL073-1.p
10398 NO CLASH, using fixed ground order
10400 25603: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10401 25603: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10402 25603: Id : 4, {_}:
10403 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
10404 [8, 7, 6] by associativity ?6 ?7 ?8
10405 25603: Id : 5, {_}:
10408 multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11))
10409 [11, 10] by name ?10 ?11
10410 25603: Id : 6, {_}:
10411 commutator (commutator ?13 ?14) ?15
10413 commutator ?13 (commutator ?14 ?15)
10414 [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15
10416 25603: Id : 1, {_}:
10417 multiply a (commutator b c) =<= multiply (commutator b c) a
10422 25603: identity 2 0 0
10424 25603: b 2 0 2 1,2,2
10425 25603: c 2 0 2 2,2,2
10426 25603: inverse 3 1 0
10427 25603: commutator 7 2 2 0,2,2
10428 25603: multiply 11 2 2 0,2
10429 NO CLASH, using fixed ground order
10431 25604: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10432 25604: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10433 25604: Id : 4, {_}:
10434 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
10435 [8, 7, 6] by associativity ?6 ?7 ?8
10436 25604: Id : 5, {_}:
10439 multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11))
10440 [11, 10] by name ?10 ?11
10441 25604: Id : 6, {_}:
10442 commutator (commutator ?13 ?14) ?15
10444 commutator ?13 (commutator ?14 ?15)
10445 [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15
10447 25604: Id : 1, {_}:
10448 multiply a (commutator b c) =<= multiply (commutator b c) a
10453 25604: identity 2 0 0
10455 25604: b 2 0 2 1,2,2
10456 25604: c 2 0 2 2,2,2
10457 25604: inverse 3 1 0
10458 25604: commutator 7 2 2 0,2,2
10459 25604: multiply 11 2 2 0,2
10460 NO CLASH, using fixed ground order
10462 25605: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10463 25605: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10464 25605: Id : 4, {_}:
10465 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
10466 [8, 7, 6] by associativity ?6 ?7 ?8
10467 25605: Id : 5, {_}:
10470 multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11))
10471 [11, 10] by name ?10 ?11
10472 25605: Id : 6, {_}:
10473 commutator (commutator ?13 ?14) ?15
10475 commutator ?13 (commutator ?14 ?15)
10476 [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15
10478 25605: Id : 1, {_}:
10479 multiply a (commutator b c) =<= multiply (commutator b c) a
10484 25605: identity 2 0 0
10486 25605: b 2 0 2 1,2,2
10487 25605: c 2 0 2 2,2,2
10488 25605: inverse 3 1 0
10489 25605: commutator 7 2 2 0,2,2
10490 25605: multiply 11 2 2 0,2
10491 % SZS status Timeout for GRP024-5.p
10492 CLASH, statistics insufficient
10494 25668: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10495 25668: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10496 25668: Id : 4, {_}:
10497 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
10498 [8, 7, 6] by associativity ?6 ?7 ?8
10499 25668: Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity
10500 25668: Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11
10501 25668: Id : 7, {_}:
10502 inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13)
10503 [14, 13] by inverse_product_lemma ?13 ?14
10504 25668: Id : 8, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16
10505 25668: Id : 9, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18
10506 25668: Id : 10, {_}:
10507 intersection ?20 ?21 =?= intersection ?21 ?20
10508 [21, 20] by intersection_commutative ?20 ?21
10509 25668: Id : 11, {_}:
10510 union ?23 ?24 =?= union ?24 ?23
10511 [24, 23] by union_commutative ?23 ?24
10512 25668: Id : 12, {_}:
10513 intersection ?26 (intersection ?27 ?28)
10515 intersection (intersection ?26 ?27) ?28
10516 [28, 27, 26] by intersection_associative ?26 ?27 ?28
10517 25668: Id : 13, {_}:
10518 union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32
10519 [32, 31, 30] by union_associative ?30 ?31 ?32
10520 25668: Id : 14, {_}:
10521 union (intersection ?34 ?35) ?35 =>= ?35
10522 [35, 34] by union_intersection_absorbtion ?34 ?35
10523 25668: Id : 15, {_}:
10524 intersection (union ?37 ?38) ?38 =>= ?38
10525 [38, 37] by intersection_union_absorbtion ?37 ?38
10526 25668: Id : 16, {_}:
10527 multiply ?40 (union ?41 ?42)
10529 union (multiply ?40 ?41) (multiply ?40 ?42)
10530 [42, 41, 40] by multiply_union1 ?40 ?41 ?42
10531 25668: Id : 17, {_}:
10532 multiply ?44 (intersection ?45 ?46)
10534 intersection (multiply ?44 ?45) (multiply ?44 ?46)
10535 [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46
10536 25668: Id : 18, {_}:
10537 multiply (union ?48 ?49) ?50
10539 union (multiply ?48 ?50) (multiply ?49 ?50)
10540 [50, 49, 48] by multiply_union2 ?48 ?49 ?50
10541 25668: Id : 19, {_}:
10542 multiply (intersection ?52 ?53) ?54
10544 intersection (multiply ?52 ?54) (multiply ?53 ?54)
10545 [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54
10546 25668: Id : 20, {_}:
10547 positive_part ?56 =<= union ?56 identity
10548 [56] by positive_part ?56
10549 25668: Id : 21, {_}:
10550 negative_part ?58 =<= intersection ?58 identity
10551 [58] by negative_part ?58
10553 25668: Id : 1, {_}:
10554 multiply (positive_part a) (negative_part a) =>= a
10555 [] by prove_product
10559 25668: a 3 0 3 1,1,2
10560 25668: identity 6 0 0
10561 25668: positive_part 2 1 1 0,1,2
10562 25668: negative_part 2 1 1 0,2,2
10563 25668: inverse 7 1 0
10564 25668: intersection 14 2 0
10565 25668: union 14 2 0
10566 25668: multiply 21 2 1 0,2
10567 CLASH, statistics insufficient
10569 25669: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10570 25669: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10571 25669: Id : 4, {_}:
10572 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
10573 [8, 7, 6] by associativity ?6 ?7 ?8
10574 25669: Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity
10575 25669: Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11
10576 25669: Id : 7, {_}:
10577 inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13)
10578 [14, 13] by inverse_product_lemma ?13 ?14
10579 25669: Id : 8, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16
10580 CLASH, statistics insufficient
10582 25670: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10583 25670: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10584 25670: Id : 4, {_}:
10585 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
10586 [8, 7, 6] by associativity ?6 ?7 ?8
10587 25670: Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity
10588 25670: Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11
10589 25670: Id : 7, {_}:
10590 inverse (multiply ?13 ?14) =?= multiply (inverse ?14) (inverse ?13)
10591 [14, 13] by inverse_product_lemma ?13 ?14
10592 25670: Id : 8, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16
10593 25669: Id : 9, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18
10594 25669: Id : 10, {_}:
10595 intersection ?20 ?21 =?= intersection ?21 ?20
10596 [21, 20] by intersection_commutative ?20 ?21
10597 25669: Id : 11, {_}:
10598 union ?23 ?24 =?= union ?24 ?23
10599 [24, 23] by union_commutative ?23 ?24
10600 25669: Id : 12, {_}:
10601 intersection ?26 (intersection ?27 ?28)
10603 intersection (intersection ?26 ?27) ?28
10604 [28, 27, 26] by intersection_associative ?26 ?27 ?28
10605 25669: Id : 13, {_}:
10606 union ?30 (union ?31 ?32) =<= union (union ?30 ?31) ?32
10607 [32, 31, 30] by union_associative ?30 ?31 ?32
10608 25669: Id : 14, {_}:
10609 union (intersection ?34 ?35) ?35 =>= ?35
10610 [35, 34] by union_intersection_absorbtion ?34 ?35
10611 25669: Id : 15, {_}:
10612 intersection (union ?37 ?38) ?38 =>= ?38
10613 [38, 37] by intersection_union_absorbtion ?37 ?38
10614 25669: Id : 16, {_}:
10615 multiply ?40 (union ?41 ?42)
10617 union (multiply ?40 ?41) (multiply ?40 ?42)
10618 [42, 41, 40] by multiply_union1 ?40 ?41 ?42
10619 25669: Id : 17, {_}:
10620 multiply ?44 (intersection ?45 ?46)
10622 intersection (multiply ?44 ?45) (multiply ?44 ?46)
10623 [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46
10624 25669: Id : 18, {_}:
10625 multiply (union ?48 ?49) ?50
10627 union (multiply ?48 ?50) (multiply ?49 ?50)
10628 [50, 49, 48] by multiply_union2 ?48 ?49 ?50
10629 25669: Id : 19, {_}:
10630 multiply (intersection ?52 ?53) ?54
10632 intersection (multiply ?52 ?54) (multiply ?53 ?54)
10633 [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54
10634 25669: Id : 20, {_}:
10635 positive_part ?56 =<= union ?56 identity
10636 [56] by positive_part ?56
10637 25669: Id : 21, {_}:
10638 negative_part ?58 =<= intersection ?58 identity
10639 [58] by negative_part ?58
10641 25669: Id : 1, {_}:
10642 multiply (positive_part a) (negative_part a) =>= a
10643 [] by prove_product
10647 25669: a 3 0 3 1,1,2
10648 25669: identity 6 0 0
10649 25669: positive_part 2 1 1 0,1,2
10650 25669: negative_part 2 1 1 0,2,2
10651 25669: inverse 7 1 0
10652 25669: intersection 14 2 0
10653 25669: union 14 2 0
10654 25669: multiply 21 2 1 0,2
10655 25670: Id : 9, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18
10656 25670: Id : 10, {_}:
10657 intersection ?20 ?21 =?= intersection ?21 ?20
10658 [21, 20] by intersection_commutative ?20 ?21
10659 25670: Id : 11, {_}:
10660 union ?23 ?24 =?= union ?24 ?23
10661 [24, 23] by union_commutative ?23 ?24
10662 25670: Id : 12, {_}:
10663 intersection ?26 (intersection ?27 ?28)
10665 intersection (intersection ?26 ?27) ?28
10666 [28, 27, 26] by intersection_associative ?26 ?27 ?28
10667 25670: Id : 13, {_}:
10668 union ?30 (union ?31 ?32) =<= union (union ?30 ?31) ?32
10669 [32, 31, 30] by union_associative ?30 ?31 ?32
10670 25670: Id : 14, {_}:
10671 union (intersection ?34 ?35) ?35 =>= ?35
10672 [35, 34] by union_intersection_absorbtion ?34 ?35
10673 25670: Id : 15, {_}:
10674 intersection (union ?37 ?38) ?38 =>= ?38
10675 [38, 37] by intersection_union_absorbtion ?37 ?38
10676 25670: Id : 16, {_}:
10677 multiply ?40 (union ?41 ?42)
10679 union (multiply ?40 ?41) (multiply ?40 ?42)
10680 [42, 41, 40] by multiply_union1 ?40 ?41 ?42
10681 25670: Id : 17, {_}:
10682 multiply ?44 (intersection ?45 ?46)
10684 intersection (multiply ?44 ?45) (multiply ?44 ?46)
10685 [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46
10686 25670: Id : 18, {_}:
10687 multiply (union ?48 ?49) ?50
10689 union (multiply ?48 ?50) (multiply ?49 ?50)
10690 [50, 49, 48] by multiply_union2 ?48 ?49 ?50
10691 25670: Id : 19, {_}:
10692 multiply (intersection ?52 ?53) ?54
10694 intersection (multiply ?52 ?54) (multiply ?53 ?54)
10695 [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54
10696 25670: Id : 20, {_}:
10697 positive_part ?56 =>= union ?56 identity
10698 [56] by positive_part ?56
10699 25670: Id : 21, {_}:
10700 negative_part ?58 =>= intersection ?58 identity
10701 [58] by negative_part ?58
10703 25670: Id : 1, {_}:
10704 multiply (positive_part a) (negative_part a) =>= a
10705 [] by prove_product
10709 25670: a 3 0 3 1,1,2
10710 25670: identity 6 0 0
10711 25670: positive_part 2 1 1 0,1,2
10712 25670: negative_part 2 1 1 0,2,2
10713 25670: inverse 7 1 0
10714 25670: intersection 14 2 0
10715 25670: union 14 2 0
10716 25670: multiply 21 2 1 0,2
10719 Found proof, 7.917801s
10720 % SZS status Unsatisfiable for GRP114-1.p
10721 % SZS output start CNFRefutation for GRP114-1.p
10722 Id : 12, {_}: intersection ?26 (intersection ?27 ?28) =?= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28
10723 Id : 17, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46
10724 Id : 14, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35
10725 Id : 16, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42
10726 Id : 13, {_}: union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32
10727 Id : 241, {_}: multiply (union ?684 ?685) ?686 =<= union (multiply ?684 ?686) (multiply ?685 ?686) [686, 685, 684] by multiply_union2 ?684 ?685 ?686
10728 Id : 20, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56
10729 Id : 11, {_}: union ?23 ?24 =?= union ?24 ?23 [24, 23] by union_commutative ?23 ?24
10730 Id : 15, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38
10731 Id : 205, {_}: multiply ?602 (intersection ?603 ?604) =<= intersection (multiply ?602 ?603) (multiply ?602 ?604) [604, 603, 602] by multiply_intersection1 ?602 ?603 ?604
10732 Id : 21, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58
10733 Id : 10, {_}: intersection ?20 ?21 =?= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21
10734 Id : 276, {_}: multiply (intersection ?769 ?770) ?771 =<= intersection (multiply ?769 ?771) (multiply ?770 ?771) [771, 770, 769] by multiply_intersection2 ?769 ?770 ?771
10735 Id : 6, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11
10736 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10737 Id : 5, {_}: inverse identity =>= identity [] by inverse_of_identity
10738 Id : 58, {_}: inverse (multiply ?149 ?150) =<= multiply (inverse ?150) (inverse ?149) [150, 149] by inverse_product_lemma ?149 ?150
10739 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10740 Id : 26, {_}: multiply (multiply ?67 ?68) ?69 =?= multiply ?67 (multiply ?68 ?69) [69, 68, 67] by associativity ?67 ?68 ?69
10741 Id : 28, {_}: multiply (multiply ?74 (inverse ?75)) ?75 =>= multiply ?74 identity [75, 74] by Super 26 with 3 at 2,3
10742 Id : 59, {_}: inverse (multiply identity ?152) =<= multiply (inverse ?152) identity [152] by Super 58 with 5 at 2,3
10743 Id : 459, {_}: inverse ?1057 =<= multiply (inverse ?1057) identity [1057] by Demod 59 with 2 at 1,2
10744 Id : 461, {_}: inverse (inverse ?1060) =<= multiply ?1060 identity [1060] by Super 459 with 6 at 1,3
10745 Id : 475, {_}: ?1060 =<= multiply ?1060 identity [1060] by Demod 461 with 6 at 2
10746 Id : 570, {_}: multiply (multiply ?74 (inverse ?75)) ?75 =>= ?74 [75, 74] by Demod 28 with 475 at 3
10747 Id : 62, {_}: inverse (multiply ?159 (inverse ?160)) =>= multiply ?160 (inverse ?159) [160, 159] by Super 58 with 6 at 1,3
10748 Id : 283, {_}: multiply (intersection (inverse ?796) ?797) ?796 =>= intersection identity (multiply ?797 ?796) [797, 796] by Super 276 with 3 at 1,3
10749 Id : 329, {_}: intersection identity ?869 =>= negative_part ?869 [869] by Super 10 with 21 at 3
10750 Id : 16231, {_}: multiply (intersection (inverse ?20320) ?20321) ?20320 =>= negative_part (multiply ?20321 ?20320) [20321, 20320] by Demod 283 with 329 at 3
10751 Id : 16259, {_}: multiply (negative_part (inverse ?20413)) ?20413 =>= negative_part (multiply identity ?20413) [20413] by Super 16231 with 21 at 1,2
10752 Id : 16311, {_}: multiply (negative_part (inverse ?20413)) ?20413 =>= negative_part ?20413 [20413] by Demod 16259 with 2 at 1,3
10753 Id : 16342, {_}: inverse (negative_part (inverse ?20447)) =<= multiply ?20447 (inverse (negative_part (inverse (inverse ?20447)))) [20447] by Super 62 with 16311 at 1,2
10754 Id : 16414, {_}: inverse (negative_part (inverse ?20447)) =<= multiply ?20447 (inverse (negative_part ?20447)) [20447] by Demod 16342 with 6 at 1,1,2,3
10755 Id : 16644, {_}: multiply (inverse (negative_part (inverse ?20815))) (negative_part ?20815) =>= ?20815 [20815] by Super 570 with 16414 at 1,2
10756 Id : 60, {_}: inverse (multiply (inverse ?154) ?155) =>= multiply (inverse ?155) ?154 [155, 154] by Super 58 with 6 at 2,3
10757 Id : 207, {_}: multiply (inverse ?609) (intersection ?610 ?609) =>= intersection (multiply (inverse ?609) ?610) identity [610, 609] by Super 205 with 3 at 2,3
10758 Id : 228, {_}: multiply (inverse ?609) (intersection ?610 ?609) =>= intersection identity (multiply (inverse ?609) ?610) [610, 609] by Demod 207 with 10 at 3
10759 Id : 10379, {_}: multiply (inverse ?609) (intersection ?610 ?609) =>= negative_part (multiply (inverse ?609) ?610) [610, 609] by Demod 228 with 329 at 3
10760 Id : 10396, {_}: inverse (negative_part (multiply (inverse ?14999) ?15000)) =<= multiply (inverse (intersection ?15000 ?14999)) ?14999 [15000, 14999] by Super 60 with 10379 at 1,2
10761 Id : 309, {_}: union identity ?834 =>= positive_part ?834 [834] by Super 11 with 20 at 3
10762 Id : 360, {_}: intersection (positive_part ?914) ?914 =>= ?914 [914] by Super 15 with 309 at 1,2
10763 Id : 686, {_}: intersection ?1353 (positive_part ?1353) =>= ?1353 [1353] by Super 10 with 360 at 3
10764 Id : 248, {_}: multiply (union (inverse ?711) ?712) ?711 =>= union identity (multiply ?712 ?711) [712, 711] by Super 241 with 3 at 1,3
10765 Id : 10542, {_}: multiply (union (inverse ?15313) ?15314) ?15313 =>= positive_part (multiply ?15314 ?15313) [15314, 15313] by Demod 248 with 309 at 3
10766 Id : 359, {_}: union identity (union ?911 ?912) =>= union (positive_part ?911) ?912 [912, 911] by Super 13 with 309 at 1,3
10767 Id : 367, {_}: positive_part (union ?911 ?912) =>= union (positive_part ?911) ?912 [912, 911] by Demod 359 with 309 at 2
10768 Id : 312, {_}: union ?841 (union ?842 identity) =>= positive_part (union ?841 ?842) [842, 841] by Super 13 with 20 at 3
10769 Id : 324, {_}: union ?841 (positive_part ?842) =<= positive_part (union ?841 ?842) [842, 841] by Demod 312 with 20 at 2,2
10770 Id : 709, {_}: union ?911 (positive_part ?912) =?= union (positive_part ?911) ?912 [912, 911] by Demod 367 with 324 at 2
10771 Id : 487, {_}: multiply ?1085 (union ?1086 identity) =?= union (multiply ?1085 ?1086) ?1085 [1086, 1085] by Super 16 with 475 at 2,3
10772 Id : 2720, {_}: multiply ?5029 (positive_part ?5030) =<= union (multiply ?5029 ?5030) ?5029 [5030, 5029] by Demod 487 with 20 at 2,2
10773 Id : 2722, {_}: multiply (inverse ?5034) (positive_part ?5034) =>= union identity (inverse ?5034) [5034] by Super 2720 with 3 at 1,3
10774 Id : 2784, {_}: multiply (inverse ?5160) (positive_part ?5160) =>= positive_part (inverse ?5160) [5160] by Demod 2722 with 309 at 3
10775 Id : 307, {_}: positive_part (intersection ?831 identity) =>= identity [831] by Super 14 with 20 at 2
10776 Id : 514, {_}: positive_part (negative_part ?831) =>= identity [831] by Demod 307 with 21 at 1,2
10777 Id : 2786, {_}: multiply (inverse (negative_part ?5163)) identity =>= positive_part (inverse (negative_part ?5163)) [5163] by Super 2784 with 514 at 2,2
10778 Id : 2807, {_}: inverse (negative_part ?5163) =<= positive_part (inverse (negative_part ?5163)) [5163] by Demod 2786 with 475 at 2
10779 Id : 2823, {_}: union (inverse (negative_part ?5198)) (positive_part ?5199) =>= union (inverse (negative_part ?5198)) ?5199 [5199, 5198] by Super 709 with 2807 at 1,3
10780 Id : 10564, {_}: multiply (union (inverse (negative_part ?15386)) ?15387) (negative_part ?15386) =>= positive_part (multiply (positive_part ?15387) (negative_part ?15386)) [15387, 15386] by Super 10542 with 2823 at 1,2
10781 Id : 10509, {_}: multiply (union (inverse ?711) ?712) ?711 =>= positive_part (multiply ?712 ?711) [712, 711] by Demod 248 with 309 at 3
10782 Id : 10604, {_}: positive_part (multiply ?15387 (negative_part ?15386)) =<= positive_part (multiply (positive_part ?15387) (negative_part ?15386)) [15386, 15387] by Demod 10564 with 10509 at 2
10783 Id : 481, {_}: multiply ?1071 (intersection ?1072 identity) =?= intersection (multiply ?1071 ?1072) ?1071 [1072, 1071] by Super 17 with 475 at 2,3
10784 Id : 505, {_}: multiply ?1071 (negative_part ?1072) =<= intersection (multiply ?1071 ?1072) ?1071 [1072, 1071] by Demod 481 with 21 at 2,2
10785 Id : 10568, {_}: multiply (positive_part (inverse ?15398)) ?15398 =>= positive_part (multiply identity ?15398) [15398] by Super 10542 with 20 at 1,2
10786 Id : 10608, {_}: multiply (positive_part (inverse ?15398)) ?15398 =>= positive_part ?15398 [15398] by Demod 10568 with 2 at 1,3
10787 Id : 10645, {_}: multiply (positive_part (inverse ?15507)) (negative_part ?15507) =>= intersection (positive_part ?15507) (positive_part (inverse ?15507)) [15507] by Super 505 with 10608 at 1,3
10788 Id : 11493, {_}: positive_part (multiply (inverse ?16415) (negative_part ?16415)) =<= positive_part (intersection (positive_part ?16415) (positive_part (inverse ?16415))) [16415] by Super 10604 with 10645 at 1,3
10789 Id : 3426, {_}: multiply ?5989 (negative_part ?5990) =<= intersection (multiply ?5989 ?5990) ?5989 [5990, 5989] by Demod 481 with 21 at 2,2
10790 Id : 3428, {_}: multiply (inverse ?5994) (negative_part ?5994) =>= intersection identity (inverse ?5994) [5994] by Super 3426 with 3 at 1,3
10791 Id : 3468, {_}: multiply (inverse ?5994) (negative_part ?5994) =>= negative_part (inverse ?5994) [5994] by Demod 3428 with 329 at 3
10792 Id : 11531, {_}: positive_part (negative_part (inverse ?16415)) =<= positive_part (intersection (positive_part ?16415) (positive_part (inverse ?16415))) [16415] by Demod 11493 with 3468 at 1,2
10793 Id : 11532, {_}: identity =<= positive_part (intersection (positive_part ?16415) (positive_part (inverse ?16415))) [16415] by Demod 11531 with 514 at 2
10794 Id : 52635, {_}: intersection (intersection (positive_part ?60922) (positive_part (inverse ?60922))) identity =>= intersection (positive_part ?60922) (positive_part (inverse ?60922)) [60922] by Super 686 with 11532 at 2,2
10795 Id : 52914, {_}: intersection identity (intersection (positive_part ?60922) (positive_part (inverse ?60922))) =>= intersection (positive_part ?60922) (positive_part (inverse ?60922)) [60922] by Demod 52635 with 10 at 2
10796 Id : 52915, {_}: negative_part (intersection (positive_part ?60922) (positive_part (inverse ?60922))) =>= intersection (positive_part ?60922) (positive_part (inverse ?60922)) [60922] by Demod 52914 with 329 at 2
10797 Id : 332, {_}: intersection ?876 (intersection ?877 identity) =>= negative_part (intersection ?876 ?877) [877, 876] by Super 12 with 21 at 3
10798 Id : 344, {_}: intersection ?876 (negative_part ?877) =<= negative_part (intersection ?876 ?877) [877, 876] by Demod 332 with 21 at 2,2
10799 Id : 52916, {_}: intersection (positive_part ?60922) (negative_part (positive_part (inverse ?60922))) =>= intersection (positive_part ?60922) (positive_part (inverse ?60922)) [60922] by Demod 52915 with 344 at 2
10800 Id : 52917, {_}: intersection (negative_part (positive_part (inverse ?60922))) (positive_part ?60922) =>= intersection (positive_part ?60922) (positive_part (inverse ?60922)) [60922] by Demod 52916 with 10 at 2
10801 Id : 421, {_}: intersection identity (intersection ?1000 ?1001) =>= intersection (negative_part ?1000) ?1001 [1001, 1000] by Super 12 with 329 at 1,3
10802 Id : 435, {_}: negative_part (intersection ?1000 ?1001) =>= intersection (negative_part ?1000) ?1001 [1001, 1000] by Demod 421 with 329 at 2
10803 Id : 903, {_}: intersection ?1965 (negative_part ?1966) =?= intersection (negative_part ?1965) ?1966 [1966, 1965] by Demod 435 with 344 at 2
10804 Id : 327, {_}: negative_part (union ?866 identity) =>= identity [866] by Super 15 with 21 at 2
10805 Id : 346, {_}: negative_part (positive_part ?866) =>= identity [866] by Demod 327 with 20 at 1,2
10806 Id : 914, {_}: intersection (positive_part ?1997) (negative_part ?1998) =>= intersection identity ?1998 [1998, 1997] by Super 903 with 346 at 1,2
10807 Id : 945, {_}: intersection (negative_part ?1998) (positive_part ?1997) =>= intersection identity ?1998 [1997, 1998] by Demod 914 with 10 at 2
10808 Id : 946, {_}: intersection (negative_part ?1998) (positive_part ?1997) =>= negative_part ?1998 [1997, 1998] by Demod 945 with 329 at 3
10809 Id : 52918, {_}: negative_part (positive_part (inverse ?60922)) =<= intersection (positive_part ?60922) (positive_part (inverse ?60922)) [60922] by Demod 52917 with 946 at 2
10810 Id : 52919, {_}: identity =<= intersection (positive_part ?60922) (positive_part (inverse ?60922)) [60922] by Demod 52918 with 346 at 2
10811 Id : 53306, {_}: inverse (negative_part (multiply (inverse (positive_part (inverse ?61296))) (positive_part ?61296))) =>= multiply (inverse identity) (positive_part (inverse ?61296)) [61296] by Super 10396 with 52919 at 1,1,3
10812 Id : 10642, {_}: inverse (positive_part (inverse ?15501)) =<= multiply ?15501 (inverse (positive_part (inverse (inverse ?15501)))) [15501] by Super 62 with 10608 at 1,2
10813 Id : 10686, {_}: inverse (positive_part (inverse ?15501)) =<= multiply ?15501 (inverse (positive_part ?15501)) [15501] by Demod 10642 with 6 at 1,1,2,3
10814 Id : 10895, {_}: multiply (inverse (positive_part (inverse ?15767))) (positive_part ?15767) =>= ?15767 [15767] by Super 570 with 10686 at 1,2
10815 Id : 53366, {_}: inverse (negative_part ?61296) =<= multiply (inverse identity) (positive_part (inverse ?61296)) [61296] by Demod 53306 with 10895 at 1,1,2
10816 Id : 53367, {_}: inverse (negative_part ?61296) =<= multiply identity (positive_part (inverse ?61296)) [61296] by Demod 53366 with 5 at 1,3
10817 Id : 53816, {_}: inverse (negative_part ?61700) =<= positive_part (inverse ?61700) [61700] by Demod 53367 with 2 at 3
10818 Id : 53819, {_}: inverse (negative_part (multiply (inverse ?61705) ?61706)) =>= positive_part (multiply (inverse ?61706) ?61705) [61706, 61705] by Super 53816 with 60 at 1,3
10819 Id : 62826, {_}: inverse (positive_part (multiply (inverse ?68982) ?68983)) =>= negative_part (multiply (inverse ?68983) ?68982) [68983, 68982] by Super 6 with 53819 at 1,2
10820 Id : 62827, {_}: inverse (positive_part (multiply identity ?68985)) =<= negative_part (multiply (inverse ?68985) identity) [68985] by Super 62826 with 5 at 1,1,1,2
10821 Id : 63051, {_}: inverse (positive_part ?68985) =<= negative_part (multiply (inverse ?68985) identity) [68985] by Demod 62827 with 2 at 1,1,2
10822 Id : 63052, {_}: inverse (positive_part ?68985) =<= negative_part (inverse ?68985) [68985] by Demod 63051 with 475 at 1,3
10823 Id : 66930, {_}: multiply (inverse (inverse (positive_part ?20815))) (negative_part ?20815) =>= ?20815 [20815] by Demod 16644 with 63052 at 1,1,2
10824 Id : 66931, {_}: multiply (positive_part ?20815) (negative_part ?20815) =>= ?20815 [20815] by Demod 66930 with 6 at 1,2
10825 Id : 67152, {_}: a === a [] by Demod 1 with 66931 at 2
10826 Id : 1, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product
10827 % SZS output end CNFRefutation for GRP114-1.p
10828 25668: solved GRP114-1.p in 7.932495 using nrkbo
10829 25668: status Unsatisfiable for GRP114-1.p
10830 NO CLASH, using fixed ground order
10832 25676: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10833 25676: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10834 25676: Id : 4, {_}:
10835 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
10836 [8, 7, 6] by associativity ?6 ?7 ?8
10837 25676: Id : 5, {_}:
10838 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
10839 [11, 10] by symmetry_of_glb ?10 ?11
10840 25676: Id : 6, {_}:
10841 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
10842 [14, 13] by symmetry_of_lub ?13 ?14
10843 25676: Id : 7, {_}:
10844 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
10846 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
10847 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
10848 25676: Id : 8, {_}:
10849 least_upper_bound ?20 (least_upper_bound ?21 ?22)
10851 least_upper_bound (least_upper_bound ?20 ?21) ?22
10852 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
10853 25676: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
10854 25676: Id : 10, {_}:
10855 greatest_lower_bound ?26 ?26 =>= ?26
10856 [26] by idempotence_of_gld ?26
10857 25676: Id : 11, {_}:
10858 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
10859 [29, 28] by lub_absorbtion ?28 ?29
10860 25676: Id : 12, {_}:
10861 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
10862 [32, 31] by glb_absorbtion ?31 ?32
10863 25676: Id : 13, {_}:
10864 multiply ?34 (least_upper_bound ?35 ?36)
10866 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
10867 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
10868 25676: Id : 14, {_}:
10869 multiply ?38 (greatest_lower_bound ?39 ?40)
10871 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
10872 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
10873 25676: Id : 15, {_}:
10874 multiply (least_upper_bound ?42 ?43) ?44
10876 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
10877 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
10878 25676: Id : 16, {_}:
10879 multiply (greatest_lower_bound ?46 ?47) ?48
10881 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
10882 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
10883 25676: Id : 17, {_}: inverse identity =>= identity [] by p19_1
10884 25676: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p19_2 ?51
10885 25676: Id : 19, {_}:
10886 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
10887 [54, 53] by p19_3 ?53 ?54
10889 25676: Id : 1, {_}:
10892 multiply (least_upper_bound a identity)
10893 (greatest_lower_bound a identity)
10899 25676: identity 6 0 2 2,1,3
10900 25676: inverse 7 1 0
10901 25676: least_upper_bound 14 2 1 0,1,3
10902 25676: greatest_lower_bound 14 2 1 0,2,3
10903 25676: multiply 21 2 1 0,3
10904 NO CLASH, using fixed ground order
10906 25675: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10907 25675: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10908 25675: Id : 4, {_}:
10909 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
10910 [8, 7, 6] by associativity ?6 ?7 ?8
10911 25675: Id : 5, {_}:
10912 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
10913 [11, 10] by symmetry_of_glb ?10 ?11
10914 25675: Id : 6, {_}:
10915 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
10916 [14, 13] by symmetry_of_lub ?13 ?14
10917 25675: Id : 7, {_}:
10918 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
10920 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
10921 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
10922 25675: Id : 8, {_}:
10923 least_upper_bound ?20 (least_upper_bound ?21 ?22)
10925 least_upper_bound (least_upper_bound ?20 ?21) ?22
10926 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
10927 25675: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
10928 25675: Id : 10, {_}:
10929 greatest_lower_bound ?26 ?26 =>= ?26
10930 [26] by idempotence_of_gld ?26
10931 25675: Id : 11, {_}:
10932 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
10933 [29, 28] by lub_absorbtion ?28 ?29
10934 25675: Id : 12, {_}:
10935 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
10936 [32, 31] by glb_absorbtion ?31 ?32
10937 25675: Id : 13, {_}:
10938 multiply ?34 (least_upper_bound ?35 ?36)
10940 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
10941 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
10942 25675: Id : 14, {_}:
10943 multiply ?38 (greatest_lower_bound ?39 ?40)
10945 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
10946 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
10947 25675: Id : 15, {_}:
10948 multiply (least_upper_bound ?42 ?43) ?44
10950 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
10951 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
10952 25675: Id : 16, {_}:
10953 multiply (greatest_lower_bound ?46 ?47) ?48
10955 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
10956 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
10957 25675: Id : 17, {_}: inverse identity =>= identity [] by p19_1
10958 25675: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p19_2 ?51
10959 25675: Id : 19, {_}:
10960 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
10961 [54, 53] by p19_3 ?53 ?54
10963 25675: Id : 1, {_}:
10966 multiply (least_upper_bound a identity)
10967 (greatest_lower_bound a identity)
10973 25675: identity 6 0 2 2,1,3
10974 25675: inverse 7 1 0
10975 25675: least_upper_bound 14 2 1 0,1,3
10976 25675: greatest_lower_bound 14 2 1 0,2,3
10977 25675: multiply 21 2 1 0,3
10978 NO CLASH, using fixed ground order
10980 25677: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
10981 25677: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
10982 25677: Id : 4, {_}:
10983 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
10984 [8, 7, 6] by associativity ?6 ?7 ?8
10985 25677: Id : 5, {_}:
10986 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
10987 [11, 10] by symmetry_of_glb ?10 ?11
10988 25677: Id : 6, {_}:
10989 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
10990 [14, 13] by symmetry_of_lub ?13 ?14
10991 25677: Id : 7, {_}:
10992 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
10994 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
10995 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
10996 25677: Id : 8, {_}:
10997 least_upper_bound ?20 (least_upper_bound ?21 ?22)
10999 least_upper_bound (least_upper_bound ?20 ?21) ?22
11000 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11001 25677: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11002 25677: Id : 10, {_}:
11003 greatest_lower_bound ?26 ?26 =>= ?26
11004 [26] by idempotence_of_gld ?26
11005 25677: Id : 11, {_}:
11006 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11007 [29, 28] by lub_absorbtion ?28 ?29
11008 25677: Id : 12, {_}:
11009 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11010 [32, 31] by glb_absorbtion ?31 ?32
11011 25677: Id : 13, {_}:
11012 multiply ?34 (least_upper_bound ?35 ?36)
11014 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11015 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11016 25677: Id : 14, {_}:
11017 multiply ?38 (greatest_lower_bound ?39 ?40)
11019 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11020 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11021 25677: Id : 15, {_}:
11022 multiply (least_upper_bound ?42 ?43) ?44
11024 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11025 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11026 25677: Id : 16, {_}:
11027 multiply (greatest_lower_bound ?46 ?47) ?48
11029 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11030 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11031 25677: Id : 17, {_}: inverse identity =>= identity [] by p19_1
11032 25677: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p19_2 ?51
11033 25677: Id : 19, {_}:
11034 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
11035 [54, 53] by p19_3 ?53 ?54
11037 25677: Id : 1, {_}:
11040 multiply (least_upper_bound a identity)
11041 (greatest_lower_bound a identity)
11047 25677: identity 6 0 2 2,1,3
11048 25677: inverse 7 1 0
11049 25677: least_upper_bound 14 2 1 0,1,3
11050 25677: greatest_lower_bound 14 2 1 0,2,3
11051 25677: multiply 21 2 1 0,3
11052 % SZS status Timeout for GRP167-4.p
11053 NO CLASH, using fixed ground order
11055 25699: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11056 25699: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11057 25699: Id : 4, {_}:
11058 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
11059 [8, 7, 6] by associativity ?6 ?7 ?8
11060 25699: Id : 5, {_}:
11061 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11062 [11, 10] by symmetry_of_glb ?10 ?11
11063 25699: Id : 6, {_}:
11064 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11065 [14, 13] by symmetry_of_lub ?13 ?14
11066 25699: Id : 7, {_}:
11067 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11069 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11070 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11071 25699: Id : 8, {_}:
11072 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11074 least_upper_bound (least_upper_bound ?20 ?21) ?22
11075 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11076 25699: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11077 25699: Id : 10, {_}:
11078 greatest_lower_bound ?26 ?26 =>= ?26
11079 [26] by idempotence_of_gld ?26
11080 25699: Id : 11, {_}:
11081 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11082 [29, 28] by lub_absorbtion ?28 ?29
11083 25699: Id : 12, {_}:
11084 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11085 [32, 31] by glb_absorbtion ?31 ?32
11086 25699: Id : 13, {_}:
11087 multiply ?34 (least_upper_bound ?35 ?36)
11089 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11090 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11091 25699: Id : 14, {_}:
11092 multiply ?38 (greatest_lower_bound ?39 ?40)
11094 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11095 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11096 25699: Id : 15, {_}:
11097 multiply (least_upper_bound ?42 ?43) ?44
11099 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11100 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11101 25699: Id : 16, {_}:
11102 multiply (greatest_lower_bound ?46 ?47) ?48
11104 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11105 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11106 25699: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p08b_1
11107 25699: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p08b_2
11108 25699: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p08b_3
11110 25699: Id : 1, {_}:
11111 greatest_lower_bound (greatest_lower_bound a (multiply b c))
11112 (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))
11114 greatest_lower_bound a (multiply b c)
11119 25699: b 4 0 3 1,2,1,2
11120 25699: c 4 0 3 2,2,1,2
11121 25699: a 5 0 4 1,1,2
11122 25699: identity 8 0 0
11123 25699: inverse 1 1 0
11124 25699: least_upper_bound 13 2 0
11125 25699: multiply 21 2 3 0,2,1,2
11126 25699: greatest_lower_bound 21 2 5 0,2
11127 NO CLASH, using fixed ground order
11129 25700: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11130 25700: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11131 25700: Id : 4, {_}:
11132 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
11133 [8, 7, 6] by associativity ?6 ?7 ?8
11134 25700: Id : 5, {_}:
11135 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11136 [11, 10] by symmetry_of_glb ?10 ?11
11137 25700: Id : 6, {_}:
11138 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11139 [14, 13] by symmetry_of_lub ?13 ?14
11140 25700: Id : 7, {_}:
11141 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11143 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11144 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11145 25700: Id : 8, {_}:
11146 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11148 least_upper_bound (least_upper_bound ?20 ?21) ?22
11149 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11150 25700: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11151 25700: Id : 10, {_}:
11152 greatest_lower_bound ?26 ?26 =>= ?26
11153 [26] by idempotence_of_gld ?26
11154 25700: Id : 11, {_}:
11155 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11156 [29, 28] by lub_absorbtion ?28 ?29
11157 25700: Id : 12, {_}:
11158 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11159 [32, 31] by glb_absorbtion ?31 ?32
11160 25700: Id : 13, {_}:
11161 multiply ?34 (least_upper_bound ?35 ?36)
11163 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11164 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11165 25700: Id : 14, {_}:
11166 multiply ?38 (greatest_lower_bound ?39 ?40)
11168 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11169 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11170 25700: Id : 15, {_}:
11171 multiply (least_upper_bound ?42 ?43) ?44
11173 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11174 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11175 25700: Id : 16, {_}:
11176 multiply (greatest_lower_bound ?46 ?47) ?48
11178 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11179 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11180 25700: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p08b_1
11181 25700: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p08b_2
11182 25700: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p08b_3
11184 25700: Id : 1, {_}:
11185 greatest_lower_bound (greatest_lower_bound a (multiply b c))
11186 (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))
11188 greatest_lower_bound a (multiply b c)
11193 25700: b 4 0 3 1,2,1,2
11194 25700: c 4 0 3 2,2,1,2
11195 25700: a 5 0 4 1,1,2
11196 25700: identity 8 0 0
11197 25700: inverse 1 1 0
11198 25700: least_upper_bound 13 2 0
11199 25700: multiply 21 2 3 0,2,1,2
11200 25700: greatest_lower_bound 21 2 5 0,2
11201 NO CLASH, using fixed ground order
11203 25701: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11204 25701: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11205 25701: Id : 4, {_}:
11206 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
11207 [8, 7, 6] by associativity ?6 ?7 ?8
11208 25701: Id : 5, {_}:
11209 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11210 [11, 10] by symmetry_of_glb ?10 ?11
11211 25701: Id : 6, {_}:
11212 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11213 [14, 13] by symmetry_of_lub ?13 ?14
11214 25701: Id : 7, {_}:
11215 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11217 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11218 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11219 25701: Id : 8, {_}:
11220 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11222 least_upper_bound (least_upper_bound ?20 ?21) ?22
11223 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11224 25701: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11225 25701: Id : 10, {_}:
11226 greatest_lower_bound ?26 ?26 =>= ?26
11227 [26] by idempotence_of_gld ?26
11228 25701: Id : 11, {_}:
11229 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11230 [29, 28] by lub_absorbtion ?28 ?29
11231 25701: Id : 12, {_}:
11232 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11233 [32, 31] by glb_absorbtion ?31 ?32
11234 25701: Id : 13, {_}:
11235 multiply ?34 (least_upper_bound ?35 ?36)
11237 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11238 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11239 25701: Id : 14, {_}:
11240 multiply ?38 (greatest_lower_bound ?39 ?40)
11242 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11243 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11244 25701: Id : 15, {_}:
11245 multiply (least_upper_bound ?42 ?43) ?44
11247 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11248 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11249 25701: Id : 16, {_}:
11250 multiply (greatest_lower_bound ?46 ?47) ?48
11252 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11253 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11254 25701: Id : 17, {_}: greatest_lower_bound identity a =>= identity [] by p08b_1
11255 25701: Id : 18, {_}: greatest_lower_bound identity b =>= identity [] by p08b_2
11256 25701: Id : 19, {_}: greatest_lower_bound identity c =>= identity [] by p08b_3
11258 25701: Id : 1, {_}:
11259 greatest_lower_bound (greatest_lower_bound a (multiply b c))
11260 (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))
11262 greatest_lower_bound a (multiply b c)
11267 25701: b 4 0 3 1,2,1,2
11268 25701: c 4 0 3 2,2,1,2
11269 25701: a 5 0 4 1,1,2
11270 25701: identity 8 0 0
11271 25701: inverse 1 1 0
11272 25701: least_upper_bound 13 2 0
11273 25701: multiply 21 2 3 0,2,1,2
11274 25701: greatest_lower_bound 21 2 5 0,2
11275 % SZS status Timeout for GRP177-2.p
11276 NO CLASH, using fixed ground order
11278 NO CLASH, using fixed ground order
11280 25724: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11281 25724: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11282 25724: Id : 4, {_}:
11283 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
11284 [8, 7, 6] by associativity ?6 ?7 ?8
11285 25724: Id : 5, {_}:
11286 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11287 [11, 10] by symmetry_of_glb ?10 ?11
11288 25724: Id : 6, {_}:
11289 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11290 [14, 13] by symmetry_of_lub ?13 ?14
11291 25724: Id : 7, {_}:
11292 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11294 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11295 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11296 25724: Id : 8, {_}:
11297 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11299 least_upper_bound (least_upper_bound ?20 ?21) ?22
11300 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11301 25724: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11302 NO CLASH, using fixed ground order
11304 25725: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11305 25725: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11306 25725: Id : 4, {_}:
11307 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
11308 [8, 7, 6] by associativity ?6 ?7 ?8
11309 25725: Id : 5, {_}:
11310 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11311 [11, 10] by symmetry_of_glb ?10 ?11
11312 25725: Id : 6, {_}:
11313 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11314 [14, 13] by symmetry_of_lub ?13 ?14
11315 25725: Id : 7, {_}:
11316 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11318 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11319 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11320 25725: Id : 8, {_}:
11321 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11323 least_upper_bound (least_upper_bound ?20 ?21) ?22
11324 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11325 25725: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11326 25725: Id : 10, {_}:
11327 greatest_lower_bound ?26 ?26 =>= ?26
11328 [26] by idempotence_of_gld ?26
11329 25725: Id : 11, {_}:
11330 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11331 [29, 28] by lub_absorbtion ?28 ?29
11332 25723: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11333 25725: Id : 12, {_}:
11334 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11335 [32, 31] by glb_absorbtion ?31 ?32
11336 25723: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11337 25725: Id : 13, {_}:
11338 multiply ?34 (least_upper_bound ?35 ?36)
11340 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11341 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11342 25725: Id : 14, {_}:
11343 multiply ?38 (greatest_lower_bound ?39 ?40)
11345 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11346 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11347 25725: Id : 15, {_}:
11348 multiply (least_upper_bound ?42 ?43) ?44
11350 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11351 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11352 25723: Id : 4, {_}:
11353 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
11354 [8, 7, 6] by associativity ?6 ?7 ?8
11355 25723: Id : 5, {_}:
11356 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11357 [11, 10] by symmetry_of_glb ?10 ?11
11358 25725: Id : 16, {_}:
11359 multiply (greatest_lower_bound ?46 ?47) ?48
11361 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11362 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11363 25723: Id : 6, {_}:
11364 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11365 [14, 13] by symmetry_of_lub ?13 ?14
11366 25725: Id : 17, {_}: inverse identity =>= identity [] by p18_1
11367 25725: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p18_2 ?51
11368 25723: Id : 7, {_}:
11369 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11371 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11372 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11373 25725: Id : 19, {_}:
11374 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
11375 [54, 53] by p18_3 ?53 ?54
11377 25725: Id : 1, {_}:
11378 least_upper_bound (inverse a) identity
11380 inverse (greatest_lower_bound a identity)
11385 25725: a 2 0 2 1,1,2
11386 25725: identity 6 0 2 2,2
11387 25725: inverse 9 1 2 0,1,2
11388 25725: greatest_lower_bound 14 2 1 0,1,3
11389 25725: least_upper_bound 14 2 1 0,2
11390 25723: Id : 8, {_}:
11391 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11393 least_upper_bound (least_upper_bound ?20 ?21) ?22
11394 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11395 25723: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11396 25723: Id : 10, {_}:
11397 greatest_lower_bound ?26 ?26 =>= ?26
11398 [26] by idempotence_of_gld ?26
11399 25723: Id : 11, {_}:
11400 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11401 [29, 28] by lub_absorbtion ?28 ?29
11402 25723: Id : 12, {_}:
11403 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11404 [32, 31] by glb_absorbtion ?31 ?32
11405 25723: Id : 13, {_}:
11406 multiply ?34 (least_upper_bound ?35 ?36)
11408 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11409 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11410 25723: Id : 14, {_}:
11411 multiply ?38 (greatest_lower_bound ?39 ?40)
11413 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11414 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11415 25723: Id : 15, {_}:
11416 multiply (least_upper_bound ?42 ?43) ?44
11418 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11419 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11420 25723: Id : 16, {_}:
11421 multiply (greatest_lower_bound ?46 ?47) ?48
11423 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11424 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11425 25723: Id : 17, {_}: inverse identity =>= identity [] by p18_1
11426 25723: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p18_2 ?51
11427 25723: Id : 19, {_}:
11428 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
11429 [54, 53] by p18_3 ?53 ?54
11431 25723: Id : 1, {_}:
11432 least_upper_bound (inverse a) identity
11434 inverse (greatest_lower_bound a identity)
11439 25723: a 2 0 2 1,1,2
11440 25723: identity 6 0 2 2,2
11441 25723: inverse 9 1 2 0,1,2
11442 25723: greatest_lower_bound 14 2 1 0,1,3
11443 25723: least_upper_bound 14 2 1 0,2
11444 25723: multiply 20 2 0
11445 25724: Id : 10, {_}:
11446 greatest_lower_bound ?26 ?26 =>= ?26
11447 [26] by idempotence_of_gld ?26
11448 25725: multiply 20 2 0
11449 25724: Id : 11, {_}:
11450 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11451 [29, 28] by lub_absorbtion ?28 ?29
11452 25724: Id : 12, {_}:
11453 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11454 [32, 31] by glb_absorbtion ?31 ?32
11455 25724: Id : 13, {_}:
11456 multiply ?34 (least_upper_bound ?35 ?36)
11458 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11459 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11460 25724: Id : 14, {_}:
11461 multiply ?38 (greatest_lower_bound ?39 ?40)
11463 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11464 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11465 25724: Id : 15, {_}:
11466 multiply (least_upper_bound ?42 ?43) ?44
11468 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11469 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11470 25724: Id : 16, {_}:
11471 multiply (greatest_lower_bound ?46 ?47) ?48
11473 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11474 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11475 25724: Id : 17, {_}: inverse identity =>= identity [] by p18_1
11476 25724: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p18_2 ?51
11477 25724: Id : 19, {_}:
11478 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
11479 [54, 53] by p18_3 ?53 ?54
11481 25724: Id : 1, {_}:
11482 least_upper_bound (inverse a) identity
11484 inverse (greatest_lower_bound a identity)
11489 25724: a 2 0 2 1,1,2
11490 25724: identity 6 0 2 2,2
11491 25724: inverse 9 1 2 0,1,2
11492 25724: greatest_lower_bound 14 2 1 0,1,3
11493 25724: least_upper_bound 14 2 1 0,2
11494 25724: multiply 20 2 0
11495 % SZS status Timeout for GRP179-3.p
11496 NO CLASH, using fixed ground order
11498 25752: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11499 25752: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11500 25752: Id : 4, {_}:
11501 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
11502 [8, 7, 6] by associativity ?6 ?7 ?8
11503 25752: Id : 5, {_}:
11504 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11505 [11, 10] by symmetry_of_glb ?10 ?11
11506 25752: Id : 6, {_}:
11507 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11508 [14, 13] by symmetry_of_lub ?13 ?14
11509 25752: Id : 7, {_}:
11510 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11512 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11513 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11514 25752: Id : 8, {_}:
11515 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11517 least_upper_bound (least_upper_bound ?20 ?21) ?22
11518 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11519 25752: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11520 25752: Id : 10, {_}:
11521 greatest_lower_bound ?26 ?26 =>= ?26
11522 [26] by idempotence_of_gld ?26
11523 25752: Id : 11, {_}:
11524 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11525 [29, 28] by lub_absorbtion ?28 ?29
11526 25752: Id : 12, {_}:
11527 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11528 [32, 31] by glb_absorbtion ?31 ?32
11529 25752: Id : 13, {_}:
11530 multiply ?34 (least_upper_bound ?35 ?36)
11532 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11533 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11534 25752: Id : 14, {_}:
11535 multiply ?38 (greatest_lower_bound ?39 ?40)
11537 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11538 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11539 25752: Id : 15, {_}:
11540 multiply (least_upper_bound ?42 ?43) ?44
11542 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11543 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11544 25752: Id : 16, {_}:
11545 multiply (greatest_lower_bound ?46 ?47) ?48
11547 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11548 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11549 25752: Id : 17, {_}: inverse identity =>= identity [] by p11_1
11550 25752: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p11_2 ?51
11551 25752: Id : 19, {_}:
11552 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
11553 [54, 53] by p11_3 ?53 ?54
11555 25752: Id : 1, {_}:
11556 multiply a (multiply (inverse (greatest_lower_bound a b)) b)
11558 least_upper_bound a b
11564 25752: b 3 0 3 2,1,1,2,2
11565 25752: identity 4 0 0
11566 25752: inverse 8 1 1 0,1,2,2
11567 25752: greatest_lower_bound 14 2 1 0,1,1,2,2
11568 25752: least_upper_bound 14 2 1 0,3
11569 25752: multiply 22 2 2 0,2
11570 NO CLASH, using fixed ground order
11572 25753: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11573 25753: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11574 25753: Id : 4, {_}:
11575 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
11576 [8, 7, 6] by associativity ?6 ?7 ?8
11577 25753: Id : 5, {_}:
11578 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11579 [11, 10] by symmetry_of_glb ?10 ?11
11580 25753: Id : 6, {_}:
11581 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11582 [14, 13] by symmetry_of_lub ?13 ?14
11583 25753: Id : 7, {_}:
11584 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11586 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11587 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11588 25753: Id : 8, {_}:
11589 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11591 least_upper_bound (least_upper_bound ?20 ?21) ?22
11592 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11593 25753: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11594 25753: Id : 10, {_}:
11595 greatest_lower_bound ?26 ?26 =>= ?26
11596 [26] by idempotence_of_gld ?26
11597 25753: Id : 11, {_}:
11598 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11599 [29, 28] by lub_absorbtion ?28 ?29
11600 25753: Id : 12, {_}:
11601 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11602 [32, 31] by glb_absorbtion ?31 ?32
11603 25753: Id : 13, {_}:
11604 multiply ?34 (least_upper_bound ?35 ?36)
11606 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11607 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11608 25753: Id : 14, {_}:
11609 multiply ?38 (greatest_lower_bound ?39 ?40)
11611 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11612 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11613 25753: Id : 15, {_}:
11614 multiply (least_upper_bound ?42 ?43) ?44
11616 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11617 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11618 25753: Id : 16, {_}:
11619 multiply (greatest_lower_bound ?46 ?47) ?48
11621 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11622 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11623 25753: Id : 17, {_}: inverse identity =>= identity [] by p11_1
11624 25753: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p11_2 ?51
11625 25753: Id : 19, {_}:
11626 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
11627 [54, 53] by p11_3 ?53 ?54
11629 25753: Id : 1, {_}:
11630 multiply a (multiply (inverse (greatest_lower_bound a b)) b)
11632 least_upper_bound a b
11638 25753: b 3 0 3 2,1,1,2,2
11639 25753: identity 4 0 0
11640 25753: inverse 8 1 1 0,1,2,2
11641 25753: greatest_lower_bound 14 2 1 0,1,1,2,2
11642 25753: least_upper_bound 14 2 1 0,3
11643 25753: multiply 22 2 2 0,2
11644 NO CLASH, using fixed ground order
11646 25754: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11647 25754: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11648 25754: Id : 4, {_}:
11649 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
11650 [8, 7, 6] by associativity ?6 ?7 ?8
11651 25754: Id : 5, {_}:
11652 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11653 [11, 10] by symmetry_of_glb ?10 ?11
11654 25754: Id : 6, {_}:
11655 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11656 [14, 13] by symmetry_of_lub ?13 ?14
11657 25754: Id : 7, {_}:
11658 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11660 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11661 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11662 25754: Id : 8, {_}:
11663 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11665 least_upper_bound (least_upper_bound ?20 ?21) ?22
11666 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11667 25754: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11668 25754: Id : 10, {_}:
11669 greatest_lower_bound ?26 ?26 =>= ?26
11670 [26] by idempotence_of_gld ?26
11671 25754: Id : 11, {_}:
11672 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11673 [29, 28] by lub_absorbtion ?28 ?29
11674 25754: Id : 12, {_}:
11675 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11676 [32, 31] by glb_absorbtion ?31 ?32
11677 25754: Id : 13, {_}:
11678 multiply ?34 (least_upper_bound ?35 ?36)
11680 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11681 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11682 25754: Id : 14, {_}:
11683 multiply ?38 (greatest_lower_bound ?39 ?40)
11685 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11686 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11687 25754: Id : 15, {_}:
11688 multiply (least_upper_bound ?42 ?43) ?44
11690 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11691 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11692 25754: Id : 16, {_}:
11693 multiply (greatest_lower_bound ?46 ?47) ?48
11695 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11696 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11697 25754: Id : 17, {_}: inverse identity =>= identity [] by p11_1
11698 25754: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p11_2 ?51
11699 25754: Id : 19, {_}:
11700 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
11701 [54, 53] by p11_3 ?53 ?54
11703 25754: Id : 1, {_}:
11704 multiply a (multiply (inverse (greatest_lower_bound a b)) b)
11706 least_upper_bound a b
11712 25754: b 3 0 3 2,1,1,2,2
11713 25754: identity 4 0 0
11714 25754: inverse 8 1 1 0,1,2,2
11715 25754: greatest_lower_bound 14 2 1 0,1,1,2,2
11716 25754: least_upper_bound 14 2 1 0,3
11717 25754: multiply 22 2 2 0,2
11718 % SZS status Timeout for GRP180-2.p
11719 CLASH, statistics insufficient
11721 25775: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11722 25775: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11723 25775: Id : 4, {_}:
11724 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
11725 [8, 7, 6] by associativity ?6 ?7 ?8
11726 25775: Id : 5, {_}:
11727 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11728 [11, 10] by symmetry_of_glb ?10 ?11
11729 25775: Id : 6, {_}:
11730 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11731 [14, 13] by symmetry_of_lub ?13 ?14
11732 25775: Id : 7, {_}:
11733 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11735 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11736 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11737 25775: Id : 8, {_}:
11738 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11740 least_upper_bound (least_upper_bound ?20 ?21) ?22
11741 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11742 25775: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11743 25775: Id : 10, {_}:
11744 greatest_lower_bound ?26 ?26 =>= ?26
11745 [26] by idempotence_of_gld ?26
11746 25775: Id : 11, {_}:
11747 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11748 [29, 28] by lub_absorbtion ?28 ?29
11749 25775: Id : 12, {_}:
11750 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11751 [32, 31] by glb_absorbtion ?31 ?32
11752 25775: Id : 13, {_}:
11753 multiply ?34 (least_upper_bound ?35 ?36)
11755 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11756 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11757 25775: Id : 14, {_}:
11758 multiply ?38 (greatest_lower_bound ?39 ?40)
11760 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11761 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11762 25775: Id : 15, {_}:
11763 multiply (least_upper_bound ?42 ?43) ?44
11765 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11766 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11767 25775: Id : 16, {_}:
11768 multiply (greatest_lower_bound ?46 ?47) ?48
11770 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11771 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11772 25775: Id : 17, {_}: inverse identity =>= identity [] by p12x_1
11773 25775: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51
11774 25775: Id : 19, {_}:
11775 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
11776 [54, 53] by p12x_3 ?53 ?54
11777 25775: Id : 20, {_}:
11778 greatest_lower_bound a c =>= greatest_lower_bound b c
11780 25775: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5
11781 25775: Id : 22, {_}:
11782 inverse (greatest_lower_bound ?58 ?59)
11784 least_upper_bound (inverse ?58) (inverse ?59)
11785 [59, 58] by p12x_6 ?58 ?59
11786 25775: Id : 23, {_}:
11787 inverse (least_upper_bound ?61 ?62)
11789 greatest_lower_bound (inverse ?61) (inverse ?62)
11790 [62, 61] by p12x_7 ?61 ?62
11792 25775: Id : 1, {_}: a =>= b [] by prove_p12x
11798 25775: identity 4 0 0
11800 25775: inverse 13 1 0
11801 25775: greatest_lower_bound 17 2 0
11802 25775: least_upper_bound 17 2 0
11803 25775: multiply 20 2 0
11804 CLASH, statistics insufficient
11806 25776: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11807 25776: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11808 25776: Id : 4, {_}:
11809 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
11810 [8, 7, 6] by associativity ?6 ?7 ?8
11811 25776: Id : 5, {_}:
11812 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11813 [11, 10] by symmetry_of_glb ?10 ?11
11814 25776: Id : 6, {_}:
11815 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11816 [14, 13] by symmetry_of_lub ?13 ?14
11817 25776: Id : 7, {_}:
11818 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11820 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11821 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11822 25776: Id : 8, {_}:
11823 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11825 least_upper_bound (least_upper_bound ?20 ?21) ?22
11826 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11827 25776: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11828 25776: Id : 10, {_}:
11829 greatest_lower_bound ?26 ?26 =>= ?26
11830 [26] by idempotence_of_gld ?26
11831 25776: Id : 11, {_}:
11832 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11833 [29, 28] by lub_absorbtion ?28 ?29
11834 25776: Id : 12, {_}:
11835 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11836 [32, 31] by glb_absorbtion ?31 ?32
11837 25776: Id : 13, {_}:
11838 multiply ?34 (least_upper_bound ?35 ?36)
11840 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11841 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11842 25776: Id : 14, {_}:
11843 multiply ?38 (greatest_lower_bound ?39 ?40)
11845 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11846 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11847 25776: Id : 15, {_}:
11848 multiply (least_upper_bound ?42 ?43) ?44
11850 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11851 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11852 25776: Id : 16, {_}:
11853 multiply (greatest_lower_bound ?46 ?47) ?48
11855 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11856 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11857 25776: Id : 17, {_}: inverse identity =>= identity [] by p12x_1
11858 25776: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51
11859 25776: Id : 19, {_}:
11860 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
11861 [54, 53] by p12x_3 ?53 ?54
11862 25776: Id : 20, {_}:
11863 greatest_lower_bound a c =>= greatest_lower_bound b c
11865 25776: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5
11866 25776: Id : 22, {_}:
11867 inverse (greatest_lower_bound ?58 ?59)
11869 least_upper_bound (inverse ?58) (inverse ?59)
11870 [59, 58] by p12x_6 ?58 ?59
11871 25776: Id : 23, {_}:
11872 inverse (least_upper_bound ?61 ?62)
11874 greatest_lower_bound (inverse ?61) (inverse ?62)
11875 [62, 61] by p12x_7 ?61 ?62
11877 25776: Id : 1, {_}: a =>= b [] by prove_p12x
11883 25776: identity 4 0 0
11885 25776: inverse 13 1 0
11886 25776: greatest_lower_bound 17 2 0
11887 25776: least_upper_bound 17 2 0
11888 25776: multiply 20 2 0
11889 CLASH, statistics insufficient
11891 25777: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11892 25777: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11893 25777: Id : 4, {_}:
11894 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
11895 [8, 7, 6] by associativity ?6 ?7 ?8
11896 25777: Id : 5, {_}:
11897 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
11898 [11, 10] by symmetry_of_glb ?10 ?11
11899 25777: Id : 6, {_}:
11900 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
11901 [14, 13] by symmetry_of_lub ?13 ?14
11902 25777: Id : 7, {_}:
11903 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
11905 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
11906 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
11907 25777: Id : 8, {_}:
11908 least_upper_bound ?20 (least_upper_bound ?21 ?22)
11910 least_upper_bound (least_upper_bound ?20 ?21) ?22
11911 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
11912 25777: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
11913 25777: Id : 10, {_}:
11914 greatest_lower_bound ?26 ?26 =>= ?26
11915 [26] by idempotence_of_gld ?26
11916 25777: Id : 11, {_}:
11917 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
11918 [29, 28] by lub_absorbtion ?28 ?29
11919 25777: Id : 12, {_}:
11920 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
11921 [32, 31] by glb_absorbtion ?31 ?32
11922 25777: Id : 13, {_}:
11923 multiply ?34 (least_upper_bound ?35 ?36)
11925 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
11926 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
11927 25777: Id : 14, {_}:
11928 multiply ?38 (greatest_lower_bound ?39 ?40)
11930 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
11931 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
11932 25777: Id : 15, {_}:
11933 multiply (least_upper_bound ?42 ?43) ?44
11935 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
11936 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
11937 25777: Id : 16, {_}:
11938 multiply (greatest_lower_bound ?46 ?47) ?48
11940 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
11941 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
11942 25777: Id : 17, {_}: inverse identity =>= identity [] by p12x_1
11943 25777: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51
11944 25777: Id : 19, {_}:
11945 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
11946 [54, 53] by p12x_3 ?53 ?54
11947 25777: Id : 20, {_}:
11948 greatest_lower_bound a c =>= greatest_lower_bound b c
11950 25777: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5
11951 25777: Id : 22, {_}:
11952 inverse (greatest_lower_bound ?58 ?59)
11954 least_upper_bound (inverse ?58) (inverse ?59)
11955 [59, 58] by p12x_6 ?58 ?59
11956 25777: Id : 23, {_}:
11957 inverse (least_upper_bound ?61 ?62)
11959 greatest_lower_bound (inverse ?61) (inverse ?62)
11960 [62, 61] by p12x_7 ?61 ?62
11962 25777: Id : 1, {_}: a =>= b [] by prove_p12x
11968 25777: identity 4 0 0
11970 25777: inverse 13 1 0
11971 25777: greatest_lower_bound 17 2 0
11972 25777: least_upper_bound 17 2 0
11973 25777: multiply 20 2 0
11976 Found proof, 8.150042s
11977 % SZS status Unsatisfiable for GRP181-4.p
11978 % SZS output start CNFRefutation for GRP181-4.p
11979 Id : 5, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11
11980 Id : 20, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_4
11981 Id : 188, {_}: multiply ?586 (greatest_lower_bound ?587 ?588) =<= greatest_lower_bound (multiply ?586 ?587) (multiply ?586 ?588) [588, 587, 586] by monotony_glb1 ?586 ?587 ?588
11982 Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5
11983 Id : 364, {_}: inverse (least_upper_bound ?929 ?930) =<= greatest_lower_bound (inverse ?929) (inverse ?930) [930, 929] by p12x_7 ?929 ?930
11984 Id : 342, {_}: inverse (greatest_lower_bound ?890 ?891) =<= least_upper_bound (inverse ?890) (inverse ?891) [891, 890] by p12x_6 ?890 ?891
11985 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
11986 Id : 158, {_}: multiply ?515 (least_upper_bound ?516 ?517) =<= least_upper_bound (multiply ?515 ?516) (multiply ?515 ?517) [517, 516, 515] by monotony_lub1 ?515 ?516 ?517
11987 Id : 4, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8
11988 Id : 19, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54
11989 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
11990 Id : 17, {_}: inverse identity =>= identity [] by p12x_1
11991 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
11992 Id : 28, {_}: multiply (multiply ?71 ?72) ?73 =?= multiply ?71 (multiply ?72 ?73) [73, 72, 71] by associativity ?71 ?72 ?73
11993 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51
11994 Id : 302, {_}: inverse (multiply ?845 ?846) =<= multiply (inverse ?846) (inverse ?845) [846, 845] by p12x_3 ?845 ?846
11995 Id : 803, {_}: inverse (multiply ?1561 (inverse ?1562)) =>= multiply ?1562 (inverse ?1561) [1562, 1561] by Super 302 with 18 at 1,3
11996 Id : 30, {_}: multiply (multiply ?78 (inverse ?79)) ?79 =>= multiply ?78 identity [79, 78] by Super 28 with 3 at 2,3
11997 Id : 303, {_}: inverse (multiply identity ?848) =<= multiply (inverse ?848) identity [848] by Super 302 with 17 at 2,3
11998 Id : 394, {_}: inverse ?984 =<= multiply (inverse ?984) identity [984] by Demod 303 with 2 at 1,2
11999 Id : 396, {_}: inverse (inverse ?987) =<= multiply ?987 identity [987] by Super 394 with 18 at 1,3
12000 Id : 406, {_}: ?987 =<= multiply ?987 identity [987] by Demod 396 with 18 at 2
12001 Id : 638, {_}: multiply (multiply ?78 (inverse ?79)) ?79 =>= ?78 [79, 78] by Demod 30 with 406 at 3
12002 Id : 816, {_}: inverse ?1599 =<= multiply ?1600 (inverse (multiply ?1599 (inverse (inverse ?1600)))) [1600, 1599] by Super 803 with 638 at 1,2
12003 Id : 306, {_}: inverse (multiply ?855 (inverse ?856)) =>= multiply ?856 (inverse ?855) [856, 855] by Super 302 with 18 at 1,3
12004 Id : 837, {_}: inverse ?1599 =<= multiply ?1600 (multiply (inverse ?1600) (inverse ?1599)) [1600, 1599] by Demod 816 with 306 at 2,3
12005 Id : 838, {_}: inverse ?1599 =<= multiply ?1600 (inverse (multiply ?1599 ?1600)) [1600, 1599] by Demod 837 with 19 at 2,3
12006 Id : 285, {_}: multiply ?794 (inverse ?794) =>= identity [794] by Super 3 with 18 at 1,2
12007 Id : 607, {_}: multiply (multiply ?1261 ?1262) (inverse ?1262) =>= multiply ?1261 identity [1262, 1261] by Super 4 with 285 at 2,3
12008 Id : 19344, {_}: multiply (multiply ?27523 ?27524) (inverse ?27524) =>= ?27523 [27524, 27523] by Demod 607 with 406 at 3
12009 Id : 160, {_}: multiply (inverse ?522) (least_upper_bound ?523 ?522) =>= least_upper_bound (multiply (inverse ?522) ?523) identity [523, 522] by Super 158 with 3 at 2,3
12010 Id : 177, {_}: multiply (inverse ?522) (least_upper_bound ?523 ?522) =>= least_upper_bound identity (multiply (inverse ?522) ?523) [523, 522] by Demod 160 with 6 at 3
12011 Id : 345, {_}: inverse (greatest_lower_bound identity ?898) =>= least_upper_bound identity (inverse ?898) [898] by Super 342 with 17 at 1,3
12012 Id : 487, {_}: inverse (multiply (greatest_lower_bound identity ?1114) ?1115) =<= multiply (inverse ?1115) (least_upper_bound identity (inverse ?1114)) [1115, 1114] by Super 19 with 345 at 2,3
12013 Id : 11534, {_}: inverse (multiply (greatest_lower_bound identity ?15482) (inverse ?15482)) =>= least_upper_bound identity (multiply (inverse (inverse ?15482)) identity) [15482] by Super 177 with 487 at 2
12014 Id : 11607, {_}: multiply ?15482 (inverse (greatest_lower_bound identity ?15482)) =?= least_upper_bound identity (multiply (inverse (inverse ?15482)) identity) [15482] by Demod 11534 with 306 at 2
12015 Id : 11608, {_}: multiply ?15482 (inverse (greatest_lower_bound identity ?15482)) =>= least_upper_bound identity (inverse (inverse ?15482)) [15482] by Demod 11607 with 406 at 2,3
12016 Id : 11609, {_}: multiply ?15482 (least_upper_bound identity (inverse ?15482)) =>= least_upper_bound identity (inverse (inverse ?15482)) [15482] by Demod 11608 with 345 at 2,2
12017 Id : 11610, {_}: multiply ?15482 (least_upper_bound identity (inverse ?15482)) =>= least_upper_bound identity ?15482 [15482] by Demod 11609 with 18 at 2,3
12018 Id : 19409, {_}: multiply (least_upper_bound identity ?27743) (inverse (least_upper_bound identity (inverse ?27743))) =>= ?27743 [27743] by Super 19344 with 11610 at 1,2
12019 Id : 366, {_}: inverse (least_upper_bound ?934 (inverse ?935)) =>= greatest_lower_bound (inverse ?934) ?935 [935, 934] by Super 364 with 18 at 2,3
12020 Id : 19451, {_}: multiply (least_upper_bound identity ?27743) (greatest_lower_bound (inverse identity) ?27743) =>= ?27743 [27743] by Demod 19409 with 366 at 2,2
12021 Id : 44019, {_}: multiply (least_upper_bound identity ?52011) (greatest_lower_bound identity ?52011) =>= ?52011 [52011] by Demod 19451 with 17 at 1,2,2
12022 Id : 367, {_}: inverse (least_upper_bound identity ?937) =>= greatest_lower_bound identity (inverse ?937) [937] by Super 364 with 17 at 1,3
12023 Id : 8913, {_}: multiply (inverse ?11632) (least_upper_bound ?11632 ?11633) =>= least_upper_bound identity (multiply (inverse ?11632) ?11633) [11633, 11632] by Super 158 with 3 at 1,3
12024 Id : 326, {_}: least_upper_bound c a =<= least_upper_bound b c [] by Demod 21 with 6 at 2
12025 Id : 327, {_}: least_upper_bound c a =>= least_upper_bound c b [] by Demod 326 with 6 at 3
12026 Id : 8921, {_}: multiply (inverse c) (least_upper_bound c b) =>= least_upper_bound identity (multiply (inverse c) a) [] by Super 8913 with 327 at 2,2
12027 Id : 164, {_}: multiply (inverse ?538) (least_upper_bound ?538 ?539) =>= least_upper_bound identity (multiply (inverse ?538) ?539) [539, 538] by Super 158 with 3 at 1,3
12028 Id : 9001, {_}: least_upper_bound identity (multiply (inverse c) b) =<= least_upper_bound identity (multiply (inverse c) a) [] by Demod 8921 with 164 at 2
12029 Id : 9081, {_}: inverse (least_upper_bound identity (multiply (inverse c) b)) =>= greatest_lower_bound identity (inverse (multiply (inverse c) a)) [] by Super 367 with 9001 at 1,2
12030 Id : 9110, {_}: greatest_lower_bound identity (inverse (multiply (inverse c) b)) =<= greatest_lower_bound identity (inverse (multiply (inverse c) a)) [] by Demod 9081 with 367 at 2
12031 Id : 304, {_}: inverse (multiply (inverse ?850) ?851) =>= multiply (inverse ?851) ?850 [851, 850] by Super 302 with 18 at 2,3
12032 Id : 9111, {_}: greatest_lower_bound identity (inverse (multiply (inverse c) b)) =>= greatest_lower_bound identity (multiply (inverse a) c) [] by Demod 9110 with 304 at 2,3
12033 Id : 9112, {_}: greatest_lower_bound identity (multiply (inverse b) c) =<= greatest_lower_bound identity (multiply (inverse a) c) [] by Demod 9111 with 304 at 2,2
12034 Id : 44043, {_}: multiply (least_upper_bound identity (multiply (inverse a) c)) (greatest_lower_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Super 44019 with 9112 at 2,2
12035 Id : 10178, {_}: multiply (inverse ?13641) (greatest_lower_bound ?13641 ?13642) =>= greatest_lower_bound identity (multiply (inverse ?13641) ?13642) [13642, 13641] by Super 188 with 3 at 1,3
12036 Id : 315, {_}: greatest_lower_bound c a =<= greatest_lower_bound b c [] by Demod 20 with 5 at 2
12037 Id : 316, {_}: greatest_lower_bound c a =>= greatest_lower_bound c b [] by Demod 315 with 5 at 3
12038 Id : 10190, {_}: multiply (inverse c) (greatest_lower_bound c b) =>= greatest_lower_bound identity (multiply (inverse c) a) [] by Super 10178 with 316 at 2,2
12039 Id : 194, {_}: multiply (inverse ?609) (greatest_lower_bound ?609 ?610) =>= greatest_lower_bound identity (multiply (inverse ?609) ?610) [610, 609] by Super 188 with 3 at 1,3
12040 Id : 10270, {_}: greatest_lower_bound identity (multiply (inverse c) b) =<= greatest_lower_bound identity (multiply (inverse c) a) [] by Demod 10190 with 194 at 2
12041 Id : 10361, {_}: inverse (greatest_lower_bound identity (multiply (inverse c) b)) =>= least_upper_bound identity (inverse (multiply (inverse c) a)) [] by Super 345 with 10270 at 1,2
12042 Id : 10393, {_}: least_upper_bound identity (inverse (multiply (inverse c) b)) =<= least_upper_bound identity (inverse (multiply (inverse c) a)) [] by Demod 10361 with 345 at 2
12043 Id : 10394, {_}: least_upper_bound identity (inverse (multiply (inverse c) b)) =>= least_upper_bound identity (multiply (inverse a) c) [] by Demod 10393 with 304 at 2,3
12044 Id : 10395, {_}: least_upper_bound identity (multiply (inverse b) c) =<= least_upper_bound identity (multiply (inverse a) c) [] by Demod 10394 with 304 at 2,2
12045 Id : 44130, {_}: multiply (least_upper_bound identity (multiply (inverse b) c)) (greatest_lower_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Demod 44043 with 10395 at 1,2
12046 Id : 19452, {_}: multiply (least_upper_bound identity ?27743) (greatest_lower_bound identity ?27743) =>= ?27743 [27743] by Demod 19451 with 17 at 1,2,2
12047 Id : 44131, {_}: multiply (inverse b) c =<= multiply (inverse a) c [] by Demod 44130 with 19452 at 2
12048 Id : 44165, {_}: inverse (inverse a) =<= multiply c (inverse (multiply (inverse b) c)) [] by Super 838 with 44131 at 1,2,3
12049 Id : 44200, {_}: a =<= multiply c (inverse (multiply (inverse b) c)) [] by Demod 44165 with 18 at 2
12050 Id : 44201, {_}: a =<= inverse (inverse b) [] by Demod 44200 with 838 at 3
12051 Id : 44202, {_}: a =>= b [] by Demod 44201 with 18 at 3
12052 Id : 44399, {_}: b === b [] by Demod 1 with 44202 at 2
12053 Id : 1, {_}: a =>= b [] by prove_p12x
12054 % SZS output end CNFRefutation for GRP181-4.p
12055 25775: solved GRP181-4.p in 8.112506 using nrkbo
12056 25775: status Unsatisfiable for GRP181-4.p
12057 NO CLASH, using fixed ground order
12059 25788: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12060 25788: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12061 25788: Id : 4, {_}:
12062 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
12063 [8, 7, 6] by associativity ?6 ?7 ?8
12064 25788: Id : 5, {_}:
12065 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12066 [11, 10] by symmetry_of_glb ?10 ?11
12067 25788: Id : 6, {_}:
12068 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12069 [14, 13] by symmetry_of_lub ?13 ?14
12070 25788: Id : 7, {_}:
12071 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12073 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12074 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12075 25788: Id : 8, {_}:
12076 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12078 least_upper_bound (least_upper_bound ?20 ?21) ?22
12079 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12080 25788: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12081 25788: Id : 10, {_}:
12082 greatest_lower_bound ?26 ?26 =>= ?26
12083 [26] by idempotence_of_gld ?26
12084 25788: Id : 11, {_}:
12085 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12086 [29, 28] by lub_absorbtion ?28 ?29
12087 25788: Id : 12, {_}:
12088 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12089 [32, 31] by glb_absorbtion ?31 ?32
12090 25788: Id : 13, {_}:
12091 multiply ?34 (least_upper_bound ?35 ?36)
12093 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12094 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12095 25788: Id : 14, {_}:
12096 multiply ?38 (greatest_lower_bound ?39 ?40)
12098 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12099 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12100 25788: Id : 15, {_}:
12101 multiply (least_upper_bound ?42 ?43) ?44
12103 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12104 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12105 25788: Id : 16, {_}:
12106 multiply (greatest_lower_bound ?46 ?47) ?48
12108 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12109 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12111 25788: Id : 1, {_}:
12112 greatest_lower_bound (least_upper_bound a identity)
12113 (inverse (greatest_lower_bound a identity))
12120 25788: a 2 0 2 1,1,2
12121 25788: identity 5 0 3 2,1,2
12122 25788: inverse 2 1 1 0,2,2
12123 25788: least_upper_bound 14 2 1 0,1,2
12124 25788: greatest_lower_bound 15 2 2 0,2
12125 25788: multiply 18 2 0
12126 NO CLASH, using fixed ground order
12128 25789: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12129 25789: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12130 25789: Id : 4, {_}:
12131 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12132 [8, 7, 6] by associativity ?6 ?7 ?8
12133 25789: Id : 5, {_}:
12134 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12135 [11, 10] by symmetry_of_glb ?10 ?11
12136 25789: Id : 6, {_}:
12137 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12138 [14, 13] by symmetry_of_lub ?13 ?14
12139 25789: Id : 7, {_}:
12140 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12142 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12143 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12144 25789: Id : 8, {_}:
12145 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12147 least_upper_bound (least_upper_bound ?20 ?21) ?22
12148 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12149 25789: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12150 25789: Id : 10, {_}:
12151 greatest_lower_bound ?26 ?26 =>= ?26
12152 [26] by idempotence_of_gld ?26
12153 25789: Id : 11, {_}:
12154 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12155 [29, 28] by lub_absorbtion ?28 ?29
12156 25789: Id : 12, {_}:
12157 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12158 [32, 31] by glb_absorbtion ?31 ?32
12159 25789: Id : 13, {_}:
12160 multiply ?34 (least_upper_bound ?35 ?36)
12162 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12163 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12164 NO CLASH, using fixed ground order
12166 25790: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12167 25790: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12168 25790: Id : 4, {_}:
12169 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12170 [8, 7, 6] by associativity ?6 ?7 ?8
12171 25790: Id : 5, {_}:
12172 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12173 [11, 10] by symmetry_of_glb ?10 ?11
12174 25790: Id : 6, {_}:
12175 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12176 [14, 13] by symmetry_of_lub ?13 ?14
12177 25790: Id : 7, {_}:
12178 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12180 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12181 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12182 25790: Id : 8, {_}:
12183 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12185 least_upper_bound (least_upper_bound ?20 ?21) ?22
12186 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12187 25790: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12188 25790: Id : 10, {_}:
12189 greatest_lower_bound ?26 ?26 =>= ?26
12190 [26] by idempotence_of_gld ?26
12191 25790: Id : 11, {_}:
12192 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12193 [29, 28] by lub_absorbtion ?28 ?29
12194 25790: Id : 12, {_}:
12195 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12196 [32, 31] by glb_absorbtion ?31 ?32
12197 25790: Id : 13, {_}:
12198 multiply ?34 (least_upper_bound ?35 ?36)
12200 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12201 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12202 25790: Id : 14, {_}:
12203 multiply ?38 (greatest_lower_bound ?39 ?40)
12205 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12206 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12207 25790: Id : 15, {_}:
12208 multiply (least_upper_bound ?42 ?43) ?44
12210 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12211 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12212 25790: Id : 16, {_}:
12213 multiply (greatest_lower_bound ?46 ?47) ?48
12215 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12216 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12218 25790: Id : 1, {_}:
12219 greatest_lower_bound (least_upper_bound a identity)
12220 (inverse (greatest_lower_bound a identity))
12227 25790: a 2 0 2 1,1,2
12228 25790: identity 5 0 3 2,1,2
12229 25790: inverse 2 1 1 0,2,2
12230 25790: least_upper_bound 14 2 1 0,1,2
12231 25790: greatest_lower_bound 15 2 2 0,2
12232 25790: multiply 18 2 0
12233 25789: Id : 14, {_}:
12234 multiply ?38 (greatest_lower_bound ?39 ?40)
12236 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12237 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12238 25789: Id : 15, {_}:
12239 multiply (least_upper_bound ?42 ?43) ?44
12241 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12242 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12243 25789: Id : 16, {_}:
12244 multiply (greatest_lower_bound ?46 ?47) ?48
12246 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12247 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12249 25789: Id : 1, {_}:
12250 greatest_lower_bound (least_upper_bound a identity)
12251 (inverse (greatest_lower_bound a identity))
12258 25789: a 2 0 2 1,1,2
12259 25789: identity 5 0 3 2,1,2
12260 25789: inverse 2 1 1 0,2,2
12261 25789: least_upper_bound 14 2 1 0,1,2
12262 25789: greatest_lower_bound 15 2 2 0,2
12263 25789: multiply 18 2 0
12264 % SZS status Timeout for GRP183-1.p
12265 NO CLASH, using fixed ground order
12267 25806: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12268 25806: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12269 25806: Id : 4, {_}:
12270 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
12271 [8, 7, 6] by associativity ?6 ?7 ?8
12272 25806: Id : 5, {_}:
12273 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12274 [11, 10] by symmetry_of_glb ?10 ?11
12275 25806: Id : 6, {_}:
12276 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12277 [14, 13] by symmetry_of_lub ?13 ?14
12278 25806: Id : 7, {_}:
12279 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12281 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12282 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12283 25806: Id : 8, {_}:
12284 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12286 least_upper_bound (least_upper_bound ?20 ?21) ?22
12287 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12288 25806: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12289 25806: Id : 10, {_}:
12290 greatest_lower_bound ?26 ?26 =>= ?26
12291 [26] by idempotence_of_gld ?26
12292 25806: Id : 11, {_}:
12293 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12294 [29, 28] by lub_absorbtion ?28 ?29
12295 25806: Id : 12, {_}:
12296 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12297 [32, 31] by glb_absorbtion ?31 ?32
12298 25806: Id : 13, {_}:
12299 multiply ?34 (least_upper_bound ?35 ?36)
12301 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12302 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12303 25806: Id : 14, {_}:
12304 multiply ?38 (greatest_lower_bound ?39 ?40)
12306 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12307 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12308 25806: Id : 15, {_}:
12309 multiply (least_upper_bound ?42 ?43) ?44
12311 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12312 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12313 25806: Id : 16, {_}:
12314 multiply (greatest_lower_bound ?46 ?47) ?48
12316 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12317 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12319 25806: Id : 1, {_}:
12320 greatest_lower_bound (least_upper_bound a identity)
12321 (least_upper_bound (inverse a) identity)
12328 25806: a 2 0 2 1,1,2
12329 25806: identity 5 0 3 2,1,2
12330 25806: inverse 2 1 1 0,1,2,2
12331 25806: greatest_lower_bound 14 2 1 0,2
12332 25806: least_upper_bound 15 2 2 0,1,2
12333 25806: multiply 18 2 0
12334 NO CLASH, using fixed ground order
12336 25807: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12337 25807: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12338 25807: Id : 4, {_}:
12339 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12340 [8, 7, 6] by associativity ?6 ?7 ?8
12341 25807: Id : 5, {_}:
12342 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12343 [11, 10] by symmetry_of_glb ?10 ?11
12344 25807: Id : 6, {_}:
12345 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12346 [14, 13] by symmetry_of_lub ?13 ?14
12347 25807: Id : 7, {_}:
12348 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12350 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12351 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12352 25807: Id : 8, {_}:
12353 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12355 least_upper_bound (least_upper_bound ?20 ?21) ?22
12356 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12357 25807: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12358 25807: Id : 10, {_}:
12359 greatest_lower_bound ?26 ?26 =>= ?26
12360 [26] by idempotence_of_gld ?26
12361 25807: Id : 11, {_}:
12362 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12363 [29, 28] by lub_absorbtion ?28 ?29
12364 25807: Id : 12, {_}:
12365 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12366 [32, 31] by glb_absorbtion ?31 ?32
12367 25807: Id : 13, {_}:
12368 multiply ?34 (least_upper_bound ?35 ?36)
12370 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12371 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12372 25807: Id : 14, {_}:
12373 multiply ?38 (greatest_lower_bound ?39 ?40)
12375 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12376 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12377 25807: Id : 15, {_}:
12378 multiply (least_upper_bound ?42 ?43) ?44
12380 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12381 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12382 25807: Id : 16, {_}:
12383 multiply (greatest_lower_bound ?46 ?47) ?48
12385 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12386 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12388 25807: Id : 1, {_}:
12389 greatest_lower_bound (least_upper_bound a identity)
12390 (least_upper_bound (inverse a) identity)
12397 25807: a 2 0 2 1,1,2
12398 25807: identity 5 0 3 2,1,2
12399 25807: inverse 2 1 1 0,1,2,2
12400 25807: greatest_lower_bound 14 2 1 0,2
12401 25807: least_upper_bound 15 2 2 0,1,2
12402 25807: multiply 18 2 0
12403 NO CLASH, using fixed ground order
12405 25808: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12406 25808: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12407 25808: Id : 4, {_}:
12408 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12409 [8, 7, 6] by associativity ?6 ?7 ?8
12410 25808: Id : 5, {_}:
12411 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12412 [11, 10] by symmetry_of_glb ?10 ?11
12413 25808: Id : 6, {_}:
12414 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12415 [14, 13] by symmetry_of_lub ?13 ?14
12416 25808: Id : 7, {_}:
12417 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12419 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12420 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12421 25808: Id : 8, {_}:
12422 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12424 least_upper_bound (least_upper_bound ?20 ?21) ?22
12425 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12426 25808: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12427 25808: Id : 10, {_}:
12428 greatest_lower_bound ?26 ?26 =>= ?26
12429 [26] by idempotence_of_gld ?26
12430 25808: Id : 11, {_}:
12431 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12432 [29, 28] by lub_absorbtion ?28 ?29
12433 25808: Id : 12, {_}:
12434 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12435 [32, 31] by glb_absorbtion ?31 ?32
12436 25808: Id : 13, {_}:
12437 multiply ?34 (least_upper_bound ?35 ?36)
12439 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12440 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12441 25808: Id : 14, {_}:
12442 multiply ?38 (greatest_lower_bound ?39 ?40)
12444 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12445 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12446 25808: Id : 15, {_}:
12447 multiply (least_upper_bound ?42 ?43) ?44
12449 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12450 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12451 25808: Id : 16, {_}:
12452 multiply (greatest_lower_bound ?46 ?47) ?48
12454 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12455 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12457 25808: Id : 1, {_}:
12458 greatest_lower_bound (least_upper_bound a identity)
12459 (least_upper_bound (inverse a) identity)
12466 25808: a 2 0 2 1,1,2
12467 25808: identity 5 0 3 2,1,2
12468 25808: inverse 2 1 1 0,1,2,2
12469 25808: greatest_lower_bound 14 2 1 0,2
12470 25808: least_upper_bound 15 2 2 0,1,2
12471 25808: multiply 18 2 0
12472 % SZS status Timeout for GRP183-3.p
12473 NO CLASH, using fixed ground order
12475 25839: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12476 25839: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12477 25839: Id : 4, {_}:
12478 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
12479 [8, 7, 6] by associativity ?6 ?7 ?8
12480 25839: Id : 5, {_}:
12481 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12482 [11, 10] by symmetry_of_glb ?10 ?11
12483 25839: Id : 6, {_}:
12484 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12485 [14, 13] by symmetry_of_lub ?13 ?14
12486 25839: Id : 7, {_}:
12487 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12489 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12490 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12491 25839: Id : 8, {_}:
12492 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12494 least_upper_bound (least_upper_bound ?20 ?21) ?22
12495 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12496 25839: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12497 25839: Id : 10, {_}:
12498 greatest_lower_bound ?26 ?26 =>= ?26
12499 [26] by idempotence_of_gld ?26
12500 25839: Id : 11, {_}:
12501 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12502 [29, 28] by lub_absorbtion ?28 ?29
12503 25839: Id : 12, {_}:
12504 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12505 [32, 31] by glb_absorbtion ?31 ?32
12506 25839: Id : 13, {_}:
12507 multiply ?34 (least_upper_bound ?35 ?36)
12509 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12510 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12511 25839: Id : 14, {_}:
12512 multiply ?38 (greatest_lower_bound ?39 ?40)
12514 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12515 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12516 25839: Id : 15, {_}:
12517 multiply (least_upper_bound ?42 ?43) ?44
12519 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12520 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12521 25839: Id : 16, {_}:
12522 multiply (greatest_lower_bound ?46 ?47) ?48
12524 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12525 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12526 25839: Id : 17, {_}: inverse identity =>= identity [] by p20x_1
12527 25839: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51
12528 25839: Id : 19, {_}:
12529 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
12530 [54, 53] by p20x_3 ?53 ?54
12532 25839: Id : 1, {_}:
12533 greatest_lower_bound (least_upper_bound a identity)
12534 (least_upper_bound (inverse a) identity)
12541 25839: a 2 0 2 1,1,2
12542 25839: identity 7 0 3 2,1,2
12543 25839: inverse 8 1 1 0,1,2,2
12544 25839: greatest_lower_bound 14 2 1 0,2
12545 25839: least_upper_bound 15 2 2 0,1,2
12546 25839: multiply 20 2 0
12547 NO CLASH, using fixed ground order
12549 25840: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12550 25840: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12551 25840: Id : 4, {_}:
12552 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12553 [8, 7, 6] by associativity ?6 ?7 ?8
12554 25840: Id : 5, {_}:
12555 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12556 [11, 10] by symmetry_of_glb ?10 ?11
12557 NO CLASH, using fixed ground order
12559 25841: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12560 25841: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12561 25841: Id : 4, {_}:
12562 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12563 [8, 7, 6] by associativity ?6 ?7 ?8
12564 25841: Id : 5, {_}:
12565 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12566 [11, 10] by symmetry_of_glb ?10 ?11
12567 25841: Id : 6, {_}:
12568 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12569 [14, 13] by symmetry_of_lub ?13 ?14
12570 25841: Id : 7, {_}:
12571 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12573 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12574 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12575 25841: Id : 8, {_}:
12576 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12578 least_upper_bound (least_upper_bound ?20 ?21) ?22
12579 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12580 25841: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12581 25841: Id : 10, {_}:
12582 greatest_lower_bound ?26 ?26 =>= ?26
12583 [26] by idempotence_of_gld ?26
12584 25841: Id : 11, {_}:
12585 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12586 [29, 28] by lub_absorbtion ?28 ?29
12587 25841: Id : 12, {_}:
12588 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12589 [32, 31] by glb_absorbtion ?31 ?32
12590 25841: Id : 13, {_}:
12591 multiply ?34 (least_upper_bound ?35 ?36)
12593 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12594 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12595 25841: Id : 14, {_}:
12596 multiply ?38 (greatest_lower_bound ?39 ?40)
12598 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12599 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12600 25841: Id : 15, {_}:
12601 multiply (least_upper_bound ?42 ?43) ?44
12603 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12604 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12605 25841: Id : 16, {_}:
12606 multiply (greatest_lower_bound ?46 ?47) ?48
12608 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12609 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12610 25841: Id : 17, {_}: inverse identity =>= identity [] by p20x_1
12611 25841: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51
12612 25841: Id : 19, {_}:
12613 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
12614 [54, 53] by p20x_3 ?53 ?54
12616 25841: Id : 1, {_}:
12617 greatest_lower_bound (least_upper_bound a identity)
12618 (least_upper_bound (inverse a) identity)
12625 25841: a 2 0 2 1,1,2
12626 25841: identity 7 0 3 2,1,2
12627 25841: inverse 8 1 1 0,1,2,2
12628 25841: greatest_lower_bound 14 2 1 0,2
12629 25841: least_upper_bound 15 2 2 0,1,2
12630 25841: multiply 20 2 0
12631 25840: Id : 6, {_}:
12632 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12633 [14, 13] by symmetry_of_lub ?13 ?14
12634 25840: Id : 7, {_}:
12635 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12637 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12638 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12639 25840: Id : 8, {_}:
12640 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12642 least_upper_bound (least_upper_bound ?20 ?21) ?22
12643 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12644 25840: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12645 25840: Id : 10, {_}:
12646 greatest_lower_bound ?26 ?26 =>= ?26
12647 [26] by idempotence_of_gld ?26
12648 25840: Id : 11, {_}:
12649 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12650 [29, 28] by lub_absorbtion ?28 ?29
12651 25840: Id : 12, {_}:
12652 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12653 [32, 31] by glb_absorbtion ?31 ?32
12654 25840: Id : 13, {_}:
12655 multiply ?34 (least_upper_bound ?35 ?36)
12657 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12658 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12659 25840: Id : 14, {_}:
12660 multiply ?38 (greatest_lower_bound ?39 ?40)
12662 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12663 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12664 25840: Id : 15, {_}:
12665 multiply (least_upper_bound ?42 ?43) ?44
12667 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12668 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12669 25840: Id : 16, {_}:
12670 multiply (greatest_lower_bound ?46 ?47) ?48
12672 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12673 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12674 25840: Id : 17, {_}: inverse identity =>= identity [] by p20x_1
12675 25840: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51
12676 25840: Id : 19, {_}:
12677 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
12678 [54, 53] by p20x_3 ?53 ?54
12680 25840: Id : 1, {_}:
12681 greatest_lower_bound (least_upper_bound a identity)
12682 (least_upper_bound (inverse a) identity)
12689 25840: a 2 0 2 1,1,2
12690 25840: identity 7 0 3 2,1,2
12691 25840: inverse 8 1 1 0,1,2,2
12692 25840: greatest_lower_bound 14 2 1 0,2
12693 25840: least_upper_bound 15 2 2 0,1,2
12694 25840: multiply 20 2 0
12695 % SZS status Timeout for GRP183-4.p
12696 NO CLASH, using fixed ground order
12698 25861: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12699 25861: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12700 25861: Id : 4, {_}:
12701 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
12702 [8, 7, 6] by associativity ?6 ?7 ?8
12703 25861: Id : 5, {_}:
12704 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12705 [11, 10] by symmetry_of_glb ?10 ?11
12706 25861: Id : 6, {_}:
12707 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12708 [14, 13] by symmetry_of_lub ?13 ?14
12709 25861: Id : 7, {_}:
12710 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12712 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12713 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12714 25861: Id : 8, {_}:
12715 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12717 least_upper_bound (least_upper_bound ?20 ?21) ?22
12718 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12719 25861: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12720 25861: Id : 10, {_}:
12721 greatest_lower_bound ?26 ?26 =>= ?26
12722 [26] by idempotence_of_gld ?26
12723 25861: Id : 11, {_}:
12724 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12725 [29, 28] by lub_absorbtion ?28 ?29
12726 25861: Id : 12, {_}:
12727 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12728 [32, 31] by glb_absorbtion ?31 ?32
12729 25861: Id : 13, {_}:
12730 multiply ?34 (least_upper_bound ?35 ?36)
12732 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12733 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12734 25861: Id : 14, {_}:
12735 multiply ?38 (greatest_lower_bound ?39 ?40)
12737 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12738 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12739 25861: Id : 15, {_}:
12740 multiply (least_upper_bound ?42 ?43) ?44
12742 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12743 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12744 25861: Id : 16, {_}:
12745 multiply (greatest_lower_bound ?46 ?47) ?48
12747 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12748 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12750 25861: Id : 1, {_}:
12751 multiply (least_upper_bound a identity)
12752 (inverse (greatest_lower_bound a identity))
12754 multiply (inverse (greatest_lower_bound a identity))
12755 (least_upper_bound a identity)
12760 25861: a 4 0 4 1,1,2
12761 25861: identity 6 0 4 2,1,2
12762 25861: inverse 3 1 2 0,2,2
12763 25861: least_upper_bound 15 2 2 0,1,2
12764 25861: greatest_lower_bound 15 2 2 0,1,2,2
12765 25861: multiply 20 2 2 0,2
12766 NO CLASH, using fixed ground order
12768 25862: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12769 25862: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12770 25862: Id : 4, {_}:
12771 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12772 [8, 7, 6] by associativity ?6 ?7 ?8
12773 25862: Id : 5, {_}:
12774 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12775 [11, 10] by symmetry_of_glb ?10 ?11
12776 25862: Id : 6, {_}:
12777 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12778 [14, 13] by symmetry_of_lub ?13 ?14
12779 25862: Id : 7, {_}:
12780 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12782 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12783 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12784 25862: Id : 8, {_}:
12785 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12787 least_upper_bound (least_upper_bound ?20 ?21) ?22
12788 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12789 25862: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12790 25862: Id : 10, {_}:
12791 greatest_lower_bound ?26 ?26 =>= ?26
12792 [26] by idempotence_of_gld ?26
12793 25862: Id : 11, {_}:
12794 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12795 [29, 28] by lub_absorbtion ?28 ?29
12796 25862: Id : 12, {_}:
12797 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12798 [32, 31] by glb_absorbtion ?31 ?32
12799 25862: Id : 13, {_}:
12800 multiply ?34 (least_upper_bound ?35 ?36)
12802 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12803 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12804 25862: Id : 14, {_}:
12805 multiply ?38 (greatest_lower_bound ?39 ?40)
12807 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12808 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12809 25862: Id : 15, {_}:
12810 multiply (least_upper_bound ?42 ?43) ?44
12812 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12813 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12814 25862: Id : 16, {_}:
12815 multiply (greatest_lower_bound ?46 ?47) ?48
12817 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12818 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12820 25862: Id : 1, {_}:
12821 multiply (least_upper_bound a identity)
12822 (inverse (greatest_lower_bound a identity))
12824 multiply (inverse (greatest_lower_bound a identity))
12825 (least_upper_bound a identity)
12830 25862: a 4 0 4 1,1,2
12831 25862: identity 6 0 4 2,1,2
12832 25862: inverse 3 1 2 0,2,2
12833 25862: least_upper_bound 15 2 2 0,1,2
12834 25862: greatest_lower_bound 15 2 2 0,1,2,2
12835 25862: multiply 20 2 2 0,2
12836 NO CLASH, using fixed ground order
12838 25863: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12839 25863: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12840 25863: Id : 4, {_}:
12841 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12842 [8, 7, 6] by associativity ?6 ?7 ?8
12843 25863: Id : 5, {_}:
12844 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12845 [11, 10] by symmetry_of_glb ?10 ?11
12846 25863: Id : 6, {_}:
12847 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12848 [14, 13] by symmetry_of_lub ?13 ?14
12849 25863: Id : 7, {_}:
12850 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12852 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12853 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12854 25863: Id : 8, {_}:
12855 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12857 least_upper_bound (least_upper_bound ?20 ?21) ?22
12858 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12859 25863: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12860 25863: Id : 10, {_}:
12861 greatest_lower_bound ?26 ?26 =>= ?26
12862 [26] by idempotence_of_gld ?26
12863 25863: Id : 11, {_}:
12864 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12865 [29, 28] by lub_absorbtion ?28 ?29
12866 25863: Id : 12, {_}:
12867 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12868 [32, 31] by glb_absorbtion ?31 ?32
12869 25863: Id : 13, {_}:
12870 multiply ?34 (least_upper_bound ?35 ?36)
12872 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12873 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12874 25863: Id : 14, {_}:
12875 multiply ?38 (greatest_lower_bound ?39 ?40)
12877 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12878 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12879 25863: Id : 15, {_}:
12880 multiply (least_upper_bound ?42 ?43) ?44
12882 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12883 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12884 25863: Id : 16, {_}:
12885 multiply (greatest_lower_bound ?46 ?47) ?48
12887 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12888 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12890 25863: Id : 1, {_}:
12891 multiply (least_upper_bound a identity)
12892 (inverse (greatest_lower_bound a identity))
12894 multiply (inverse (greatest_lower_bound a identity))
12895 (least_upper_bound a identity)
12900 25863: a 4 0 4 1,1,2
12901 25863: identity 6 0 4 2,1,2
12902 25863: inverse 3 1 2 0,2,2
12903 25863: least_upper_bound 15 2 2 0,1,2
12904 25863: greatest_lower_bound 15 2 2 0,1,2,2
12905 25863: multiply 20 2 2 0,2
12906 % SZS status Timeout for GRP184-1.p
12907 NO CLASH, using fixed ground order
12909 25898: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12910 25898: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12911 25898: Id : 4, {_}:
12912 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
12913 [8, 7, 6] by associativity ?6 ?7 ?8
12914 25898: Id : 5, {_}:
12915 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12916 [11, 10] by symmetry_of_glb ?10 ?11
12917 25898: Id : 6, {_}:
12918 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12919 [14, 13] by symmetry_of_lub ?13 ?14
12920 25898: Id : 7, {_}:
12921 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12923 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12924 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12925 25898: Id : 8, {_}:
12926 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12928 least_upper_bound (least_upper_bound ?20 ?21) ?22
12929 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
12930 25898: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
12931 25898: Id : 10, {_}:
12932 greatest_lower_bound ?26 ?26 =>= ?26
12933 [26] by idempotence_of_gld ?26
12934 25898: Id : 11, {_}:
12935 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
12936 [29, 28] by lub_absorbtion ?28 ?29
12937 25898: Id : 12, {_}:
12938 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
12939 [32, 31] by glb_absorbtion ?31 ?32
12940 25898: Id : 13, {_}:
12941 multiply ?34 (least_upper_bound ?35 ?36)
12943 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
12944 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
12945 25898: Id : 14, {_}:
12946 multiply ?38 (greatest_lower_bound ?39 ?40)
12948 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
12949 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
12950 25898: Id : 15, {_}:
12951 multiply (least_upper_bound ?42 ?43) ?44
12953 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
12954 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
12955 25898: Id : 16, {_}:
12956 multiply (greatest_lower_bound ?46 ?47) ?48
12958 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
12959 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
12961 25898: Id : 1, {_}:
12962 multiply (least_upper_bound a identity)
12963 (inverse (greatest_lower_bound a identity))
12965 multiply (inverse (greatest_lower_bound a identity))
12966 (least_upper_bound a identity)
12971 25898: a 4 0 4 1,1,2
12972 25898: identity 6 0 4 2,1,2
12973 25898: inverse 3 1 2 0,2,2
12974 25898: least_upper_bound 15 2 2 0,1,2
12975 25898: greatest_lower_bound 15 2 2 0,1,2,2
12976 25898: multiply 20 2 2 0,2
12977 NO CLASH, using fixed ground order
12979 25899: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
12980 25899: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
12981 25899: Id : 4, {_}:
12982 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
12983 [8, 7, 6] by associativity ?6 ?7 ?8
12984 25899: Id : 5, {_}:
12985 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
12986 [11, 10] by symmetry_of_glb ?10 ?11
12987 25899: Id : 6, {_}:
12988 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
12989 [14, 13] by symmetry_of_lub ?13 ?14
12990 25899: Id : 7, {_}:
12991 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
12993 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
12994 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
12995 25899: Id : 8, {_}:
12996 least_upper_bound ?20 (least_upper_bound ?21 ?22)
12998 least_upper_bound (least_upper_bound ?20 ?21) ?22
12999 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13000 25899: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13001 25899: Id : 10, {_}:
13002 greatest_lower_bound ?26 ?26 =>= ?26
13003 [26] by idempotence_of_gld ?26
13004 25899: Id : 11, {_}:
13005 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13006 [29, 28] by lub_absorbtion ?28 ?29
13007 25899: Id : 12, {_}:
13008 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13009 [32, 31] by glb_absorbtion ?31 ?32
13010 25899: Id : 13, {_}:
13011 multiply ?34 (least_upper_bound ?35 ?36)
13013 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13014 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13015 25899: Id : 14, {_}:
13016 multiply ?38 (greatest_lower_bound ?39 ?40)
13018 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13019 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13020 25899: Id : 15, {_}:
13021 multiply (least_upper_bound ?42 ?43) ?44
13023 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13024 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13025 25899: Id : 16, {_}:
13026 multiply (greatest_lower_bound ?46 ?47) ?48
13028 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13029 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13031 25899: Id : 1, {_}:
13032 multiply (least_upper_bound a identity)
13033 (inverse (greatest_lower_bound a identity))
13035 multiply (inverse (greatest_lower_bound a identity))
13036 (least_upper_bound a identity)
13041 25899: a 4 0 4 1,1,2
13042 25899: identity 6 0 4 2,1,2
13043 25899: inverse 3 1 2 0,2,2
13044 25899: least_upper_bound 15 2 2 0,1,2
13045 25899: greatest_lower_bound 15 2 2 0,1,2,2
13046 25899: multiply 20 2 2 0,2
13047 NO CLASH, using fixed ground order
13049 25900: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13050 25900: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13051 25900: Id : 4, {_}:
13052 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
13053 [8, 7, 6] by associativity ?6 ?7 ?8
13054 25900: Id : 5, {_}:
13055 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13056 [11, 10] by symmetry_of_glb ?10 ?11
13057 25900: Id : 6, {_}:
13058 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13059 [14, 13] by symmetry_of_lub ?13 ?14
13060 25900: Id : 7, {_}:
13061 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13063 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13064 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13065 25900: Id : 8, {_}:
13066 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13068 least_upper_bound (least_upper_bound ?20 ?21) ?22
13069 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13070 25900: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13071 25900: Id : 10, {_}:
13072 greatest_lower_bound ?26 ?26 =>= ?26
13073 [26] by idempotence_of_gld ?26
13074 25900: Id : 11, {_}:
13075 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13076 [29, 28] by lub_absorbtion ?28 ?29
13077 25900: Id : 12, {_}:
13078 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13079 [32, 31] by glb_absorbtion ?31 ?32
13080 25900: Id : 13, {_}:
13081 multiply ?34 (least_upper_bound ?35 ?36)
13083 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13084 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13085 25900: Id : 14, {_}:
13086 multiply ?38 (greatest_lower_bound ?39 ?40)
13088 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13089 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13090 25900: Id : 15, {_}:
13091 multiply (least_upper_bound ?42 ?43) ?44
13093 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13094 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13095 25900: Id : 16, {_}:
13096 multiply (greatest_lower_bound ?46 ?47) ?48
13098 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13099 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13101 25900: Id : 1, {_}:
13102 multiply (least_upper_bound a identity)
13103 (inverse (greatest_lower_bound a identity))
13105 multiply (inverse (greatest_lower_bound a identity))
13106 (least_upper_bound a identity)
13111 25900: a 4 0 4 1,1,2
13112 25900: identity 6 0 4 2,1,2
13113 25900: inverse 3 1 2 0,2,2
13114 25900: least_upper_bound 15 2 2 0,1,2
13115 25900: greatest_lower_bound 15 2 2 0,1,2,2
13116 25900: multiply 20 2 2 0,2
13117 % SZS status Timeout for GRP184-3.p
13118 NO CLASH, using fixed ground order
13120 25933: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13121 25933: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13122 25933: Id : 4, {_}:
13123 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
13124 [8, 7, 6] by associativity ?6 ?7 ?8
13125 25933: Id : 5, {_}:
13126 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13127 [11, 10] by symmetry_of_glb ?10 ?11
13128 25933: Id : 6, {_}:
13129 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13130 [14, 13] by symmetry_of_lub ?13 ?14
13131 25933: Id : 7, {_}:
13132 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13134 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13135 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13136 25933: Id : 8, {_}:
13137 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13139 least_upper_bound (least_upper_bound ?20 ?21) ?22
13140 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13141 25933: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13142 25933: Id : 10, {_}:
13143 greatest_lower_bound ?26 ?26 =>= ?26
13144 [26] by idempotence_of_gld ?26
13145 25933: Id : 11, {_}:
13146 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13147 [29, 28] by lub_absorbtion ?28 ?29
13148 25933: Id : 12, {_}:
13149 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13150 [32, 31] by glb_absorbtion ?31 ?32
13151 25933: Id : 13, {_}:
13152 multiply ?34 (least_upper_bound ?35 ?36)
13154 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13155 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13156 25933: Id : 14, {_}:
13157 multiply ?38 (greatest_lower_bound ?39 ?40)
13159 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13160 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13161 NO CLASH, using fixed ground order
13163 25934: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13164 25934: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13165 25934: Id : 4, {_}:
13166 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
13167 [8, 7, 6] by associativity ?6 ?7 ?8
13168 25934: Id : 5, {_}:
13169 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13170 [11, 10] by symmetry_of_glb ?10 ?11
13171 25934: Id : 6, {_}:
13172 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13173 [14, 13] by symmetry_of_lub ?13 ?14
13174 25934: Id : 7, {_}:
13175 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13177 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13178 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13179 25934: Id : 8, {_}:
13180 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13182 least_upper_bound (least_upper_bound ?20 ?21) ?22
13183 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13184 25934: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13185 25934: Id : 10, {_}:
13186 greatest_lower_bound ?26 ?26 =>= ?26
13187 [26] by idempotence_of_gld ?26
13188 25934: Id : 11, {_}:
13189 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13190 [29, 28] by lub_absorbtion ?28 ?29
13191 25934: Id : 12, {_}:
13192 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13193 [32, 31] by glb_absorbtion ?31 ?32
13194 25934: Id : 13, {_}:
13195 multiply ?34 (least_upper_bound ?35 ?36)
13197 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13198 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13199 25934: Id : 14, {_}:
13200 multiply ?38 (greatest_lower_bound ?39 ?40)
13202 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13203 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13204 25934: Id : 15, {_}:
13205 multiply (least_upper_bound ?42 ?43) ?44
13207 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13208 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13209 25934: Id : 16, {_}:
13210 multiply (greatest_lower_bound ?46 ?47) ?48
13212 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13213 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13215 25934: Id : 1, {_}:
13216 greatest_lower_bound (least_upper_bound (multiply a b) identity)
13217 (multiply (least_upper_bound a identity)
13218 (least_upper_bound b identity))
13220 least_upper_bound (multiply a b) identity
13225 25934: a 3 0 3 1,1,1,2
13226 25934: b 3 0 3 2,1,1,2
13227 25934: identity 6 0 4 2,1,2
13228 25934: inverse 1 1 0
13229 25934: greatest_lower_bound 14 2 1 0,2
13230 25934: least_upper_bound 17 2 4 0,1,2
13231 25934: multiply 21 2 3 0,1,1,2
13232 NO CLASH, using fixed ground order
13234 25932: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13235 25932: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13236 25932: Id : 4, {_}:
13237 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
13238 [8, 7, 6] by associativity ?6 ?7 ?8
13239 25932: Id : 5, {_}:
13240 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13241 [11, 10] by symmetry_of_glb ?10 ?11
13242 25932: Id : 6, {_}:
13243 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13244 [14, 13] by symmetry_of_lub ?13 ?14
13245 25932: Id : 7, {_}:
13246 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13248 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13249 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13250 25932: Id : 8, {_}:
13251 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13253 least_upper_bound (least_upper_bound ?20 ?21) ?22
13254 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13255 25932: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13256 25932: Id : 10, {_}:
13257 greatest_lower_bound ?26 ?26 =>= ?26
13258 [26] by idempotence_of_gld ?26
13259 25932: Id : 11, {_}:
13260 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13261 [29, 28] by lub_absorbtion ?28 ?29
13262 25932: Id : 12, {_}:
13263 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13264 [32, 31] by glb_absorbtion ?31 ?32
13265 25932: Id : 13, {_}:
13266 multiply ?34 (least_upper_bound ?35 ?36)
13268 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13269 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13270 25932: Id : 14, {_}:
13271 multiply ?38 (greatest_lower_bound ?39 ?40)
13273 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13274 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13275 25932: Id : 15, {_}:
13276 multiply (least_upper_bound ?42 ?43) ?44
13278 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13279 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13280 25932: Id : 16, {_}:
13281 multiply (greatest_lower_bound ?46 ?47) ?48
13283 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13284 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13286 25932: Id : 1, {_}:
13287 greatest_lower_bound (least_upper_bound (multiply a b) identity)
13288 (multiply (least_upper_bound a identity)
13289 (least_upper_bound b identity))
13291 least_upper_bound (multiply a b) identity
13296 25932: a 3 0 3 1,1,1,2
13297 25932: b 3 0 3 2,1,1,2
13298 25932: identity 6 0 4 2,1,2
13299 25932: inverse 1 1 0
13300 25932: greatest_lower_bound 14 2 1 0,2
13301 25932: least_upper_bound 17 2 4 0,1,2
13302 25932: multiply 21 2 3 0,1,1,2
13303 25933: Id : 15, {_}:
13304 multiply (least_upper_bound ?42 ?43) ?44
13306 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13307 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13308 25933: Id : 16, {_}:
13309 multiply (greatest_lower_bound ?46 ?47) ?48
13311 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13312 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13314 25933: Id : 1, {_}:
13315 greatest_lower_bound (least_upper_bound (multiply a b) identity)
13316 (multiply (least_upper_bound a identity)
13317 (least_upper_bound b identity))
13319 least_upper_bound (multiply a b) identity
13324 25933: a 3 0 3 1,1,1,2
13325 25933: b 3 0 3 2,1,1,2
13326 25933: identity 6 0 4 2,1,2
13327 25933: inverse 1 1 0
13328 25933: greatest_lower_bound 14 2 1 0,2
13329 25933: least_upper_bound 17 2 4 0,1,2
13330 25933: multiply 21 2 3 0,1,1,2
13333 Found proof, 1.351481s
13334 % SZS status Unsatisfiable for GRP185-3.p
13335 % SZS output start CNFRefutation for GRP185-3.p
13336 Id : 108, {_}: greatest_lower_bound ?251 (least_upper_bound ?251 ?252) =>= ?251 [252, 251] by glb_absorbtion ?251 ?252
13337 Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13338 Id : 21, {_}: multiply (multiply ?57 ?58) ?59 =>= multiply ?57 (multiply ?58 ?59) [59, 58, 57] by associativity ?57 ?58 ?59
13339 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13340 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13341 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13342 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13343 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
13344 Id : 23, {_}: multiply identity ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Super 21 with 3 at 1,2
13345 Id : 392, {_}: ?594 =<= multiply (inverse ?595) (multiply ?595 ?594) [595, 594] by Demod 23 with 2 at 2
13346 Id : 394, {_}: ?599 =<= multiply (inverse (inverse ?599)) identity [599] by Super 392 with 3 at 2,3
13347 Id : 27, {_}: ?64 =<= multiply (inverse ?65) (multiply ?65 ?64) [65, 64] by Demod 23 with 2 at 2
13348 Id : 400, {_}: multiply ?621 ?622 =<= multiply (inverse (inverse ?621)) ?622 [622, 621] by Super 392 with 27 at 2,3
13349 Id : 525, {_}: ?599 =<= multiply ?599 identity [599] by Demod 394 with 400 at 3
13350 Id : 815, {_}: greatest_lower_bound ?1092 (least_upper_bound ?1093 ?1092) =>= ?1092 [1093, 1092] by Super 108 with 6 at 2,2
13351 Id : 822, {_}: greatest_lower_bound ?1112 (least_upper_bound ?1113 (least_upper_bound ?1114 ?1112)) =>= ?1112 [1114, 1113, 1112] by Super 815 with 8 at 2,2
13352 Id : 2353, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 2352 with 822 at 2
13353 Id : 2352, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2351 with 8 at 2,2,2
13354 Id : 2351, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b))) =>= least_upper_bound identity (multiply a b) [] by Demod 2350 with 8 at 2,2
13355 Id : 2350, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (least_upper_bound a identity)) (multiply a b)) =>= least_upper_bound identity (multiply a b) [] by Demod 2349 with 6 at 2,2
13356 Id : 2349, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a identity))) =>= least_upper_bound identity (multiply a b) [] by Demod 2348 with 2 at 2,2,2,2,2
13357 Id : 2348, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a (multiply identity identity)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2347 with 525 at 1,2,2,2,2
13358 Id : 2347, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2346 with 2 at 1,2,2,2
13359 Id : 2346, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound identity (multiply a b) [] by Demod 2345 with 8 at 2,2
13360 Id : 2345, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity))) =>= least_upper_bound identity (multiply a b) [] by Demod 2344 with 15 at 2,2,2
13361 Id : 2344, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound identity (multiply a b) [] by Demod 2343 with 15 at 1,2,2
13362 Id : 2343, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound identity (multiply a b) [] by Demod 2342 with 6 at 3
13363 Id : 2342, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 2341 with 13 at 2,2
13364 Id : 2341, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 1 with 6 at 1,2
13365 Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b
13366 % SZS output end CNFRefutation for GRP185-3.p
13367 25934: solved GRP185-3.p in 0.66004 using lpo
13368 25934: status Unsatisfiable for GRP185-3.p
13369 NO CLASH, using fixed ground order
13371 25939: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13372 25939: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13373 25939: Id : 4, {_}:
13374 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
13375 [8, 7, 6] by associativity ?6 ?7 ?8
13376 25939: Id : 5, {_}:
13377 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13378 [11, 10] by symmetry_of_glb ?10 ?11
13379 25939: Id : 6, {_}:
13380 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13381 [14, 13] by symmetry_of_lub ?13 ?14
13382 25939: Id : 7, {_}:
13383 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13385 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13386 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13387 25939: Id : 8, {_}:
13388 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13390 least_upper_bound (least_upper_bound ?20 ?21) ?22
13391 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13392 25939: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13393 25939: Id : 10, {_}:
13394 greatest_lower_bound ?26 ?26 =>= ?26
13395 [26] by idempotence_of_gld ?26
13396 25939: Id : 11, {_}:
13397 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13398 [29, 28] by lub_absorbtion ?28 ?29
13399 25939: Id : 12, {_}:
13400 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13401 [32, 31] by glb_absorbtion ?31 ?32
13402 25939: Id : 13, {_}:
13403 multiply ?34 (least_upper_bound ?35 ?36)
13405 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13406 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13407 25939: Id : 14, {_}:
13408 multiply ?38 (greatest_lower_bound ?39 ?40)
13410 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13411 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13412 25939: Id : 15, {_}:
13413 multiply (least_upper_bound ?42 ?43) ?44
13415 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13416 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13417 25939: Id : 16, {_}:
13418 multiply (greatest_lower_bound ?46 ?47) ?48
13420 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13421 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13422 25939: Id : 17, {_}: inverse identity =>= identity [] by p22b_1
13423 25939: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51
13424 25939: Id : 19, {_}:
13425 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
13426 [54, 53] by p22b_3 ?53 ?54
13428 25939: Id : 1, {_}:
13429 greatest_lower_bound (least_upper_bound (multiply a b) identity)
13430 (multiply (least_upper_bound a identity)
13431 (least_upper_bound b identity))
13433 least_upper_bound (multiply a b) identity
13438 25939: a 3 0 3 1,1,1,2
13439 25939: b 3 0 3 2,1,1,2
13440 25939: identity 8 0 4 2,1,2
13441 25939: inverse 7 1 0
13442 25939: greatest_lower_bound 14 2 1 0,2
13443 25939: least_upper_bound 17 2 4 0,1,2
13444 25939: multiply 23 2 3 0,1,1,2
13445 NO CLASH, using fixed ground order
13447 25940: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13448 25940: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13449 25940: Id : 4, {_}:
13450 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
13451 [8, 7, 6] by associativity ?6 ?7 ?8
13452 25940: Id : 5, {_}:
13453 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13454 [11, 10] by symmetry_of_glb ?10 ?11
13455 25940: Id : 6, {_}:
13456 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13457 [14, 13] by symmetry_of_lub ?13 ?14
13458 25940: Id : 7, {_}:
13459 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13461 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13462 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13463 25940: Id : 8, {_}:
13464 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13466 least_upper_bound (least_upper_bound ?20 ?21) ?22
13467 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13468 25940: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13469 25940: Id : 10, {_}:
13470 greatest_lower_bound ?26 ?26 =>= ?26
13471 [26] by idempotence_of_gld ?26
13472 25940: Id : 11, {_}:
13473 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13474 [29, 28] by lub_absorbtion ?28 ?29
13475 25940: Id : 12, {_}:
13476 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13477 [32, 31] by glb_absorbtion ?31 ?32
13478 25940: Id : 13, {_}:
13479 multiply ?34 (least_upper_bound ?35 ?36)
13481 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13482 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13483 25940: Id : 14, {_}:
13484 multiply ?38 (greatest_lower_bound ?39 ?40)
13486 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13487 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13488 25940: Id : 15, {_}:
13489 multiply (least_upper_bound ?42 ?43) ?44
13491 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13492 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13493 25940: Id : 16, {_}:
13494 multiply (greatest_lower_bound ?46 ?47) ?48
13496 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13497 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13498 25940: Id : 17, {_}: inverse identity =>= identity [] by p22b_1
13499 25940: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51
13500 25940: Id : 19, {_}:
13501 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
13502 [54, 53] by p22b_3 ?53 ?54
13504 25940: Id : 1, {_}:
13505 greatest_lower_bound (least_upper_bound (multiply a b) identity)
13506 (multiply (least_upper_bound a identity)
13507 (least_upper_bound b identity))
13509 least_upper_bound (multiply a b) identity
13514 25940: a 3 0 3 1,1,1,2
13515 25940: b 3 0 3 2,1,1,2
13516 25940: identity 8 0 4 2,1,2
13517 25940: inverse 7 1 0
13518 25940: greatest_lower_bound 14 2 1 0,2
13519 25940: least_upper_bound 17 2 4 0,1,2
13520 25940: multiply 23 2 3 0,1,1,2
13521 NO CLASH, using fixed ground order
13523 25941: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13524 25941: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13525 25941: Id : 4, {_}:
13526 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
13527 [8, 7, 6] by associativity ?6 ?7 ?8
13528 25941: Id : 5, {_}:
13529 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13530 [11, 10] by symmetry_of_glb ?10 ?11
13531 25941: Id : 6, {_}:
13532 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13533 [14, 13] by symmetry_of_lub ?13 ?14
13534 25941: Id : 7, {_}:
13535 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13537 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13538 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13539 25941: Id : 8, {_}:
13540 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13542 least_upper_bound (least_upper_bound ?20 ?21) ?22
13543 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13544 25941: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13545 25941: Id : 10, {_}:
13546 greatest_lower_bound ?26 ?26 =>= ?26
13547 [26] by idempotence_of_gld ?26
13548 25941: Id : 11, {_}:
13549 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13550 [29, 28] by lub_absorbtion ?28 ?29
13551 25941: Id : 12, {_}:
13552 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13553 [32, 31] by glb_absorbtion ?31 ?32
13554 25941: Id : 13, {_}:
13555 multiply ?34 (least_upper_bound ?35 ?36)
13557 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13558 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13559 25941: Id : 14, {_}:
13560 multiply ?38 (greatest_lower_bound ?39 ?40)
13562 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13563 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13564 25941: Id : 15, {_}:
13565 multiply (least_upper_bound ?42 ?43) ?44
13567 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13568 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13569 25941: Id : 16, {_}:
13570 multiply (greatest_lower_bound ?46 ?47) ?48
13572 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13573 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13574 25941: Id : 17, {_}: inverse identity =>= identity [] by p22b_1
13575 25941: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51
13576 25941: Id : 19, {_}:
13577 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
13578 [54, 53] by p22b_3 ?53 ?54
13580 25941: Id : 1, {_}:
13581 greatest_lower_bound (least_upper_bound (multiply a b) identity)
13582 (multiply (least_upper_bound a identity)
13583 (least_upper_bound b identity))
13585 least_upper_bound (multiply a b) identity
13590 25941: a 3 0 3 1,1,1,2
13591 25941: b 3 0 3 2,1,1,2
13592 25941: identity 8 0 4 2,1,2
13593 25941: inverse 7 1 0
13594 25941: greatest_lower_bound 14 2 1 0,2
13595 25941: least_upper_bound 17 2 4 0,1,2
13596 25941: multiply 23 2 3 0,1,1,2
13599 Found proof, 0.930082s
13600 % SZS status Unsatisfiable for GRP185-4.p
13601 % SZS output start CNFRefutation for GRP185-4.p
13602 Id : 111, {_}: greatest_lower_bound ?257 (least_upper_bound ?257 ?258) =>= ?257 [258, 257] by glb_absorbtion ?257 ?258
13603 Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p22b_2 ?51
13604 Id : 17, {_}: inverse identity =>= identity [] by p22b_1
13605 Id : 338, {_}: inverse (multiply ?520 ?521) =?= multiply (inverse ?521) (inverse ?520) [521, 520] by p22b_3 ?520 ?521
13606 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13607 Id : 8, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =<= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13608 Id : 15, {_}: multiply (least_upper_bound ?42 ?43) ?44 =>= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13609 Id : 13, {_}: multiply ?34 (least_upper_bound ?35 ?36) =>= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13610 Id : 6, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14
13611 Id : 339, {_}: inverse (multiply identity ?523) =<= multiply (inverse ?523) identity [523] by Super 338 with 17 at 2,3
13612 Id : 372, {_}: inverse ?569 =<= multiply (inverse ?569) identity [569] by Demod 339 with 2 at 1,2
13613 Id : 374, {_}: inverse (inverse ?572) =<= multiply ?572 identity [572] by Super 372 with 18 at 1,3
13614 Id : 382, {_}: ?572 =<= multiply ?572 identity [572] by Demod 374 with 18 at 2
13615 Id : 704, {_}: greatest_lower_bound ?881 (least_upper_bound ?882 ?881) =>= ?881 [882, 881] by Super 111 with 6 at 2,2
13616 Id : 711, {_}: greatest_lower_bound ?901 (least_upper_bound ?902 (least_upper_bound ?903 ?901)) =>= ?901 [903, 902, 901] by Super 704 with 8 at 2,2
13617 Id : 1908, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 1907 with 711 at 2
13618 Id : 1907, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound a (least_upper_bound identity (multiply a b)))) =>= least_upper_bound identity (multiply a b) [] by Demod 1906 with 8 at 2,2,2
13619 Id : 1906, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound b (least_upper_bound (least_upper_bound a identity) (multiply a b))) =>= least_upper_bound identity (multiply a b) [] by Demod 1905 with 8 at 2,2
13620 Id : 1905, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound b (least_upper_bound a identity)) (multiply a b)) =>= least_upper_bound identity (multiply a b) [] by Demod 1904 with 6 at 2,2
13621 Id : 1904, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a identity))) =>= least_upper_bound identity (multiply a b) [] by Demod 1903 with 2 at 2,2,2,2,2
13622 Id : 1903, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound a (multiply identity identity)))) =>= least_upper_bound identity (multiply a b) [] by Demod 1902 with 382 at 1,2,2,2,2
13623 Id : 1902, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a b) (least_upper_bound b (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound identity (multiply a b) [] by Demod 1901 with 2 at 1,2,2,2
13624 Id : 1901, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply a b) (least_upper_bound (multiply identity b) (least_upper_bound (multiply a identity) (multiply identity identity)))) =>= least_upper_bound identity (multiply a b) [] by Demod 1900 with 8 at 2,2
13625 Id : 1900, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (least_upper_bound (multiply a identity) (multiply identity identity))) =>= least_upper_bound identity (multiply a b) [] by Demod 1899 with 15 at 2,2,2
13626 Id : 1899, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (least_upper_bound (multiply a b) (multiply identity b)) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound identity (multiply a b) [] by Demod 1898 with 15 at 1,2,2
13627 Id : 1898, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound identity (multiply a b) [] by Demod 1897 with 6 at 3
13628 Id : 1897, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (least_upper_bound (multiply (least_upper_bound a identity) b) (multiply (least_upper_bound a identity) identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 1896 with 13 at 2,2
13629 Id : 1896, {_}: greatest_lower_bound (least_upper_bound identity (multiply a b)) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by Demod 1 with 6 at 1,2
13630 Id : 1, {_}: greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity)) =>= least_upper_bound (multiply a b) identity [] by prove_p22b
13631 % SZS output end CNFRefutation for GRP185-4.p
13632 25941: solved GRP185-4.p in 0.432027 using lpo
13633 25941: status Unsatisfiable for GRP185-4.p
13634 NO CLASH, using fixed ground order
13636 25948: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13637 25948: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13638 25948: Id : 4, {_}:
13639 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
13640 [8, 7, 6] by associativity ?6 ?7 ?8
13641 25948: Id : 5, {_}:
13642 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13643 [11, 10] by symmetry_of_glb ?10 ?11
13644 25948: Id : 6, {_}:
13645 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13646 [14, 13] by symmetry_of_lub ?13 ?14
13647 25948: Id : 7, {_}:
13648 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13650 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13651 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13652 25948: Id : 8, {_}:
13653 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13655 least_upper_bound (least_upper_bound ?20 ?21) ?22
13656 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13657 25948: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13658 25948: Id : 10, {_}:
13659 greatest_lower_bound ?26 ?26 =>= ?26
13660 [26] by idempotence_of_gld ?26
13661 25948: Id : 11, {_}:
13662 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13663 [29, 28] by lub_absorbtion ?28 ?29
13664 25948: Id : 12, {_}:
13665 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13666 [32, 31] by glb_absorbtion ?31 ?32
13667 25948: Id : 13, {_}:
13668 multiply ?34 (least_upper_bound ?35 ?36)
13670 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13671 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13672 25948: Id : 14, {_}:
13673 multiply ?38 (greatest_lower_bound ?39 ?40)
13675 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13676 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13677 25948: Id : 15, {_}:
13678 multiply (least_upper_bound ?42 ?43) ?44
13680 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13681 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13682 25948: Id : 16, {_}:
13683 multiply (greatest_lower_bound ?46 ?47) ?48
13685 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13686 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13687 25948: Id : 17, {_}: inverse identity =>= identity [] by p23_1
13688 25948: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51
13689 25948: Id : 19, {_}:
13690 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
13691 [54, 53] by p23_3 ?53 ?54
13693 25948: Id : 1, {_}:
13694 least_upper_bound (multiply a b) identity
13696 multiply a (inverse (greatest_lower_bound a (inverse b)))
13701 25948: b 2 0 2 2,1,2
13702 25948: a 3 0 3 1,1,2
13703 25948: identity 5 0 1 2,2
13704 25948: inverse 9 1 2 0,2,3
13705 25948: greatest_lower_bound 14 2 1 0,1,2,3
13706 25948: least_upper_bound 14 2 1 0,2
13707 25948: multiply 22 2 2 0,1,2
13708 NO CLASH, using fixed ground order
13710 25950: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13711 25950: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13712 25950: Id : 4, {_}:
13713 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
13714 [8, 7, 6] by associativity ?6 ?7 ?8
13715 25950: Id : 5, {_}:
13716 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13717 [11, 10] by symmetry_of_glb ?10 ?11
13718 25950: Id : 6, {_}:
13719 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13720 [14, 13] by symmetry_of_lub ?13 ?14
13721 25950: Id : 7, {_}:
13722 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13724 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13725 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13726 25950: Id : 8, {_}:
13727 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13729 least_upper_bound (least_upper_bound ?20 ?21) ?22
13730 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13731 25950: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13732 25950: Id : 10, {_}:
13733 greatest_lower_bound ?26 ?26 =>= ?26
13734 [26] by idempotence_of_gld ?26
13735 25950: Id : 11, {_}:
13736 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13737 [29, 28] by lub_absorbtion ?28 ?29
13738 25950: Id : 12, {_}:
13739 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13740 [32, 31] by glb_absorbtion ?31 ?32
13741 25950: Id : 13, {_}:
13742 multiply ?34 (least_upper_bound ?35 ?36)
13744 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13745 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13746 25950: Id : 14, {_}:
13747 multiply ?38 (greatest_lower_bound ?39 ?40)
13749 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13750 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13751 25950: Id : 15, {_}:
13752 multiply (least_upper_bound ?42 ?43) ?44
13754 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13755 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13756 25950: Id : 16, {_}:
13757 multiply (greatest_lower_bound ?46 ?47) ?48
13759 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13760 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13761 25950: Id : 17, {_}: inverse identity =>= identity [] by p23_1
13762 25950: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51
13763 25950: Id : 19, {_}:
13764 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
13765 [54, 53] by p23_3 ?53 ?54
13767 25950: Id : 1, {_}:
13768 least_upper_bound (multiply a b) identity
13770 multiply a (inverse (greatest_lower_bound a (inverse b)))
13775 25950: b 2 0 2 2,1,2
13776 25950: a 3 0 3 1,1,2
13777 25950: identity 5 0 1 2,2
13778 25950: inverse 9 1 2 0,2,3
13779 25950: greatest_lower_bound 14 2 1 0,1,2,3
13780 25950: least_upper_bound 14 2 1 0,2
13781 25950: multiply 22 2 2 0,1,2
13782 NO CLASH, using fixed ground order
13784 25949: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13785 25949: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
13786 25949: Id : 4, {_}:
13787 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
13788 [8, 7, 6] by associativity ?6 ?7 ?8
13789 25949: Id : 5, {_}:
13790 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
13791 [11, 10] by symmetry_of_glb ?10 ?11
13792 25949: Id : 6, {_}:
13793 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
13794 [14, 13] by symmetry_of_lub ?13 ?14
13795 25949: Id : 7, {_}:
13796 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
13798 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
13799 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
13800 25949: Id : 8, {_}:
13801 least_upper_bound ?20 (least_upper_bound ?21 ?22)
13803 least_upper_bound (least_upper_bound ?20 ?21) ?22
13804 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
13805 25949: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
13806 25949: Id : 10, {_}:
13807 greatest_lower_bound ?26 ?26 =>= ?26
13808 [26] by idempotence_of_gld ?26
13809 25949: Id : 11, {_}:
13810 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
13811 [29, 28] by lub_absorbtion ?28 ?29
13812 25949: Id : 12, {_}:
13813 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
13814 [32, 31] by glb_absorbtion ?31 ?32
13815 25949: Id : 13, {_}:
13816 multiply ?34 (least_upper_bound ?35 ?36)
13818 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
13819 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
13820 25949: Id : 14, {_}:
13821 multiply ?38 (greatest_lower_bound ?39 ?40)
13823 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
13824 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
13825 25949: Id : 15, {_}:
13826 multiply (least_upper_bound ?42 ?43) ?44
13828 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
13829 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
13830 25949: Id : 16, {_}:
13831 multiply (greatest_lower_bound ?46 ?47) ?48
13833 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
13834 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
13835 25949: Id : 17, {_}: inverse identity =>= identity [] by p23_1
13836 25949: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51
13837 25949: Id : 19, {_}:
13838 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
13839 [54, 53] by p23_3 ?53 ?54
13841 25949: Id : 1, {_}:
13842 least_upper_bound (multiply a b) identity
13844 multiply a (inverse (greatest_lower_bound a (inverse b)))
13849 25949: b 2 0 2 2,1,2
13850 25949: a 3 0 3 1,1,2
13851 25949: identity 5 0 1 2,2
13852 25949: inverse 9 1 2 0,2,3
13853 25949: greatest_lower_bound 14 2 1 0,1,2,3
13854 25949: least_upper_bound 14 2 1 0,2
13855 25949: multiply 22 2 2 0,1,2
13856 % SZS status Timeout for GRP186-2.p
13857 NO CLASH, using fixed ground order
13859 26073: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13860 26073: Id : 3, {_}:
13861 multiply (left_inverse ?4) ?4 =>= identity
13862 [4] by left_inverse ?4
13863 26073: Id : 4, {_}:
13864 multiply (multiply ?6 (multiply ?7 ?8)) ?6
13866 multiply (multiply ?6 ?7) (multiply ?8 ?6)
13867 [8, 7, 6] by moufang1 ?6 ?7 ?8
13869 26073: Id : 1, {_}:
13870 multiply (multiply (multiply a b) c) b
13872 multiply a (multiply b (multiply c b))
13873 [] by prove_moufang2
13877 26073: identity 2 0 0
13878 26073: a 2 0 2 1,1,1,2
13879 26073: c 2 0 2 2,1,2
13880 26073: b 4 0 4 2,1,1,2
13881 26073: left_inverse 1 1 0
13882 26073: multiply 14 2 6 0,2
13883 NO CLASH, using fixed ground order
13885 26074: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13886 26074: Id : 3, {_}:
13887 multiply (left_inverse ?4) ?4 =>= identity
13888 [4] by left_inverse ?4
13889 26074: Id : 4, {_}:
13890 multiply (multiply ?6 (multiply ?7 ?8)) ?6
13892 multiply (multiply ?6 ?7) (multiply ?8 ?6)
13893 [8, 7, 6] by moufang1 ?6 ?7 ?8
13895 26074: Id : 1, {_}:
13896 multiply (multiply (multiply a b) c) b
13898 multiply a (multiply b (multiply c b))
13899 [] by prove_moufang2
13903 26074: identity 2 0 0
13904 26074: a 2 0 2 1,1,1,2
13905 26074: c 2 0 2 2,1,2
13906 26074: b 4 0 4 2,1,1,2
13907 26074: left_inverse 1 1 0
13908 26074: multiply 14 2 6 0,2
13909 NO CLASH, using fixed ground order
13911 26075: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13912 26075: Id : 3, {_}:
13913 multiply (left_inverse ?4) ?4 =>= identity
13914 [4] by left_inverse ?4
13915 26075: Id : 4, {_}:
13916 multiply (multiply ?6 (multiply ?7 ?8)) ?6
13918 multiply (multiply ?6 ?7) (multiply ?8 ?6)
13919 [8, 7, 6] by moufang1 ?6 ?7 ?8
13921 26075: Id : 1, {_}:
13922 multiply (multiply (multiply a b) c) b
13924 multiply a (multiply b (multiply c b))
13925 [] by prove_moufang2
13929 26075: identity 2 0 0
13930 26075: a 2 0 2 1,1,1,2
13931 26075: c 2 0 2 2,1,2
13932 26075: b 4 0 4 2,1,1,2
13933 26075: left_inverse 1 1 0
13934 26075: multiply 14 2 6 0,2
13935 % SZS status Timeout for GRP204-1.p
13936 CLASH, statistics insufficient
13938 26204: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13939 26204: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
13940 26204: Id : 4, {_}:
13941 multiply ?6 (left_division ?6 ?7) =>= ?7
13942 [7, 6] by multiply_left_division ?6 ?7
13943 26204: Id : 5, {_}:
13944 left_division ?9 (multiply ?9 ?10) =>= ?10
13945 [10, 9] by left_division_multiply ?9 ?10
13946 26204: Id : 6, {_}:
13947 multiply (right_division ?12 ?13) ?13 =>= ?12
13948 [13, 12] by multiply_right_division ?12 ?13
13949 26204: Id : 7, {_}:
13950 right_division (multiply ?15 ?16) ?16 =>= ?15
13951 [16, 15] by right_division_multiply ?15 ?16
13952 26204: Id : 8, {_}:
13953 multiply ?18 (right_inverse ?18) =>= identity
13954 [18] by right_inverse ?18
13955 26204: Id : 9, {_}:
13956 multiply (left_inverse ?20) ?20 =>= identity
13957 [20] by left_inverse ?20
13958 26204: Id : 10, {_}:
13959 multiply (multiply (multiply ?22 ?23) ?22) ?24
13961 multiply ?22 (multiply ?23 (multiply ?22 ?24))
13962 [24, 23, 22] by moufang3 ?22 ?23 ?24
13964 26204: Id : 1, {_}:
13965 multiply x (multiply (multiply y z) x)
13967 multiply (multiply x y) (multiply z x)
13968 [] by prove_moufang4
13972 26204: y 2 0 2 1,1,2,2
13973 26204: z 2 0 2 2,1,2,2
13974 26204: identity 4 0 0
13976 26204: right_inverse 1 1 0
13977 26204: left_inverse 1 1 0
13978 26204: left_division 2 2 0
13979 26204: right_division 2 2 0
13980 26204: multiply 20 2 6 0,2
13981 CLASH, statistics insufficient
13983 26205: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
13984 26205: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
13985 26205: Id : 4, {_}:
13986 multiply ?6 (left_division ?6 ?7) =>= ?7
13987 [7, 6] by multiply_left_division ?6 ?7
13988 26205: Id : 5, {_}:
13989 left_division ?9 (multiply ?9 ?10) =>= ?10
13990 [10, 9] by left_division_multiply ?9 ?10
13991 26205: Id : 6, {_}:
13992 multiply (right_division ?12 ?13) ?13 =>= ?12
13993 [13, 12] by multiply_right_division ?12 ?13
13994 26205: Id : 7, {_}:
13995 right_division (multiply ?15 ?16) ?16 =>= ?15
13996 [16, 15] by right_division_multiply ?15 ?16
13997 26205: Id : 8, {_}:
13998 multiply ?18 (right_inverse ?18) =>= identity
13999 [18] by right_inverse ?18
14000 26205: Id : 9, {_}:
14001 multiply (left_inverse ?20) ?20 =>= identity
14002 [20] by left_inverse ?20
14003 26205: Id : 10, {_}:
14004 multiply (multiply (multiply ?22 ?23) ?22) ?24
14006 multiply ?22 (multiply ?23 (multiply ?22 ?24))
14007 [24, 23, 22] by moufang3 ?22 ?23 ?24
14009 26205: Id : 1, {_}:
14010 multiply x (multiply (multiply y z) x)
14012 multiply (multiply x y) (multiply z x)
14013 [] by prove_moufang4
14017 26205: y 2 0 2 1,1,2,2
14018 26205: z 2 0 2 2,1,2,2
14019 26205: identity 4 0 0
14021 26205: right_inverse 1 1 0
14022 26205: left_inverse 1 1 0
14023 26205: left_division 2 2 0
14024 26205: right_division 2 2 0
14025 26205: multiply 20 2 6 0,2
14026 CLASH, statistics insufficient
14028 26206: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
14029 26206: Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
14030 26206: Id : 4, {_}:
14031 multiply ?6 (left_division ?6 ?7) =>= ?7
14032 [7, 6] by multiply_left_division ?6 ?7
14033 26206: Id : 5, {_}:
14034 left_division ?9 (multiply ?9 ?10) =>= ?10
14035 [10, 9] by left_division_multiply ?9 ?10
14036 26206: Id : 6, {_}:
14037 multiply (right_division ?12 ?13) ?13 =>= ?12
14038 [13, 12] by multiply_right_division ?12 ?13
14039 26206: Id : 7, {_}:
14040 right_division (multiply ?15 ?16) ?16 =>= ?15
14041 [16, 15] by right_division_multiply ?15 ?16
14042 26206: Id : 8, {_}:
14043 multiply ?18 (right_inverse ?18) =>= identity
14044 [18] by right_inverse ?18
14045 26206: Id : 9, {_}:
14046 multiply (left_inverse ?20) ?20 =>= identity
14047 [20] by left_inverse ?20
14048 26206: Id : 10, {_}:
14049 multiply (multiply (multiply ?22 ?23) ?22) ?24
14051 multiply ?22 (multiply ?23 (multiply ?22 ?24))
14052 [24, 23, 22] by moufang3 ?22 ?23 ?24
14054 26206: Id : 1, {_}:
14055 multiply x (multiply (multiply y z) x)
14057 multiply (multiply x y) (multiply z x)
14058 [] by prove_moufang4
14062 26206: y 2 0 2 1,1,2,2
14063 26206: z 2 0 2 2,1,2,2
14064 26206: identity 4 0 0
14066 26206: right_inverse 1 1 0
14067 26206: left_inverse 1 1 0
14068 26206: left_division 2 2 0
14069 26206: right_division 2 2 0
14070 26206: multiply 20 2 6 0,2
14073 Found proof, 29.317631s
14074 % SZS status Unsatisfiable for GRP205-1.p
14075 % SZS output start CNFRefutation for GRP205-1.p
14076 Id : 56, {_}: multiply (multiply (multiply ?126 ?127) ?126) ?128 =>= multiply ?126 (multiply ?127 (multiply ?126 ?128)) [128, 127, 126] by moufang3 ?126 ?127 ?128
14077 Id : 4, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7
14078 Id : 9, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20
14079 Id : 22, {_}: left_division ?48 (multiply ?48 ?49) =>= ?49 [49, 48] by left_division_multiply ?48 ?49
14080 Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
14081 Id : 5, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10
14082 Id : 8, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18
14083 Id : 6, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13
14084 Id : 10, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24
14085 Id : 3, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4
14086 Id : 7, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16
14087 Id : 53, {_}: multiply ?115 (multiply ?116 (multiply ?115 identity)) =>= multiply (multiply ?115 ?116) ?115 [116, 115] by Super 3 with 10 at 2
14088 Id : 70, {_}: multiply ?115 (multiply ?116 ?115) =<= multiply (multiply ?115 ?116) ?115 [116, 115] by Demod 53 with 3 at 2,2,2
14089 Id : 889, {_}: right_division (multiply ?1099 (multiply ?1100 ?1099)) ?1099 =>= multiply ?1099 ?1100 [1100, 1099] by Super 7 with 70 at 1,2
14090 Id : 895, {_}: right_division (multiply ?1115 ?1116) ?1115 =<= multiply ?1115 (right_division ?1116 ?1115) [1116, 1115] by Super 889 with 6 at 2,1,2
14091 Id : 55, {_}: right_division (multiply ?122 (multiply ?123 (multiply ?122 ?124))) ?124 =>= multiply (multiply ?122 ?123) ?122 [124, 123, 122] by Super 7 with 10 at 1,2
14092 Id : 2553, {_}: right_division (multiply ?3478 (multiply ?3479 (multiply ?3478 ?3480))) ?3480 =>= multiply ?3478 (multiply ?3479 ?3478) [3480, 3479, 3478] by Demod 55 with 70 at 3
14093 Id : 647, {_}: multiply ?831 (multiply ?832 ?831) =<= multiply (multiply ?831 ?832) ?831 [832, 831] by Demod 53 with 3 at 2,2,2
14094 Id : 654, {_}: multiply ?850 (multiply (right_inverse ?850) ?850) =>= multiply identity ?850 [850] by Super 647 with 8 at 1,3
14095 Id : 677, {_}: multiply ?850 (multiply (right_inverse ?850) ?850) =>= ?850 [850] by Demod 654 with 2 at 3
14096 Id : 763, {_}: left_division ?991 ?991 =<= multiply (right_inverse ?991) ?991 [991] by Super 5 with 677 at 2,2
14097 Id : 24, {_}: left_division ?53 ?53 =>= identity [53] by Super 22 with 3 at 2,2
14098 Id : 789, {_}: identity =<= multiply (right_inverse ?991) ?991 [991] by Demod 763 with 24 at 2
14099 Id : 816, {_}: right_division identity ?1047 =>= right_inverse ?1047 [1047] by Super 7 with 789 at 1,2
14100 Id : 45, {_}: right_division identity ?99 =>= left_inverse ?99 [99] by Super 7 with 9 at 1,2
14101 Id : 843, {_}: left_inverse ?1047 =<= right_inverse ?1047 [1047] by Demod 816 with 45 at 2
14102 Id : 857, {_}: multiply ?18 (left_inverse ?18) =>= identity [18] by Demod 8 with 843 at 2,2
14103 Id : 2562, {_}: right_division (multiply ?3513 (multiply ?3514 identity)) (left_inverse ?3513) =>= multiply ?3513 (multiply ?3514 ?3513) [3514, 3513] by Super 2553 with 857 at 2,2,1,2
14104 Id : 2621, {_}: right_division (multiply ?3513 ?3514) (left_inverse ?3513) =>= multiply ?3513 (multiply ?3514 ?3513) [3514, 3513] by Demod 2562 with 3 at 2,1,2
14105 Id : 2806, {_}: right_division (multiply (left_inverse ?3781) (multiply ?3781 ?3782)) (left_inverse ?3781) =>= multiply (left_inverse ?3781) (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Super 895 with 2621 at 2,3
14106 Id : 52, {_}: multiply ?111 (multiply ?112 (multiply ?111 (left_division (multiply (multiply ?111 ?112) ?111) ?113))) =>= ?113 [113, 112, 111] by Super 4 with 10 at 2
14107 Id : 963, {_}: multiply ?1216 (multiply ?1217 (multiply ?1216 (left_division (multiply ?1216 (multiply ?1217 ?1216)) ?1218))) =>= ?1218 [1218, 1217, 1216] by Demod 52 with 70 at 1,2,2,2,2
14108 Id : 970, {_}: multiply ?1242 (multiply (left_inverse ?1242) (multiply ?1242 (left_division (multiply ?1242 identity) ?1243))) =>= ?1243 [1243, 1242] by Super 963 with 9 at 2,1,2,2,2,2
14109 Id : 1030, {_}: multiply ?1242 (multiply (left_inverse ?1242) (multiply ?1242 (left_division ?1242 ?1243))) =>= ?1243 [1243, 1242] by Demod 970 with 3 at 1,2,2,2,2
14110 Id : 1031, {_}: multiply ?1242 (multiply (left_inverse ?1242) ?1243) =>= ?1243 [1243, 1242] by Demod 1030 with 4 at 2,2,2
14111 Id : 1164, {_}: left_division ?1548 ?1549 =<= multiply (left_inverse ?1548) ?1549 [1549, 1548] by Super 5 with 1031 at 2,2
14112 Id : 2852, {_}: right_division (left_division ?3781 (multiply ?3781 ?3782)) (left_inverse ?3781) =<= multiply (left_inverse ?3781) (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Demod 2806 with 1164 at 1,2
14113 Id : 2853, {_}: right_division (left_division ?3781 (multiply ?3781 ?3782)) (left_inverse ?3781) =>= left_division ?3781 (multiply ?3781 (multiply ?3782 ?3781)) [3782, 3781] by Demod 2852 with 1164 at 3
14114 Id : 2854, {_}: right_division ?3782 (left_inverse ?3781) =<= left_division ?3781 (multiply ?3781 (multiply ?3782 ?3781)) [3781, 3782] by Demod 2853 with 5 at 1,2
14115 Id : 2855, {_}: right_division ?3782 (left_inverse ?3781) =>= multiply ?3782 ?3781 [3781, 3782] by Demod 2854 with 5 at 3
14116 Id : 1378, {_}: right_division (left_division ?1827 ?1828) ?1828 =>= left_inverse ?1827 [1828, 1827] by Super 7 with 1164 at 1,2
14117 Id : 28, {_}: left_division (right_division ?62 ?63) ?62 =>= ?63 [63, 62] by Super 5 with 6 at 2,2
14118 Id : 1384, {_}: right_division ?1844 ?1845 =<= left_inverse (right_division ?1845 ?1844) [1845, 1844] by Super 1378 with 28 at 1,2
14119 Id : 3643, {_}: multiply (multiply ?4879 ?4880) ?4881 =<= multiply ?4880 (multiply (left_division ?4880 ?4879) (multiply ?4880 ?4881)) [4881, 4880, 4879] by Super 56 with 4 at 1,1,2
14120 Id : 3648, {_}: multiply (multiply ?4897 ?4898) (left_division ?4898 ?4899) =>= multiply ?4898 (multiply (left_division ?4898 ?4897) ?4899) [4899, 4898, 4897] by Super 3643 with 4 at 2,2,3
14121 Id : 2922, {_}: right_division (left_inverse ?3910) ?3911 =>= left_inverse (multiply ?3911 ?3910) [3911, 3910] by Super 1384 with 2855 at 1,3
14122 Id : 3008, {_}: left_inverse (multiply (left_inverse ?4021) ?4022) =>= multiply (left_inverse ?4022) ?4021 [4022, 4021] by Super 2855 with 2922 at 2
14123 Id : 3027, {_}: left_inverse (left_division ?4021 ?4022) =<= multiply (left_inverse ?4022) ?4021 [4022, 4021] by Demod 3008 with 1164 at 1,2
14124 Id : 3028, {_}: left_inverse (left_division ?4021 ?4022) =>= left_division ?4022 ?4021 [4022, 4021] by Demod 3027 with 1164 at 3
14125 Id : 3191, {_}: right_division ?4224 (left_division ?4225 ?4226) =<= multiply ?4224 (left_division ?4226 ?4225) [4226, 4225, 4224] by Super 2855 with 3028 at 2,2
14126 Id : 8019, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =<= multiply ?4898 (multiply (left_division ?4898 ?4897) ?4899) [4899, 4898, 4897] by Demod 3648 with 3191 at 2
14127 Id : 3187, {_}: left_division (left_division ?4210 ?4211) ?4212 =<= multiply (left_division ?4211 ?4210) ?4212 [4212, 4211, 4210] by Super 1164 with 3028 at 1,3
14128 Id : 8020, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =<= multiply ?4898 (left_division (left_division ?4897 ?4898) ?4899) [4899, 4898, 4897] by Demod 8019 with 3187 at 2,3
14129 Id : 8021, {_}: right_division (multiply ?4897 ?4898) (left_division ?4899 ?4898) =>= right_division ?4898 (left_division ?4899 (left_division ?4897 ?4898)) [4899, 4898, 4897] by Demod 8020 with 3191 at 3
14130 Id : 8034, {_}: right_division (left_division ?9766 ?9767) (multiply ?9768 ?9767) =<= left_inverse (right_division ?9767 (left_division ?9766 (left_division ?9768 ?9767))) [9768, 9767, 9766] by Super 1384 with 8021 at 1,3
14131 Id : 8099, {_}: right_division (left_division ?9766 ?9767) (multiply ?9768 ?9767) =<= right_division (left_division ?9766 (left_division ?9768 ?9767)) ?9767 [9768, 9767, 9766] by Demod 8034 with 1384 at 3
14132 Id : 23672, {_}: right_division (left_division ?25246 (left_inverse ?25247)) (multiply ?25248 (left_inverse ?25247)) =>= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25247, 25246] by Super 2855 with 8099 at 2
14133 Id : 2932, {_}: right_division ?3937 (left_inverse ?3938) =>= multiply ?3937 ?3938 [3938, 3937] by Demod 2854 with 5 at 3
14134 Id : 46, {_}: left_division (left_inverse ?101) identity =>= ?101 [101] by Super 5 with 9 at 2,2
14135 Id : 40, {_}: left_division ?91 identity =>= right_inverse ?91 [91] by Super 5 with 8 at 2,2
14136 Id : 426, {_}: right_inverse (left_inverse ?101) =>= ?101 [101] by Demod 46 with 40 at 2
14137 Id : 860, {_}: left_inverse (left_inverse ?101) =>= ?101 [101] by Demod 426 with 843 at 2
14138 Id : 2936, {_}: right_division ?3949 ?3950 =<= multiply ?3949 (left_inverse ?3950) [3950, 3949] by Super 2932 with 860 at 2,2
14139 Id : 3077, {_}: left_division ?4125 (left_inverse ?4126) =>= right_division (left_inverse ?4125) ?4126 [4126, 4125] by Super 1164 with 2936 at 3
14140 Id : 3115, {_}: left_division ?4125 (left_inverse ?4126) =>= left_inverse (multiply ?4126 ?4125) [4126, 4125] by Demod 3077 with 2922 at 3
14141 Id : 23819, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (multiply ?25248 (left_inverse ?25247)) =>= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25246, 25247] by Demod 23672 with 3115 at 1,2
14142 Id : 23820, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (right_division ?25248 ?25247) =<= multiply (left_division ?25246 (left_division ?25248 (left_inverse ?25247))) ?25247 [25248, 25246, 25247] by Demod 23819 with 2936 at 2,2
14143 Id : 23821, {_}: right_division (left_inverse (multiply ?25247 ?25246)) (right_division ?25248 ?25247) =<= left_division (left_division (left_division ?25248 (left_inverse ?25247)) ?25246) ?25247 [25248, 25246, 25247] by Demod 23820 with 3187 at 3
14144 Id : 23822, {_}: left_inverse (multiply (right_division ?25248 ?25247) (multiply ?25247 ?25246)) =<= left_division (left_division (left_division ?25248 (left_inverse ?25247)) ?25246) ?25247 [25246, 25247, 25248] by Demod 23821 with 2922 at 2
14145 Id : 23823, {_}: left_inverse (multiply (right_division ?25248 ?25247) (multiply ?25247 ?25246)) =<= left_division (left_division (left_inverse (multiply ?25247 ?25248)) ?25246) ?25247 [25246, 25247, 25248] by Demod 23822 with 3115 at 1,1,3
14146 Id : 1167, {_}: multiply ?1556 (multiply (left_inverse ?1556) ?1557) =>= ?1557 [1557, 1556] by Demod 1030 with 4 at 2,2,2
14147 Id : 1177, {_}: multiply ?1584 ?1585 =<= left_division (left_inverse ?1584) ?1585 [1585, 1584] by Super 1167 with 4 at 2,2
14148 Id : 1414, {_}: multiply (right_division ?1873 ?1874) ?1875 =>= left_division (right_division ?1874 ?1873) ?1875 [1875, 1874, 1873] by Super 1177 with 1384 at 1,3
14149 Id : 23824, {_}: left_inverse (left_division (right_division ?25247 ?25248) (multiply ?25247 ?25246)) =<= left_division (left_division (left_inverse (multiply ?25247 ?25248)) ?25246) ?25247 [25246, 25248, 25247] by Demod 23823 with 1414 at 1,2
14150 Id : 23825, {_}: left_inverse (left_division (right_division ?25247 ?25248) (multiply ?25247 ?25246)) =>= left_division (multiply (multiply ?25247 ?25248) ?25246) ?25247 [25246, 25248, 25247] by Demod 23824 with 1177 at 1,3
14151 Id : 37248, {_}: left_division (multiply ?37773 ?37774) (right_division ?37773 ?37775) =<= left_division (multiply (multiply ?37773 ?37775) ?37774) ?37773 [37775, 37774, 37773] by Demod 23825 with 3028 at 2
14152 Id : 37265, {_}: left_division (multiply ?37844 ?37845) (right_division ?37844 (left_inverse ?37846)) =>= left_division (multiply (right_division ?37844 ?37846) ?37845) ?37844 [37846, 37845, 37844] by Super 37248 with 2936 at 1,1,3
14153 Id : 37472, {_}: left_division (multiply ?37844 ?37845) (multiply ?37844 ?37846) =<= left_division (multiply (right_division ?37844 ?37846) ?37845) ?37844 [37846, 37845, 37844] by Demod 37265 with 2855 at 2,2
14154 Id : 37473, {_}: left_division (multiply ?37844 ?37845) (multiply ?37844 ?37846) =<= left_division (left_division (right_division ?37846 ?37844) ?37845) ?37844 [37846, 37845, 37844] by Demod 37472 with 1414 at 1,3
14155 Id : 8041, {_}: right_division (multiply ?9794 ?9795) (left_division ?9796 ?9795) =>= right_division ?9795 (left_division ?9796 (left_division ?9794 ?9795)) [9796, 9795, 9794] by Demod 8020 with 3191 at 3
14156 Id : 8054, {_}: right_division (multiply ?9845 (left_inverse ?9846)) (left_inverse (multiply ?9846 ?9847)) =>= right_division (left_inverse ?9846) (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) [9847, 9846, 9845] by Super 8041 with 3115 at 2,2
14157 Id : 8126, {_}: multiply (multiply ?9845 (left_inverse ?9846)) (multiply ?9846 ?9847) =<= right_division (left_inverse ?9846) (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) [9847, 9846, 9845] by Demod 8054 with 2855 at 2
14158 Id : 8127, {_}: multiply (multiply ?9845 (left_inverse ?9846)) (multiply ?9846 ?9847) =<= left_inverse (multiply (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) ?9846) [9847, 9846, 9845] by Demod 8126 with 2922 at 3
14159 Id : 8128, {_}: multiply (right_division ?9845 ?9846) (multiply ?9846 ?9847) =<= left_inverse (multiply (left_division ?9847 (left_division ?9845 (left_inverse ?9846))) ?9846) [9847, 9846, 9845] by Demod 8127 with 2936 at 1,2
14160 Id : 8129, {_}: multiply (right_division ?9845 ?9846) (multiply ?9846 ?9847) =<= left_inverse (left_division (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) ?9846) [9847, 9846, 9845] by Demod 8128 with 3187 at 1,3
14161 Id : 8130, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_inverse (left_division (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) ?9846) [9847, 9845, 9846] by Demod 8129 with 1414 at 2
14162 Id : 8131, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_division ?9846 (left_division (left_division ?9845 (left_inverse ?9846)) ?9847) [9847, 9845, 9846] by Demod 8130 with 3028 at 3
14163 Id : 8132, {_}: left_division (right_division ?9846 ?9845) (multiply ?9846 ?9847) =<= left_division ?9846 (left_division (left_inverse (multiply ?9846 ?9845)) ?9847) [9847, 9845, 9846] by Demod 8131 with 3115 at 1,2,3
14164 Id : 24031, {_}: left_division (right_division ?25824 ?25825) (multiply ?25824 ?25826) =>= left_division ?25824 (multiply (multiply ?25824 ?25825) ?25826) [25826, 25825, 25824] by Demod 8132 with 1177 at 2,3
14165 Id : 24068, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =<= left_division ?25977 (multiply (multiply ?25977 (left_inverse ?25978)) ?25979) [25979, 25978, 25977] by Super 24031 with 2855 at 1,2
14166 Id : 24287, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =>= left_division ?25977 (multiply (right_division ?25977 ?25978) ?25979) [25979, 25978, 25977] by Demod 24068 with 2936 at 1,2,3
14167 Id : 24288, {_}: left_division (multiply ?25977 ?25978) (multiply ?25977 ?25979) =>= left_division ?25977 (left_division (right_division ?25978 ?25977) ?25979) [25979, 25978, 25977] by Demod 24287 with 1414 at 2,3
14168 Id : 47819, {_}: left_division ?49234 (left_division (right_division ?49235 ?49234) ?49236) =<= left_division (left_division (right_division ?49236 ?49234) ?49235) ?49234 [49236, 49235, 49234] by Demod 37473 with 24288 at 2
14169 Id : 1246, {_}: multiply (left_inverse ?1641) (multiply ?1642 (left_inverse ?1641)) =>= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Super 70 with 1164 at 1,3
14170 Id : 1310, {_}: left_division ?1641 (multiply ?1642 (left_inverse ?1641)) =<= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Demod 1246 with 1164 at 2
14171 Id : 3056, {_}: left_division ?1641 (right_division ?1642 ?1641) =<= multiply (left_division ?1641 ?1642) (left_inverse ?1641) [1642, 1641] by Demod 1310 with 2936 at 2,2
14172 Id : 3057, {_}: left_division ?1641 (right_division ?1642 ?1641) =>= right_division (left_division ?1641 ?1642) ?1641 [1642, 1641] by Demod 3056 with 2936 at 3
14173 Id : 47887, {_}: left_division ?49524 (left_division (right_division (right_division ?49525 (right_division ?49526 ?49524)) ?49524) ?49526) =<= left_division (right_division (left_division (right_division ?49526 ?49524) ?49525) (right_division ?49526 ?49524)) ?49524 [49526, 49525, 49524] by Super 47819 with 3057 at 1,3
14174 Id : 59, {_}: multiply (multiply ?136 ?137) ?138 =<= multiply ?137 (multiply (left_division ?137 ?136) (multiply ?137 ?138)) [138, 137, 136] by Super 56 with 4 at 1,1,2
14175 Id : 3632, {_}: left_division ?4830 (multiply (multiply ?4831 ?4830) ?4832) =<= multiply (left_division ?4830 ?4831) (multiply ?4830 ?4832) [4832, 4831, 4830] by Super 5 with 59 at 2,2
14176 Id : 7833, {_}: left_division ?4830 (multiply (multiply ?4831 ?4830) ?4832) =<= left_division (left_division ?4831 ?4830) (multiply ?4830 ?4832) [4832, 4831, 4830] by Demod 3632 with 3187 at 3
14177 Id : 7841, {_}: left_inverse (left_division ?9488 (multiply (multiply ?9489 ?9488) ?9490)) =>= left_division (multiply ?9488 ?9490) (left_division ?9489 ?9488) [9490, 9489, 9488] by Super 3028 with 7833 at 1,2
14178 Id : 7910, {_}: left_division (multiply (multiply ?9489 ?9488) ?9490) ?9488 =>= left_division (multiply ?9488 ?9490) (left_division ?9489 ?9488) [9490, 9488, 9489] by Demod 7841 with 3028 at 2
14179 Id : 22545, {_}: left_division (multiply (left_inverse ?23598) ?23599) (left_division ?23600 (left_inverse ?23598)) =>= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Super 3115 with 7910 at 2
14180 Id : 22628, {_}: left_division (left_division ?23598 ?23599) (left_division ?23600 (left_inverse ?23598)) =<= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Demod 22545 with 1164 at 1,2
14181 Id : 22629, {_}: left_division (left_division ?23598 ?23599) (left_inverse (multiply ?23598 ?23600)) =<= left_inverse (multiply ?23598 (multiply (multiply ?23600 (left_inverse ?23598)) ?23599)) [23600, 23599, 23598] by Demod 22628 with 3115 at 2,2
14182 Id : 22630, {_}: left_division (left_division ?23598 ?23599) (left_inverse (multiply ?23598 ?23600)) =>= left_inverse (multiply ?23598 (multiply (right_division ?23600 ?23598) ?23599)) [23600, 23599, 23598] by Demod 22629 with 2936 at 1,2,1,3
14183 Id : 22631, {_}: left_inverse (multiply (multiply ?23598 ?23600) (left_division ?23598 ?23599)) =>= left_inverse (multiply ?23598 (multiply (right_division ?23600 ?23598) ?23599)) [23599, 23600, 23598] by Demod 22630 with 3115 at 2
14184 Id : 22632, {_}: left_inverse (multiply (multiply ?23598 ?23600) (left_division ?23598 ?23599)) =>= left_inverse (multiply ?23598 (left_division (right_division ?23598 ?23600) ?23599)) [23599, 23600, 23598] by Demod 22631 with 1414 at 2,1,3
14185 Id : 22633, {_}: left_inverse (right_division (multiply ?23598 ?23600) (left_division ?23599 ?23598)) =<= left_inverse (multiply ?23598 (left_division (right_division ?23598 ?23600) ?23599)) [23599, 23600, 23598] by Demod 22632 with 3191 at 1,2
14186 Id : 22634, {_}: left_inverse (right_division (multiply ?23598 ?23600) (left_division ?23599 ?23598)) =>= left_inverse (right_division ?23598 (left_division ?23599 (right_division ?23598 ?23600))) [23599, 23600, 23598] by Demod 22633 with 3191 at 1,3
14187 Id : 22635, {_}: right_division (left_division ?23599 ?23598) (multiply ?23598 ?23600) =<= left_inverse (right_division ?23598 (left_division ?23599 (right_division ?23598 ?23600))) [23600, 23598, 23599] by Demod 22634 with 1384 at 2
14188 Id : 33282, {_}: right_division (left_division ?33402 ?33403) (multiply ?33403 ?33404) =<= right_division (left_division ?33402 (right_division ?33403 ?33404)) ?33403 [33404, 33403, 33402] by Demod 22635 with 1384 at 3
14189 Id : 33363, {_}: right_division (left_division (left_inverse ?33737) ?33738) (multiply ?33738 ?33739) =>= right_division (multiply ?33737 (right_division ?33738 ?33739)) ?33738 [33739, 33738, 33737] by Super 33282 with 1177 at 1,3
14190 Id : 33649, {_}: right_division (multiply ?33737 ?33738) (multiply ?33738 ?33739) =<= right_division (multiply ?33737 (right_division ?33738 ?33739)) ?33738 [33739, 33738, 33737] by Demod 33363 with 1177 at 1,2
14191 Id : 2939, {_}: right_division ?3957 (right_division ?3958 ?3959) =<= multiply ?3957 (right_division ?3959 ?3958) [3959, 3958, 3957] by Super 2932 with 1384 at 2,2
14192 Id : 33650, {_}: right_division (multiply ?33737 ?33738) (multiply ?33738 ?33739) =<= right_division (right_division ?33737 (right_division ?33739 ?33738)) ?33738 [33739, 33738, 33737] by Demod 33649 with 2939 at 1,3
14193 Id : 48257, {_}: left_division ?49524 (left_division (right_division (multiply ?49525 ?49524) (multiply ?49524 ?49526)) ?49526) =<= left_division (right_division (left_division (right_division ?49526 ?49524) ?49525) (right_division ?49526 ?49524)) ?49524 [49526, 49525, 49524] by Demod 47887 with 33650 at 1,2,2
14194 Id : 640, {_}: multiply (multiply ?22 (multiply ?23 ?22)) ?24 =>= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by Demod 10 with 70 at 1,2
14195 Id : 1251, {_}: multiply (multiply ?1655 (left_division ?1656 ?1655)) ?1657 =<= multiply ?1655 (multiply (left_inverse ?1656) (multiply ?1655 ?1657)) [1657, 1656, 1655] by Super 640 with 1164 at 2,1,2
14196 Id : 1306, {_}: multiply (multiply ?1655 (left_division ?1656 ?1655)) ?1657 =>= multiply ?1655 (left_division ?1656 (multiply ?1655 ?1657)) [1657, 1656, 1655] by Demod 1251 with 1164 at 2,3
14197 Id : 5008, {_}: multiply (right_division ?1655 (left_division ?1655 ?1656)) ?1657 =>= multiply ?1655 (left_division ?1656 (multiply ?1655 ?1657)) [1657, 1656, 1655] by Demod 1306 with 3191 at 1,2
14198 Id : 5009, {_}: multiply (right_division ?1655 (left_division ?1655 ?1656)) ?1657 =>= right_division ?1655 (left_division (multiply ?1655 ?1657) ?1656) [1657, 1656, 1655] by Demod 5008 with 3191 at 3
14199 Id : 5010, {_}: left_division (right_division (left_division ?1655 ?1656) ?1655) ?1657 =>= right_division ?1655 (left_division (multiply ?1655 ?1657) ?1656) [1657, 1656, 1655] by Demod 5009 with 1414 at 2
14200 Id : 48258, {_}: left_division ?49524 (left_division (right_division (multiply ?49525 ?49524) (multiply ?49524 ?49526)) ?49526) =>= right_division (right_division ?49526 ?49524) (left_division (multiply (right_division ?49526 ?49524) ?49524) ?49525) [49526, 49525, 49524] by Demod 48257 with 5010 at 3
14201 Id : 3070, {_}: multiply (multiply (left_inverse ?4103) (right_division ?4104 ?4103)) ?4105 =<= multiply (left_inverse ?4103) (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Super 640 with 2936 at 2,1,2
14202 Id : 3126, {_}: multiply (left_division ?4103 (right_division ?4104 ?4103)) ?4105 =<= multiply (left_inverse ?4103) (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3070 with 1164 at 1,2
14203 Id : 3127, {_}: multiply (left_division ?4103 (right_division ?4104 ?4103)) ?4105 =<= left_division ?4103 (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3126 with 1164 at 3
14204 Id : 3128, {_}: multiply (right_division (left_division ?4103 ?4104) ?4103) ?4105 =<= left_division ?4103 (multiply ?4104 (multiply (left_inverse ?4103) ?4105)) [4105, 4104, 4103] by Demod 3127 with 3057 at 1,2
14205 Id : 3129, {_}: multiply (right_division (left_division ?4103 ?4104) ?4103) ?4105 =>= left_division ?4103 (multiply ?4104 (left_division ?4103 ?4105)) [4105, 4104, 4103] by Demod 3128 with 1164 at 2,2,3
14206 Id : 3130, {_}: left_division (right_division ?4103 (left_division ?4103 ?4104)) ?4105 =>= left_division ?4103 (multiply ?4104 (left_division ?4103 ?4105)) [4105, 4104, 4103] by Demod 3129 with 1414 at 2
14207 Id : 7047, {_}: left_division (right_division ?4103 (left_division ?4103 ?4104)) ?4105 =>= left_division ?4103 (right_division ?4104 (left_division ?4105 ?4103)) [4105, 4104, 4103] by Demod 3130 with 3191 at 2,3
14208 Id : 7063, {_}: left_division ?8435 (right_division ?8436 (left_division (left_inverse ?8437) ?8435)) =>= left_inverse (multiply ?8437 (right_division ?8435 (left_division ?8435 ?8436))) [8437, 8436, 8435] by Super 3115 with 7047 at 2
14209 Id : 7165, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =<= left_inverse (multiply ?8437 (right_division ?8435 (left_division ?8435 ?8436))) [8437, 8436, 8435] by Demod 7063 with 1177 at 2,2,2
14210 Id : 7166, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =<= left_inverse (right_division ?8437 (right_division (left_division ?8435 ?8436) ?8435)) [8437, 8436, 8435] by Demod 7165 with 2939 at 1,3
14211 Id : 7167, {_}: left_division ?8435 (right_division ?8436 (multiply ?8437 ?8435)) =>= right_division (right_division (left_division ?8435 ?8436) ?8435) ?8437 [8437, 8436, 8435] by Demod 7166 with 1384 at 3
14212 Id : 21426, {_}: left_inverse (right_division (right_division (left_division ?22100 ?22101) ?22100) ?22102) =>= left_division (right_division ?22101 (multiply ?22102 ?22100)) ?22100 [22102, 22101, 22100] by Super 3028 with 7167 at 1,2
14213 Id : 21547, {_}: right_division ?22102 (right_division (left_division ?22100 ?22101) ?22100) =<= left_division (right_division ?22101 (multiply ?22102 ?22100)) ?22100 [22101, 22100, 22102] by Demod 21426 with 1384 at 2
14214 Id : 48259, {_}: left_division ?49524 (right_division ?49524 (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526)) =>= right_division (right_division ?49526 ?49524) (left_division (multiply (right_division ?49526 ?49524) ?49524) ?49525) [49525, 49526, 49524] by Demod 48258 with 21547 at 2,2
14215 Id : 48260, {_}: left_division ?49524 (right_division ?49524 (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526)) =>= right_division (right_division ?49526 ?49524) (left_division (left_division (right_division ?49524 ?49526) ?49524) ?49525) [49525, 49526, 49524] by Demod 48259 with 1414 at 1,2,3
14216 Id : 3073, {_}: left_division ?4114 (right_division ?4114 ?4115) =>= left_inverse ?4115 [4115, 4114] by Super 5 with 2936 at 2,2
14217 Id : 48261, {_}: left_inverse (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526) =<= right_division (right_division ?49526 ?49524) (left_division (left_division (right_division ?49524 ?49526) ?49524) ?49525) [49524, 49525, 49526] by Demod 48260 with 3073 at 2
14218 Id : 48262, {_}: left_inverse (right_division (left_division ?49526 (multiply ?49525 ?49524)) ?49526) =>= right_division (right_division ?49526 ?49524) (left_division ?49526 ?49525) [49524, 49525, 49526] by Demod 48261 with 28 at 1,2,3
14219 Id : 48263, {_}: right_division ?49526 (left_division ?49526 (multiply ?49525 ?49524)) =<= right_division (right_division ?49526 ?49524) (left_division ?49526 ?49525) [49524, 49525, 49526] by Demod 48262 with 1384 at 2
14220 Id : 52424, {_}: right_division (left_division ?54688 ?54689) (right_division ?54688 ?54690) =<= left_inverse (right_division ?54688 (left_division ?54688 (multiply ?54689 ?54690))) [54690, 54689, 54688] by Super 1384 with 48263 at 1,3
14221 Id : 52654, {_}: right_division (left_division ?54688 ?54689) (right_division ?54688 ?54690) =<= right_division (left_division ?54688 (multiply ?54689 ?54690)) ?54688 [54690, 54689, 54688] by Demod 52424 with 1384 at 3
14222 Id : 54963, {_}: right_division (left_division (left_inverse ?57654) ?57655) (right_division (left_inverse ?57654) ?57656) =>= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Super 2855 with 52654 at 2
14223 Id : 55156, {_}: right_division (multiply ?57654 ?57655) (right_division (left_inverse ?57654) ?57656) =<= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 54963 with 1177 at 1,2
14224 Id : 55157, {_}: right_division (multiply ?57654 ?57655) (left_inverse (multiply ?57656 ?57654)) =<= multiply (left_division (left_inverse ?57654) (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55156 with 2922 at 2,2
14225 Id : 55158, {_}: right_division (multiply ?57654 ?57655) (left_inverse (multiply ?57656 ?57654)) =<= left_division (left_division (multiply ?57655 ?57656) (left_inverse ?57654)) ?57654 [57656, 57655, 57654] by Demod 55157 with 3187 at 3
14226 Id : 55159, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= left_division (left_division (multiply ?57655 ?57656) (left_inverse ?57654)) ?57654 [57656, 57655, 57654] by Demod 55158 with 2855 at 2
14227 Id : 55160, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= left_division (left_inverse (multiply ?57654 (multiply ?57655 ?57656))) ?57654 [57656, 57655, 57654] by Demod 55159 with 3115 at 1,3
14228 Id : 55161, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =<= multiply (multiply ?57654 (multiply ?57655 ?57656)) ?57654 [57656, 57655, 57654] by Demod 55160 with 1177 at 3
14229 Id : 55162, {_}: multiply (multiply ?57654 ?57655) (multiply ?57656 ?57654) =>= multiply ?57654 (multiply (multiply ?57655 ?57656) ?57654) [57656, 57655, 57654] by Demod 55161 with 70 at 3
14230 Id : 56911, {_}: multiply x (multiply (multiply y z) x) =?= multiply x (multiply (multiply y z) x) [] by Demod 1 with 55162 at 3
14231 Id : 1, {_}: multiply x (multiply (multiply y z) x) =<= multiply (multiply x y) (multiply z x) [] by prove_moufang4
14232 % SZS output end CNFRefutation for GRP205-1.p
14233 26205: solved GRP205-1.p in 14.680917 using kbo
14234 26205: status Unsatisfiable for GRP205-1.p
14235 NO CLASH, using fixed ground order
14237 26244: Id : 2, {_}:
14242 (multiply (multiply ?4 (inverse ?4))
14243 (inverse (multiply ?2 ?3))) ?2)))
14246 [4, 3, 2] by single_non_axiom ?2 ?3 ?4
14248 26244: Id : 1, {_}:
14253 (multiply (multiply z (inverse z)) (inverse (multiply u y)))
14257 [] by try_prove_this_axiom
14261 26244: z 2 0 2 1,1,1,2,1,2,2
14262 26244: u 2 0 2 1,1,2,1,2,1,2,2
14263 26244: y 2 0 2 1,1,2,2
14265 26244: inverse 6 1 3 0,2,2
14266 26244: multiply 12 2 6 0,2
14267 NO CLASH, using fixed ground order
14269 26245: Id : 2, {_}:
14274 (multiply (multiply ?4 (inverse ?4))
14275 (inverse (multiply ?2 ?3))) ?2)))
14278 [4, 3, 2] by single_non_axiom ?2 ?3 ?4
14280 26245: Id : 1, {_}:
14285 (multiply (multiply z (inverse z)) (inverse (multiply u y)))
14289 [] by try_prove_this_axiom
14293 26245: z 2 0 2 1,1,1,2,1,2,2
14294 26245: u 2 0 2 1,1,2,1,2,1,2,2
14295 26245: y 2 0 2 1,1,2,2
14297 26245: inverse 6 1 3 0,2,2
14298 26245: multiply 12 2 6 0,2
14299 NO CLASH, using fixed ground order
14301 26246: Id : 2, {_}:
14306 (multiply (multiply ?4 (inverse ?4))
14307 (inverse (multiply ?2 ?3))) ?2)))
14310 [4, 3, 2] by single_non_axiom ?2 ?3 ?4
14312 26246: Id : 1, {_}:
14317 (multiply (multiply z (inverse z)) (inverse (multiply u y)))
14321 [] by try_prove_this_axiom
14325 26246: z 2 0 2 1,1,1,2,1,2,2
14326 26246: u 2 0 2 1,1,2,1,2,1,2,2
14327 26246: y 2 0 2 1,1,2,2
14329 26246: inverse 6 1 3 0,2,2
14330 26246: multiply 12 2 6 0,2
14331 % SZS status Timeout for GRP207-1.p
14332 Fatal error: exception Assert_failure("matitaprover.ml", 269, 46)
14333 NO CLASH, using fixed ground order
14335 26289: Id : 2, {_}:
14341 (multiply (inverse ?3)
14343 (multiply ?4 (inverse (multiply (inverse ?4) ?4))))))))
14347 [4, 3, 2] by single_axiom ?2 ?3 ?4
14349 26289: Id : 1, {_}:
14350 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
14351 [] by prove_these_axioms_3
14355 26289: a3 2 0 2 1,1,2
14356 26289: b3 2 0 2 2,1,2
14357 26289: c3 2 0 2 2,2
14358 26289: inverse 7 1 0
14359 26289: multiply 10 2 4 0,2
14360 NO CLASH, using fixed ground order
14362 26290: Id : 2, {_}:
14368 (multiply (inverse ?3)
14370 (multiply ?4 (inverse (multiply (inverse ?4) ?4))))))))
14374 [4, 3, 2] by single_axiom ?2 ?3 ?4
14376 26290: Id : 1, {_}:
14377 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
14378 [] by prove_these_axioms_3
14382 26290: a3 2 0 2 1,1,2
14383 26290: b3 2 0 2 2,1,2
14384 26290: c3 2 0 2 2,2
14385 26290: inverse 7 1 0
14386 26290: multiply 10 2 4 0,2
14387 NO CLASH, using fixed ground order
14389 26291: Id : 2, {_}:
14395 (multiply (inverse ?3)
14397 (multiply ?4 (inverse (multiply (inverse ?4) ?4))))))))
14401 [4, 3, 2] by single_axiom ?2 ?3 ?4
14403 26291: Id : 1, {_}:
14404 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
14405 [] by prove_these_axioms_3
14409 26291: a3 2 0 2 1,1,2
14410 26291: b3 2 0 2 2,1,2
14411 26291: c3 2 0 2 2,2
14412 26291: inverse 7 1 0
14413 26291: multiply 10 2 4 0,2
14414 % SZS status Timeout for GRP420-1.p
14415 NO CLASH, using fixed ground order
14417 26320: Id : 2, {_}:
14419 (divide (divide ?2 ?2)
14420 (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4))))
14424 [4, 3, 2] by single_axiom ?2 ?3 ?4
14425 26320: Id : 3, {_}:
14426 multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7)
14427 [8, 7, 6] by multiply ?6 ?7 ?8
14428 26320: Id : 4, {_}:
14429 inverse ?10 =<= divide (divide ?11 ?11) ?10
14430 [11, 10] by inverse ?10 ?11
14432 26320: Id : 1, {_}:
14433 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
14434 [] by prove_these_axioms_3
14438 26320: a3 2 0 2 1,1,2
14439 26320: b3 2 0 2 2,1,2
14440 26320: c3 2 0 2 2,2
14441 26320: inverse 1 1 0
14442 26320: multiply 5 2 4 0,2
14443 26320: divide 13 2 0
14444 NO CLASH, using fixed ground order
14446 26321: Id : 2, {_}:
14448 (divide (divide ?2 ?2)
14449 (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4))))
14453 [4, 3, 2] by single_axiom ?2 ?3 ?4
14454 26321: Id : 3, {_}:
14455 multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7)
14456 [8, 7, 6] by multiply ?6 ?7 ?8
14457 26321: Id : 4, {_}:
14458 inverse ?10 =<= divide (divide ?11 ?11) ?10
14459 [11, 10] by inverse ?10 ?11
14461 26321: Id : 1, {_}:
14462 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
14463 [] by prove_these_axioms_3
14467 26321: a3 2 0 2 1,1,2
14468 26321: b3 2 0 2 2,1,2
14469 26321: c3 2 0 2 2,2
14470 26321: inverse 1 1 0
14471 26321: multiply 5 2 4 0,2
14472 26321: divide 13 2 0
14473 NO CLASH, using fixed ground order
14475 26322: Id : 2, {_}:
14477 (divide (divide ?2 ?2)
14478 (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4))))
14482 [4, 3, 2] by single_axiom ?2 ?3 ?4
14483 26322: Id : 3, {_}:
14484 multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7)
14485 [8, 7, 6] by multiply ?6 ?7 ?8
14486 26322: Id : 4, {_}:
14487 inverse ?10 =<= divide (divide ?11 ?11) ?10
14488 [11, 10] by inverse ?10 ?11
14490 26322: Id : 1, {_}:
14491 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
14492 [] by prove_these_axioms_3
14496 26322: a3 2 0 2 1,1,2
14497 26322: b3 2 0 2 2,1,2
14498 26322: c3 2 0 2 2,2
14499 26322: inverse 1 1 0
14500 26322: multiply 5 2 4 0,2
14501 26322: divide 13 2 0
14504 Found proof, 2.679419s
14505 % SZS status Unsatisfiable for GRP453-1.p
14506 % SZS output start CNFRefutation for GRP453-1.p
14507 Id : 35, {_}: inverse ?90 =<= divide (divide ?91 ?91) ?90 [91, 90] by inverse ?90 ?91
14508 Id : 2, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4
14509 Id : 5, {_}: divide (divide (divide ?13 ?13) (divide ?13 (divide ?14 (divide (divide (divide ?13 ?13) ?13) ?15)))) ?15 =>= ?14 [15, 14, 13] by single_axiom ?13 ?14 ?15
14510 Id : 4, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11
14511 Id : 3, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8
14512 Id : 29, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 3 with 4 at 2,3
14513 Id : 6, {_}: divide (divide (divide ?17 ?17) (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Super 5 with 2 at 2,2,1,2
14514 Id : 142, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= divide (divide ?20 ?20) (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 6 with 4 at 1,2
14515 Id : 143, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (divide (divide ?20 ?20) ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 142 with 4 at 3
14516 Id : 144, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (divide (divide ?17 ?17) ?17) ?19)))) [20, 19, 18, 17] by Demod 143 with 4 at 1,2,2,1,3
14517 Id : 145, {_}: divide (inverse (divide ?17 ?18)) ?19 =<= inverse (divide ?20 (divide ?18 (divide (inverse ?20) (divide (inverse ?17) ?19)))) [20, 19, 18, 17] by Demod 144 with 4 at 1,2,2,2,1,3
14518 Id : 36, {_}: inverse ?93 =<= divide (inverse (divide ?94 ?94)) ?93 [94, 93] by Super 35 with 4 at 1,3
14519 Id : 226, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (divide (divide ?529 ?529) (divide ?527 (inverse (divide (inverse ?526) ?528)))) [529, 528, 527, 526] by Super 145 with 36 at 2,2,1,3
14520 Id : 249, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (inverse (divide ?527 (inverse (divide (inverse ?526) ?528)))) [528, 527, 526] by Demod 226 with 4 at 1,3
14521 Id : 250, {_}: divide (inverse (divide ?526 ?527)) ?528 =<= inverse (inverse (multiply ?527 (divide (inverse ?526) ?528))) [528, 527, 526] by Demod 249 with 29 at 1,1,3
14522 Id : 13, {_}: divide (multiply (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50))) ?50 =>= ?49 [50, 49, 48] by Super 2 with 3 at 1,2
14523 Id : 32, {_}: multiply (divide ?79 ?79) ?80 =>= inverse (inverse ?80) [80, 79] by Super 29 with 4 at 3
14524 Id : 479, {_}: divide (inverse (inverse (divide ?49 (divide (divide (divide (divide ?48 ?48) (divide ?48 ?48)) (divide ?48 ?48)) ?50)))) ?50 =>= ?49 [50, 48, 49] by Demod 13 with 32 at 1,2
14525 Id : 480, {_}: divide (inverse (inverse (divide ?49 (divide (inverse (divide ?48 ?48)) ?50)))) ?50 =>= ?49 [50, 48, 49] by Demod 479 with 4 at 1,2,1,1,1,2
14526 Id : 481, {_}: divide (inverse (inverse (divide ?49 (inverse ?50)))) ?50 =>= ?49 [50, 49] by Demod 480 with 36 at 2,1,1,1,2
14527 Id : 482, {_}: divide (inverse (inverse (multiply ?49 ?50))) ?50 =>= ?49 [50, 49] by Demod 481 with 29 at 1,1,1,2
14528 Id : 888, {_}: divide (inverse (divide ?1873 ?1874)) ?1875 =<= inverse (inverse (multiply ?1874 (divide (inverse ?1873) ?1875))) [1875, 1874, 1873] by Demod 249 with 29 at 1,1,3
14529 Id : 903, {_}: divide (inverse (divide (divide ?1940 ?1940) ?1941)) ?1942 =>= inverse (inverse (multiply ?1941 (inverse ?1942))) [1942, 1941, 1940] by Super 888 with 36 at 2,1,1,3
14530 Id : 936, {_}: divide (inverse (inverse ?1941)) ?1942 =<= inverse (inverse (multiply ?1941 (inverse ?1942))) [1942, 1941] by Demod 903 with 4 at 1,1,2
14531 Id : 969, {_}: divide (inverse (inverse ?2088)) ?2089 =<= inverse (inverse (multiply ?2088 (inverse ?2089))) [2089, 2088] by Demod 903 with 4 at 1,1,2
14532 Id : 980, {_}: divide (inverse (inverse (divide ?2127 ?2127))) ?2128 =>= inverse (inverse (inverse (inverse (inverse ?2128)))) [2128, 2127] by Super 969 with 32 at 1,1,3
14533 Id : 223, {_}: inverse ?515 =<= divide (inverse (inverse (divide ?516 ?516))) ?515 [516, 515] by Super 4 with 36 at 1,3
14534 Id : 1009, {_}: inverse ?2128 =<= inverse (inverse (inverse (inverse (inverse ?2128)))) [2128] by Demod 980 with 223 at 2
14535 Id : 1026, {_}: multiply ?2199 (inverse (inverse (inverse (inverse ?2200)))) =>= divide ?2199 (inverse ?2200) [2200, 2199] by Super 29 with 1009 at 2,3
14536 Id : 1064, {_}: multiply ?2199 (inverse (inverse (inverse (inverse ?2200)))) =>= multiply ?2199 ?2200 [2200, 2199] by Demod 1026 with 29 at 3
14537 Id : 1096, {_}: divide (inverse (inverse ?2287)) (inverse (inverse (inverse ?2288))) =>= inverse (inverse (multiply ?2287 ?2288)) [2288, 2287] by Super 936 with 1064 at 1,1,3
14538 Id : 1169, {_}: multiply (inverse (inverse ?2287)) (inverse (inverse ?2288)) =>= inverse (inverse (multiply ?2287 ?2288)) [2288, 2287] by Demod 1096 with 29 at 2
14539 Id : 1211, {_}: divide (inverse (inverse (inverse (inverse ?2471)))) (inverse ?2472) =>= inverse (inverse (inverse (inverse (multiply ?2471 ?2472)))) [2472, 2471] by Super 936 with 1169 at 1,1,3
14540 Id : 1253, {_}: multiply (inverse (inverse (inverse (inverse ?2471)))) ?2472 =>= inverse (inverse (inverse (inverse (multiply ?2471 ?2472)))) [2472, 2471] by Demod 1211 with 29 at 2
14541 Id : 1506, {_}: divide (inverse (inverse (inverse (inverse (inverse (inverse (multiply ?3181 ?3182))))))) ?3182 =>= inverse (inverse (inverse (inverse ?3181))) [3182, 3181] by Super 482 with 1253 at 1,1,1,2
14542 Id : 1558, {_}: divide (inverse (inverse (multiply ?3181 ?3182))) ?3182 =>= inverse (inverse (inverse (inverse ?3181))) [3182, 3181] by Demod 1506 with 1009 at 1,2
14543 Id : 1559, {_}: ?3181 =<= inverse (inverse (inverse (inverse ?3181))) [3181] by Demod 1558 with 482 at 2
14544 Id : 1611, {_}: multiply ?3343 (inverse (inverse (inverse ?3344))) =>= divide ?3343 ?3344 [3344, 3343] by Super 29 with 1559 at 2,3
14545 Id : 1683, {_}: divide (inverse (inverse ?3483)) (inverse (inverse ?3484)) =>= inverse (inverse (divide ?3483 ?3484)) [3484, 3483] by Super 936 with 1611 at 1,1,3
14546 Id : 1717, {_}: multiply (inverse (inverse ?3483)) (inverse ?3484) =>= inverse (inverse (divide ?3483 ?3484)) [3484, 3483] by Demod 1683 with 29 at 2
14547 Id : 1782, {_}: divide (inverse (inverse (inverse (inverse (divide ?3605 ?3606))))) (inverse ?3606) =>= inverse (inverse ?3605) [3606, 3605] by Super 482 with 1717 at 1,1,1,2
14548 Id : 1824, {_}: multiply (inverse (inverse (inverse (inverse (divide ?3605 ?3606))))) ?3606 =>= inverse (inverse ?3605) [3606, 3605] by Demod 1782 with 29 at 2
14549 Id : 1825, {_}: multiply (divide ?3605 ?3606) ?3606 =>= inverse (inverse ?3605) [3606, 3605] by Demod 1824 with 1559 at 1,2
14550 Id : 1854, {_}: inverse (inverse ?3731) =<= divide (divide ?3731 (inverse (inverse (inverse ?3732)))) ?3732 [3732, 3731] by Super 1611 with 1825 at 2
14551 Id : 2675, {_}: inverse (inverse ?6008) =<= divide (multiply ?6008 (inverse (inverse ?6009))) ?6009 [6009, 6008] by Demod 1854 with 29 at 1,3
14552 Id : 224, {_}: multiply (inverse (inverse (divide ?518 ?518))) ?519 =>= inverse (inverse ?519) [519, 518] by Super 32 with 36 at 1,2
14553 Id : 2701, {_}: inverse (inverse (inverse (inverse (divide ?6099 ?6099)))) =?= divide (inverse (inverse (inverse (inverse ?6100)))) ?6100 [6100, 6099] by Super 2675 with 224 at 1,3
14554 Id : 2754, {_}: divide ?6099 ?6099 =?= divide (inverse (inverse (inverse (inverse ?6100)))) ?6100 [6100, 6099] by Demod 2701 with 1559 at 2
14555 Id : 2755, {_}: divide ?6099 ?6099 =?= divide ?6100 ?6100 [6100, 6099] by Demod 2754 with 1559 at 1,3
14556 Id : 2822, {_}: divide (inverse (divide ?6299 (divide (inverse ?6300) (divide (inverse ?6299) ?6301)))) ?6301 =?= inverse (divide ?6300 (divide ?6302 ?6302)) [6302, 6301, 6300, 6299] by Super 145 with 2755 at 2,1,3
14557 Id : 30, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 2 with 4 at 1,2
14558 Id : 31, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 30 with 4 at 1,2,2,1,1,2
14559 Id : 2899, {_}: inverse ?6300 =<= inverse (divide ?6300 (divide ?6302 ?6302)) [6302, 6300] by Demod 2822 with 31 at 2
14560 Id : 2957, {_}: divide ?6663 (divide ?6664 ?6664) =>= inverse (inverse (inverse (inverse ?6663))) [6664, 6663] by Super 1559 with 2899 at 1,1,1,3
14561 Id : 3011, {_}: divide ?6663 (divide ?6664 ?6664) =>= ?6663 [6664, 6663] by Demod 2957 with 1559 at 3
14562 Id : 3087, {_}: divide (inverse (divide ?6934 ?6935)) (divide ?6936 ?6936) =>= inverse (inverse (multiply ?6935 (inverse ?6934))) [6936, 6935, 6934] by Super 250 with 3011 at 2,1,1,3
14563 Id : 3149, {_}: inverse (divide ?6934 ?6935) =<= inverse (inverse (multiply ?6935 (inverse ?6934))) [6935, 6934] by Demod 3087 with 3011 at 2
14564 Id : 3445, {_}: inverse (divide ?7675 ?7676) =<= divide (inverse (inverse ?7676)) ?7675 [7676, 7675] by Demod 3149 with 936 at 3
14565 Id : 1622, {_}: ?3381 =<= inverse (inverse (inverse (inverse ?3381))) [3381] by Demod 1558 with 482 at 2
14566 Id : 1636, {_}: multiply ?3417 (inverse ?3418) =<= inverse (inverse (divide (inverse (inverse ?3417)) ?3418)) [3418, 3417] by Super 1622 with 936 at 1,1,3
14567 Id : 3150, {_}: inverse (divide ?6934 ?6935) =<= divide (inverse (inverse ?6935)) ?6934 [6935, 6934] by Demod 3149 with 936 at 3
14568 Id : 3402, {_}: multiply ?3417 (inverse ?3418) =<= inverse (inverse (inverse (divide ?3418 ?3417))) [3418, 3417] by Demod 1636 with 3150 at 1,1,3
14569 Id : 3466, {_}: inverse (divide ?7752 (inverse (divide ?7753 ?7754))) =>= divide (multiply ?7754 (inverse ?7753)) ?7752 [7754, 7753, 7752] by Super 3445 with 3402 at 1,3
14570 Id : 3559, {_}: inverse (multiply ?7752 (divide ?7753 ?7754)) =<= divide (multiply ?7754 (inverse ?7753)) ?7752 [7754, 7753, 7752] by Demod 3466 with 29 at 1,2
14571 Id : 229, {_}: inverse ?541 =<= divide (inverse (divide ?542 ?542)) ?541 [542, 541] by Super 35 with 4 at 1,3
14572 Id : 236, {_}: inverse ?562 =<= divide (inverse (inverse (inverse (divide ?563 ?563)))) ?562 [563, 562] by Super 229 with 36 at 1,1,3
14573 Id : 3400, {_}: inverse ?562 =<= inverse (divide ?562 (inverse (divide ?563 ?563))) [563, 562] by Demod 236 with 3150 at 3
14574 Id : 3405, {_}: inverse ?562 =<= inverse (multiply ?562 (divide ?563 ?563)) [563, 562] by Demod 3400 with 29 at 1,3
14575 Id : 3088, {_}: multiply ?6938 (divide ?6939 ?6939) =>= inverse (inverse ?6938) [6939, 6938] by Super 1825 with 3011 at 1,2
14576 Id : 3773, {_}: inverse ?562 =<= inverse (inverse (inverse ?562)) [562] by Demod 3405 with 3088 at 1,3
14577 Id : 3776, {_}: multiply ?3343 (inverse ?3344) =>= divide ?3343 ?3344 [3344, 3343] by Demod 1611 with 3773 at 2,2
14578 Id : 4266, {_}: inverse (multiply ?8883 (divide ?8884 ?8885)) =>= divide (divide ?8885 ?8884) ?8883 [8885, 8884, 8883] by Demod 3559 with 3776 at 1,3
14579 Id : 3463, {_}: inverse (divide ?7741 (inverse (inverse ?7742))) =>= divide ?7742 ?7741 [7742, 7741] by Super 3445 with 1559 at 1,3
14580 Id : 3558, {_}: inverse (multiply ?7741 (inverse ?7742)) =>= divide ?7742 ?7741 [7742, 7741] by Demod 3463 with 29 at 1,2
14581 Id : 3777, {_}: inverse (divide ?7741 ?7742) =>= divide ?7742 ?7741 [7742, 7741] by Demod 3558 with 3776 at 1,2
14582 Id : 3787, {_}: divide (divide ?527 ?526) ?528 =<= inverse (inverse (multiply ?527 (divide (inverse ?526) ?528))) [528, 526, 527] by Demod 250 with 3777 at 1,2
14583 Id : 3399, {_}: inverse (divide ?50 (multiply ?49 ?50)) =>= ?49 [49, 50] by Demod 482 with 3150 at 2
14584 Id : 3783, {_}: divide (multiply ?49 ?50) ?50 =>= ?49 [50, 49] by Demod 3399 with 3777 at 2
14585 Id : 1860, {_}: multiply (divide ?3752 ?3753) ?3753 =>= inverse (inverse ?3752) [3753, 3752] by Demod 1824 with 1559 at 1,2
14586 Id : 1869, {_}: multiply (multiply ?3781 ?3782) (inverse ?3782) =>= inverse (inverse ?3781) [3782, 3781] by Super 1860 with 29 at 1,2
14587 Id : 3779, {_}: divide (multiply ?3781 ?3782) ?3782 =>= inverse (inverse ?3781) [3782, 3781] by Demod 1869 with 3776 at 2
14588 Id : 3799, {_}: inverse (inverse ?49) =>= ?49 [49] by Demod 3783 with 3779 at 2
14589 Id : 3800, {_}: divide (divide ?527 ?526) ?528 =<= multiply ?527 (divide (inverse ?526) ?528) [528, 526, 527] by Demod 3787 with 3799 at 3
14590 Id : 4296, {_}: inverse (divide (divide ?9013 ?9014) ?9015) =<= divide (divide ?9015 (inverse ?9014)) ?9013 [9015, 9014, 9013] by Super 4266 with 3800 at 1,2
14591 Id : 4346, {_}: divide ?9015 (divide ?9013 ?9014) =<= divide (divide ?9015 (inverse ?9014)) ?9013 [9014, 9013, 9015] by Demod 4296 with 3777 at 2
14592 Id : 4347, {_}: divide ?9015 (divide ?9013 ?9014) =<= divide (multiply ?9015 ?9014) ?9013 [9014, 9013, 9015] by Demod 4346 with 29 at 1,3
14593 Id : 4244, {_}: inverse (multiply ?7752 (divide ?7753 ?7754)) =>= divide (divide ?7754 ?7753) ?7752 [7754, 7753, 7752] by Demod 3559 with 3776 at 1,3
14594 Id : 4262, {_}: inverse (divide (divide ?8865 ?8866) ?8867) =>= multiply ?8867 (divide ?8866 ?8865) [8867, 8866, 8865] by Super 3799 with 4244 at 1,2
14595 Id : 4303, {_}: divide ?8867 (divide ?8865 ?8866) =>= multiply ?8867 (divide ?8866 ?8865) [8866, 8865, 8867] by Demod 4262 with 3777 at 2
14596 Id : 4889, {_}: multiply ?9015 (divide ?9014 ?9013) =<= divide (multiply ?9015 ?9014) ?9013 [9013, 9014, 9015] by Demod 4347 with 4303 at 2
14597 Id : 4905, {_}: multiply (multiply ?10384 ?10385) ?10386 =<= multiply ?10384 (divide ?10385 (inverse ?10386)) [10386, 10385, 10384] by Super 29 with 4889 at 3
14598 Id : 4955, {_}: multiply (multiply ?10384 ?10385) ?10386 =>= multiply ?10384 (multiply ?10385 ?10386) [10386, 10385, 10384] by Demod 4905 with 29 at 2,3
14599 Id : 5096, {_}: multiply a3 (multiply b3 c3) =?= multiply a3 (multiply b3 c3) [] by Demod 1 with 4955 at 2
14600 Id : 1, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3
14601 % SZS output end CNFRefutation for GRP453-1.p
14602 26321: solved GRP453-1.p in 1.372085 using kbo
14603 26321: status Unsatisfiable for GRP453-1.p
14604 Fatal error: exception Assert_failure("matitaprover.ml", 269, 46)
14605 NO CLASH, using fixed ground order
14607 26331: Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3
14608 26331: Id : 3, {_}:
14609 meet ?5 (join ?6 ?7) =<= join (meet ?7 ?5) (meet ?6 ?5)
14610 [7, 6, 5] by distribution ?5 ?6 ?7
14612 26331: Id : 1, {_}:
14613 join (join a b) c =>= join a (join b c)
14614 [] by prove_associativity_of_join
14618 26331: a 2 0 2 1,1,2
14619 26331: b 2 0 2 2,1,2
14622 26331: join 7 2 4 0,2
14623 NO CLASH, using fixed ground order
14625 26332: Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3
14626 26332: Id : 3, {_}:
14627 meet ?5 (join ?6 ?7) =<= join (meet ?7 ?5) (meet ?6 ?5)
14628 [7, 6, 5] by distribution ?5 ?6 ?7
14630 26332: Id : 1, {_}:
14631 join (join a b) c =>= join a (join b c)
14632 [] by prove_associativity_of_join
14636 26332: a 2 0 2 1,1,2
14637 26332: b 2 0 2 2,1,2
14640 26332: join 7 2 4 0,2
14641 NO CLASH, using fixed ground order
14643 26333: Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3
14644 26333: Id : 3, {_}:
14645 meet ?5 (join ?6 ?7) =?= join (meet ?7 ?5) (meet ?6 ?5)
14646 [7, 6, 5] by distribution ?5 ?6 ?7
14648 26333: Id : 1, {_}:
14649 join (join a b) c =>= join a (join b c)
14650 [] by prove_associativity_of_join
14654 26333: a 2 0 2 1,1,2
14655 26333: b 2 0 2 2,1,2
14658 26333: join 7 2 4 0,2
14661 Found proof, 28.344880s
14662 % SZS status Unsatisfiable for LAT007-1.p
14663 % SZS output start CNFRefutation for LAT007-1.p
14664 Id : 3, {_}: meet ?5 (join ?6 ?7) =<= join (meet ?7 ?5) (meet ?6 ?5) [7, 6, 5] by distribution ?5 ?6 ?7
14665 Id : 2, {_}: meet ?2 (join ?2 ?3) =>= ?2 [3, 2] by absorption ?2 ?3
14666 Id : 7, {_}: meet ?18 (join ?19 ?20) =<= join (meet ?20 ?18) (meet ?19 ?18) [20, 19, 18] by distribution ?18 ?19 ?20
14667 Id : 8, {_}: meet (join ?22 ?23) (join ?22 ?24) =<= join (meet ?24 (join ?22 ?23)) ?22 [24, 23, 22] by Super 7 with 2 at 2,3
14668 Id : 13, {_}: meet (meet ?44 ?45) (meet ?45 (join ?46 ?44)) =>= meet ?44 ?45 [46, 45, 44] by Super 2 with 3 at 2,2
14669 Id : 15, {_}: meet (meet ?53 ?54) ?54 =>= meet ?53 ?54 [54, 53] by Super 13 with 2 at 2,2
14670 Id : 21, {_}: meet ?68 (join (meet ?69 ?68) ?70) =<= join (meet ?70 ?68) (meet ?69 ?68) [70, 69, 68] by Super 3 with 15 at 2,3
14671 Id : 69, {_}: meet ?209 (join (meet ?210 ?209) ?211) =>= meet ?209 (join ?210 ?211) [211, 210, 209] by Demod 21 with 3 at 3
14672 Id : 74, {_}: meet ?231 (meet ?231 (join ?232 ?233)) =<= meet ?231 (join ?233 (meet ?232 ?231)) [233, 232, 231] by Super 69 with 3 at 2,2
14673 Id : 22, {_}: meet ?72 (join ?73 (meet ?74 ?72)) =<= join (meet ?74 ?72) (meet ?73 ?72) [74, 73, 72] by Super 3 with 15 at 1,3
14674 Id : 33, {_}: meet ?72 (join ?73 (meet ?74 ?72)) =>= meet ?72 (join ?73 ?74) [74, 73, 72] by Demod 22 with 3 at 3
14675 Id : 219, {_}: meet ?572 (meet ?572 (join ?573 ?574)) =>= meet ?572 (join ?574 ?573) [574, 573, 572] by Demod 74 with 33 at 3
14676 Id : 224, {_}: meet ?597 ?597 =<= meet ?597 (join ?598 ?597) [598, 597] by Super 219 with 2 at 2,2
14677 Id : 244, {_}: meet (join ?635 ?636) (join ?635 ?636) =>= join (meet ?636 ?636) ?635 [636, 635] by Super 8 with 224 at 1,3
14678 Id : 247, {_}: meet ?644 ?644 =>= ?644 [644] by Super 2 with 224 at 2
14679 Id : 1803, {_}: join ?635 ?636 =<= join (meet ?636 ?636) ?635 [636, 635] by Demod 244 with 247 at 2
14680 Id : 1804, {_}: join ?635 ?636 =?= join ?636 ?635 [636, 635] by Demod 1803 with 247 at 1,3
14681 Id : 9, {_}: meet (join ?26 ?27) (join ?28 ?26) =<= join ?26 (meet ?28 (join ?26 ?27)) [28, 27, 26] by Super 7 with 2 at 1,3
14682 Id : 6, {_}: meet (meet ?14 ?15) (meet ?15 (join ?16 ?14)) =>= meet ?14 ?15 [16, 15, 14] by Super 2 with 3 at 2,2
14683 Id : 11, {_}: meet (meet ?34 (join ?35 ?36)) (join (meet ?36 ?34) ?37) =<= join (meet ?37 (meet ?34 (join ?35 ?36))) (meet ?36 ?34) [37, 36, 35, 34] by Super 3 with 6 at 2,3
14684 Id : 364, {_}: meet (meet ?919 (join ?920 ?919)) (join (meet ?919 ?919) ?921) =>= join (meet ?921 (meet ?919 (join ?920 ?919))) ?919 [921, 920, 919] by Super 11 with 247 at 2,3
14685 Id : 349, {_}: ?597 =<= meet ?597 (join ?598 ?597) [598, 597] by Demod 224 with 247 at 2
14686 Id : 370, {_}: meet ?919 (join (meet ?919 ?919) ?921) =<= join (meet ?921 (meet ?919 (join ?920 ?919))) ?919 [920, 921, 919] by Demod 364 with 349 at 1,2
14687 Id : 371, {_}: meet ?919 (join ?919 ?921) =<= join (meet ?921 (meet ?919 (join ?920 ?919))) ?919 [920, 921, 919] by Demod 370 with 247 at 1,2,2
14688 Id : 372, {_}: meet ?919 (join ?919 ?921) =<= join (meet ?921 ?919) ?919 [921, 919] by Demod 371 with 349 at 2,1,3
14689 Id : 411, {_}: ?977 =<= join (meet ?978 ?977) ?977 [978, 977] by Demod 372 with 2 at 2
14690 Id : 420, {_}: join ?1006 ?1007 =<= join ?1007 (join ?1006 ?1007) [1007, 1006] by Super 411 with 349 at 1,3
14691 Id : 703, {_}: meet (join ?1582 (join ?1583 ?1582)) (join ?1584 ?1582) =>= join ?1582 (meet ?1584 (join ?1583 ?1582)) [1584, 1583, 1582] by Super 9 with 420 at 2,2,3
14692 Id : 2541, {_}: meet (join ?5116 ?5117) (join ?5118 ?5117) =<= join ?5117 (meet ?5118 (join ?5116 ?5117)) [5118, 5117, 5116] by Demod 703 with 420 at 1,2
14693 Id : 419, {_}: ?1004 =<= join ?1004 ?1004 [1004] by Super 411 with 247 at 1,3
14694 Id : 446, {_}: meet ?1028 (join ?1029 ?1029) =>= meet ?1029 ?1028 [1029, 1028] by Super 3 with 419 at 3
14695 Id : 462, {_}: meet ?1028 ?1029 =?= meet ?1029 ?1028 [1029, 1028] by Demod 446 with 419 at 2,2
14696 Id : 2566, {_}: meet (join ?5222 ?5223) (join ?5224 ?5223) =<= join ?5223 (meet (join ?5222 ?5223) ?5224) [5224, 5223, 5222] by Super 2541 with 462 at 2,3
14697 Id : 1841, {_}: meet (join ?3986 ?3987) (join ?3988 ?3986) =<= join ?3986 (meet ?3988 (join ?3987 ?3986)) [3988, 3987, 3986] by Super 9 with 1804 at 2,2,3
14698 Id : 731, {_}: meet (join ?1583 ?1582) (join ?1584 ?1582) =<= join ?1582 (meet ?1584 (join ?1583 ?1582)) [1584, 1582, 1583] by Demod 703 with 420 at 1,2
14699 Id : 6413, {_}: meet (join ?3986 ?3987) (join ?3988 ?3986) =?= meet (join ?3987 ?3986) (join ?3988 ?3986) [3988, 3987, 3986] by Demod 1841 with 731 at 3
14700 Id : 210, {_}: meet ?231 (meet ?231 (join ?232 ?233)) =>= meet ?231 (join ?233 ?232) [233, 232, 231] by Demod 74 with 33 at 3
14701 Id : 449, {_}: meet ?1037 (meet ?1037 ?1038) =?= meet ?1037 (join ?1038 ?1038) [1038, 1037] by Super 210 with 419 at 2,2,2
14702 Id : 457, {_}: meet ?1037 (meet ?1037 ?1038) =>= meet ?1037 ?1038 [1038, 1037] by Demod 449 with 419 at 2,3
14703 Id : 754, {_}: meet ?231 (join ?232 ?233) =?= meet ?231 (join ?233 ?232) [233, 232, 231] by Demod 210 with 457 at 2
14704 Id : 32, {_}: meet ?68 (join (meet ?69 ?68) ?70) =>= meet ?68 (join ?69 ?70) [70, 69, 68] by Demod 21 with 3 at 3
14705 Id : 763, {_}: meet (meet ?1697 ?1698) (join (meet ?1697 ?1698) ?1699) =>= meet (meet ?1697 ?1698) (join ?1697 ?1699) [1699, 1698, 1697] by Super 32 with 457 at 1,2,2
14706 Id : 793, {_}: meet ?1697 ?1698 =<= meet (meet ?1697 ?1698) (join ?1697 ?1699) [1699, 1698, 1697] by Demod 763 with 2 at 2
14707 Id : 2682, {_}: meet (join ?5359 ?5360) (join ?5361 (meet ?5359 ?5362)) =<= join (meet ?5359 ?5362) (meet ?5361 (join ?5359 ?5360)) [5362, 5361, 5360, 5359] by Super 3 with 793 at 1,3
14708 Id : 1421, {_}: meet ?2943 (join ?2944 (meet ?2943 ?2945)) =>= meet ?2943 (join ?2944 ?2945) [2945, 2944, 2943] by Super 33 with 462 at 2,2,2
14709 Id : 4338, {_}: meet (join ?8616 (meet ?8617 ?8618)) (join ?8616 ?8617) =>= join (meet ?8617 (join ?8616 ?8618)) ?8616 [8618, 8617, 8616] by Super 8 with 1421 at 1,3
14710 Id : 4448, {_}: meet (join ?8616 (meet ?8617 ?8618)) (join ?8616 ?8617) =>= meet (join ?8616 ?8618) (join ?8616 ?8617) [8618, 8617, 8616] by Demod 4338 with 8 at 3
14711 Id : 62692, {_}: meet (join ?135834 ?135835) (join (join ?135834 (meet ?135835 ?135836)) (meet ?135834 ?135837)) =>= join (meet ?135834 ?135837) (meet (join ?135834 ?135836) (join ?135834 ?135835)) [135837, 135836, 135835, 135834] by Super 2682 with 4448 at 2,3
14712 Id : 62942, {_}: meet (join ?135834 ?135835) (join (meet ?135834 ?135837) (join ?135834 (meet ?135835 ?135836))) =>= join (meet ?135834 ?135837) (meet (join ?135834 ?135836) (join ?135834 ?135835)) [135836, 135837, 135835, 135834] by Demod 62692 with 754 at 2
14713 Id : 62943, {_}: meet (join ?135834 ?135835) (join (meet ?135834 ?135837) (join ?135834 (meet ?135835 ?135836))) =>= meet (join ?135834 ?135835) (join (join ?135834 ?135836) (meet ?135834 ?135837)) [135836, 135837, 135835, 135834] by Demod 62942 with 2682 at 3
14714 Id : 373, {_}: ?919 =<= join (meet ?921 ?919) ?919 [921, 919] by Demod 372 with 2 at 2
14715 Id : 2674, {_}: join ?5321 ?5322 =<= join (meet ?5321 ?5323) (join ?5321 ?5322) [5323, 5322, 5321] by Super 373 with 793 at 1,3
14716 Id : 62944, {_}: meet (join ?135834 ?135835) (join ?135834 (meet ?135835 ?135836)) =?= meet (join ?135834 ?135835) (join (join ?135834 ?135836) (meet ?135834 ?135837)) [135837, 135836, 135835, 135834] by Demod 62943 with 2674 at 2,2
14717 Id : 62945, {_}: meet (join ?135834 ?135835) (join ?135834 (meet ?135835 ?135836)) =?= meet (join ?135834 ?135835) (join (meet ?135834 ?135837) (join ?135834 ?135836)) [135837, 135836, 135835, 135834] by Demod 62944 with 754 at 3
14718 Id : 762, {_}: meet (meet ?1693 ?1694) (meet (meet ?1693 ?1694) (join ?1695 ?1693)) =>= meet ?1693 (meet ?1693 ?1694) [1695, 1694, 1693] by Super 6 with 457 at 1,2
14719 Id : 794, {_}: meet (meet ?1693 ?1694) (join ?1695 ?1693) =>= meet ?1693 (meet ?1693 ?1694) [1695, 1694, 1693] by Demod 762 with 457 at 2
14720 Id : 795, {_}: meet (meet ?1693 ?1694) (join ?1695 ?1693) =>= meet ?1693 ?1694 [1695, 1694, 1693] by Demod 794 with 457 at 3
14721 Id : 2860, {_}: meet (join ?5717 ?5718) (join ?5717 (meet ?5718 ?5719)) =>= join (meet ?5718 ?5719) ?5717 [5719, 5718, 5717] by Super 8 with 795 at 1,3
14722 Id : 62946, {_}: join (meet ?135835 ?135836) ?135834 =<= meet (join ?135834 ?135835) (join (meet ?135834 ?135837) (join ?135834 ?135836)) [135837, 135834, 135836, 135835] by Demod 62945 with 2860 at 2
14723 Id : 62947, {_}: join (meet ?135835 ?135836) ?135834 =<= meet (join ?135834 ?135835) (join ?135834 ?135836) [135834, 135836, 135835] by Demod 62946 with 2674 at 2,3
14724 Id : 63610, {_}: meet (join ?137323 ?137324) (join ?137325 ?137323) =>= join (meet ?137324 ?137325) ?137323 [137325, 137324, 137323] by Super 754 with 62947 at 3
14725 Id : 64209, {_}: join (meet ?3987 ?3988) ?3986 =<= meet (join ?3987 ?3986) (join ?3988 ?3986) [3986, 3988, 3987] by Demod 6413 with 63610 at 2
14726 Id : 64222, {_}: join (meet ?5222 ?5224) ?5223 =<= join ?5223 (meet (join ?5222 ?5223) ?5224) [5223, 5224, 5222] by Demod 2566 with 64209 at 2
14727 Id : 64386, {_}: join (meet ?139191 (join ?139192 ?139191)) ?139193 =?= join ?139193 (join (meet ?139193 ?139192) ?139191) [139193, 139192, 139191] by Super 64222 with 63610 at 2,3
14728 Id : 66054, {_}: join ?143110 ?143111 =<= join ?143111 (join (meet ?143111 ?143112) ?143110) [143112, 143111, 143110] by Demod 64386 with 349 at 1,2
14729 Id : 36, {_}: meet (join ?109 ?110) (join ?109 ?111) =<= join (meet ?111 (join ?109 ?110)) ?109 [111, 110, 109] by Super 7 with 2 at 2,3
14730 Id : 39, {_}: meet (join ?123 ?124) (join ?123 ?123) =>= join ?123 ?123 [124, 123] by Super 36 with 2 at 1,3
14731 Id : 438, {_}: meet (join ?123 ?124) ?123 =>= join ?123 ?123 [124, 123] by Demod 39 with 419 at 2,2
14732 Id : 439, {_}: meet (join ?123 ?124) ?123 =>= ?123 [124, 123] by Demod 438 with 419 at 3
14733 Id : 66061, {_}: join ?143140 (join ?143141 ?143142) =<= join (join ?143141 ?143142) (join ?143141 ?143140) [143142, 143141, 143140] by Super 66054 with 439 at 1,2,3
14734 Id : 706, {_}: meet (join ?1593 (join ?1594 ?1593)) (join ?1593 ?1595) =>= join (meet ?1595 (join ?1594 ?1593)) ?1593 [1595, 1594, 1593] by Super 8 with 420 at 2,1,3
14735 Id : 2402, {_}: meet (join ?4835 ?4836) (join ?4836 ?4837) =<= join (meet ?4837 (join ?4835 ?4836)) ?4836 [4837, 4836, 4835] by Demod 706 with 420 at 1,2
14736 Id : 2426, {_}: meet (join ?4936 ?4937) (join ?4937 ?4938) =<= join (meet (join ?4936 ?4937) ?4938) ?4937 [4938, 4937, 4936] by Super 2402 with 462 at 1,3
14737 Id : 1831, {_}: meet (join ?3948 ?3949) (join ?3948 ?3950) =<= join (meet ?3950 (join ?3949 ?3948)) ?3948 [3950, 3949, 3948] by Super 8 with 1804 at 2,1,3
14738 Id : 729, {_}: meet (join ?1594 ?1593) (join ?1593 ?1595) =<= join (meet ?1595 (join ?1594 ?1593)) ?1593 [1595, 1593, 1594] by Demod 706 with 420 at 1,2
14739 Id : 5899, {_}: meet (join ?3948 ?3949) (join ?3948 ?3950) =?= meet (join ?3949 ?3948) (join ?3948 ?3950) [3950, 3949, 3948] by Demod 1831 with 729 at 3
14740 Id : 63510, {_}: join (meet ?3949 ?3950) ?3948 =<= meet (join ?3949 ?3948) (join ?3948 ?3950) [3948, 3950, 3949] by Demod 5899 with 62947 at 2
14741 Id : 63518, {_}: join (meet ?4936 ?4938) ?4937 =<= join (meet (join ?4936 ?4937) ?4938) ?4937 [4937, 4938, 4936] by Demod 2426 with 63510 at 2
14742 Id : 63690, {_}: join (meet ?137703 (join ?137703 ?137704)) ?137705 =?= join (join (meet ?137705 ?137704) ?137703) ?137705 [137705, 137704, 137703] by Super 63518 with 62947 at 1,3
14743 Id : 65015, {_}: join ?140539 ?140540 =<= join (join (meet ?140540 ?140541) ?140539) ?140540 [140541, 140540, 140539] by Demod 63690 with 2 at 1,2
14744 Id : 65022, {_}: join ?140569 (join ?140570 ?140571) =<= join (join ?140570 ?140569) (join ?140570 ?140571) [140571, 140570, 140569] by Super 65015 with 439 at 1,1,3
14745 Id : 71034, {_}: join ?143140 (join ?143141 ?143142) =?= join ?143142 (join ?143141 ?143140) [143142, 143141, 143140] by Demod 66061 with 65022 at 3
14746 Id : 709, {_}: meet (join ?1606 ?1607) ?1607 =>= ?1607 [1607, 1606] by Super 439 with 420 at 1,2
14747 Id : 1049, {_}: meet ?2275 (join ?2275 ?2276) =<= meet ?2275 (join (join ?2277 ?2275) ?2276) [2277, 2276, 2275] by Super 32 with 709 at 1,2,2
14748 Id : 1082, {_}: ?2275 =<= meet ?2275 (join (join ?2277 ?2275) ?2276) [2276, 2277, 2275] by Demod 1049 with 2 at 2
14749 Id : 10434, {_}: join (join ?21238 ?21239) ?21240 =<= join ?21239 (join (join ?21238 ?21239) ?21240) [21240, 21239, 21238] by Super 373 with 1082 at 1,3
14750 Id : 10435, {_}: join (join ?21242 ?21243) ?21244 =<= join ?21243 (join (join ?21243 ?21242) ?21244) [21244, 21243, 21242] by Super 10434 with 1804 at 1,2,3
14751 Id : 7878, {_}: join ?15712 ?15713 =<= join (meet ?15712 ?15714) (join ?15712 ?15713) [15714, 15713, 15712] by Super 373 with 793 at 1,3
14752 Id : 7917, {_}: join (join ?15885 ?15886) ?15887 =<= join ?15885 (join (join ?15885 ?15886) ?15887) [15887, 15886, 15885] by Super 7878 with 439 at 1,3
14753 Id : 21540, {_}: join (join ?21242 ?21243) ?21244 =?= join (join ?21243 ?21242) ?21244 [21244, 21243, 21242] by Demod 10435 with 7917 at 3
14754 Id : 63854, {_}: join ?137703 ?137705 =<= join (join (meet ?137705 ?137704) ?137703) ?137705 [137704, 137705, 137703] by Demod 63690 with 2 at 1,2
14755 Id : 67172, {_}: join (join ?145721 (meet ?145722 ?145723)) ?145722 =>= join ?145721 ?145722 [145723, 145722, 145721] by Super 21540 with 63854 at 3
14756 Id : 67179, {_}: join (join ?145751 ?145752) (join ?145752 ?145753) =>= join ?145751 (join ?145752 ?145753) [145753, 145752, 145751] by Super 67172 with 439 at 2,1,2
14757 Id : 66065, {_}: join ?143156 (join ?143157 ?143158) =<= join (join ?143157 ?143158) (join ?143158 ?143156) [143158, 143157, 143156] by Super 66054 with 709 at 1,2,3
14758 Id : 73159, {_}: join ?145753 (join ?145751 ?145752) =?= join ?145751 (join ?145752 ?145753) [145752, 145751, 145753] by Demod 67179 with 66065 at 2
14759 Id : 359, {_}: meet ?904 (join ?905 ?904) =<= join ?904 (meet ?905 ?904) [905, 904] by Super 3 with 247 at 1,3
14760 Id : 386, {_}: ?904 =<= join ?904 (meet ?905 ?904) [905, 904] by Demod 359 with 349 at 2
14761 Id : 1047, {_}: meet ?2267 (meet ?2267 (join ?2268 (join ?2269 ?2267))) =>= meet (join ?2269 ?2267) ?2267 [2269, 2268, 2267] by Super 6 with 709 at 1,2
14762 Id : 1084, {_}: meet ?2267 (join ?2268 (join ?2269 ?2267)) =>= meet (join ?2269 ?2267) ?2267 [2269, 2268, 2267] by Demod 1047 with 457 at 2
14763 Id : 1085, {_}: meet ?2267 (join ?2268 (join ?2269 ?2267)) =>= ?2267 [2269, 2268, 2267] by Demod 1084 with 709 at 3
14764 Id : 11489, {_}: join ?23526 (join ?23527 ?23528) =<= join (join ?23526 (join ?23527 ?23528)) ?23528 [23528, 23527, 23526] by Super 386 with 1085 at 2,3
14765 Id : 11490, {_}: join ?23530 (join ?23531 ?23532) =<= join (join ?23530 (join ?23532 ?23531)) ?23532 [23532, 23531, 23530] by Super 11489 with 1804 at 2,1,3
14766 Id : 2878, {_}: meet (meet ?5800 ?5801) (join ?5802 ?5800) =>= meet ?5800 ?5801 [5802, 5801, 5800] by Demod 794 with 457 at 3
14767 Id : 2907, {_}: meet ?5929 (join ?5930 (join ?5929 ?5931)) =>= meet (join ?5929 ?5931) ?5929 [5931, 5930, 5929] by Super 2878 with 439 at 1,2
14768 Id : 3014, {_}: meet ?5929 (join ?5930 (join ?5929 ?5931)) =>= ?5929 [5931, 5930, 5929] by Demod 2907 with 439 at 3
14769 Id : 10163, {_}: join ?20474 (join ?20475 ?20476) =<= join (join ?20474 (join ?20475 ?20476)) ?20475 [20476, 20475, 20474] by Super 386 with 3014 at 2,3
14770 Id : 22205, {_}: join ?23530 (join ?23531 ?23532) =?= join ?23530 (join ?23532 ?23531) [23532, 23531, 23530] by Demod 11490 with 10163 at 3
14771 Id : 73995, {_}: join a (join b c) === join a (join b c) [] by Demod 73994 with 22205 at 2
14772 Id : 73994, {_}: join a (join c b) =>= join a (join b c) [] by Demod 73993 with 73159 at 2
14773 Id : 73993, {_}: join b (join a c) =>= join a (join b c) [] by Demod 73992 with 71034 at 2
14774 Id : 73992, {_}: join c (join a b) =>= join a (join b c) [] by Demod 1 with 1804 at 2
14775 Id : 1, {_}: join (join a b) c =>= join a (join b c) [] by prove_associativity_of_join
14776 % SZS output end CNFRefutation for LAT007-1.p
14777 26331: solved LAT007-1.p in 28.241764 using nrkbo
14778 26331: status Unsatisfiable for LAT007-1.p
14779 NO CLASH, using fixed ground order
14780 NO CLASH, using fixed ground order
14782 26339: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
14783 26339: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
14784 26339: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
14785 26339: Id : 5, {_}:
14786 meet ?9 ?10 =?= meet ?10 ?9
14787 [10, 9] by commutativity_of_meet ?9 ?10
14788 26339: Id : 6, {_}:
14789 join ?12 ?13 =?= join ?13 ?12
14790 [13, 12] by commutativity_of_join ?12 ?13
14791 26339: Id : 7, {_}:
14792 meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17)
14793 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
14794 26339: Id : 8, {_}:
14795 join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21)
14796 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
14797 26339: Id : 9, {_}:
14798 complement (complement ?23) =>= ?23
14799 [23] by complement_involution ?23
14800 26339: Id : 10, {_}:
14801 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
14802 [26, 25] by join_complement ?25 ?26
14803 26339: Id : 11, {_}:
14804 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
14805 [29, 28] by meet_complement ?28 ?29
14807 NO CLASH, using fixed ground order
14809 26340: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
14810 26340: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
14811 26340: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
14812 26340: Id : 5, {_}:
14813 meet ?9 ?10 =?= meet ?10 ?9
14814 [10, 9] by commutativity_of_meet ?9 ?10
14815 26340: Id : 6, {_}:
14816 join ?12 ?13 =?= join ?13 ?12
14817 [13, 12] by commutativity_of_join ?12 ?13
14818 26340: Id : 7, {_}:
14819 meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17)
14820 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
14821 26340: Id : 8, {_}:
14822 join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21)
14823 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
14824 26340: Id : 9, {_}:
14825 complement (complement ?23) =>= ?23
14826 [23] by complement_involution ?23
14827 26340: Id : 10, {_}:
14828 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
14829 [26, 25] by join_complement ?25 ?26
14830 26340: Id : 11, {_}:
14831 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
14832 [29, 28] by meet_complement ?28 ?29
14835 26340: Id : 1, {_}:
14836 join (complement (join (meet a (complement b)) (complement a)))
14837 (join (meet a (complement b))
14839 (meet (complement a) (meet (join a (complement b)) (join a b)))
14840 (meet (complement a)
14841 (complement (meet (join a (complement b)) (join a b))))))
14850 26340: b 6 0 6 1,2,1,1,1,2
14851 26340: a 9 0 9 1,1,1,1,2
14852 26340: complement 18 1 9 0,1,2
14853 26340: meet 15 2 6 0,1,1,1,2
14854 26340: join 20 2 8 0,2
14855 26339: Id : 1, {_}:
14856 join (complement (join (meet a (complement b)) (complement a)))
14857 (join (meet a (complement b))
14859 (meet (complement a) (meet (join a (complement b)) (join a b)))
14860 (meet (complement a)
14861 (complement (meet (join a (complement b)) (join a b))))))
14870 26339: b 6 0 6 1,2,1,1,1,2
14871 26339: a 9 0 9 1,1,1,1,2
14872 26339: complement 18 1 9 0,1,2
14873 26339: meet 15 2 6 0,1,1,1,2
14874 26339: join 20 2 8 0,2
14875 26338: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
14876 26338: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
14877 26338: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
14878 26338: Id : 5, {_}:
14879 meet ?9 ?10 =?= meet ?10 ?9
14880 [10, 9] by commutativity_of_meet ?9 ?10
14881 26338: Id : 6, {_}:
14882 join ?12 ?13 =?= join ?13 ?12
14883 [13, 12] by commutativity_of_join ?12 ?13
14884 26338: Id : 7, {_}:
14885 meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17)
14886 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
14887 26338: Id : 8, {_}:
14888 join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21)
14889 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
14890 26338: Id : 9, {_}:
14891 complement (complement ?23) =>= ?23
14892 [23] by complement_involution ?23
14893 26338: Id : 10, {_}:
14894 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
14895 [26, 25] by join_complement ?25 ?26
14896 26338: Id : 11, {_}:
14897 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
14898 [29, 28] by meet_complement ?28 ?29
14900 26338: Id : 1, {_}:
14901 join (complement (join (meet a (complement b)) (complement a)))
14902 (join (meet a (complement b))
14904 (meet (complement a) (meet (join a (complement b)) (join a b)))
14905 (meet (complement a)
14906 (complement (meet (join a (complement b)) (join a b))))))
14915 26338: b 6 0 6 1,2,1,1,1,2
14916 26338: a 9 0 9 1,1,1,1,2
14917 26338: complement 18 1 9 0,1,2
14918 26338: meet 15 2 6 0,1,1,1,2
14919 26338: join 20 2 8 0,2
14920 % SZS status Timeout for LAT016-1.p
14921 NO CLASH, using fixed ground order
14923 26368: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
14924 26368: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
14925 26368: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7
14926 26368: Id : 5, {_}:
14927 join ?9 ?10 =?= join ?10 ?9
14928 [10, 9] by commutativity_of_join ?9 ?10
14929 26368: Id : 6, {_}:
14930 meet (meet ?12 ?13) ?14 =?= meet ?12 (meet ?13 ?14)
14931 [14, 13, 12] by associativity_of_meet ?12 ?13 ?14
14932 26368: Id : 7, {_}:
14933 join (join ?16 ?17) ?18 =?= join ?16 (join ?17 ?18)
14934 [18, 17, 16] by associativity_of_join ?16 ?17 ?18
14935 26368: Id : 8, {_}:
14936 join (meet ?20 (join ?21 ?22)) (meet ?20 ?21)
14938 meet ?20 (join ?21 ?22)
14939 [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22
14940 26368: Id : 9, {_}:
14941 meet (join ?24 (meet ?25 ?26)) (join ?24 ?25)
14943 join ?24 (meet ?25 ?26)
14944 [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26
14945 26368: Id : 10, {_}: meet2 ?28 ?28 =>= ?28 [28] by idempotence_of_meet2 ?28
14946 26368: Id : 11, {_}:
14947 meet2 ?30 ?31 =?= meet2 ?31 ?30
14948 [31, 30] by commutativity_of_meet2 ?30 ?31
14949 26368: Id : 12, {_}:
14950 meet2 (meet2 ?33 ?34) ?35 =?= meet2 ?33 (meet2 ?34 ?35)
14951 [35, 34, 33] by associativity_of_meet2 ?33 ?34 ?35
14952 26368: Id : 13, {_}:
14953 join (meet2 ?37 (join ?38 ?39)) (meet2 ?37 ?38)
14955 meet2 ?37 (join ?38 ?39)
14956 [39, 38, 37] by quasi_lattice1_2 ?37 ?38 ?39
14957 26368: Id : 14, {_}:
14958 meet2 (join ?41 (meet2 ?42 ?43)) (join ?41 ?42)
14960 join ?41 (meet2 ?42 ?43)
14961 [43, 42, 41] by quasi_lattice2_2 ?41 ?42 ?43
14963 26368: Id : 1, {_}: meet a b =<= meet2 a b [] by prove_meets_equal
14969 26368: meet 14 2 1 0,2
14970 26368: meet2 14 2 1 0,3
14972 NO CLASH, using fixed ground order
14974 26369: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
14975 26369: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
14976 26369: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7
14977 26369: Id : 5, {_}:
14978 join ?9 ?10 =?= join ?10 ?9
14979 [10, 9] by commutativity_of_join ?9 ?10
14980 26369: Id : 6, {_}:
14981 meet (meet ?12 ?13) ?14 =>= meet ?12 (meet ?13 ?14)
14982 [14, 13, 12] by associativity_of_meet ?12 ?13 ?14
14983 26369: Id : 7, {_}:
14984 join (join ?16 ?17) ?18 =>= join ?16 (join ?17 ?18)
14985 [18, 17, 16] by associativity_of_join ?16 ?17 ?18
14986 26369: Id : 8, {_}:
14987 join (meet ?20 (join ?21 ?22)) (meet ?20 ?21)
14989 meet ?20 (join ?21 ?22)
14990 [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22
14991 26369: Id : 9, {_}:
14992 meet (join ?24 (meet ?25 ?26)) (join ?24 ?25)
14994 join ?24 (meet ?25 ?26)
14995 [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26
14996 26369: Id : 10, {_}: meet2 ?28 ?28 =>= ?28 [28] by idempotence_of_meet2 ?28
14997 26369: Id : 11, {_}:
14998 meet2 ?30 ?31 =?= meet2 ?31 ?30
14999 [31, 30] by commutativity_of_meet2 ?30 ?31
15000 26369: Id : 12, {_}:
15001 meet2 (meet2 ?33 ?34) ?35 =>= meet2 ?33 (meet2 ?34 ?35)
15002 [35, 34, 33] by associativity_of_meet2 ?33 ?34 ?35
15003 26369: Id : 13, {_}:
15004 join (meet2 ?37 (join ?38 ?39)) (meet2 ?37 ?38)
15006 meet2 ?37 (join ?38 ?39)
15007 [39, 38, 37] by quasi_lattice1_2 ?37 ?38 ?39
15008 26369: Id : 14, {_}:
15009 meet2 (join ?41 (meet2 ?42 ?43)) (join ?41 ?42)
15011 join ?41 (meet2 ?42 ?43)
15012 [43, 42, 41] by quasi_lattice2_2 ?41 ?42 ?43
15014 26369: Id : 1, {_}: meet a b =<= meet2 a b [] by prove_meets_equal
15020 26369: meet 14 2 1 0,2
15021 26369: meet2 14 2 1 0,3
15023 NO CLASH, using fixed ground order
15025 26370: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15026 26370: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15027 26370: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7
15028 26370: Id : 5, {_}:
15029 join ?9 ?10 =?= join ?10 ?9
15030 [10, 9] by commutativity_of_join ?9 ?10
15031 26370: Id : 6, {_}:
15032 meet (meet ?12 ?13) ?14 =>= meet ?12 (meet ?13 ?14)
15033 [14, 13, 12] by associativity_of_meet ?12 ?13 ?14
15034 26370: Id : 7, {_}:
15035 join (join ?16 ?17) ?18 =>= join ?16 (join ?17 ?18)
15036 [18, 17, 16] by associativity_of_join ?16 ?17 ?18
15037 26370: Id : 8, {_}:
15038 join (meet ?20 (join ?21 ?22)) (meet ?20 ?21)
15040 meet ?20 (join ?21 ?22)
15041 [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22
15042 26370: Id : 9, {_}:
15043 meet (join ?24 (meet ?25 ?26)) (join ?24 ?25)
15045 join ?24 (meet ?25 ?26)
15046 [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26
15047 26370: Id : 10, {_}: meet2 ?28 ?28 =>= ?28 [28] by idempotence_of_meet2 ?28
15048 26370: Id : 11, {_}:
15049 meet2 ?30 ?31 =?= meet2 ?31 ?30
15050 [31, 30] by commutativity_of_meet2 ?30 ?31
15051 26370: Id : 12, {_}:
15052 meet2 (meet2 ?33 ?34) ?35 =>= meet2 ?33 (meet2 ?34 ?35)
15053 [35, 34, 33] by associativity_of_meet2 ?33 ?34 ?35
15054 26370: Id : 13, {_}:
15055 join (meet2 ?37 (join ?38 ?39)) (meet2 ?37 ?38)
15057 meet2 ?37 (join ?38 ?39)
15058 [39, 38, 37] by quasi_lattice1_2 ?37 ?38 ?39
15059 26370: Id : 14, {_}:
15060 meet2 (join ?41 (meet2 ?42 ?43)) (join ?41 ?42)
15062 join ?41 (meet2 ?42 ?43)
15063 [43, 42, 41] by quasi_lattice2_2 ?41 ?42 ?43
15065 26370: Id : 1, {_}: meet a b =<= meet2 a b [] by prove_meets_equal
15071 26370: meet 14 2 1 0,2
15072 26370: meet2 14 2 1 0,3
15074 % SZS status Timeout for LAT024-1.p
15075 NO CLASH, using fixed ground order
15077 26386: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15078 26386: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15079 26386: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15080 26386: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15081 26386: Id : 6, {_}:
15082 meet ?12 ?13 =?= meet ?13 ?12
15083 [13, 12] by commutativity_of_meet ?12 ?13
15084 26386: Id : 7, {_}:
15085 join ?15 ?16 =?= join ?16 ?15
15086 [16, 15] by commutativity_of_join ?15 ?16
15087 26386: Id : 8, {_}:
15088 join ?18 (meet ?19 (meet ?18 ?20)) =>= ?18
15089 [20, 19, 18] by tnl_1 ?18 ?19 ?20
15090 26386: Id : 9, {_}:
15091 meet ?22 (join ?23 (join ?22 ?24)) =>= ?22
15092 [24, 23, 22] by tnl_2 ?22 ?23 ?24
15093 26386: Id : 10, {_}: meet2 ?26 ?26 =>= ?26 [26] by idempotence_of_meet2 ?26
15094 26386: Id : 11, {_}:
15095 meet2 ?28 (join ?28 ?29) =>= ?28
15096 [29, 28] by absorption1_2 ?28 ?29
15097 26386: Id : 12, {_}:
15098 join ?31 (meet2 ?31 ?32) =>= ?31
15099 [32, 31] by absorption2_2 ?31 ?32
15100 26386: Id : 13, {_}:
15101 meet2 ?34 ?35 =?= meet2 ?35 ?34
15102 [35, 34] by commutativity_of_meet2 ?34 ?35
15103 26386: Id : 14, {_}:
15104 join ?37 (meet2 ?38 (meet2 ?37 ?39)) =>= ?37
15105 [39, 38, 37] by tnl_1_2 ?37 ?38 ?39
15106 26386: Id : 15, {_}:
15107 meet2 ?41 (join ?42 (join ?41 ?43)) =>= ?41
15108 [43, 42, 41] by tnl_2_2 ?41 ?42 ?43
15110 26386: Id : 1, {_}: meet a b =<= meet2 a b [] by prove_meets_equal
15116 26386: meet 9 2 1 0,2
15117 26386: meet2 9 2 1 0,3
15119 NO CLASH, using fixed ground order
15121 26387: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15122 26387: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15123 26387: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15124 26387: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15125 26387: Id : 6, {_}:
15126 meet ?12 ?13 =?= meet ?13 ?12
15127 [13, 12] by commutativity_of_meet ?12 ?13
15128 26387: Id : 7, {_}:
15129 join ?15 ?16 =?= join ?16 ?15
15130 [16, 15] by commutativity_of_join ?15 ?16
15131 26387: Id : 8, {_}:
15132 join ?18 (meet ?19 (meet ?18 ?20)) =>= ?18
15133 [20, 19, 18] by tnl_1 ?18 ?19 ?20
15134 26387: Id : 9, {_}:
15135 meet ?22 (join ?23 (join ?22 ?24)) =>= ?22
15136 [24, 23, 22] by tnl_2 ?22 ?23 ?24
15137 26387: Id : 10, {_}: meet2 ?26 ?26 =>= ?26 [26] by idempotence_of_meet2 ?26
15138 26387: Id : 11, {_}:
15139 meet2 ?28 (join ?28 ?29) =>= ?28
15140 [29, 28] by absorption1_2 ?28 ?29
15141 26387: Id : 12, {_}:
15142 join ?31 (meet2 ?31 ?32) =>= ?31
15143 [32, 31] by absorption2_2 ?31 ?32
15144 26387: Id : 13, {_}:
15145 meet2 ?34 ?35 =?= meet2 ?35 ?34
15146 [35, 34] by commutativity_of_meet2 ?34 ?35
15147 26387: Id : 14, {_}:
15148 join ?37 (meet2 ?38 (meet2 ?37 ?39)) =>= ?37
15149 [39, 38, 37] by tnl_1_2 ?37 ?38 ?39
15150 NO CLASH, using fixed ground order
15152 26388: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15153 26388: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15154 26388: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15155 26388: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15156 26388: Id : 6, {_}:
15157 meet ?12 ?13 =?= meet ?13 ?12
15158 [13, 12] by commutativity_of_meet ?12 ?13
15159 26388: Id : 7, {_}:
15160 join ?15 ?16 =?= join ?16 ?15
15161 [16, 15] by commutativity_of_join ?15 ?16
15162 26388: Id : 8, {_}:
15163 join ?18 (meet ?19 (meet ?18 ?20)) =>= ?18
15164 [20, 19, 18] by tnl_1 ?18 ?19 ?20
15165 26388: Id : 9, {_}:
15166 meet ?22 (join ?23 (join ?22 ?24)) =>= ?22
15167 [24, 23, 22] by tnl_2 ?22 ?23 ?24
15168 26388: Id : 10, {_}: meet2 ?26 ?26 =>= ?26 [26] by idempotence_of_meet2 ?26
15169 26388: Id : 11, {_}:
15170 meet2 ?28 (join ?28 ?29) =>= ?28
15171 [29, 28] by absorption1_2 ?28 ?29
15172 26388: Id : 12, {_}:
15173 join ?31 (meet2 ?31 ?32) =>= ?31
15174 [32, 31] by absorption2_2 ?31 ?32
15175 26388: Id : 13, {_}:
15176 meet2 ?34 ?35 =?= meet2 ?35 ?34
15177 [35, 34] by commutativity_of_meet2 ?34 ?35
15178 26388: Id : 14, {_}:
15179 join ?37 (meet2 ?38 (meet2 ?37 ?39)) =>= ?37
15180 [39, 38, 37] by tnl_1_2 ?37 ?38 ?39
15181 26388: Id : 15, {_}:
15182 meet2 ?41 (join ?42 (join ?41 ?43)) =>= ?41
15183 [43, 42, 41] by tnl_2_2 ?41 ?42 ?43
15185 26388: Id : 1, {_}: meet a b =<= meet2 a b [] by prove_meets_equal
15191 26388: meet 9 2 1 0,2
15192 26388: meet2 9 2 1 0,3
15194 26387: Id : 15, {_}:
15195 meet2 ?41 (join ?42 (join ?41 ?43)) =>= ?41
15196 [43, 42, 41] by tnl_2_2 ?41 ?42 ?43
15198 26387: Id : 1, {_}: meet a b =<= meet2 a b [] by prove_meets_equal
15204 26387: meet 9 2 1 0,2
15205 26387: meet2 9 2 1 0,3
15207 % SZS status Timeout for LAT025-1.p
15208 CLASH, statistics insufficient
15210 26417: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15211 26417: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15212 26417: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15213 26417: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15214 26417: Id : 6, {_}:
15215 meet ?12 ?13 =?= meet ?13 ?12
15216 [13, 12] by commutativity_of_meet ?12 ?13
15217 26417: Id : 7, {_}:
15218 join ?15 ?16 =?= join ?16 ?15
15219 [16, 15] by commutativity_of_join ?15 ?16
15220 26417: Id : 8, {_}:
15221 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
15222 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15223 26417: Id : 9, {_}:
15224 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
15225 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15226 26417: Id : 10, {_}:
15227 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
15228 [27, 26] by compatibility1 ?26 ?27
15229 26417: Id : 11, {_}:
15230 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15231 [30, 29] by compatibility2 ?29 ?30
15232 26417: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15233 26417: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15234 26417: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15235 26417: Id : 15, {_}:
15236 join ?38 (meet ?39 (join ?38 ?40))
15238 meet (join ?38 ?39) (join ?38 ?40)
15239 [40, 39, 38] by modular_law ?38 ?39 ?40
15241 26417: Id : 1, {_}:
15242 meet a (join b c) =<= join (meet a b) (meet a c)
15243 [] by prove_distributivity
15249 26417: b 2 0 2 1,2,2
15250 26417: c 2 0 2 2,2,2
15252 26417: complement 10 1 0
15253 26417: meet 17 2 3 0,2
15254 26417: join 18 2 2 0,2,2
15255 CLASH, statistics insufficient
15257 26418: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15258 26418: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15259 26418: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15260 26418: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15261 26418: Id : 6, {_}:
15262 meet ?12 ?13 =?= meet ?13 ?12
15263 [13, 12] by commutativity_of_meet ?12 ?13
15264 26418: Id : 7, {_}:
15265 join ?15 ?16 =?= join ?16 ?15
15266 [16, 15] by commutativity_of_join ?15 ?16
15267 26418: Id : 8, {_}:
15268 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15269 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15270 26418: Id : 9, {_}:
15271 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15272 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15273 26418: Id : 10, {_}:
15274 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
15275 [27, 26] by compatibility1 ?26 ?27
15276 26418: Id : 11, {_}:
15277 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15278 [30, 29] by compatibility2 ?29 ?30
15279 26418: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15280 26418: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15281 26418: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15282 26418: Id : 15, {_}:
15283 join ?38 (meet ?39 (join ?38 ?40))
15285 meet (join ?38 ?39) (join ?38 ?40)
15286 [40, 39, 38] by modular_law ?38 ?39 ?40
15288 26418: Id : 1, {_}:
15289 meet a (join b c) =<= join (meet a b) (meet a c)
15290 [] by prove_distributivity
15296 26418: b 2 0 2 1,2,2
15297 26418: c 2 0 2 2,2,2
15299 26418: complement 10 1 0
15300 26418: meet 17 2 3 0,2
15301 26418: join 18 2 2 0,2,2
15302 CLASH, statistics insufficient
15304 26419: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15305 26419: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15306 26419: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15307 26419: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15308 26419: Id : 6, {_}:
15309 meet ?12 ?13 =?= meet ?13 ?12
15310 [13, 12] by commutativity_of_meet ?12 ?13
15311 26419: Id : 7, {_}:
15312 join ?15 ?16 =?= join ?16 ?15
15313 [16, 15] by commutativity_of_join ?15 ?16
15314 26419: Id : 8, {_}:
15315 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15316 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15317 26419: Id : 9, {_}:
15318 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15319 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15320 26419: Id : 10, {_}:
15321 complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27)
15322 [27, 26] by compatibility1 ?26 ?27
15323 26419: Id : 11, {_}:
15324 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15325 [30, 29] by compatibility2 ?29 ?30
15326 26419: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15327 26419: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15328 26419: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15329 26419: Id : 15, {_}:
15330 join ?38 (meet ?39 (join ?38 ?40))
15332 meet (join ?38 ?39) (join ?38 ?40)
15333 [40, 39, 38] by modular_law ?38 ?39 ?40
15335 26419: Id : 1, {_}:
15336 meet a (join b c) =<= join (meet a b) (meet a c)
15337 [] by prove_distributivity
15343 26419: b 2 0 2 1,2,2
15344 26419: c 2 0 2 2,2,2
15346 26419: complement 10 1 0
15347 26419: meet 17 2 3 0,2
15348 26419: join 18 2 2 0,2,2
15349 % SZS status Timeout for LAT046-1.p
15350 NO CLASH, using fixed ground order
15352 26436: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15353 26436: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15354 26436: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15355 26436: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15356 26436: Id : 6, {_}:
15357 meet ?12 ?13 =?= meet ?13 ?12
15358 [13, 12] by commutativity_of_meet ?12 ?13
15359 26436: Id : 7, {_}:
15360 join ?15 ?16 =?= join ?16 ?15
15361 [16, 15] by commutativity_of_join ?15 ?16
15362 26436: Id : 8, {_}:
15363 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
15364 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15365 26436: Id : 9, {_}:
15366 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
15367 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15369 26436: Id : 1, {_}:
15370 join a (meet b (join a c)) =>= meet (join a b) (join a c)
15371 [] by prove_modularity
15375 26436: b 2 0 2 1,2,2
15376 26436: c 2 0 2 2,2,2,2
15378 26436: meet 11 2 2 0,2,2
15379 26436: join 13 2 4 0,2
15380 NO CLASH, using fixed ground order
15382 26437: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15383 26437: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15384 26437: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15385 26437: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15386 26437: Id : 6, {_}:
15387 meet ?12 ?13 =?= meet ?13 ?12
15388 [13, 12] by commutativity_of_meet ?12 ?13
15389 26437: Id : 7, {_}:
15390 join ?15 ?16 =?= join ?16 ?15
15391 [16, 15] by commutativity_of_join ?15 ?16
15392 26437: Id : 8, {_}:
15393 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15394 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15395 26437: Id : 9, {_}:
15396 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15397 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15399 26437: Id : 1, {_}:
15400 join a (meet b (join a c)) =>= meet (join a b) (join a c)
15401 [] by prove_modularity
15405 26437: b 2 0 2 1,2,2
15406 26437: c 2 0 2 2,2,2,2
15408 26437: meet 11 2 2 0,2,2
15409 26437: join 13 2 4 0,2
15410 NO CLASH, using fixed ground order
15412 26438: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15413 26438: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15414 26438: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15415 26438: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15416 26438: Id : 6, {_}:
15417 meet ?12 ?13 =?= meet ?13 ?12
15418 [13, 12] by commutativity_of_meet ?12 ?13
15419 26438: Id : 7, {_}:
15420 join ?15 ?16 =?= join ?16 ?15
15421 [16, 15] by commutativity_of_join ?15 ?16
15422 26438: Id : 8, {_}:
15423 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15424 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15425 26438: Id : 9, {_}:
15426 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15427 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15429 26438: Id : 1, {_}:
15430 join a (meet b (join a c)) =>= meet (join a b) (join a c)
15431 [] by prove_modularity
15435 26438: b 2 0 2 1,2,2
15436 26438: c 2 0 2 2,2,2,2
15438 26438: meet 11 2 2 0,2,2
15439 26438: join 13 2 4 0,2
15440 % SZS status Timeout for LAT047-1.p
15441 NO CLASH, using fixed ground order
15443 26479: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15444 26479: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15445 26479: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15446 26479: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15447 26479: Id : 6, {_}:
15448 meet ?12 ?13 =?= meet ?13 ?12
15449 [13, 12] by commutativity_of_meet ?12 ?13
15450 26479: Id : 7, {_}:
15451 join ?15 ?16 =?= join ?16 ?15
15452 [16, 15] by commutativity_of_join ?15 ?16
15453 26479: Id : 8, {_}:
15454 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
15455 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15456 26479: Id : 9, {_}:
15457 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
15458 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15459 26479: Id : 10, {_}:
15460 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
15461 [27, 26] by compatibility1 ?26 ?27
15462 26479: Id : 11, {_}:
15463 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15464 [30, 29] by compatibility2 ?29 ?30
15465 26479: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15466 26479: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15467 26479: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15468 26479: Id : 15, {_}:
15469 join (meet (complement ?38) (join ?38 ?39))
15470 (join (complement ?39) (meet ?38 ?39))
15473 [39, 38] by weak_orthomodular_law ?38 ?39
15475 26479: Id : 1, {_}:
15476 join a (meet (complement a) (join a b)) =>= join a b
15477 [] by prove_orthomodular_law
15483 26479: b 2 0 2 2,2,2,2
15485 26479: complement 13 1 1 0,1,2,2
15486 26479: meet 15 2 1 0,2,2
15487 26479: join 18 2 3 0,2
15488 NO CLASH, using fixed ground order
15490 26480: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15491 26480: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15492 26480: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15493 26480: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15494 26480: Id : 6, {_}:
15495 meet ?12 ?13 =?= meet ?13 ?12
15496 [13, 12] by commutativity_of_meet ?12 ?13
15497 26480: Id : 7, {_}:
15498 join ?15 ?16 =?= join ?16 ?15
15499 [16, 15] by commutativity_of_join ?15 ?16
15500 26480: Id : 8, {_}:
15501 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15502 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15503 26480: Id : 9, {_}:
15504 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15505 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15506 26480: Id : 10, {_}:
15507 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
15508 [27, 26] by compatibility1 ?26 ?27
15509 26480: Id : 11, {_}:
15510 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15511 [30, 29] by compatibility2 ?29 ?30
15512 26480: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15513 26480: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15514 26480: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15515 NO CLASH, using fixed ground order
15517 26481: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15518 26481: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15519 26481: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15520 26481: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15521 26481: Id : 6, {_}:
15522 meet ?12 ?13 =?= meet ?13 ?12
15523 [13, 12] by commutativity_of_meet ?12 ?13
15524 26481: Id : 7, {_}:
15525 join ?15 ?16 =?= join ?16 ?15
15526 [16, 15] by commutativity_of_join ?15 ?16
15527 26481: Id : 8, {_}:
15528 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15529 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15530 26481: Id : 9, {_}:
15531 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15532 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15533 26481: Id : 10, {_}:
15534 complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27)
15535 [27, 26] by compatibility1 ?26 ?27
15536 26481: Id : 11, {_}:
15537 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15538 [30, 29] by compatibility2 ?29 ?30
15539 26481: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15540 26481: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15541 26481: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15542 26481: Id : 15, {_}:
15543 join (meet (complement ?38) (join ?38 ?39))
15544 (join (complement ?39) (meet ?38 ?39))
15547 [39, 38] by weak_orthomodular_law ?38 ?39
15549 26481: Id : 1, {_}:
15550 join a (meet (complement a) (join a b)) =>= join a b
15551 [] by prove_orthomodular_law
15557 26481: b 2 0 2 2,2,2,2
15559 26481: complement 13 1 1 0,1,2,2
15560 26481: meet 15 2 1 0,2,2
15561 26481: join 18 2 3 0,2
15562 26480: Id : 15, {_}:
15563 join (meet (complement ?38) (join ?38 ?39))
15564 (join (complement ?39) (meet ?38 ?39))
15567 [39, 38] by weak_orthomodular_law ?38 ?39
15569 26480: Id : 1, {_}:
15570 join a (meet (complement a) (join a b)) =>= join a b
15571 [] by prove_orthomodular_law
15577 26480: b 2 0 2 2,2,2,2
15579 26480: complement 13 1 1 0,1,2,2
15580 26480: meet 15 2 1 0,2,2
15581 26480: join 18 2 3 0,2
15582 % SZS status Timeout for LAT048-1.p
15583 NO CLASH, using fixed ground order
15585 26500: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15586 26500: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15587 26500: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15588 26500: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15589 26500: Id : 6, {_}:
15590 meet ?12 ?13 =?= meet ?13 ?12
15591 [13, 12] by commutativity_of_meet ?12 ?13
15592 26500: Id : 7, {_}:
15593 join ?15 ?16 =?= join ?16 ?15
15594 [16, 15] by commutativity_of_join ?15 ?16
15595 26500: Id : 8, {_}:
15596 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
15597 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15598 26500: Id : 9, {_}:
15599 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
15600 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15601 26500: Id : 10, {_}:
15602 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
15603 [27, 26] by compatibility1 ?26 ?27
15604 26500: Id : 11, {_}:
15605 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15606 [30, 29] by compatibility2 ?29 ?30
15607 26500: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15608 26500: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15609 26500: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15611 26500: Id : 1, {_}:
15612 join (meet (complement a) (join a b))
15613 (join (complement b) (meet a b))
15616 [] by prove_weak_orthomodular_law
15622 26500: a 3 0 3 1,1,1,2
15623 26500: b 3 0 3 2,2,1,2
15624 26500: complement 12 1 2 0,1,1,2
15625 26500: meet 14 2 2 0,1,2
15626 26500: join 15 2 3 0,2
15627 NO CLASH, using fixed ground order
15629 26501: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15630 26501: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15631 26501: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15632 26501: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15633 26501: Id : 6, {_}:
15634 meet ?12 ?13 =?= meet ?13 ?12
15635 [13, 12] by commutativity_of_meet ?12 ?13
15636 26501: Id : 7, {_}:
15637 join ?15 ?16 =?= join ?16 ?15
15638 [16, 15] by commutativity_of_join ?15 ?16
15639 26501: Id : 8, {_}:
15640 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15641 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15642 26501: Id : 9, {_}:
15643 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15644 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15645 26501: Id : 10, {_}:
15646 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
15647 [27, 26] by compatibility1 ?26 ?27
15648 26501: Id : 11, {_}:
15649 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15650 [30, 29] by compatibility2 ?29 ?30
15651 26501: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15652 26501: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15653 26501: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15655 26501: Id : 1, {_}:
15656 join (meet (complement a) (join a b))
15657 (join (complement b) (meet a b))
15660 [] by prove_weak_orthomodular_law
15666 26501: a 3 0 3 1,1,1,2
15667 26501: b 3 0 3 2,2,1,2
15668 26501: complement 12 1 2 0,1,1,2
15669 26501: meet 14 2 2 0,1,2
15670 26501: join 15 2 3 0,2
15671 NO CLASH, using fixed ground order
15673 26502: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15674 26502: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15675 26502: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15676 26502: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15677 26502: Id : 6, {_}:
15678 meet ?12 ?13 =?= meet ?13 ?12
15679 [13, 12] by commutativity_of_meet ?12 ?13
15680 26502: Id : 7, {_}:
15681 join ?15 ?16 =?= join ?16 ?15
15682 [16, 15] by commutativity_of_join ?15 ?16
15683 26502: Id : 8, {_}:
15684 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15685 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15686 26502: Id : 9, {_}:
15687 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15688 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15689 26502: Id : 10, {_}:
15690 complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27)
15691 [27, 26] by compatibility1 ?26 ?27
15692 26502: Id : 11, {_}:
15693 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15694 [30, 29] by compatibility2 ?29 ?30
15695 26502: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15696 26502: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15697 26502: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15699 26502: Id : 1, {_}:
15700 join (meet (complement a) (join a b))
15701 (join (complement b) (meet a b))
15704 [] by prove_weak_orthomodular_law
15710 26502: a 3 0 3 1,1,1,2
15711 26502: b 3 0 3 2,2,1,2
15712 26502: complement 12 1 2 0,1,1,2
15713 26502: meet 14 2 2 0,1,2
15714 26502: join 15 2 3 0,2
15715 % SZS status Timeout for LAT049-1.p
15716 CLASH, statistics insufficient
15718 26530: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15719 26530: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15720 26530: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15721 26530: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15722 26530: Id : 6, {_}:
15723 meet ?12 ?13 =?= meet ?13 ?12
15724 [13, 12] by commutativity_of_meet ?12 ?13
15725 26530: Id : 7, {_}:
15726 join ?15 ?16 =?= join ?16 ?15
15727 [16, 15] by commutativity_of_join ?15 ?16
15728 26530: Id : 8, {_}:
15729 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
15730 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15731 26530: Id : 9, {_}:
15732 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
15733 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15734 26530: Id : 10, {_}:
15735 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
15736 [27, 26] by compatibility1 ?26 ?27
15737 26530: Id : 11, {_}:
15738 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15739 [30, 29] by compatibility2 ?29 ?30
15740 26530: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15741 26530: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15742 26530: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15743 26530: Id : 15, {_}:
15744 join ?38 (meet (complement ?38) (join ?38 ?39)) =>= join ?38 ?39
15745 [39, 38] by orthomodular_law ?38 ?39
15747 26530: Id : 1, {_}:
15748 join a (meet b (join a c)) =>= meet (join a b) (join a c)
15749 [] by prove_modular_law
15755 26530: b 2 0 2 1,2,2
15756 26530: c 2 0 2 2,2,2,2
15758 26530: complement 11 1 0
15759 26530: meet 15 2 2 0,2,2
15760 26530: join 19 2 4 0,2
15761 CLASH, statistics insufficient
15763 26531: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15764 26531: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15765 26531: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15766 26531: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15767 26531: Id : 6, {_}:
15768 meet ?12 ?13 =?= meet ?13 ?12
15769 [13, 12] by commutativity_of_meet ?12 ?13
15770 26531: Id : 7, {_}:
15771 join ?15 ?16 =?= join ?16 ?15
15772 [16, 15] by commutativity_of_join ?15 ?16
15773 26531: Id : 8, {_}:
15774 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15775 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15776 26531: Id : 9, {_}:
15777 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15778 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15779 26531: Id : 10, {_}:
15780 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
15781 [27, 26] by compatibility1 ?26 ?27
15782 26531: Id : 11, {_}:
15783 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15784 [30, 29] by compatibility2 ?29 ?30
15785 26531: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15786 26531: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15787 26531: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15788 26531: Id : 15, {_}:
15789 join ?38 (meet (complement ?38) (join ?38 ?39)) =>= join ?38 ?39
15790 [39, 38] by orthomodular_law ?38 ?39
15792 26531: Id : 1, {_}:
15793 join a (meet b (join a c)) =>= meet (join a b) (join a c)
15794 [] by prove_modular_law
15800 26531: b 2 0 2 1,2,2
15801 26531: c 2 0 2 2,2,2,2
15803 26531: complement 11 1 0
15804 26531: meet 15 2 2 0,2,2
15805 26531: join 19 2 4 0,2
15806 CLASH, statistics insufficient
15808 26532: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15809 26532: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15810 26532: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15811 26532: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15812 26532: Id : 6, {_}:
15813 meet ?12 ?13 =?= meet ?13 ?12
15814 [13, 12] by commutativity_of_meet ?12 ?13
15815 26532: Id : 7, {_}:
15816 join ?15 ?16 =?= join ?16 ?15
15817 [16, 15] by commutativity_of_join ?15 ?16
15818 26532: Id : 8, {_}:
15819 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15820 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15821 26532: Id : 9, {_}:
15822 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15823 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15824 26532: Id : 10, {_}:
15825 complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27)
15826 [27, 26] by compatibility1 ?26 ?27
15827 26532: Id : 11, {_}:
15828 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
15829 [30, 29] by compatibility2 ?29 ?30
15830 26532: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
15831 26532: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
15832 26532: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
15833 26532: Id : 15, {_}:
15834 join ?38 (meet (complement ?38) (join ?38 ?39)) =>= join ?38 ?39
15835 [39, 38] by orthomodular_law ?38 ?39
15837 26532: Id : 1, {_}:
15838 join a (meet b (join a c)) =>= meet (join a b) (join a c)
15839 [] by prove_modular_law
15845 26532: b 2 0 2 1,2,2
15846 26532: c 2 0 2 2,2,2,2
15848 26532: complement 11 1 0
15849 26532: meet 15 2 2 0,2,2
15850 26532: join 19 2 4 0,2
15851 % SZS status Timeout for LAT050-1.p
15852 CLASH, statistics insufficient
15854 26548: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15855 26548: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15856 26548: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15857 26548: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15858 26548: Id : 6, {_}:
15859 meet ?12 ?13 =?= meet ?13 ?12
15860 [13, 12] by commutativity_of_meet ?12 ?13
15861 26548: Id : 7, {_}:
15862 join ?15 ?16 =?= join ?16 ?15
15863 [16, 15] by commutativity_of_join ?15 ?16
15864 26548: Id : 8, {_}:
15865 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
15866 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15867 26548: Id : 9, {_}:
15868 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
15869 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15870 26548: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26
15871 26548: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28
15872 26548: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30
15874 26548: Id : 1, {_}:
15875 complement (join a b) =<= meet (complement a) (complement b)
15876 [] by prove_compatibility_law
15882 26548: a 2 0 2 1,1,2
15883 26548: b 2 0 2 2,1,2
15884 26548: complement 7 1 3 0,2
15885 26548: join 11 2 1 0,1,2
15886 26548: meet 11 2 1 0,3
15887 CLASH, statistics insufficient
15889 26549: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15890 26549: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15891 26549: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15892 26549: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15893 26549: Id : 6, {_}:
15894 meet ?12 ?13 =?= meet ?13 ?12
15895 [13, 12] by commutativity_of_meet ?12 ?13
15896 26549: Id : 7, {_}:
15897 join ?15 ?16 =?= join ?16 ?15
15898 [16, 15] by commutativity_of_join ?15 ?16
15899 26549: Id : 8, {_}:
15900 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15901 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15902 26549: Id : 9, {_}:
15903 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15904 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15905 26549: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26
15906 26549: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28
15907 26549: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30
15909 26549: Id : 1, {_}:
15910 complement (join a b) =<= meet (complement a) (complement b)
15911 [] by prove_compatibility_law
15917 26549: a 2 0 2 1,1,2
15918 26549: b 2 0 2 2,1,2
15919 26549: complement 7 1 3 0,2
15920 26549: join 11 2 1 0,1,2
15921 26549: meet 11 2 1 0,3
15922 CLASH, statistics insufficient
15924 26550: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15925 26550: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15926 26550: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15927 26550: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15928 26550: Id : 6, {_}:
15929 meet ?12 ?13 =?= meet ?13 ?12
15930 [13, 12] by commutativity_of_meet ?12 ?13
15931 26550: Id : 7, {_}:
15932 join ?15 ?16 =?= join ?16 ?15
15933 [16, 15] by commutativity_of_join ?15 ?16
15934 26550: Id : 8, {_}:
15935 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15936 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15937 26550: Id : 9, {_}:
15938 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15939 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15940 26550: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26
15941 26550: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28
15942 26550: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30
15944 26550: Id : 1, {_}:
15945 complement (join a b) =>= meet (complement a) (complement b)
15946 [] by prove_compatibility_law
15952 26550: a 2 0 2 1,1,2
15953 26550: b 2 0 2 2,1,2
15954 26550: complement 7 1 3 0,2
15955 26550: join 11 2 1 0,1,2
15956 26550: meet 11 2 1 0,3
15957 % SZS status Timeout for LAT051-1.p
15958 CLASH, statistics insufficient
15960 26611: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
15961 26611: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
15962 26611: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
15963 26611: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
15964 26611: Id : 6, {_}:
15965 meet ?12 ?13 =?= meet ?13 ?12
15966 [13, 12] by commutativity_of_meet ?12 ?13
15967 26611: Id : 7, {_}:
15968 join ?15 ?16 =?= join ?16 ?15
15969 [16, 15] by commutativity_of_join ?15 ?16
15970 26611: Id : 8, {_}:
15971 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
15972 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
15973 26611: Id : 9, {_}:
15974 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
15975 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
15976 26611: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26
15977 26611: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28
15978 26611: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30
15979 26611: Id : 13, {_}:
15980 join ?32 (meet ?33 (join ?32 ?34))
15982 meet (join ?32 ?33) (join ?32 ?34)
15983 [34, 33, 32] by modular_law ?32 ?33 ?34
15985 26611: Id : 1, {_}:
15986 complement (join a b) =<= meet (complement a) (complement b)
15987 [] by prove_compatibility_law
15993 26611: a 2 0 2 1,1,2
15994 26611: b 2 0 2 2,1,2
15995 26611: complement 7 1 3 0,2
15996 26611: meet 13 2 1 0,3
15997 26611: join 15 2 1 0,1,2
15998 CLASH, statistics insufficient
16000 26612: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16001 26612: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16002 26612: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16003 26612: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16004 26612: Id : 6, {_}:
16005 meet ?12 ?13 =?= meet ?13 ?12
16006 [13, 12] by commutativity_of_meet ?12 ?13
16007 26612: Id : 7, {_}:
16008 join ?15 ?16 =?= join ?16 ?15
16009 [16, 15] by commutativity_of_join ?15 ?16
16010 26612: Id : 8, {_}:
16011 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16012 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16013 26612: Id : 9, {_}:
16014 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16015 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16016 26612: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26
16017 26612: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28
16018 26612: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30
16019 26612: Id : 13, {_}:
16020 join ?32 (meet ?33 (join ?32 ?34))
16022 meet (join ?32 ?33) (join ?32 ?34)
16023 [34, 33, 32] by modular_law ?32 ?33 ?34
16025 26612: Id : 1, {_}:
16026 complement (join a b) =>= meet (complement a) (complement b)
16027 [] by prove_compatibility_law
16033 26612: a 2 0 2 1,1,2
16034 26612: b 2 0 2 2,1,2
16035 26612: complement 7 1 3 0,2
16036 26612: meet 13 2 1 0,3
16037 26612: join 15 2 1 0,1,2
16038 CLASH, statistics insufficient
16040 26610: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16041 26610: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16042 26610: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16043 26610: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16044 26610: Id : 6, {_}:
16045 meet ?12 ?13 =?= meet ?13 ?12
16046 [13, 12] by commutativity_of_meet ?12 ?13
16047 26610: Id : 7, {_}:
16048 join ?15 ?16 =?= join ?16 ?15
16049 [16, 15] by commutativity_of_join ?15 ?16
16050 26610: Id : 8, {_}:
16051 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16052 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16053 26610: Id : 9, {_}:
16054 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16055 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16056 26610: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by invertability1 ?26
16057 26610: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by invertability2 ?28
16058 26610: Id : 12, {_}: complement (complement ?30) =>= ?30 [30] by invertability3 ?30
16059 26610: Id : 13, {_}:
16060 join ?32 (meet ?33 (join ?32 ?34))
16062 meet (join ?32 ?33) (join ?32 ?34)
16063 [34, 33, 32] by modular_law ?32 ?33 ?34
16065 26610: Id : 1, {_}:
16066 complement (join a b) =<= meet (complement a) (complement b)
16067 [] by prove_compatibility_law
16073 26610: a 2 0 2 1,1,2
16074 26610: b 2 0 2 2,1,2
16075 26610: complement 7 1 3 0,2
16076 26610: meet 13 2 1 0,3
16077 26610: join 15 2 1 0,1,2
16078 % SZS status Timeout for LAT052-1.p
16079 CLASH, statistics insufficient
16081 26628: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16082 26628: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16083 26628: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16084 26628: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16085 26628: Id : 6, {_}:
16086 meet ?12 ?13 =?= meet ?13 ?12
16087 [13, 12] by commutativity_of_meet ?12 ?13
16088 26628: Id : 7, {_}:
16089 join ?15 ?16 =?= join ?16 ?15
16090 [16, 15] by commutativity_of_join ?15 ?16
16091 26628: Id : 8, {_}:
16092 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16093 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16094 26628: Id : 9, {_}:
16095 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16096 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16097 26628: Id : 10, {_}:
16098 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
16099 [27, 26] by compatibility1 ?26 ?27
16100 26628: Id : 11, {_}:
16101 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
16102 [30, 29] by compatibility2 ?29 ?30
16103 26628: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
16104 26628: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
16105 26628: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
16107 26628: Id : 1, {_}:
16109 (meet (complement b)
16110 (join (complement a)
16111 (meet (complement b)
16112 (join a (meet (complement b) (complement a))))))
16115 (meet (complement b)
16116 (join (complement a)
16117 (meet (complement b)
16119 (meet (complement b)
16120 (join (complement a) (meet (complement b) a)))))))
16127 26628: b 7 0 7 1,1,2,2
16129 26628: complement 21 1 11 0,1,2,2
16130 26628: join 19 2 7 0,2
16131 26628: meet 19 2 7 0,2,2
16132 CLASH, statistics insufficient
16134 26629: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16135 26629: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16136 26629: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16137 26629: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16138 26629: Id : 6, {_}:
16139 meet ?12 ?13 =?= meet ?13 ?12
16140 [13, 12] by commutativity_of_meet ?12 ?13
16141 26629: Id : 7, {_}:
16142 join ?15 ?16 =?= join ?16 ?15
16143 [16, 15] by commutativity_of_join ?15 ?16
16144 26629: Id : 8, {_}:
16145 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16146 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16147 26629: Id : 9, {_}:
16148 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16149 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16150 26629: Id : 10, {_}:
16151 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
16152 [27, 26] by compatibility1 ?26 ?27
16153 26629: Id : 11, {_}:
16154 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
16155 [30, 29] by compatibility2 ?29 ?30
16156 26629: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
16157 26629: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
16158 26629: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
16160 26629: Id : 1, {_}:
16162 (meet (complement b)
16163 (join (complement a)
16164 (meet (complement b)
16165 (join a (meet (complement b) (complement a))))))
16168 (meet (complement b)
16169 (join (complement a)
16170 (meet (complement b)
16172 (meet (complement b)
16173 (join (complement a) (meet (complement b) a)))))))
16180 26629: b 7 0 7 1,1,2,2
16182 26629: complement 21 1 11 0,1,2,2
16183 26629: join 19 2 7 0,2
16184 26629: meet 19 2 7 0,2,2
16185 CLASH, statistics insufficient
16187 26630: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16188 26630: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16189 26630: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16190 26630: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16191 26630: Id : 6, {_}:
16192 meet ?12 ?13 =?= meet ?13 ?12
16193 [13, 12] by commutativity_of_meet ?12 ?13
16194 26630: Id : 7, {_}:
16195 join ?15 ?16 =?= join ?16 ?15
16196 [16, 15] by commutativity_of_join ?15 ?16
16197 26630: Id : 8, {_}:
16198 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16199 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16200 26630: Id : 9, {_}:
16201 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16202 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16203 26630: Id : 10, {_}:
16204 complement (join ?26 ?27) =>= meet (complement ?26) (complement ?27)
16205 [27, 26] by compatibility1 ?26 ?27
16206 26630: Id : 11, {_}:
16207 complement (meet ?29 ?30) =>= join (complement ?29) (complement ?30)
16208 [30, 29] by compatibility2 ?29 ?30
16209 26630: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
16210 26630: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
16211 26630: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
16213 26630: Id : 1, {_}:
16215 (meet (complement b)
16216 (join (complement a)
16217 (meet (complement b)
16218 (join a (meet (complement b) (complement a))))))
16221 (meet (complement b)
16222 (join (complement a)
16223 (meet (complement b)
16225 (meet (complement b)
16226 (join (complement a) (meet (complement b) a)))))))
16233 26630: b 7 0 7 1,1,2,2
16235 26630: complement 21 1 11 0,1,2,2
16236 26630: join 19 2 7 0,2
16237 26630: meet 19 2 7 0,2,2
16238 % SZS status Timeout for LAT054-1.p
16239 CLASH, statistics insufficient
16241 26659: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16242 26659: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16243 26659: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16244 26659: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16245 26659: Id : 6, {_}:
16246 meet ?12 ?13 =?= meet ?13 ?12
16247 [13, 12] by commutativity_of_meet ?12 ?13
16248 26659: Id : 7, {_}:
16249 join ?15 ?16 =?= join ?16 ?15
16250 [16, 15] by commutativity_of_join ?15 ?16
16251 26659: Id : 8, {_}:
16252 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16253 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16254 26659: Id : 9, {_}:
16255 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16256 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16257 26659: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26
16258 26659: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28
16259 26659: Id : 12, {_}:
16260 meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31))
16261 [31, 30] by compatibility ?30 ?31
16263 26659: Id : 1, {_}:
16264 meet (join a (complement b))
16265 (join (join (meet a b) (meet (complement a) b))
16266 (meet (complement a) (complement b)))
16268 join (meet a b) (meet (complement a) (complement b))
16275 26659: a 6 0 6 1,1,2
16276 26659: b 6 0 6 1,2,1,2
16277 26659: complement 11 1 6 0,2,1,2
16278 26659: join 15 2 4 0,1,2
16279 26659: meet 17 2 6 0,2
16280 CLASH, statistics insufficient
16282 26660: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16283 26660: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16284 26660: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16285 26660: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16286 26660: Id : 6, {_}:
16287 meet ?12 ?13 =?= meet ?13 ?12
16288 [13, 12] by commutativity_of_meet ?12 ?13
16289 26660: Id : 7, {_}:
16290 join ?15 ?16 =?= join ?16 ?15
16291 [16, 15] by commutativity_of_join ?15 ?16
16292 26660: Id : 8, {_}:
16293 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16294 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16295 26660: Id : 9, {_}:
16296 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16297 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16298 26660: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26
16299 26660: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28
16300 26660: Id : 12, {_}:
16301 meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31))
16302 [31, 30] by compatibility ?30 ?31
16304 26660: Id : 1, {_}:
16305 meet (join a (complement b))
16306 (join (join (meet a b) (meet (complement a) b))
16307 (meet (complement a) (complement b)))
16309 join (meet a b) (meet (complement a) (complement b))
16316 26660: a 6 0 6 1,1,2
16317 26660: b 6 0 6 1,2,1,2
16318 26660: complement 11 1 6 0,2,1,2
16319 26660: join 15 2 4 0,1,2
16320 26660: meet 17 2 6 0,2
16321 CLASH, statistics insufficient
16323 26661: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16324 26661: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16325 26661: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16326 26661: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16327 26661: Id : 6, {_}:
16328 meet ?12 ?13 =?= meet ?13 ?12
16329 [13, 12] by commutativity_of_meet ?12 ?13
16330 26661: Id : 7, {_}:
16331 join ?15 ?16 =?= join ?16 ?15
16332 [16, 15] by commutativity_of_join ?15 ?16
16333 26661: Id : 8, {_}:
16334 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16335 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16336 26661: Id : 9, {_}:
16337 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16338 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16339 26661: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26
16340 26661: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28
16341 26661: Id : 12, {_}:
16342 meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31))
16343 [31, 30] by compatibility ?30 ?31
16345 26661: Id : 1, {_}:
16346 meet (join a (complement b))
16347 (join (join (meet a b) (meet (complement a) b))
16348 (meet (complement a) (complement b)))
16350 join (meet a b) (meet (complement a) (complement b))
16357 26661: a 6 0 6 1,1,2
16358 26661: b 6 0 6 1,2,1,2
16359 26661: complement 11 1 6 0,2,1,2
16360 26661: join 15 2 4 0,1,2
16361 26661: meet 17 2 6 0,2
16362 % SZS status Timeout for LAT062-1.p
16363 CLASH, statistics insufficient
16365 26678: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16366 26678: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16367 26678: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16368 26678: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16369 26678: Id : 6, {_}:
16370 meet ?12 ?13 =?= meet ?13 ?12
16371 [13, 12] by commutativity_of_meet ?12 ?13
16372 26678: Id : 7, {_}:
16373 join ?15 ?16 =?= join ?16 ?15
16374 [16, 15] by commutativity_of_join ?15 ?16
16375 26678: Id : 8, {_}:
16376 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16377 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16378 26678: Id : 9, {_}:
16379 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16380 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16381 26678: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26
16382 26678: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28
16383 26678: Id : 12, {_}:
16384 meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31))
16385 [31, 30] by compatibility ?30 ?31
16387 26678: Id : 1, {_}:
16388 meet a (join b (meet a (join (complement a) (meet a b))))
16390 meet a (join (complement a) (meet a b))
16397 26678: b 3 0 3 1,2,2
16399 26678: complement 7 1 2 0,1,2,2,2,2
16400 26678: join 14 2 3 0,2,2
16401 26678: meet 16 2 5 0,2
16402 CLASH, statistics insufficient
16404 26679: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16405 26679: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16406 26679: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16407 26679: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16408 26679: Id : 6, {_}:
16409 meet ?12 ?13 =?= meet ?13 ?12
16410 [13, 12] by commutativity_of_meet ?12 ?13
16411 26679: Id : 7, {_}:
16412 join ?15 ?16 =?= join ?16 ?15
16413 [16, 15] by commutativity_of_join ?15 ?16
16414 26679: Id : 8, {_}:
16415 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16416 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16417 26679: Id : 9, {_}:
16418 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16419 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16420 26679: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26
16421 26679: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28
16422 26679: Id : 12, {_}:
16423 meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31))
16424 [31, 30] by compatibility ?30 ?31
16426 26679: Id : 1, {_}:
16427 meet a (join b (meet a (join (complement a) (meet a b))))
16429 meet a (join (complement a) (meet a b))
16436 26679: b 3 0 3 1,2,2
16438 26679: complement 7 1 2 0,1,2,2,2,2
16439 26679: join 14 2 3 0,2,2
16440 26679: meet 16 2 5 0,2
16441 CLASH, statistics insufficient
16443 26680: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16444 26680: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16445 26680: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16446 26680: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16447 26680: Id : 6, {_}:
16448 meet ?12 ?13 =?= meet ?13 ?12
16449 [13, 12] by commutativity_of_meet ?12 ?13
16450 26680: Id : 7, {_}:
16451 join ?15 ?16 =?= join ?16 ?15
16452 [16, 15] by commutativity_of_join ?15 ?16
16453 26680: Id : 8, {_}:
16454 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16455 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16456 26680: Id : 9, {_}:
16457 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16458 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16459 26680: Id : 10, {_}: join (complement ?26) ?26 =>= n1 [26] by top ?26
16460 26680: Id : 11, {_}: meet (complement ?28) ?28 =>= n0 [28] by bottom ?28
16461 26680: Id : 12, {_}:
16462 meet ?30 ?31 =<= complement (join (complement ?30) (complement ?31))
16463 [31, 30] by compatibility ?30 ?31
16465 26680: Id : 1, {_}:
16466 meet a (join b (meet a (join (complement a) (meet a b))))
16468 meet a (join (complement a) (meet a b))
16475 26680: b 3 0 3 1,2,2
16477 26680: complement 7 1 2 0,1,2,2,2,2
16478 26680: join 14 2 3 0,2,2
16479 26680: meet 16 2 5 0,2
16480 % SZS status Timeout for LAT063-1.p
16481 NO CLASH, using fixed ground order
16483 26708: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16484 26708: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16485 26708: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16486 26708: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16487 26708: Id : 6, {_}:
16488 meet ?12 ?13 =?= meet ?13 ?12
16489 [13, 12] by commutativity_of_meet ?12 ?13
16490 26708: Id : 7, {_}:
16491 join ?15 ?16 =?= join ?16 ?15
16492 [16, 15] by commutativity_of_join ?15 ?16
16493 26708: Id : 8, {_}:
16494 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16495 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16496 26708: Id : 9, {_}:
16497 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16498 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16499 26708: Id : 10, {_}:
16500 meet ?26 (join ?27 (meet ?26 ?28))
16504 (meet ?28 (join (meet ?26 (join ?27 ?28)) (meet ?27 ?28))))
16505 [28, 27, 26] by equation_H2 ?26 ?27 ?28
16507 26708: Id : 1, {_}:
16508 meet a (join b (meet a c))
16510 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
16515 26708: c 3 0 3 2,2,2,2
16516 26708: b 4 0 4 1,2,2
16518 26708: join 17 2 4 0,2,2
16519 26708: meet 21 2 6 0,2
16520 NO CLASH, using fixed ground order
16522 26709: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16523 26709: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16524 26709: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16525 26709: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16526 26709: Id : 6, {_}:
16527 meet ?12 ?13 =?= meet ?13 ?12
16528 [13, 12] by commutativity_of_meet ?12 ?13
16529 26709: Id : 7, {_}:
16530 join ?15 ?16 =?= join ?16 ?15
16531 [16, 15] by commutativity_of_join ?15 ?16
16532 26709: Id : 8, {_}:
16533 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16534 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16535 26709: Id : 9, {_}:
16536 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16537 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16538 26709: Id : 10, {_}:
16539 meet ?26 (join ?27 (meet ?26 ?28))
16543 (meet ?28 (join (meet ?26 (join ?27 ?28)) (meet ?27 ?28))))
16544 [28, 27, 26] by equation_H2 ?26 ?27 ?28
16546 26709: Id : 1, {_}:
16547 meet a (join b (meet a c))
16549 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
16554 26709: c 3 0 3 2,2,2,2
16555 26709: b 4 0 4 1,2,2
16557 26709: join 17 2 4 0,2,2
16558 26709: meet 21 2 6 0,2
16559 NO CLASH, using fixed ground order
16561 26710: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16562 26710: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16563 26710: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16564 26710: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16565 26710: Id : 6, {_}:
16566 meet ?12 ?13 =?= meet ?13 ?12
16567 [13, 12] by commutativity_of_meet ?12 ?13
16568 26710: Id : 7, {_}:
16569 join ?15 ?16 =?= join ?16 ?15
16570 [16, 15] by commutativity_of_join ?15 ?16
16571 26710: Id : 8, {_}:
16572 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16573 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16574 26710: Id : 9, {_}:
16575 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16576 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16577 26710: Id : 10, {_}:
16578 meet ?26 (join ?27 (meet ?26 ?28))
16582 (meet ?28 (join (meet ?26 (join ?27 ?28)) (meet ?27 ?28))))
16583 [28, 27, 26] by equation_H2 ?26 ?27 ?28
16585 26710: Id : 1, {_}:
16586 meet a (join b (meet a c))
16588 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
16593 26710: c 3 0 3 2,2,2,2
16594 26710: b 4 0 4 1,2,2
16596 26710: join 17 2 4 0,2,2
16597 26710: meet 21 2 6 0,2
16598 % SZS status Timeout for LAT098-1.p
16599 NO CLASH, using fixed ground order
16601 26734: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16602 26734: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16603 26734: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16604 26734: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16605 26734: Id : 6, {_}:
16606 meet ?12 ?13 =?= meet ?13 ?12
16607 [13, 12] by commutativity_of_meet ?12 ?13
16608 26734: Id : 7, {_}:
16609 join ?15 ?16 =?= join ?16 ?15
16610 [16, 15] by commutativity_of_join ?15 ?16
16611 26734: Id : 8, {_}:
16612 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16613 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16614 26734: Id : 9, {_}:
16615 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16616 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16617 26734: Id : 10, {_}:
16618 meet ?26 (join ?27 (meet ?26 ?28))
16621 (join (meet ?26 (join ?27 (meet ?26 ?28)))
16622 (meet ?28 (join ?26 ?27)))
16623 [28, 27, 26] by equation_H6 ?26 ?27 ?28
16625 26734: Id : 1, {_}:
16626 meet a (join b (meet a (join c d)))
16628 meet a (join b (meet (join a (meet b d)) (join c d)))
16633 26734: c 2 0 2 1,2,2,2,2
16634 26734: b 3 0 3 1,2,2
16635 26734: d 3 0 3 2,2,2,2,2
16637 26734: join 18 2 5 0,2,2
16638 26734: meet 20 2 5 0,2
16639 NO CLASH, using fixed ground order
16641 26735: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16642 26735: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16643 26735: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16644 26735: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16645 26735: Id : 6, {_}:
16646 meet ?12 ?13 =?= meet ?13 ?12
16647 [13, 12] by commutativity_of_meet ?12 ?13
16648 26735: Id : 7, {_}:
16649 join ?15 ?16 =?= join ?16 ?15
16650 [16, 15] by commutativity_of_join ?15 ?16
16651 26735: Id : 8, {_}:
16652 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16653 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16654 26735: Id : 9, {_}:
16655 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16656 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16657 26735: Id : 10, {_}:
16658 meet ?26 (join ?27 (meet ?26 ?28))
16661 (join (meet ?26 (join ?27 (meet ?26 ?28)))
16662 (meet ?28 (join ?26 ?27)))
16663 [28, 27, 26] by equation_H6 ?26 ?27 ?28
16665 26735: Id : 1, {_}:
16666 meet a (join b (meet a (join c d)))
16668 meet a (join b (meet (join a (meet b d)) (join c d)))
16673 26735: c 2 0 2 1,2,2,2,2
16674 26735: b 3 0 3 1,2,2
16675 26735: d 3 0 3 2,2,2,2,2
16677 26735: join 18 2 5 0,2,2
16678 26735: meet 20 2 5 0,2
16679 NO CLASH, using fixed ground order
16681 26736: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16682 26736: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16683 26736: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16684 26736: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16685 26736: Id : 6, {_}:
16686 meet ?12 ?13 =?= meet ?13 ?12
16687 [13, 12] by commutativity_of_meet ?12 ?13
16688 26736: Id : 7, {_}:
16689 join ?15 ?16 =?= join ?16 ?15
16690 [16, 15] by commutativity_of_join ?15 ?16
16691 26736: Id : 8, {_}:
16692 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16693 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16694 26736: Id : 9, {_}:
16695 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16696 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16697 26736: Id : 10, {_}:
16698 meet ?26 (join ?27 (meet ?26 ?28))
16701 (join (meet ?26 (join ?27 (meet ?26 ?28)))
16702 (meet ?28 (join ?26 ?27)))
16703 [28, 27, 26] by equation_H6 ?26 ?27 ?28
16705 26736: Id : 1, {_}:
16706 meet a (join b (meet a (join c d)))
16708 meet a (join b (meet (join a (meet b d)) (join c d)))
16713 26736: c 2 0 2 1,2,2,2,2
16714 26736: b 3 0 3 1,2,2
16715 26736: d 3 0 3 2,2,2,2,2
16717 26736: join 18 2 5 0,2,2
16718 26736: meet 20 2 5 0,2
16719 % SZS status Timeout for LAT100-1.p
16720 NO CLASH, using fixed ground order
16722 26775: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16723 26775: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16724 26775: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16725 26775: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16726 26775: Id : 6, {_}:
16727 meet ?12 ?13 =?= meet ?13 ?12
16728 [13, 12] by commutativity_of_meet ?12 ?13
16729 26775: Id : 7, {_}:
16730 join ?15 ?16 =?= join ?16 ?15
16731 [16, 15] by commutativity_of_join ?15 ?16
16732 26775: Id : 8, {_}:
16733 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16734 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16735 26775: Id : 9, {_}:
16736 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16737 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16738 26775: Id : 10, {_}:
16739 meet ?26 (join ?27 (meet ?26 ?28))
16742 (join (meet ?26 (join ?27 (meet ?26 ?28)))
16743 (meet ?28 (join ?26 ?27)))
16744 [28, 27, 26] by equation_H6 ?26 ?27 ?28
16746 26775: Id : 1, {_}:
16747 meet a (join b (meet a c))
16749 meet a (join b (meet c (join a (meet b c))))
16754 26775: b 3 0 3 1,2,2
16755 26775: c 3 0 3 2,2,2,2
16757 26775: join 16 2 3 0,2,2
16758 26775: meet 20 2 5 0,2
16759 NO CLASH, using fixed ground order
16761 26776: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16762 26776: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16763 26776: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16764 26776: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16765 26776: Id : 6, {_}:
16766 meet ?12 ?13 =?= meet ?13 ?12
16767 [13, 12] by commutativity_of_meet ?12 ?13
16768 26776: Id : 7, {_}:
16769 join ?15 ?16 =?= join ?16 ?15
16770 [16, 15] by commutativity_of_join ?15 ?16
16771 26776: Id : 8, {_}:
16772 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16773 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16774 26776: Id : 9, {_}:
16775 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16776 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16777 26776: Id : 10, {_}:
16778 meet ?26 (join ?27 (meet ?26 ?28))
16781 (join (meet ?26 (join ?27 (meet ?26 ?28)))
16782 (meet ?28 (join ?26 ?27)))
16783 [28, 27, 26] by equation_H6 ?26 ?27 ?28
16785 26776: Id : 1, {_}:
16786 meet a (join b (meet a c))
16788 meet a (join b (meet c (join a (meet b c))))
16793 26776: b 3 0 3 1,2,2
16794 26776: c 3 0 3 2,2,2,2
16796 26776: join 16 2 3 0,2,2
16797 26776: meet 20 2 5 0,2
16798 NO CLASH, using fixed ground order
16800 26777: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16801 26777: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16802 26777: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16803 26777: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16804 26777: Id : 6, {_}:
16805 meet ?12 ?13 =?= meet ?13 ?12
16806 [13, 12] by commutativity_of_meet ?12 ?13
16807 26777: Id : 7, {_}:
16808 join ?15 ?16 =?= join ?16 ?15
16809 [16, 15] by commutativity_of_join ?15 ?16
16810 26777: Id : 8, {_}:
16811 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16812 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16813 26777: Id : 9, {_}:
16814 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16815 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16816 26777: Id : 10, {_}:
16817 meet ?26 (join ?27 (meet ?26 ?28))
16820 (join (meet ?26 (join ?27 (meet ?26 ?28)))
16821 (meet ?28 (join ?26 ?27)))
16822 [28, 27, 26] by equation_H6 ?26 ?27 ?28
16824 26777: Id : 1, {_}:
16825 meet a (join b (meet a c))
16827 meet a (join b (meet c (join a (meet b c))))
16832 26777: b 3 0 3 1,2,2
16833 26777: c 3 0 3 2,2,2,2
16835 26777: join 16 2 3 0,2,2
16836 26777: meet 20 2 5 0,2
16837 % SZS status Timeout for LAT101-1.p
16838 NO CLASH, using fixed ground order
16840 26819: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16841 26819: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16842 26819: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16843 26819: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16844 26819: Id : 6, {_}:
16845 meet ?12 ?13 =?= meet ?13 ?12
16846 [13, 12] by commutativity_of_meet ?12 ?13
16847 26819: Id : 7, {_}:
16848 join ?15 ?16 =?= join ?16 ?15
16849 [16, 15] by commutativity_of_join ?15 ?16
16850 26819: Id : 8, {_}:
16851 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16852 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16853 26819: Id : 9, {_}:
16854 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16855 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16856 26819: Id : 10, {_}:
16857 meet ?26 (join ?27 (meet ?26 ?28))
16861 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))))
16862 [28, 27, 26] by equation_H7 ?26 ?27 ?28
16864 26819: Id : 1, {_}:
16865 meet a (join b (meet a (join c d)))
16867 meet a (join b (meet (join a (meet b d)) (join c d)))
16872 26819: c 2 0 2 1,2,2,2,2
16873 26819: b 3 0 3 1,2,2
16874 26819: d 3 0 3 2,2,2,2,2
16876 26819: join 18 2 5 0,2,2
16877 26819: meet 20 2 5 0,2
16878 NO CLASH, using fixed ground order
16880 26820: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16881 26820: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16882 26820: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16883 26820: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16884 26820: Id : 6, {_}:
16885 meet ?12 ?13 =?= meet ?13 ?12
16886 [13, 12] by commutativity_of_meet ?12 ?13
16887 26820: Id : 7, {_}:
16888 join ?15 ?16 =?= join ?16 ?15
16889 [16, 15] by commutativity_of_join ?15 ?16
16890 26820: Id : 8, {_}:
16891 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16892 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16893 26820: Id : 9, {_}:
16894 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16895 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16896 26820: Id : 10, {_}:
16897 meet ?26 (join ?27 (meet ?26 ?28))
16901 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))))
16902 [28, 27, 26] by equation_H7 ?26 ?27 ?28
16904 26820: Id : 1, {_}:
16905 meet a (join b (meet a (join c d)))
16907 meet a (join b (meet (join a (meet b d)) (join c d)))
16912 26820: c 2 0 2 1,2,2,2,2
16913 26820: b 3 0 3 1,2,2
16914 26820: d 3 0 3 2,2,2,2,2
16916 26820: join 18 2 5 0,2,2
16917 26820: meet 20 2 5 0,2
16918 NO CLASH, using fixed ground order
16920 26821: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16921 26821: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16922 26821: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16923 26821: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16924 26821: Id : 6, {_}:
16925 meet ?12 ?13 =?= meet ?13 ?12
16926 [13, 12] by commutativity_of_meet ?12 ?13
16927 26821: Id : 7, {_}:
16928 join ?15 ?16 =?= join ?16 ?15
16929 [16, 15] by commutativity_of_join ?15 ?16
16930 26821: Id : 8, {_}:
16931 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
16932 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16933 26821: Id : 9, {_}:
16934 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
16935 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16936 26821: Id : 10, {_}:
16937 meet ?26 (join ?27 (meet ?26 ?28))
16941 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))))
16942 [28, 27, 26] by equation_H7 ?26 ?27 ?28
16944 26821: Id : 1, {_}:
16945 meet a (join b (meet a (join c d)))
16947 meet a (join b (meet (join a (meet b d)) (join c d)))
16952 26821: c 2 0 2 1,2,2,2,2
16953 26821: b 3 0 3 1,2,2
16954 26821: d 3 0 3 2,2,2,2,2
16956 26821: join 18 2 5 0,2,2
16957 26821: meet 20 2 5 0,2
16958 % SZS status Timeout for LAT102-1.p
16959 NO CLASH, using fixed ground order
16961 26896: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16962 26896: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
16963 26896: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
16964 26896: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
16965 26896: Id : 6, {_}:
16966 meet ?12 ?13 =?= meet ?13 ?12
16967 [13, 12] by commutativity_of_meet ?12 ?13
16968 26896: Id : 7, {_}:
16969 join ?15 ?16 =?= join ?16 ?15
16970 [16, 15] by commutativity_of_join ?15 ?16
16971 26896: Id : 8, {_}:
16972 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
16973 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
16974 26896: Id : 9, {_}:
16975 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
16976 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
16977 26896: Id : 10, {_}:
16978 meet ?26 (join ?27 (meet ?26 ?28))
16980 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 ?28))))
16981 [28, 27, 26] by equation_H10 ?26 ?27 ?28
16983 26896: Id : 1, {_}:
16984 meet a (join b (meet a c))
16986 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
16991 26896: b 3 0 3 1,2,2
16992 26896: c 3 0 3 2,2,2,2
16994 26896: join 16 2 4 0,2,2
16995 26896: meet 20 2 6 0,2
16996 NO CLASH, using fixed ground order
16998 26897: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
16999 26897: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17000 26897: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17001 26897: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17002 26897: Id : 6, {_}:
17003 meet ?12 ?13 =?= meet ?13 ?12
17004 [13, 12] by commutativity_of_meet ?12 ?13
17005 26897: Id : 7, {_}:
17006 join ?15 ?16 =?= join ?16 ?15
17007 [16, 15] by commutativity_of_join ?15 ?16
17008 26897: Id : 8, {_}:
17009 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17010 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17011 26897: Id : 9, {_}:
17012 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17013 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17014 26897: Id : 10, {_}:
17015 meet ?26 (join ?27 (meet ?26 ?28))
17017 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 ?28))))
17018 [28, 27, 26] by equation_H10 ?26 ?27 ?28
17020 26897: Id : 1, {_}:
17021 meet a (join b (meet a c))
17023 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
17028 26897: b 3 0 3 1,2,2
17029 26897: c 3 0 3 2,2,2,2
17031 26897: join 16 2 4 0,2,2
17032 26897: meet 20 2 6 0,2
17033 NO CLASH, using fixed ground order
17035 26898: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17036 26898: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17037 26898: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17038 26898: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17039 26898: Id : 6, {_}:
17040 meet ?12 ?13 =?= meet ?13 ?12
17041 [13, 12] by commutativity_of_meet ?12 ?13
17042 26898: Id : 7, {_}:
17043 join ?15 ?16 =?= join ?16 ?15
17044 [16, 15] by commutativity_of_join ?15 ?16
17045 26898: Id : 8, {_}:
17046 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17047 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17048 26898: Id : 9, {_}:
17049 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17050 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17051 26898: Id : 10, {_}:
17052 meet ?26 (join ?27 (meet ?26 ?28))
17054 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?27 ?28))))
17055 [28, 27, 26] by equation_H10 ?26 ?27 ?28
17057 26898: Id : 1, {_}:
17058 meet a (join b (meet a c))
17060 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
17065 26898: b 3 0 3 1,2,2
17066 26898: c 3 0 3 2,2,2,2
17068 26898: join 16 2 4 0,2,2
17069 26898: meet 20 2 6 0,2
17070 % SZS status Timeout for LAT103-1.p
17071 NO CLASH, using fixed ground order
17073 26925: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17074 26925: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17075 26925: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17076 26925: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17077 26925: Id : 6, {_}:
17078 meet ?12 ?13 =?= meet ?13 ?12
17079 [13, 12] by commutativity_of_meet ?12 ?13
17080 26925: Id : 7, {_}:
17081 join ?15 ?16 =?= join ?16 ?15
17082 [16, 15] by commutativity_of_join ?15 ?16
17083 26925: Id : 8, {_}:
17084 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
17085 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17086 26925: Id : 9, {_}:
17087 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
17088 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17089 26925: Id : 10, {_}:
17090 join (meet ?26 ?27) (meet ?26 ?28)
17093 (join (meet ?27 (join ?26 (meet ?27 ?28)))
17094 (meet ?28 (join ?26 ?27)))
17095 [28, 27, 26] by equation_H21 ?26 ?27 ?28
17097 26925: Id : 1, {_}:
17098 meet a (join b (meet a c))
17100 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
17105 26925: c 3 0 3 2,2,2,2
17106 26925: b 4 0 4 1,2,2
17108 26925: join 17 2 4 0,2,2
17109 26925: meet 21 2 6 0,2
17110 NO CLASH, using fixed ground order
17112 26926: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17113 26926: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17114 26926: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17115 26926: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17116 26926: Id : 6, {_}:
17117 meet ?12 ?13 =?= meet ?13 ?12
17118 [13, 12] by commutativity_of_meet ?12 ?13
17119 26926: Id : 7, {_}:
17120 join ?15 ?16 =?= join ?16 ?15
17121 [16, 15] by commutativity_of_join ?15 ?16
17122 26926: Id : 8, {_}:
17123 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17124 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17125 26926: Id : 9, {_}:
17126 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17127 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17128 26926: Id : 10, {_}:
17129 join (meet ?26 ?27) (meet ?26 ?28)
17132 (join (meet ?27 (join ?26 (meet ?27 ?28)))
17133 (meet ?28 (join ?26 ?27)))
17134 [28, 27, 26] by equation_H21 ?26 ?27 ?28
17136 26926: Id : 1, {_}:
17137 meet a (join b (meet a c))
17139 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
17144 26926: c 3 0 3 2,2,2,2
17145 26926: b 4 0 4 1,2,2
17147 26926: join 17 2 4 0,2,2
17148 26926: meet 21 2 6 0,2
17149 NO CLASH, using fixed ground order
17151 26927: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17152 26927: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17153 26927: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17154 26927: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17155 26927: Id : 6, {_}:
17156 meet ?12 ?13 =?= meet ?13 ?12
17157 [13, 12] by commutativity_of_meet ?12 ?13
17158 26927: Id : 7, {_}:
17159 join ?15 ?16 =?= join ?16 ?15
17160 [16, 15] by commutativity_of_join ?15 ?16
17161 26927: Id : 8, {_}:
17162 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17163 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17164 26927: Id : 9, {_}:
17165 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17166 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17167 26927: Id : 10, {_}:
17168 join (meet ?26 ?27) (meet ?26 ?28)
17171 (join (meet ?27 (join ?26 (meet ?27 ?28)))
17172 (meet ?28 (join ?26 ?27)))
17173 [28, 27, 26] by equation_H21 ?26 ?27 ?28
17175 26927: Id : 1, {_}:
17176 meet a (join b (meet a c))
17178 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
17183 26927: c 3 0 3 2,2,2,2
17184 26927: b 4 0 4 1,2,2
17186 26927: join 17 2 4 0,2,2
17187 26927: meet 21 2 6 0,2
17188 % SZS status Timeout for LAT104-1.p
17189 NO CLASH, using fixed ground order
17191 26956: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17192 26956: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17193 26956: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17194 26956: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17195 26956: Id : 6, {_}:
17196 meet ?12 ?13 =?= meet ?13 ?12
17197 [13, 12] by commutativity_of_meet ?12 ?13
17198 26956: Id : 7, {_}:
17199 join ?15 ?16 =?= join ?16 ?15
17200 [16, 15] by commutativity_of_join ?15 ?16
17201 26956: Id : 8, {_}:
17202 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
17203 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17204 26956: Id : 9, {_}:
17205 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
17206 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17207 26956: Id : 10, {_}:
17208 join (meet ?26 ?27) (meet ?26 ?28)
17211 (join (meet ?27 (join ?26 (meet ?27 ?28)))
17212 (meet ?28 (join ?26 ?27)))
17213 [28, 27, 26] by equation_H21 ?26 ?27 ?28
17215 26956: Id : 1, {_}:
17216 meet a (join b (meet a c))
17218 meet a (join b (meet c (join a (meet b c))))
17223 26956: b 3 0 3 1,2,2
17224 26956: c 3 0 3 2,2,2,2
17226 26956: join 16 2 3 0,2,2
17227 26956: meet 20 2 5 0,2
17228 NO CLASH, using fixed ground order
17230 26957: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17231 26957: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17232 26957: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17233 26957: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17234 26957: Id : 6, {_}:
17235 meet ?12 ?13 =?= meet ?13 ?12
17236 [13, 12] by commutativity_of_meet ?12 ?13
17237 26957: Id : 7, {_}:
17238 join ?15 ?16 =?= join ?16 ?15
17239 [16, 15] by commutativity_of_join ?15 ?16
17240 26957: Id : 8, {_}:
17241 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17242 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17243 26957: Id : 9, {_}:
17244 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17245 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17246 26957: Id : 10, {_}:
17247 join (meet ?26 ?27) (meet ?26 ?28)
17250 (join (meet ?27 (join ?26 (meet ?27 ?28)))
17251 (meet ?28 (join ?26 ?27)))
17252 [28, 27, 26] by equation_H21 ?26 ?27 ?28
17254 26957: Id : 1, {_}:
17255 meet a (join b (meet a c))
17257 meet a (join b (meet c (join a (meet b c))))
17262 26957: b 3 0 3 1,2,2
17263 26957: c 3 0 3 2,2,2,2
17265 26957: join 16 2 3 0,2,2
17266 26957: meet 20 2 5 0,2
17267 NO CLASH, using fixed ground order
17269 26958: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17270 26958: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17271 26958: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17272 26958: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17273 26958: Id : 6, {_}:
17274 meet ?12 ?13 =?= meet ?13 ?12
17275 [13, 12] by commutativity_of_meet ?12 ?13
17276 26958: Id : 7, {_}:
17277 join ?15 ?16 =?= join ?16 ?15
17278 [16, 15] by commutativity_of_join ?15 ?16
17279 26958: Id : 8, {_}:
17280 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17281 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17282 26958: Id : 9, {_}:
17283 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17284 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17285 26958: Id : 10, {_}:
17286 join (meet ?26 ?27) (meet ?26 ?28)
17289 (join (meet ?27 (join ?26 (meet ?27 ?28)))
17290 (meet ?28 (join ?26 ?27)))
17291 [28, 27, 26] by equation_H21 ?26 ?27 ?28
17293 26958: Id : 1, {_}:
17294 meet a (join b (meet a c))
17296 meet a (join b (meet c (join a (meet b c))))
17301 26958: b 3 0 3 1,2,2
17302 26958: c 3 0 3 2,2,2,2
17304 26958: join 16 2 3 0,2,2
17305 26958: meet 20 2 5 0,2
17306 % SZS status Timeout for LAT105-1.p
17307 NO CLASH, using fixed ground order
17309 27035: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17310 27035: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17311 27035: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17312 27035: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17313 27035: Id : 6, {_}:
17314 meet ?12 ?13 =?= meet ?13 ?12
17315 [13, 12] by commutativity_of_meet ?12 ?13
17316 27035: Id : 7, {_}:
17317 join ?15 ?16 =?= join ?16 ?15
17318 [16, 15] by commutativity_of_join ?15 ?16
17319 27035: Id : 8, {_}:
17320 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
17321 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17322 27035: Id : 9, {_}:
17323 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
17324 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17325 27035: Id : 10, {_}:
17326 join (meet ?26 ?27) (meet ?26 ?28)
17329 (join (meet ?27 (join ?28 (meet ?26 ?27)))
17330 (meet ?28 (join ?26 ?27)))
17331 [28, 27, 26] by equation_H22 ?26 ?27 ?28
17333 27035: Id : 1, {_}:
17334 meet a (join b (meet a c))
17336 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
17341 27035: c 3 0 3 2,2,2,2
17342 27035: b 4 0 4 1,2,2
17344 27035: join 17 2 4 0,2,2
17345 27035: meet 21 2 6 0,2
17346 NO CLASH, using fixed ground order
17348 27036: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17349 27036: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17350 27036: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17351 27036: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17352 27036: Id : 6, {_}:
17353 meet ?12 ?13 =?= meet ?13 ?12
17354 [13, 12] by commutativity_of_meet ?12 ?13
17355 27036: Id : 7, {_}:
17356 join ?15 ?16 =?= join ?16 ?15
17357 [16, 15] by commutativity_of_join ?15 ?16
17358 27036: Id : 8, {_}:
17359 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17360 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17361 27036: Id : 9, {_}:
17362 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17363 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17364 27036: Id : 10, {_}:
17365 join (meet ?26 ?27) (meet ?26 ?28)
17368 (join (meet ?27 (join ?28 (meet ?26 ?27)))
17369 (meet ?28 (join ?26 ?27)))
17370 [28, 27, 26] by equation_H22 ?26 ?27 ?28
17372 27036: Id : 1, {_}:
17373 meet a (join b (meet a c))
17375 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
17380 27036: c 3 0 3 2,2,2,2
17381 27036: b 4 0 4 1,2,2
17383 27036: join 17 2 4 0,2,2
17384 27036: meet 21 2 6 0,2
17385 NO CLASH, using fixed ground order
17387 27037: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17388 27037: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17389 27037: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17390 27037: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17391 27037: Id : 6, {_}:
17392 meet ?12 ?13 =?= meet ?13 ?12
17393 [13, 12] by commutativity_of_meet ?12 ?13
17394 27037: Id : 7, {_}:
17395 join ?15 ?16 =?= join ?16 ?15
17396 [16, 15] by commutativity_of_join ?15 ?16
17397 27037: Id : 8, {_}:
17398 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17399 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17400 27037: Id : 9, {_}:
17401 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17402 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17403 27037: Id : 10, {_}:
17404 join (meet ?26 ?27) (meet ?26 ?28)
17407 (join (meet ?27 (join ?28 (meet ?26 ?27)))
17408 (meet ?28 (join ?26 ?27)))
17409 [28, 27, 26] by equation_H22 ?26 ?27 ?28
17411 27037: Id : 1, {_}:
17412 meet a (join b (meet a c))
17414 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
17419 27037: c 3 0 3 2,2,2,2
17420 27037: b 4 0 4 1,2,2
17422 27037: join 17 2 4 0,2,2
17423 27037: meet 21 2 6 0,2
17424 % SZS status Timeout for LAT106-1.p
17425 NO CLASH, using fixed ground order
17427 27073: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17428 27073: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17429 27073: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17430 27073: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17431 27073: Id : 6, {_}:
17432 meet ?12 ?13 =?= meet ?13 ?12
17433 [13, 12] by commutativity_of_meet ?12 ?13
17434 27073: Id : 7, {_}:
17435 join ?15 ?16 =?= join ?16 ?15
17436 [16, 15] by commutativity_of_join ?15 ?16
17437 27073: Id : 8, {_}:
17438 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
17439 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17440 27073: Id : 9, {_}:
17441 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
17442 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17443 27073: Id : 10, {_}:
17444 join (meet ?26 ?27) (meet ?26 ?28)
17447 (join (meet ?27 (join ?28 (meet ?26 ?27)))
17448 (meet ?28 (join ?26 ?27)))
17449 [28, 27, 26] by equation_H22 ?26 ?27 ?28
17451 27073: Id : 1, {_}:
17452 meet a (join (meet a b) (meet a c))
17454 meet a (join (meet b (join a (meet b c))) (meet c (join a b)))
17459 27073: c 3 0 3 2,2,2,2
17460 27073: b 4 0 4 2,1,2,2
17462 27073: join 17 2 4 0,2,2
17463 27073: meet 22 2 7 0,2
17464 NO CLASH, using fixed ground order
17466 27074: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17467 27074: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17468 27074: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17469 27074: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17470 27074: Id : 6, {_}:
17471 meet ?12 ?13 =?= meet ?13 ?12
17472 [13, 12] by commutativity_of_meet ?12 ?13
17473 27074: Id : 7, {_}:
17474 join ?15 ?16 =?= join ?16 ?15
17475 [16, 15] by commutativity_of_join ?15 ?16
17476 27074: Id : 8, {_}:
17477 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17478 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17479 27074: Id : 9, {_}:
17480 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17481 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17482 27074: Id : 10, {_}:
17483 join (meet ?26 ?27) (meet ?26 ?28)
17486 (join (meet ?27 (join ?28 (meet ?26 ?27)))
17487 (meet ?28 (join ?26 ?27)))
17488 [28, 27, 26] by equation_H22 ?26 ?27 ?28
17490 27074: Id : 1, {_}:
17491 meet a (join (meet a b) (meet a c))
17493 meet a (join (meet b (join a (meet b c))) (meet c (join a b)))
17498 27074: c 3 0 3 2,2,2,2
17499 27074: b 4 0 4 2,1,2,2
17501 27074: join 17 2 4 0,2,2
17502 27074: meet 22 2 7 0,2
17503 NO CLASH, using fixed ground order
17505 27075: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17506 27075: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17507 27075: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17508 27075: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17509 27075: Id : 6, {_}:
17510 meet ?12 ?13 =?= meet ?13 ?12
17511 [13, 12] by commutativity_of_meet ?12 ?13
17512 27075: Id : 7, {_}:
17513 join ?15 ?16 =?= join ?16 ?15
17514 [16, 15] by commutativity_of_join ?15 ?16
17515 27075: Id : 8, {_}:
17516 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17517 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17518 27075: Id : 9, {_}:
17519 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17520 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17521 27075: Id : 10, {_}:
17522 join (meet ?26 ?27) (meet ?26 ?28)
17525 (join (meet ?27 (join ?28 (meet ?26 ?27)))
17526 (meet ?28 (join ?26 ?27)))
17527 [28, 27, 26] by equation_H22 ?26 ?27 ?28
17529 27075: Id : 1, {_}:
17530 meet a (join (meet a b) (meet a c))
17532 meet a (join (meet b (join a (meet b c))) (meet c (join a b)))
17537 27075: c 3 0 3 2,2,2,2
17538 27075: b 4 0 4 2,1,2,2
17540 27075: join 17 2 4 0,2,2
17541 27075: meet 22 2 7 0,2
17542 % SZS status Timeout for LAT107-1.p
17543 NO CLASH, using fixed ground order
17545 27091: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17546 27091: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17547 27091: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17548 27091: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17549 27091: Id : 6, {_}:
17550 meet ?12 ?13 =?= meet ?13 ?12
17551 [13, 12] by commutativity_of_meet ?12 ?13
17552 27091: Id : 7, {_}:
17553 join ?15 ?16 =?= join ?16 ?15
17554 [16, 15] by commutativity_of_join ?15 ?16
17555 27091: Id : 8, {_}:
17556 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
17557 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17558 27091: Id : 9, {_}:
17559 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
17560 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17561 27091: Id : 10, {_}:
17562 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
17564 meet ?26 (join ?27 (meet ?28 (meet ?29 (join ?27 (meet ?26 ?28)))))
17565 [29, 28, 27, 26] by equation_H31 ?26 ?27 ?28 ?29
17567 27091: Id : 1, {_}:
17568 meet a (join b (meet c (join a d)))
17570 meet a (join b (meet c (join b (join d (meet a c)))))
17575 27091: d 2 0 2 2,2,2,2,2
17576 27091: b 3 0 3 1,2,2
17577 27091: c 3 0 3 1,2,2,2
17579 27091: join 17 2 5 0,2,2
17580 27091: meet 21 2 5 0,2
17581 NO CLASH, using fixed ground order
17583 27092: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17584 27092: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17585 27092: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17586 27092: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17587 27092: Id : 6, {_}:
17588 meet ?12 ?13 =?= meet ?13 ?12
17589 [13, 12] by commutativity_of_meet ?12 ?13
17590 27092: Id : 7, {_}:
17591 join ?15 ?16 =?= join ?16 ?15
17592 [16, 15] by commutativity_of_join ?15 ?16
17593 27092: Id : 8, {_}:
17594 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17595 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17596 27092: Id : 9, {_}:
17597 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17598 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17599 27092: Id : 10, {_}:
17600 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
17602 meet ?26 (join ?27 (meet ?28 (meet ?29 (join ?27 (meet ?26 ?28)))))
17603 [29, 28, 27, 26] by equation_H31 ?26 ?27 ?28 ?29
17605 27092: Id : 1, {_}:
17606 meet a (join b (meet c (join a d)))
17608 meet a (join b (meet c (join b (join d (meet a c)))))
17613 27092: d 2 0 2 2,2,2,2,2
17614 27092: b 3 0 3 1,2,2
17615 27092: c 3 0 3 1,2,2,2
17617 27092: join 17 2 5 0,2,2
17618 27092: meet 21 2 5 0,2
17619 NO CLASH, using fixed ground order
17621 27093: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17622 27093: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17623 27093: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17624 27093: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17625 27093: Id : 6, {_}:
17626 meet ?12 ?13 =?= meet ?13 ?12
17627 [13, 12] by commutativity_of_meet ?12 ?13
17628 27093: Id : 7, {_}:
17629 join ?15 ?16 =?= join ?16 ?15
17630 [16, 15] by commutativity_of_join ?15 ?16
17631 27093: Id : 8, {_}:
17632 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17633 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17634 27093: Id : 9, {_}:
17635 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17636 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17637 27093: Id : 10, {_}:
17638 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
17640 meet ?26 (join ?27 (meet ?28 (meet ?29 (join ?27 (meet ?26 ?28)))))
17641 [29, 28, 27, 26] by equation_H31 ?26 ?27 ?28 ?29
17643 27093: Id : 1, {_}:
17644 meet a (join b (meet c (join a d)))
17646 meet a (join b (meet c (join b (join d (meet a c)))))
17651 27093: d 2 0 2 2,2,2,2,2
17652 27093: b 3 0 3 1,2,2
17653 27093: c 3 0 3 1,2,2,2
17655 27093: join 17 2 5 0,2,2
17656 27093: meet 21 2 5 0,2
17657 % SZS status Timeout for LAT108-1.p
17658 NO CLASH, using fixed ground order
17660 27126: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17661 27126: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17662 27126: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17663 27126: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17664 27126: Id : 6, {_}:
17665 meet ?12 ?13 =?= meet ?13 ?12
17666 [13, 12] by commutativity_of_meet ?12 ?13
17667 27126: Id : 7, {_}:
17668 join ?15 ?16 =?= join ?16 ?15
17669 [16, 15] by commutativity_of_join ?15 ?16
17670 27126: Id : 8, {_}:
17671 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
17672 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17673 27126: Id : 9, {_}:
17674 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
17675 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17676 27126: Id : 10, {_}:
17677 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
17679 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
17680 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
17682 27126: Id : 1, {_}:
17683 meet a (join b (meet c (join a d)))
17685 meet a (join b (meet c (join d (meet c (join a b)))))
17690 27126: d 2 0 2 2,2,2,2,2
17691 27126: b 3 0 3 1,2,2
17692 27126: c 3 0 3 1,2,2,2
17694 27126: meet 19 2 5 0,2
17695 27126: join 19 2 5 0,2,2
17696 NO CLASH, using fixed ground order
17698 27127: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17699 27127: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17700 27127: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17701 27127: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17702 27127: Id : 6, {_}:
17703 meet ?12 ?13 =?= meet ?13 ?12
17704 [13, 12] by commutativity_of_meet ?12 ?13
17705 27127: Id : 7, {_}:
17706 join ?15 ?16 =?= join ?16 ?15
17707 [16, 15] by commutativity_of_join ?15 ?16
17708 27127: Id : 8, {_}:
17709 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17710 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17711 27127: Id : 9, {_}:
17712 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17713 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17714 27127: Id : 10, {_}:
17715 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
17717 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
17718 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
17720 27127: Id : 1, {_}:
17721 meet a (join b (meet c (join a d)))
17723 meet a (join b (meet c (join d (meet c (join a b)))))
17728 27127: d 2 0 2 2,2,2,2,2
17729 27127: b 3 0 3 1,2,2
17730 27127: c 3 0 3 1,2,2,2
17732 27127: meet 19 2 5 0,2
17733 27127: join 19 2 5 0,2,2
17734 NO CLASH, using fixed ground order
17736 27128: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17737 27128: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17738 27128: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17739 27128: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17740 27128: Id : 6, {_}:
17741 meet ?12 ?13 =?= meet ?13 ?12
17742 [13, 12] by commutativity_of_meet ?12 ?13
17743 27128: Id : 7, {_}:
17744 join ?15 ?16 =?= join ?16 ?15
17745 [16, 15] by commutativity_of_join ?15 ?16
17746 27128: Id : 8, {_}:
17747 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17748 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17749 27128: Id : 9, {_}:
17750 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17751 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17752 27128: Id : 10, {_}:
17753 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
17755 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
17756 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
17758 27128: Id : 1, {_}:
17759 meet a (join b (meet c (join a d)))
17761 meet a (join b (meet c (join d (meet c (join a b)))))
17766 27128: d 2 0 2 2,2,2,2,2
17767 27128: b 3 0 3 1,2,2
17768 27128: c 3 0 3 1,2,2,2
17770 27128: meet 19 2 5 0,2
17771 27128: join 19 2 5 0,2,2
17772 % SZS status Timeout for LAT109-1.p
17773 NO CLASH, using fixed ground order
17774 NO CLASH, using fixed ground order
17776 NO CLASH, using fixed ground order
17777 27146: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17778 27146: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17779 27146: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17780 27146: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17781 27146: Id : 6, {_}:
17782 meet ?12 ?13 =?= meet ?13 ?12
17783 [13, 12] by commutativity_of_meet ?12 ?13
17784 27146: Id : 7, {_}:
17785 join ?15 ?16 =?= join ?16 ?15
17786 [16, 15] by commutativity_of_join ?15 ?16
17787 27146: Id : 8, {_}:
17788 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17789 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17790 27146: Id : 9, {_}:
17791 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17792 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17793 27146: Id : 10, {_}:
17794 meet ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
17796 meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
17797 [29, 28, 27, 26] by equation_H45 ?26 ?27 ?28 ?29
17799 27146: Id : 1, {_}:
17800 meet a (join b (meet c (join a d)))
17802 meet a (join b (meet c (join d (meet c (join a b)))))
17807 27146: d 2 0 2 2,2,2,2,2
17808 27146: b 3 0 3 1,2,2
17809 27146: c 3 0 3 1,2,2,2
17811 27146: join 17 2 5 0,2,2
17812 27146: meet 21 2 5 0,2
17814 27144: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17815 27144: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17816 27144: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17817 27144: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17818 27144: Id : 6, {_}:
17819 meet ?12 ?13 =?= meet ?13 ?12
17820 [13, 12] by commutativity_of_meet ?12 ?13
17821 27144: Id : 7, {_}:
17822 join ?15 ?16 =?= join ?16 ?15
17823 [16, 15] by commutativity_of_join ?15 ?16
17824 27144: Id : 8, {_}:
17825 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
17826 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17827 27144: Id : 9, {_}:
17828 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
17829 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17830 27144: Id : 10, {_}:
17831 meet ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
17833 meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
17834 [29, 28, 27, 26] by equation_H45 ?26 ?27 ?28 ?29
17836 27144: Id : 1, {_}:
17837 meet a (join b (meet c (join a d)))
17839 meet a (join b (meet c (join d (meet c (join a b)))))
17844 27144: d 2 0 2 2,2,2,2,2
17845 27144: b 3 0 3 1,2,2
17846 27144: c 3 0 3 1,2,2,2
17848 27144: join 17 2 5 0,2,2
17849 27144: meet 21 2 5 0,2
17851 27145: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17852 27145: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17853 27145: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17854 27145: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17855 27145: Id : 6, {_}:
17856 meet ?12 ?13 =?= meet ?13 ?12
17857 [13, 12] by commutativity_of_meet ?12 ?13
17858 27145: Id : 7, {_}:
17859 join ?15 ?16 =?= join ?16 ?15
17860 [16, 15] by commutativity_of_join ?15 ?16
17861 27145: Id : 8, {_}:
17862 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17863 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17864 27145: Id : 9, {_}:
17865 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17866 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17867 27145: Id : 10, {_}:
17868 meet ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
17870 meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
17871 [29, 28, 27, 26] by equation_H45 ?26 ?27 ?28 ?29
17873 27145: Id : 1, {_}:
17874 meet a (join b (meet c (join a d)))
17876 meet a (join b (meet c (join d (meet c (join a b)))))
17881 27145: d 2 0 2 2,2,2,2,2
17882 27145: b 3 0 3 1,2,2
17883 27145: c 3 0 3 1,2,2,2
17885 27145: join 17 2 5 0,2,2
17886 27145: meet 21 2 5 0,2
17887 % SZS status Timeout for LAT111-1.p
17888 NO CLASH, using fixed ground order
17890 27177: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17891 27177: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17892 27177: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17893 27177: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17894 27177: Id : 6, {_}:
17895 meet ?12 ?13 =?= meet ?13 ?12
17896 [13, 12] by commutativity_of_meet ?12 ?13
17897 27177: Id : 7, {_}:
17898 join ?15 ?16 =?= join ?16 ?15
17899 [16, 15] by commutativity_of_join ?15 ?16
17900 27177: Id : 8, {_}:
17901 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
17902 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17903 27177: Id : 9, {_}:
17904 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
17905 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17906 27177: Id : 10, {_}:
17907 meet ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
17909 meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?27 (meet ?26 ?28)))))
17910 [29, 28, 27, 26] by equation_H47 ?26 ?27 ?28 ?29
17912 27177: Id : 1, {_}:
17913 meet a (join b (meet c (join a d)))
17915 meet a (join b (meet c (join b (join d (meet a c)))))
17920 27177: d 2 0 2 2,2,2,2,2
17921 27177: b 3 0 3 1,2,2
17922 27177: c 3 0 3 1,2,2,2
17924 27177: join 17 2 5 0,2,2
17925 27177: meet 21 2 5 0,2
17926 NO CLASH, using fixed ground order
17928 27178: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17929 27178: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17930 27178: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17931 27178: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17932 27178: Id : 6, {_}:
17933 meet ?12 ?13 =?= meet ?13 ?12
17934 [13, 12] by commutativity_of_meet ?12 ?13
17935 27178: Id : 7, {_}:
17936 join ?15 ?16 =?= join ?16 ?15
17937 [16, 15] by commutativity_of_join ?15 ?16
17938 27178: Id : 8, {_}:
17939 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17940 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17941 27178: Id : 9, {_}:
17942 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17943 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17944 27178: Id : 10, {_}:
17945 meet ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
17947 meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?27 (meet ?26 ?28)))))
17948 [29, 28, 27, 26] by equation_H47 ?26 ?27 ?28 ?29
17950 27178: Id : 1, {_}:
17951 meet a (join b (meet c (join a d)))
17953 meet a (join b (meet c (join b (join d (meet a c)))))
17958 27178: d 2 0 2 2,2,2,2,2
17959 27178: b 3 0 3 1,2,2
17960 27178: c 3 0 3 1,2,2,2
17962 27178: join 17 2 5 0,2,2
17963 27178: meet 21 2 5 0,2
17964 NO CLASH, using fixed ground order
17966 27179: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
17967 27179: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
17968 27179: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
17969 27179: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
17970 27179: Id : 6, {_}:
17971 meet ?12 ?13 =?= meet ?13 ?12
17972 [13, 12] by commutativity_of_meet ?12 ?13
17973 27179: Id : 7, {_}:
17974 join ?15 ?16 =?= join ?16 ?15
17975 [16, 15] by commutativity_of_join ?15 ?16
17976 27179: Id : 8, {_}:
17977 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
17978 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
17979 27179: Id : 9, {_}:
17980 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
17981 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
17982 27179: Id : 10, {_}:
17983 meet ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
17985 meet ?26 (meet ?27 (join ?28 (meet ?29 (join ?27 (meet ?26 ?28)))))
17986 [29, 28, 27, 26] by equation_H47 ?26 ?27 ?28 ?29
17988 27179: Id : 1, {_}:
17989 meet a (join b (meet c (join a d)))
17991 meet a (join b (meet c (join b (join d (meet a c)))))
17996 27179: d 2 0 2 2,2,2,2,2
17997 27179: b 3 0 3 1,2,2
17998 27179: c 3 0 3 1,2,2,2
18000 27179: join 17 2 5 0,2,2
18001 27179: meet 21 2 5 0,2
18002 % SZS status Timeout for LAT112-1.p
18003 NO CLASH, using fixed ground order
18005 27203: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18006 27203: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18007 27203: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18008 27203: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18009 27203: Id : 6, {_}:
18010 meet ?12 ?13 =?= meet ?13 ?12
18011 [13, 12] by commutativity_of_meet ?12 ?13
18012 27203: Id : 7, {_}:
18013 join ?15 ?16 =?= join ?16 ?15
18014 [16, 15] by commutativity_of_join ?15 ?16
18015 27203: Id : 8, {_}:
18016 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18017 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18018 27203: Id : 9, {_}:
18019 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18020 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18021 27203: Id : 10, {_}:
18022 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
18024 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
18025 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
18027 27203: Id : 1, {_}:
18028 meet a (join b (meet c (join a d)))
18030 meet a (join b (meet c (join d (meet c (join a b)))))
18035 27203: d 2 0 2 2,2,2,2,2
18036 27203: b 3 0 3 1,2,2
18037 27203: c 3 0 3 1,2,2,2
18039 27203: meet 19 2 5 0,2
18040 27203: join 19 2 5 0,2,2
18041 NO CLASH, using fixed ground order
18043 27204: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18044 27204: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18045 27204: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18046 27204: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18047 27204: Id : 6, {_}:
18048 meet ?12 ?13 =?= meet ?13 ?12
18049 [13, 12] by commutativity_of_meet ?12 ?13
18050 27204: Id : 7, {_}:
18051 join ?15 ?16 =?= join ?16 ?15
18052 [16, 15] by commutativity_of_join ?15 ?16
18053 27204: Id : 8, {_}:
18054 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18055 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18056 27204: Id : 9, {_}:
18057 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18058 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18059 27204: Id : 10, {_}:
18060 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
18062 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
18063 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
18065 27204: Id : 1, {_}:
18066 meet a (join b (meet c (join a d)))
18068 meet a (join b (meet c (join d (meet c (join a b)))))
18073 27204: d 2 0 2 2,2,2,2,2
18074 27204: b 3 0 3 1,2,2
18075 27204: c 3 0 3 1,2,2,2
18077 27204: meet 19 2 5 0,2
18078 27204: join 19 2 5 0,2,2
18079 NO CLASH, using fixed ground order
18081 27205: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18082 27205: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18083 27205: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18084 27205: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18085 27205: Id : 6, {_}:
18086 meet ?12 ?13 =?= meet ?13 ?12
18087 [13, 12] by commutativity_of_meet ?12 ?13
18088 27205: Id : 7, {_}:
18089 join ?15 ?16 =?= join ?16 ?15
18090 [16, 15] by commutativity_of_join ?15 ?16
18091 27205: Id : 8, {_}:
18092 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18093 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18094 27205: Id : 9, {_}:
18095 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18096 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18097 27205: Id : 10, {_}:
18098 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
18100 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
18101 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
18103 27205: Id : 1, {_}:
18104 meet a (join b (meet c (join a d)))
18106 meet a (join b (meet c (join d (meet c (join a b)))))
18111 27205: d 2 0 2 2,2,2,2,2
18112 27205: b 3 0 3 1,2,2
18113 27205: c 3 0 3 1,2,2,2
18115 27205: meet 19 2 5 0,2
18116 27205: join 19 2 5 0,2,2
18117 % SZS status Timeout for LAT113-1.p
18118 NO CLASH, using fixed ground order
18120 27406: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18121 27406: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18122 27406: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18123 27406: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18124 27406: Id : 6, {_}:
18125 meet ?12 ?13 =?= meet ?13 ?12
18126 [13, 12] by commutativity_of_meet ?12 ?13
18127 27406: Id : 7, {_}:
18128 join ?15 ?16 =?= join ?16 ?15
18129 [16, 15] by commutativity_of_join ?15 ?16
18130 27406: Id : 8, {_}:
18131 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18132 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18133 27406: Id : 9, {_}:
18134 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18135 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18136 27406: Id : 10, {_}:
18137 join ?26 (meet ?27 (join ?26 ?28))
18139 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18140 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18142 27406: Id : 1, {_}:
18143 join (meet a b) (meet a (join b c))
18145 meet a (join b (meet (join a b) (join c (meet a b))))
18150 27406: c 2 0 2 2,2,2,2
18151 27406: a 5 0 5 1,1,2
18152 27406: b 5 0 5 2,1,2
18153 27406: meet 17 2 5 0,1,2
18154 27406: join 19 2 5 0,2
18155 NO CLASH, using fixed ground order
18157 27407: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18158 27407: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18159 27407: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18160 27407: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18161 27407: Id : 6, {_}:
18162 meet ?12 ?13 =?= meet ?13 ?12
18163 [13, 12] by commutativity_of_meet ?12 ?13
18164 27407: Id : 7, {_}:
18165 join ?15 ?16 =?= join ?16 ?15
18166 [16, 15] by commutativity_of_join ?15 ?16
18167 27407: Id : 8, {_}:
18168 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18169 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18170 27407: Id : 9, {_}:
18171 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18172 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18173 27407: Id : 10, {_}:
18174 join ?26 (meet ?27 (join ?26 ?28))
18176 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18177 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18179 27407: Id : 1, {_}:
18180 join (meet a b) (meet a (join b c))
18182 meet a (join b (meet (join a b) (join c (meet a b))))
18187 27407: c 2 0 2 2,2,2,2
18188 27407: a 5 0 5 1,1,2
18189 27407: b 5 0 5 2,1,2
18190 27407: meet 17 2 5 0,1,2
18191 27407: join 19 2 5 0,2
18192 NO CLASH, using fixed ground order
18194 27408: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18195 27408: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18196 27408: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18197 27408: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18198 27408: Id : 6, {_}:
18199 meet ?12 ?13 =?= meet ?13 ?12
18200 [13, 12] by commutativity_of_meet ?12 ?13
18201 27408: Id : 7, {_}:
18202 join ?15 ?16 =?= join ?16 ?15
18203 [16, 15] by commutativity_of_join ?15 ?16
18204 27408: Id : 8, {_}:
18205 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18206 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18207 27408: Id : 9, {_}:
18208 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18209 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18210 27408: Id : 10, {_}:
18211 join ?26 (meet ?27 (join ?26 ?28))
18213 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18214 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18216 27408: Id : 1, {_}:
18217 join (meet a b) (meet a (join b c))
18219 meet a (join b (meet (join a b) (join c (meet a b))))
18224 27408: c 2 0 2 2,2,2,2
18225 27408: a 5 0 5 1,1,2
18226 27408: b 5 0 5 2,1,2
18227 27408: meet 17 2 5 0,1,2
18228 27408: join 19 2 5 0,2
18229 % SZS status Timeout for LAT114-1.p
18230 NO CLASH, using fixed ground order
18232 27552: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18233 27552: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18234 27552: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18235 27552: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18236 27552: Id : 6, {_}:
18237 meet ?12 ?13 =?= meet ?13 ?12
18238 [13, 12] by commutativity_of_meet ?12 ?13
18239 27552: Id : 7, {_}:
18240 join ?15 ?16 =?= join ?16 ?15
18241 [16, 15] by commutativity_of_join ?15 ?16
18242 27552: Id : 8, {_}:
18243 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18244 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18245 27552: Id : 9, {_}:
18246 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18247 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18248 27552: Id : 10, {_}:
18249 join ?26 (meet ?27 (join ?26 ?28))
18251 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18252 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18254 27552: Id : 1, {_}:
18255 meet a (meet (join b c) (join b d))
18257 meet a (join b (meet (join b d) (join c (meet a b))))
18262 27552: c 2 0 2 2,1,2,2
18263 27552: d 2 0 2 2,2,2,2
18265 27552: b 5 0 5 1,1,2,2
18266 27552: meet 17 2 5 0,2
18267 27552: join 19 2 5 0,1,2,2
18268 NO CLASH, using fixed ground order
18270 27553: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18271 27553: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18272 27553: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18273 27553: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18274 27553: Id : 6, {_}:
18275 meet ?12 ?13 =?= meet ?13 ?12
18276 [13, 12] by commutativity_of_meet ?12 ?13
18277 27553: Id : 7, {_}:
18278 join ?15 ?16 =?= join ?16 ?15
18279 [16, 15] by commutativity_of_join ?15 ?16
18280 27553: Id : 8, {_}:
18281 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18282 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18283 27553: Id : 9, {_}:
18284 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18285 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18286 27553: Id : 10, {_}:
18287 join ?26 (meet ?27 (join ?26 ?28))
18289 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18290 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18292 27553: Id : 1, {_}:
18293 meet a (meet (join b c) (join b d))
18295 meet a (join b (meet (join b d) (join c (meet a b))))
18300 27553: c 2 0 2 2,1,2,2
18301 27553: d 2 0 2 2,2,2,2
18303 27553: b 5 0 5 1,1,2,2
18304 27553: meet 17 2 5 0,2
18305 27553: join 19 2 5 0,1,2,2
18306 NO CLASH, using fixed ground order
18308 27554: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18309 27554: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18310 27554: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18311 27554: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18312 27554: Id : 6, {_}:
18313 meet ?12 ?13 =?= meet ?13 ?12
18314 [13, 12] by commutativity_of_meet ?12 ?13
18315 27554: Id : 7, {_}:
18316 join ?15 ?16 =?= join ?16 ?15
18317 [16, 15] by commutativity_of_join ?15 ?16
18318 27554: Id : 8, {_}:
18319 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18320 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18321 27554: Id : 9, {_}:
18322 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18323 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18324 27554: Id : 10, {_}:
18325 join ?26 (meet ?27 (join ?26 ?28))
18327 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18328 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18330 27554: Id : 1, {_}:
18331 meet a (meet (join b c) (join b d))
18333 meet a (join b (meet (join b d) (join c (meet a b))))
18338 27554: c 2 0 2 2,1,2,2
18339 27554: d 2 0 2 2,2,2,2
18341 27554: b 5 0 5 1,1,2,2
18342 27554: meet 17 2 5 0,2
18343 27554: join 19 2 5 0,1,2,2
18344 % SZS status Timeout for LAT115-1.p
18345 NO CLASH, using fixed ground order
18347 27591: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18348 27591: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18349 27591: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18350 27591: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18351 27591: Id : 6, {_}:
18352 meet ?12 ?13 =?= meet ?13 ?12
18353 [13, 12] by commutativity_of_meet ?12 ?13
18354 27591: Id : 7, {_}:
18355 join ?15 ?16 =?= join ?16 ?15
18356 [16, 15] by commutativity_of_join ?15 ?16
18357 27591: Id : 8, {_}:
18358 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18359 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18360 27591: Id : 9, {_}:
18361 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18362 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18363 27591: Id : 10, {_}:
18364 join ?26 (meet ?27 (join ?26 ?28))
18366 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18367 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18369 27591: Id : 1, {_}:
18370 meet a (meet (join b c) (join b d))
18372 meet a (join b (meet (join b c) (join d (meet a b))))
18377 27591: c 2 0 2 2,1,2,2
18378 27591: d 2 0 2 2,2,2,2
18380 27591: b 5 0 5 1,1,2,2
18381 27591: meet 17 2 5 0,2
18382 27591: join 19 2 5 0,1,2,2
18383 NO CLASH, using fixed ground order
18385 27592: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18386 27592: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18387 27592: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18388 27592: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18389 27592: Id : 6, {_}:
18390 meet ?12 ?13 =?= meet ?13 ?12
18391 [13, 12] by commutativity_of_meet ?12 ?13
18392 27592: Id : 7, {_}:
18393 join ?15 ?16 =?= join ?16 ?15
18394 [16, 15] by commutativity_of_join ?15 ?16
18395 27592: Id : 8, {_}:
18396 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18397 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18398 27592: Id : 9, {_}:
18399 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18400 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18401 27592: Id : 10, {_}:
18402 join ?26 (meet ?27 (join ?26 ?28))
18404 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18405 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18407 27592: Id : 1, {_}:
18408 meet a (meet (join b c) (join b d))
18410 meet a (join b (meet (join b c) (join d (meet a b))))
18415 27592: c 2 0 2 2,1,2,2
18416 27592: d 2 0 2 2,2,2,2
18418 27592: b 5 0 5 1,1,2,2
18419 27592: meet 17 2 5 0,2
18420 27592: join 19 2 5 0,1,2,2
18421 NO CLASH, using fixed ground order
18423 27593: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18424 27593: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18425 27593: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18426 27593: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18427 27593: Id : 6, {_}:
18428 meet ?12 ?13 =?= meet ?13 ?12
18429 [13, 12] by commutativity_of_meet ?12 ?13
18430 27593: Id : 7, {_}:
18431 join ?15 ?16 =?= join ?16 ?15
18432 [16, 15] by commutativity_of_join ?15 ?16
18433 27593: Id : 8, {_}:
18434 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18435 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18436 27593: Id : 9, {_}:
18437 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18438 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18439 27593: Id : 10, {_}:
18440 join ?26 (meet ?27 (join ?26 ?28))
18442 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
18443 [28, 27, 26] by equation_H55 ?26 ?27 ?28
18445 27593: Id : 1, {_}:
18446 meet a (meet (join b c) (join b d))
18448 meet a (join b (meet (join b c) (join d (meet a b))))
18453 27593: c 2 0 2 2,1,2,2
18454 27593: d 2 0 2 2,2,2,2
18456 27593: b 5 0 5 1,1,2,2
18457 27593: meet 17 2 5 0,2
18458 27593: join 19 2 5 0,1,2,2
18459 % SZS status Timeout for LAT116-1.p
18460 NO CLASH, using fixed ground order
18462 27609: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18463 27609: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18464 27609: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18465 27609: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18466 27609: Id : 6, {_}:
18467 meet ?12 ?13 =?= meet ?13 ?12
18468 [13, 12] by commutativity_of_meet ?12 ?13
18469 27609: Id : 7, {_}:
18470 join ?15 ?16 =?= join ?16 ?15
18471 [16, 15] by commutativity_of_join ?15 ?16
18472 27609: Id : 8, {_}:
18473 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18474 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18475 27609: Id : 9, {_}:
18476 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18477 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18478 27609: Id : 10, {_}:
18479 meet ?26 (join ?27 (meet ?28 ?29))
18481 meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 ?29))))
18482 [29, 28, 27, 26] by equation_H65 ?26 ?27 ?28 ?29
18484 27609: Id : 1, {_}:
18487 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
18492 27609: b 3 0 3 1,2,2
18493 27609: c 3 0 3 2,2,2
18495 27609: join 16 2 4 0,2,2
18496 27609: meet 20 2 5 0,2
18497 NO CLASH, using fixed ground order
18499 27610: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18500 27610: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18501 27610: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18502 27610: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18503 27610: Id : 6, {_}:
18504 meet ?12 ?13 =?= meet ?13 ?12
18505 [13, 12] by commutativity_of_meet ?12 ?13
18506 27610: Id : 7, {_}:
18507 join ?15 ?16 =?= join ?16 ?15
18508 [16, 15] by commutativity_of_join ?15 ?16
18509 27610: Id : 8, {_}:
18510 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18511 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18512 27610: Id : 9, {_}:
18513 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18514 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18515 27610: Id : 10, {_}:
18516 meet ?26 (join ?27 (meet ?28 ?29))
18518 meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 ?29))))
18519 [29, 28, 27, 26] by equation_H65 ?26 ?27 ?28 ?29
18521 27610: Id : 1, {_}:
18524 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
18529 27610: b 3 0 3 1,2,2
18530 27610: c 3 0 3 2,2,2
18532 27610: join 16 2 4 0,2,2
18533 27610: meet 20 2 5 0,2
18534 NO CLASH, using fixed ground order
18536 27611: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18537 27611: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18538 27611: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18539 27611: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18540 27611: Id : 6, {_}:
18541 meet ?12 ?13 =?= meet ?13 ?12
18542 [13, 12] by commutativity_of_meet ?12 ?13
18543 27611: Id : 7, {_}:
18544 join ?15 ?16 =?= join ?16 ?15
18545 [16, 15] by commutativity_of_join ?15 ?16
18546 27611: Id : 8, {_}:
18547 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18548 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18549 27611: Id : 9, {_}:
18550 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18551 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18552 27611: Id : 10, {_}:
18553 meet ?26 (join ?27 (meet ?28 ?29))
18555 meet ?26 (join ?27 (meet ?26 (join (meet ?26 ?27) (meet ?28 ?29))))
18556 [29, 28, 27, 26] by equation_H65 ?26 ?27 ?28 ?29
18558 27611: Id : 1, {_}:
18561 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
18566 27611: b 3 0 3 1,2,2
18567 27611: c 3 0 3 2,2,2
18569 27611: join 16 2 4 0,2,2
18570 27611: meet 20 2 5 0,2
18571 % SZS status Timeout for LAT117-1.p
18572 NO CLASH, using fixed ground order
18574 28243: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18575 28243: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18576 28243: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18577 28243: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18578 28243: Id : 6, {_}:
18579 meet ?12 ?13 =?= meet ?13 ?12
18580 [13, 12] by commutativity_of_meet ?12 ?13
18581 28243: Id : 7, {_}:
18582 join ?15 ?16 =?= join ?16 ?15
18583 [16, 15] by commutativity_of_join ?15 ?16
18584 28243: Id : 8, {_}:
18585 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18586 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18587 28243: Id : 9, {_}:
18588 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18589 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18590 28243: Id : 10, {_}:
18591 meet ?26 (join (meet ?27 (join ?26 ?28)) (meet ?28 (join ?26 ?27)))
18593 join (meet ?26 ?27) (meet ?26 ?28)
18594 [28, 27, 26] by equation_H82 ?26 ?27 ?28
18596 28243: Id : 1, {_}:
18597 meet a (join b (meet a c))
18599 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
18604 28243: c 3 0 3 2,2,2,2
18605 28243: b 4 0 4 1,2,2
18607 28243: join 17 2 4 0,2,2
18608 28243: meet 20 2 6 0,2
18609 NO CLASH, using fixed ground order
18611 28244: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18612 28244: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18613 28244: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18614 28244: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18615 28244: Id : 6, {_}:
18616 meet ?12 ?13 =?= meet ?13 ?12
18617 [13, 12] by commutativity_of_meet ?12 ?13
18618 28244: Id : 7, {_}:
18619 join ?15 ?16 =?= join ?16 ?15
18620 [16, 15] by commutativity_of_join ?15 ?16
18621 28244: Id : 8, {_}:
18622 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18623 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18624 28244: Id : 9, {_}:
18625 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18626 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18627 28244: Id : 10, {_}:
18628 meet ?26 (join (meet ?27 (join ?26 ?28)) (meet ?28 (join ?26 ?27)))
18630 join (meet ?26 ?27) (meet ?26 ?28)
18631 [28, 27, 26] by equation_H82 ?26 ?27 ?28
18633 28244: Id : 1, {_}:
18634 meet a (join b (meet a c))
18636 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
18641 28244: c 3 0 3 2,2,2,2
18642 28244: b 4 0 4 1,2,2
18644 28244: join 17 2 4 0,2,2
18645 28244: meet 20 2 6 0,2
18646 NO CLASH, using fixed ground order
18648 28246: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18649 28246: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18650 28246: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18651 28246: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18652 28246: Id : 6, {_}:
18653 meet ?12 ?13 =?= meet ?13 ?12
18654 [13, 12] by commutativity_of_meet ?12 ?13
18655 28246: Id : 7, {_}:
18656 join ?15 ?16 =?= join ?16 ?15
18657 [16, 15] by commutativity_of_join ?15 ?16
18658 28246: Id : 8, {_}:
18659 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18660 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18661 28246: Id : 9, {_}:
18662 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18663 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18664 28246: Id : 10, {_}:
18665 meet ?26 (join (meet ?27 (join ?26 ?28)) (meet ?28 (join ?26 ?27)))
18667 join (meet ?26 ?27) (meet ?26 ?28)
18668 [28, 27, 26] by equation_H82 ?26 ?27 ?28
18670 28246: Id : 1, {_}:
18671 meet a (join b (meet a c))
18673 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
18678 28246: c 3 0 3 2,2,2,2
18679 28246: b 4 0 4 1,2,2
18681 28246: join 17 2 4 0,2,2
18682 28246: meet 20 2 6 0,2
18683 % SZS status Timeout for LAT119-1.p
18684 NO CLASH, using fixed ground order
18686 28653: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18687 28653: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18688 28653: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18689 28653: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18690 28653: Id : 6, {_}:
18691 meet ?12 ?13 =?= meet ?13 ?12
18692 [13, 12] by commutativity_of_meet ?12 ?13
18693 28653: Id : 7, {_}:
18694 join ?15 ?16 =?= join ?16 ?15
18695 [16, 15] by commutativity_of_join ?15 ?16
18696 28653: Id : 8, {_}:
18697 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18698 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18699 28653: Id : 9, {_}:
18700 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18701 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18702 28653: Id : 10, {_}:
18703 join ?26 (meet ?27 (join ?26 ?28))
18705 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?27 ?28))))
18706 [28, 27, 26] by equation_H10_dual ?26 ?27 ?28
18708 28653: Id : 1, {_}:
18711 meet a (join b (meet (join a b) (join c (meet a b))))
18716 28653: c 2 0 2 2,2,2
18718 28653: b 4 0 4 1,2,2
18719 28653: meet 16 2 4 0,2
18720 28653: join 18 2 4 0,2,2
18721 NO CLASH, using fixed ground order
18723 28654: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18724 28654: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18725 28654: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18726 28654: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18727 28654: Id : 6, {_}:
18728 meet ?12 ?13 =?= meet ?13 ?12
18729 [13, 12] by commutativity_of_meet ?12 ?13
18730 28654: Id : 7, {_}:
18731 join ?15 ?16 =?= join ?16 ?15
18732 [16, 15] by commutativity_of_join ?15 ?16
18733 28654: Id : 8, {_}:
18734 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18735 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18736 28654: Id : 9, {_}:
18737 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18738 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18739 28654: Id : 10, {_}:
18740 join ?26 (meet ?27 (join ?26 ?28))
18742 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?27 ?28))))
18743 [28, 27, 26] by equation_H10_dual ?26 ?27 ?28
18745 28654: Id : 1, {_}:
18748 meet a (join b (meet (join a b) (join c (meet a b))))
18753 28654: c 2 0 2 2,2,2
18755 28654: b 4 0 4 1,2,2
18756 28654: meet 16 2 4 0,2
18757 28654: join 18 2 4 0,2,2
18758 NO CLASH, using fixed ground order
18760 28655: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18761 28655: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18762 28655: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18763 28655: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18764 28655: Id : 6, {_}:
18765 meet ?12 ?13 =?= meet ?13 ?12
18766 [13, 12] by commutativity_of_meet ?12 ?13
18767 28655: Id : 7, {_}:
18768 join ?15 ?16 =?= join ?16 ?15
18769 [16, 15] by commutativity_of_join ?15 ?16
18770 28655: Id : 8, {_}:
18771 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18772 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18773 28655: Id : 9, {_}:
18774 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18775 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18776 28655: Id : 10, {_}:
18777 join ?26 (meet ?27 (join ?26 ?28))
18779 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?27 ?28))))
18780 [28, 27, 26] by equation_H10_dual ?26 ?27 ?28
18782 28655: Id : 1, {_}:
18785 meet a (join b (meet (join a b) (join c (meet a b))))
18790 28655: c 2 0 2 2,2,2
18792 28655: b 4 0 4 1,2,2
18793 28655: meet 16 2 4 0,2
18794 28655: join 18 2 4 0,2,2
18795 % SZS status Timeout for LAT120-1.p
18796 NO CLASH, using fixed ground order
18797 NO CLASH, using fixed ground order
18799 28691: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18800 28691: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18801 28691: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18802 28691: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18803 28691: Id : 6, {_}:
18804 meet ?12 ?13 =?= meet ?13 ?12
18805 [13, 12] by commutativity_of_meet ?12 ?13
18806 28691: Id : 7, {_}:
18807 join ?15 ?16 =?= join ?16 ?15
18808 [16, 15] by commutativity_of_join ?15 ?16
18809 28691: Id : 8, {_}:
18810 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18811 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18812 28691: Id : 9, {_}:
18813 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18814 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18815 28691: Id : 10, {_}:
18816 meet (join ?26 ?27) (join ?26 ?28)
18819 (meet (join ?26 ?27)
18820 (meet (join ?26 ?28) (join ?27 (meet ?26 ?28))))
18821 [28, 27, 26] by equation_H18_dual ?26 ?27 ?28
18823 28691: Id : 1, {_}:
18824 join a (meet b (join a c))
18826 join a (meet b (join c (meet a (join c b))))
18831 28691: b 3 0 3 1,2,2
18832 28691: c 3 0 3 2,2,2,2
18834 28691: meet 16 2 3 0,2,2
18835 28691: join 20 2 5 0,2
18837 28690: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18838 28690: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18839 28690: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18840 28690: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18841 28690: Id : 6, {_}:
18842 meet ?12 ?13 =?= meet ?13 ?12
18843 [13, 12] by commutativity_of_meet ?12 ?13
18844 28690: Id : 7, {_}:
18845 join ?15 ?16 =?= join ?16 ?15
18846 [16, 15] by commutativity_of_join ?15 ?16
18847 28690: Id : 8, {_}:
18848 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18849 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18850 28690: Id : 9, {_}:
18851 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18852 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18853 28690: Id : 10, {_}:
18854 meet (join ?26 ?27) (join ?26 ?28)
18857 (meet (join ?26 ?27)
18858 (meet (join ?26 ?28) (join ?27 (meet ?26 ?28))))
18859 [28, 27, 26] by equation_H18_dual ?26 ?27 ?28
18861 28690: Id : 1, {_}:
18862 join a (meet b (join a c))
18864 join a (meet b (join c (meet a (join c b))))
18869 28690: b 3 0 3 1,2,2
18870 28690: c 3 0 3 2,2,2,2
18872 28690: meet 16 2 3 0,2,2
18873 28690: join 20 2 5 0,2
18874 NO CLASH, using fixed ground order
18876 28692: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18877 28692: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18878 28692: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18879 28692: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18880 28692: Id : 6, {_}:
18881 meet ?12 ?13 =?= meet ?13 ?12
18882 [13, 12] by commutativity_of_meet ?12 ?13
18883 28692: Id : 7, {_}:
18884 join ?15 ?16 =?= join ?16 ?15
18885 [16, 15] by commutativity_of_join ?15 ?16
18886 28692: Id : 8, {_}:
18887 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18888 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18889 28692: Id : 9, {_}:
18890 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18891 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18892 28692: Id : 10, {_}:
18893 meet (join ?26 ?27) (join ?26 ?28)
18896 (meet (join ?26 ?27)
18897 (meet (join ?26 ?28) (join ?27 (meet ?26 ?28))))
18898 [28, 27, 26] by equation_H18_dual ?26 ?27 ?28
18900 28692: Id : 1, {_}:
18901 join a (meet b (join a c))
18903 join a (meet b (join c (meet a (join c b))))
18908 28692: b 3 0 3 1,2,2
18909 28692: c 3 0 3 2,2,2,2
18911 28692: meet 16 2 3 0,2,2
18912 28692: join 20 2 5 0,2
18913 % SZS status Timeout for LAT121-1.p
18914 NO CLASH, using fixed ground order
18916 28708: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18917 28708: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18918 28708: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18919 28708: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18920 28708: Id : 6, {_}:
18921 meet ?12 ?13 =?= meet ?13 ?12
18922 [13, 12] by commutativity_of_meet ?12 ?13
18923 28708: Id : 7, {_}:
18924 join ?15 ?16 =?= join ?16 ?15
18925 [16, 15] by commutativity_of_join ?15 ?16
18926 28708: Id : 8, {_}:
18927 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
18928 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18929 28708: Id : 9, {_}:
18930 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
18931 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18932 28708: Id : 10, {_}:
18933 meet (join ?26 ?27) (join ?26 ?28)
18936 (meet (join ?27 (meet ?26 (join ?27 ?28)))
18937 (join ?28 (meet ?26 ?27)))
18938 [28, 27, 26] by equation_H21_dual ?26 ?27 ?28
18940 28708: Id : 1, {_}:
18941 join a (meet b (join a c))
18943 join a (meet b (join c (meet a (join c b))))
18948 28708: b 3 0 3 1,2,2
18949 28708: c 3 0 3 2,2,2,2
18951 28708: meet 16 2 3 0,2,2
18952 28708: join 20 2 5 0,2
18953 NO CLASH, using fixed ground order
18955 28709: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18956 28709: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18957 28709: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18958 28709: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18959 28709: Id : 6, {_}:
18960 meet ?12 ?13 =?= meet ?13 ?12
18961 [13, 12] by commutativity_of_meet ?12 ?13
18962 28709: Id : 7, {_}:
18963 join ?15 ?16 =?= join ?16 ?15
18964 [16, 15] by commutativity_of_join ?15 ?16
18965 28709: Id : 8, {_}:
18966 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
18967 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
18968 28709: Id : 9, {_}:
18969 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
18970 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
18971 28709: Id : 10, {_}:
18972 meet (join ?26 ?27) (join ?26 ?28)
18975 (meet (join ?27 (meet ?26 (join ?27 ?28)))
18976 (join ?28 (meet ?26 ?27)))
18977 [28, 27, 26] by equation_H21_dual ?26 ?27 ?28
18979 28709: Id : 1, {_}:
18980 join a (meet b (join a c))
18982 join a (meet b (join c (meet a (join c b))))
18987 28709: b 3 0 3 1,2,2
18988 28709: c 3 0 3 2,2,2,2
18990 28709: meet 16 2 3 0,2,2
18991 28709: join 20 2 5 0,2
18992 NO CLASH, using fixed ground order
18994 28710: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
18995 28710: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
18996 28710: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
18997 28710: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
18998 28710: Id : 6, {_}:
18999 meet ?12 ?13 =?= meet ?13 ?12
19000 [13, 12] by commutativity_of_meet ?12 ?13
19001 28710: Id : 7, {_}:
19002 join ?15 ?16 =?= join ?16 ?15
19003 [16, 15] by commutativity_of_join ?15 ?16
19004 28710: Id : 8, {_}:
19005 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19006 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19007 28710: Id : 9, {_}:
19008 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19009 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19010 28710: Id : 10, {_}:
19011 meet (join ?26 ?27) (join ?26 ?28)
19014 (meet (join ?27 (meet ?26 (join ?27 ?28)))
19015 (join ?28 (meet ?26 ?27)))
19016 [28, 27, 26] by equation_H21_dual ?26 ?27 ?28
19018 28710: Id : 1, {_}:
19019 join a (meet b (join a c))
19021 join a (meet b (join c (meet a (join c b))))
19026 28710: b 3 0 3 1,2,2
19027 28710: c 3 0 3 2,2,2,2
19029 28710: meet 16 2 3 0,2,2
19030 28710: join 20 2 5 0,2
19031 % SZS status Timeout for LAT122-1.p
19032 NO CLASH, using fixed ground order
19034 28742: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19035 28742: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19036 28742: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19037 28742: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19038 28742: Id : 6, {_}:
19039 meet ?12 ?13 =?= meet ?13 ?12
19040 [13, 12] by commutativity_of_meet ?12 ?13
19041 28742: Id : 7, {_}:
19042 join ?15 ?16 =?= join ?16 ?15
19043 [16, 15] by commutativity_of_join ?15 ?16
19044 28742: Id : 8, {_}:
19045 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19046 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19047 28742: Id : 9, {_}:
19048 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19049 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19050 28742: Id : 10, {_}:
19051 meet (join ?26 ?27) (join ?26 ?28)
19054 (meet (join ?27 (meet ?28 (join ?26 ?27)))
19055 (join ?28 (meet ?26 ?27)))
19056 [28, 27, 26] by equation_H22_dual ?26 ?27 ?28
19058 28742: Id : 1, {_}:
19059 join a (meet b (join a c))
19061 join a (meet b (join c (meet a (join c b))))
19066 28742: b 3 0 3 1,2,2
19067 28742: c 3 0 3 2,2,2,2
19069 28742: meet 16 2 3 0,2,2
19070 28742: join 20 2 5 0,2
19071 NO CLASH, using fixed ground order
19073 28743: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19074 28743: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19075 28743: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19076 28743: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19077 28743: Id : 6, {_}:
19078 meet ?12 ?13 =?= meet ?13 ?12
19079 [13, 12] by commutativity_of_meet ?12 ?13
19080 28743: Id : 7, {_}:
19081 join ?15 ?16 =?= join ?16 ?15
19082 [16, 15] by commutativity_of_join ?15 ?16
19083 28743: Id : 8, {_}:
19084 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19085 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19086 28743: Id : 9, {_}:
19087 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19088 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19089 28743: Id : 10, {_}:
19090 meet (join ?26 ?27) (join ?26 ?28)
19093 (meet (join ?27 (meet ?28 (join ?26 ?27)))
19094 (join ?28 (meet ?26 ?27)))
19095 [28, 27, 26] by equation_H22_dual ?26 ?27 ?28
19097 28743: Id : 1, {_}:
19098 join a (meet b (join a c))
19100 join a (meet b (join c (meet a (join c b))))
19105 28743: b 3 0 3 1,2,2
19106 28743: c 3 0 3 2,2,2,2
19108 28743: meet 16 2 3 0,2,2
19109 28743: join 20 2 5 0,2
19110 NO CLASH, using fixed ground order
19112 28744: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19113 28744: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19114 28744: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19115 28744: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19116 28744: Id : 6, {_}:
19117 meet ?12 ?13 =?= meet ?13 ?12
19118 [13, 12] by commutativity_of_meet ?12 ?13
19119 28744: Id : 7, {_}:
19120 join ?15 ?16 =?= join ?16 ?15
19121 [16, 15] by commutativity_of_join ?15 ?16
19122 28744: Id : 8, {_}:
19123 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19124 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19125 28744: Id : 9, {_}:
19126 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19127 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19128 28744: Id : 10, {_}:
19129 meet (join ?26 ?27) (join ?26 ?28)
19132 (meet (join ?27 (meet ?28 (join ?26 ?27)))
19133 (join ?28 (meet ?26 ?27)))
19134 [28, 27, 26] by equation_H22_dual ?26 ?27 ?28
19136 28744: Id : 1, {_}:
19137 join a (meet b (join a c))
19139 join a (meet b (join c (meet a (join c b))))
19144 28744: b 3 0 3 1,2,2
19145 28744: c 3 0 3 2,2,2,2
19147 28744: meet 16 2 3 0,2,2
19148 28744: join 20 2 5 0,2
19149 % SZS status Timeout for LAT123-1.p
19150 NO CLASH, using fixed ground order
19152 28780: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19153 28780: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19154 28780: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19155 28780: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19156 28780: Id : 6, {_}:
19157 meet ?12 ?13 =?= meet ?13 ?12
19158 [13, 12] by commutativity_of_meet ?12 ?13
19159 28780: Id : 7, {_}:
19160 join ?15 ?16 =?= join ?16 ?15
19161 [16, 15] by commutativity_of_join ?15 ?16
19162 28780: Id : 8, {_}:
19163 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19164 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19165 28780: Id : 9, {_}:
19166 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19167 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19168 28780: Id : 10, {_}:
19169 join ?26 (meet ?27 (join ?26 (join ?28 ?29)))
19171 join ?26 (meet ?27 (join ?28 (meet (join ?26 ?29) (join ?27 ?29))))
19172 [29, 28, 27, 26] by equation_H32_dual ?26 ?27 ?28 ?29
19174 28780: Id : 1, {_}:
19177 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19182 28780: b 3 0 3 1,2,2
19183 28780: c 3 0 3 2,2,2
19185 28780: meet 17 2 5 0,2
19186 28780: join 20 2 4 0,2,2
19187 NO CLASH, using fixed ground order
19189 28781: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19190 28781: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19191 28781: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19192 28781: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19193 28781: Id : 6, {_}:
19194 meet ?12 ?13 =?= meet ?13 ?12
19195 [13, 12] by commutativity_of_meet ?12 ?13
19196 28781: Id : 7, {_}:
19197 join ?15 ?16 =?= join ?16 ?15
19198 [16, 15] by commutativity_of_join ?15 ?16
19199 28781: Id : 8, {_}:
19200 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19201 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19202 28781: Id : 9, {_}:
19203 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19204 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19205 28781: Id : 10, {_}:
19206 join ?26 (meet ?27 (join ?26 (join ?28 ?29)))
19208 join ?26 (meet ?27 (join ?28 (meet (join ?26 ?29) (join ?27 ?29))))
19209 [29, 28, 27, 26] by equation_H32_dual ?26 ?27 ?28 ?29
19211 28781: Id : 1, {_}:
19214 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19219 28781: b 3 0 3 1,2,2
19220 28781: c 3 0 3 2,2,2
19222 28781: meet 17 2 5 0,2
19223 28781: join 20 2 4 0,2,2
19224 NO CLASH, using fixed ground order
19226 28782: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19227 28782: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19228 28782: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19229 28782: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19230 28782: Id : 6, {_}:
19231 meet ?12 ?13 =?= meet ?13 ?12
19232 [13, 12] by commutativity_of_meet ?12 ?13
19233 28782: Id : 7, {_}:
19234 join ?15 ?16 =?= join ?16 ?15
19235 [16, 15] by commutativity_of_join ?15 ?16
19236 28782: Id : 8, {_}:
19237 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19238 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19239 28782: Id : 9, {_}:
19240 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19241 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19242 28782: Id : 10, {_}:
19243 join ?26 (meet ?27 (join ?26 (join ?28 ?29)))
19245 join ?26 (meet ?27 (join ?28 (meet (join ?26 ?29) (join ?27 ?29))))
19246 [29, 28, 27, 26] by equation_H32_dual ?26 ?27 ?28 ?29
19248 28782: Id : 1, {_}:
19251 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19256 28782: b 3 0 3 1,2,2
19257 28782: c 3 0 3 2,2,2
19259 28782: meet 17 2 5 0,2
19260 28782: join 20 2 4 0,2,2
19261 % SZS status Timeout for LAT124-1.p
19262 NO CLASH, using fixed ground order
19264 28810: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19265 28810: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19266 28810: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19267 28810: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19268 28810: Id : 6, {_}:
19269 meet ?12 ?13 =?= meet ?13 ?12
19270 [13, 12] by commutativity_of_meet ?12 ?13
19271 28810: Id : 7, {_}:
19272 join ?15 ?16 =?= join ?16 ?15
19273 [16, 15] by commutativity_of_join ?15 ?16
19274 28810: Id : 8, {_}:
19275 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19276 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19277 28810: Id : 9, {_}:
19278 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19279 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19280 28810: Id : 10, {_}:
19281 join ?26 (meet ?27 (join ?28 ?29))
19283 join ?26 (meet ?27 (join ?28 (meet ?27 (join ?29 (meet ?27 ?28)))))
19284 [29, 28, 27, 26] by equation_H34_dual ?26 ?27 ?28 ?29
19286 28810: Id : 1, {_}:
19289 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19294 28810: b 3 0 3 1,2,2
19295 28810: c 3 0 3 2,2,2
19297 28810: join 18 2 4 0,2,2
19298 28810: meet 18 2 5 0,2
19299 NO CLASH, using fixed ground order
19301 28811: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19302 28811: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19303 28811: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19304 28811: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19305 28811: Id : 6, {_}:
19306 meet ?12 ?13 =?= meet ?13 ?12
19307 [13, 12] by commutativity_of_meet ?12 ?13
19308 28811: Id : 7, {_}:
19309 join ?15 ?16 =?= join ?16 ?15
19310 [16, 15] by commutativity_of_join ?15 ?16
19311 28811: Id : 8, {_}:
19312 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19313 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19314 28811: Id : 9, {_}:
19315 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19316 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19317 28811: Id : 10, {_}:
19318 join ?26 (meet ?27 (join ?28 ?29))
19320 join ?26 (meet ?27 (join ?28 (meet ?27 (join ?29 (meet ?27 ?28)))))
19321 [29, 28, 27, 26] by equation_H34_dual ?26 ?27 ?28 ?29
19323 28811: Id : 1, {_}:
19326 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19331 28811: b 3 0 3 1,2,2
19332 28811: c 3 0 3 2,2,2
19333 NO CLASH, using fixed ground order
19335 28812: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19336 28812: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19337 28812: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19338 28812: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19339 28812: Id : 6, {_}:
19340 meet ?12 ?13 =?= meet ?13 ?12
19341 [13, 12] by commutativity_of_meet ?12 ?13
19342 28812: Id : 7, {_}:
19343 join ?15 ?16 =?= join ?16 ?15
19344 [16, 15] by commutativity_of_join ?15 ?16
19345 28812: Id : 8, {_}:
19346 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19347 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19348 28812: Id : 9, {_}:
19349 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19350 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19352 28811: join 18 2 4 0,2,2
19353 28811: meet 18 2 5 0,2
19354 28812: Id : 10, {_}:
19355 join ?26 (meet ?27 (join ?28 ?29))
19357 join ?26 (meet ?27 (join ?28 (meet ?27 (join ?29 (meet ?27 ?28)))))
19358 [29, 28, 27, 26] by equation_H34_dual ?26 ?27 ?28 ?29
19360 28812: Id : 1, {_}:
19363 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19368 28812: b 3 0 3 1,2,2
19369 28812: c 3 0 3 2,2,2
19371 28812: join 18 2 4 0,2,2
19372 28812: meet 18 2 5 0,2
19373 % SZS status Timeout for LAT125-1.p
19374 NO CLASH, using fixed ground order
19376 28829: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19377 28829: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19378 28829: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19379 28829: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19380 28829: Id : 6, {_}:
19381 meet ?12 ?13 =?= meet ?13 ?12
19382 [13, 12] by commutativity_of_meet ?12 ?13
19383 28829: Id : 7, {_}:
19384 join ?15 ?16 =?= join ?16 ?15
19385 [16, 15] by commutativity_of_join ?15 ?16
19386 28829: Id : 8, {_}:
19387 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19388 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19389 28829: Id : 9, {_}:
19390 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19391 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19392 28829: Id : 10, {_}:
19393 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
19395 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?28))))
19396 [29, 28, 27, 26] by equation_H39_dual ?26 ?27 ?28 ?29
19398 28829: Id : 1, {_}:
19401 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19406 28829: b 3 0 3 1,2,2
19407 28829: c 3 0 3 2,2,2
19409 28829: join 18 2 4 0,2,2
19410 28829: meet 18 2 5 0,2
19411 NO CLASH, using fixed ground order
19413 28828: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19414 28828: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19415 28828: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19416 28828: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19417 28828: Id : 6, {_}:
19418 meet ?12 ?13 =?= meet ?13 ?12
19419 [13, 12] by commutativity_of_meet ?12 ?13
19420 28828: Id : 7, {_}:
19421 join ?15 ?16 =?= join ?16 ?15
19422 [16, 15] by commutativity_of_join ?15 ?16
19423 28828: Id : 8, {_}:
19424 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19425 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19426 28828: Id : 9, {_}:
19427 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19428 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19429 28828: Id : 10, {_}:
19430 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
19432 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?28))))
19433 [29, 28, 27, 26] by equation_H39_dual ?26 ?27 ?28 ?29
19435 28828: Id : 1, {_}:
19438 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19443 28828: b 3 0 3 1,2,2
19444 28828: c 3 0 3 2,2,2
19446 28828: join 18 2 4 0,2,2
19447 28828: meet 18 2 5 0,2
19448 NO CLASH, using fixed ground order
19450 28830: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19451 28830: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19452 28830: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19453 28830: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19454 28830: Id : 6, {_}:
19455 meet ?12 ?13 =?= meet ?13 ?12
19456 [13, 12] by commutativity_of_meet ?12 ?13
19457 28830: Id : 7, {_}:
19458 join ?15 ?16 =?= join ?16 ?15
19459 [16, 15] by commutativity_of_join ?15 ?16
19460 28830: Id : 8, {_}:
19461 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19462 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19463 28830: Id : 9, {_}:
19464 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19465 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19466 28830: Id : 10, {_}:
19467 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
19469 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?28))))
19470 [29, 28, 27, 26] by equation_H39_dual ?26 ?27 ?28 ?29
19472 28830: Id : 1, {_}:
19475 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
19480 28830: b 3 0 3 1,2,2
19481 28830: c 3 0 3 2,2,2
19483 28830: join 18 2 4 0,2,2
19484 28830: meet 18 2 5 0,2
19485 % SZS status Timeout for LAT126-1.p
19486 NO CLASH, using fixed ground order
19488 28859: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19489 28859: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19490 28859: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19491 28859: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19492 28859: Id : 6, {_}:
19493 meet ?12 ?13 =?= meet ?13 ?12
19494 [13, 12] by commutativity_of_meet ?12 ?13
19495 28859: Id : 7, {_}:
19496 join ?15 ?16 =?= join ?16 ?15
19497 [16, 15] by commutativity_of_join ?15 ?16
19498 28859: Id : 8, {_}:
19499 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19500 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19501 28859: Id : 9, {_}:
19502 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19503 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19504 28859: Id : 10, {_}:
19505 meet ?26 (join ?27 (meet ?26 ?28))
19507 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 ?27))))
19508 [28, 27, 26] by equation_H55_dual ?26 ?27 ?28
19510 28859: Id : 1, {_}:
19511 meet a (join b (meet a c))
19513 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
19518 28859: b 3 0 3 1,2,2
19519 28859: c 3 0 3 2,2,2,2
19521 28859: join 16 2 4 0,2,2
19522 28859: meet 20 2 6 0,2
19523 NO CLASH, using fixed ground order
19525 28860: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19526 28860: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19527 28860: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19528 28860: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19529 28860: Id : 6, {_}:
19530 meet ?12 ?13 =?= meet ?13 ?12
19531 [13, 12] by commutativity_of_meet ?12 ?13
19532 28860: Id : 7, {_}:
19533 join ?15 ?16 =?= join ?16 ?15
19534 [16, 15] by commutativity_of_join ?15 ?16
19535 28860: Id : 8, {_}:
19536 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19537 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19538 28860: Id : 9, {_}:
19539 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19540 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19541 28860: Id : 10, {_}:
19542 meet ?26 (join ?27 (meet ?26 ?28))
19544 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 ?27))))
19545 [28, 27, 26] by equation_H55_dual ?26 ?27 ?28
19547 28860: Id : 1, {_}:
19548 meet a (join b (meet a c))
19550 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
19555 28860: b 3 0 3 1,2,2
19556 28860: c 3 0 3 2,2,2,2
19558 28860: join 16 2 4 0,2,2
19559 28860: meet 20 2 6 0,2
19560 NO CLASH, using fixed ground order
19562 28861: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19563 28861: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19564 28861: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19565 28861: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19566 28861: Id : 6, {_}:
19567 meet ?12 ?13 =?= meet ?13 ?12
19568 [13, 12] by commutativity_of_meet ?12 ?13
19569 28861: Id : 7, {_}:
19570 join ?15 ?16 =?= join ?16 ?15
19571 [16, 15] by commutativity_of_join ?15 ?16
19572 28861: Id : 8, {_}:
19573 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19574 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19575 28861: Id : 9, {_}:
19576 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19577 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19578 28861: Id : 10, {_}:
19579 meet ?26 (join ?27 (meet ?26 ?28))
19581 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 ?27))))
19582 [28, 27, 26] by equation_H55_dual ?26 ?27 ?28
19584 28861: Id : 1, {_}:
19585 meet a (join b (meet a c))
19587 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
19592 28861: b 3 0 3 1,2,2
19593 28861: c 3 0 3 2,2,2,2
19595 28861: join 16 2 4 0,2,2
19596 28861: meet 20 2 6 0,2
19597 % SZS status Timeout for LAT127-1.p
19598 NO CLASH, using fixed ground order
19600 28878: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19601 28878: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19602 28878: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19603 28878: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19604 28878: Id : 6, {_}:
19605 meet ?12 ?13 =?= meet ?13 ?12
19606 [13, 12] by commutativity_of_meet ?12 ?13
19607 28878: Id : 7, {_}:
19608 join ?15 ?16 =?= join ?16 ?15
19609 [16, 15] by commutativity_of_join ?15 ?16
19610 28878: Id : 8, {_}:
19611 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19612 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19613 28878: Id : 9, {_}:
19614 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19615 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19616 28878: Id : 10, {_}:
19617 join ?26 (meet ?27 ?28)
19619 join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))
19620 [28, 27, 26] by equation_H58_dual ?26 ?27 ?28
19622 28878: Id : 1, {_}:
19623 meet a (join b (meet a c))
19625 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
19630 28878: c 3 0 3 2,2,2,2
19631 28878: b 4 0 4 1,2,2
19633 28878: join 17 2 4 0,2,2
19634 28878: meet 19 2 6 0,2
19635 NO CLASH, using fixed ground order
19637 28879: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19638 28879: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19639 28879: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19640 28879: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19641 28879: Id : 6, {_}:
19642 meet ?12 ?13 =?= meet ?13 ?12
19643 [13, 12] by commutativity_of_meet ?12 ?13
19644 28879: Id : 7, {_}:
19645 join ?15 ?16 =?= join ?16 ?15
19646 [16, 15] by commutativity_of_join ?15 ?16
19647 28879: Id : 8, {_}:
19648 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19649 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19650 28879: Id : 9, {_}:
19651 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19652 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19653 28879: Id : 10, {_}:
19654 join ?26 (meet ?27 ?28)
19656 join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))
19657 [28, 27, 26] by equation_H58_dual ?26 ?27 ?28
19659 28879: Id : 1, {_}:
19660 meet a (join b (meet a c))
19662 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
19667 28879: c 3 0 3 2,2,2,2
19668 28879: b 4 0 4 1,2,2
19669 NO CLASH, using fixed ground order
19671 28880: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19672 28880: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19673 28880: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19674 28880: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19675 28880: Id : 6, {_}:
19676 meet ?12 ?13 =?= meet ?13 ?12
19677 [13, 12] by commutativity_of_meet ?12 ?13
19678 28880: Id : 7, {_}:
19679 join ?15 ?16 =?= join ?16 ?15
19680 [16, 15] by commutativity_of_join ?15 ?16
19681 28880: Id : 8, {_}:
19682 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19683 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19684 28880: Id : 9, {_}:
19685 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19686 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19687 28880: Id : 10, {_}:
19688 join ?26 (meet ?27 ?28)
19690 join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))
19691 [28, 27, 26] by equation_H58_dual ?26 ?27 ?28
19693 28880: Id : 1, {_}:
19694 meet a (join b (meet a c))
19696 meet a (join b (meet c (join b (meet a (join c (meet a b))))))
19701 28880: c 3 0 3 2,2,2,2
19702 28880: b 4 0 4 1,2,2
19704 28880: join 17 2 4 0,2,2
19705 28880: meet 19 2 6 0,2
19707 28879: join 17 2 4 0,2,2
19708 28879: meet 19 2 6 0,2
19709 % SZS status Timeout for LAT128-1.p
19710 NO CLASH, using fixed ground order
19712 28929: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19713 28929: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19714 28929: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19715 28929: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19716 28929: Id : 6, {_}:
19717 meet ?12 ?13 =?= meet ?13 ?12
19718 [13, 12] by commutativity_of_meet ?12 ?13
19719 28929: Id : 7, {_}:
19720 join ?15 ?16 =?= join ?16 ?15
19721 [16, 15] by commutativity_of_join ?15 ?16
19722 28929: Id : 8, {_}:
19723 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19724 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19725 28929: Id : 9, {_}:
19726 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19727 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19728 28929: Id : 10, {_}:
19729 join ?26 (meet ?27 ?28)
19731 join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))
19732 [28, 27, 26] by equation_H58_dual ?26 ?27 ?28
19734 28929: Id : 1, {_}:
19735 meet a (join b (meet a c))
19737 meet a (join b (meet c (join a (meet b c))))
19742 28929: b 3 0 3 1,2,2
19743 28929: c 3 0 3 2,2,2,2
19745 28929: join 16 2 3 0,2,2
19746 28929: meet 18 2 5 0,2
19747 NO CLASH, using fixed ground order
19749 28930: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19750 28930: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19751 28930: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19752 28930: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19753 28930: Id : 6, {_}:
19754 meet ?12 ?13 =?= meet ?13 ?12
19755 [13, 12] by commutativity_of_meet ?12 ?13
19756 28930: Id : 7, {_}:
19757 join ?15 ?16 =?= join ?16 ?15
19758 [16, 15] by commutativity_of_join ?15 ?16
19759 28930: Id : 8, {_}:
19760 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19761 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19762 28930: Id : 9, {_}:
19763 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19764 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19765 28930: Id : 10, {_}:
19766 join ?26 (meet ?27 ?28)
19768 join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))
19769 [28, 27, 26] by equation_H58_dual ?26 ?27 ?28
19771 28930: Id : 1, {_}:
19772 meet a (join b (meet a c))
19774 meet a (join b (meet c (join a (meet b c))))
19779 28930: b 3 0 3 1,2,2
19780 28930: c 3 0 3 2,2,2,2
19782 28930: join 16 2 3 0,2,2
19783 28930: meet 18 2 5 0,2
19784 NO CLASH, using fixed ground order
19786 28931: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19787 28931: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19788 28931: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19789 28931: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19790 28931: Id : 6, {_}:
19791 meet ?12 ?13 =?= meet ?13 ?12
19792 [13, 12] by commutativity_of_meet ?12 ?13
19793 28931: Id : 7, {_}:
19794 join ?15 ?16 =?= join ?16 ?15
19795 [16, 15] by commutativity_of_join ?15 ?16
19796 28931: Id : 8, {_}:
19797 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19798 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19799 28931: Id : 9, {_}:
19800 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19801 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19802 28931: Id : 10, {_}:
19803 join ?26 (meet ?27 ?28)
19805 join ?26 (meet ?27 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))
19806 [28, 27, 26] by equation_H58_dual ?26 ?27 ?28
19808 28931: Id : 1, {_}:
19809 meet a (join b (meet a c))
19811 meet a (join b (meet c (join a (meet b c))))
19816 28931: b 3 0 3 1,2,2
19817 28931: c 3 0 3 2,2,2,2
19819 28931: join 16 2 3 0,2,2
19820 28931: meet 18 2 5 0,2
19821 % SZS status Timeout for LAT129-1.p
19822 NO CLASH, using fixed ground order
19824 28978: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19825 28978: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19826 28978: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19827 28978: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19828 28978: Id : 6, {_}:
19829 meet ?12 ?13 =?= meet ?13 ?12
19830 [13, 12] by commutativity_of_meet ?12 ?13
19831 28978: Id : 7, {_}:
19832 join ?15 ?16 =?= join ?16 ?15
19833 [16, 15] by commutativity_of_join ?15 ?16
19834 28978: Id : 8, {_}:
19835 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19836 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19837 28978: Id : 9, {_}:
19838 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19839 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19840 28978: Id : 10, {_}:
19841 join ?26 (meet ?27 ?28)
19843 join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27))))
19844 [28, 27, 26] by equation_H68_dual ?26 ?27 ?28
19846 28978: Id : 1, {_}:
19847 meet a (join b (meet c (join a d)))
19849 meet a (join b (meet c (join d (meet a c))))
19854 28978: b 2 0 2 1,2,2
19855 28978: d 2 0 2 2,2,2,2,2
19856 28978: c 3 0 3 1,2,2,2
19858 28978: join 17 2 4 0,2,2
19859 28978: meet 17 2 5 0,2
19860 NO CLASH, using fixed ground order
19862 28979: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19863 28979: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19864 28979: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19865 28979: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19866 28979: Id : 6, {_}:
19867 meet ?12 ?13 =?= meet ?13 ?12
19868 [13, 12] by commutativity_of_meet ?12 ?13
19869 28979: Id : 7, {_}:
19870 join ?15 ?16 =?= join ?16 ?15
19871 [16, 15] by commutativity_of_join ?15 ?16
19872 28979: Id : 8, {_}:
19873 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19874 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19875 28979: Id : 9, {_}:
19876 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19877 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19878 28979: Id : 10, {_}:
19879 join ?26 (meet ?27 ?28)
19881 join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27))))
19882 [28, 27, 26] by equation_H68_dual ?26 ?27 ?28
19884 28979: Id : 1, {_}:
19885 meet a (join b (meet c (join a d)))
19887 meet a (join b (meet c (join d (meet a c))))
19892 28979: b 2 0 2 1,2,2
19893 28979: d 2 0 2 2,2,2,2,2
19894 28979: c 3 0 3 1,2,2,2
19896 28979: join 17 2 4 0,2,2
19897 28979: meet 17 2 5 0,2
19898 NO CLASH, using fixed ground order
19900 28980: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19901 28980: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19902 28980: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19903 28980: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19904 28980: Id : 6, {_}:
19905 meet ?12 ?13 =?= meet ?13 ?12
19906 [13, 12] by commutativity_of_meet ?12 ?13
19907 28980: Id : 7, {_}:
19908 join ?15 ?16 =?= join ?16 ?15
19909 [16, 15] by commutativity_of_join ?15 ?16
19910 28980: Id : 8, {_}:
19911 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19912 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19913 28980: Id : 9, {_}:
19914 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19915 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19916 28980: Id : 10, {_}:
19917 join ?26 (meet ?27 ?28)
19919 join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27))))
19920 [28, 27, 26] by equation_H68_dual ?26 ?27 ?28
19922 28980: Id : 1, {_}:
19923 meet a (join b (meet c (join a d)))
19925 meet a (join b (meet c (join d (meet a c))))
19930 28980: b 2 0 2 1,2,2
19931 28980: d 2 0 2 2,2,2,2,2
19932 28980: c 3 0 3 1,2,2,2
19934 28980: join 17 2 4 0,2,2
19935 28980: meet 17 2 5 0,2
19936 % SZS status Timeout for LAT130-1.p
19937 NO CLASH, using fixed ground order
19939 29013: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19940 29013: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19941 29013: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19942 29013: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19943 29013: Id : 6, {_}:
19944 meet ?12 ?13 =?= meet ?13 ?12
19945 [13, 12] by commutativity_of_meet ?12 ?13
19946 29013: Id : 7, {_}:
19947 join ?15 ?16 =?= join ?16 ?15
19948 [16, 15] by commutativity_of_join ?15 ?16
19949 29013: Id : 8, {_}:
19950 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
19951 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19952 29013: Id : 9, {_}:
19953 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
19954 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19955 29013: Id : 10, {_}:
19956 join ?26 (meet ?27 ?28)
19958 join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27))))
19959 [28, 27, 26] by equation_H68_dual ?26 ?27 ?28
19961 29013: Id : 1, {_}:
19962 meet a (join b (meet c (join a d)))
19964 meet a (join b (meet c (join b (join d (meet a c)))))
19969 29013: d 2 0 2 2,2,2,2,2
19970 29013: b 3 0 3 1,2,2
19971 29013: c 3 0 3 1,2,2,2
19973 29013: meet 17 2 5 0,2
19974 29013: join 18 2 5 0,2,2
19975 NO CLASH, using fixed ground order
19977 29014: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
19978 29014: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
19979 29014: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
19980 29014: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
19981 29014: Id : 6, {_}:
19982 meet ?12 ?13 =?= meet ?13 ?12
19983 [13, 12] by commutativity_of_meet ?12 ?13
19984 29014: Id : 7, {_}:
19985 join ?15 ?16 =?= join ?16 ?15
19986 [16, 15] by commutativity_of_join ?15 ?16
19987 29014: Id : 8, {_}:
19988 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
19989 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
19990 29014: Id : 9, {_}:
19991 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
19992 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
19993 29014: Id : 10, {_}:
19994 join ?26 (meet ?27 ?28)
19996 join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27))))
19997 [28, 27, 26] by equation_H68_dual ?26 ?27 ?28
19999 29014: Id : 1, {_}:
20000 meet a (join b (meet c (join a d)))
20002 meet a (join b (meet c (join b (join d (meet a c)))))
20007 29014: d 2 0 2 2,2,2,2,2
20008 29014: b 3 0 3 1,2,2
20009 29014: c 3 0 3 1,2,2,2
20011 29014: meet 17 2 5 0,2
20012 29014: join 18 2 5 0,2,2
20013 NO CLASH, using fixed ground order
20015 29015: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20016 29015: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20017 29015: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20018 29015: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20019 29015: Id : 6, {_}:
20020 meet ?12 ?13 =?= meet ?13 ?12
20021 [13, 12] by commutativity_of_meet ?12 ?13
20022 29015: Id : 7, {_}:
20023 join ?15 ?16 =?= join ?16 ?15
20024 [16, 15] by commutativity_of_join ?15 ?16
20025 29015: Id : 8, {_}:
20026 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20027 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20028 29015: Id : 9, {_}:
20029 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20030 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20031 29015: Id : 10, {_}:
20032 join ?26 (meet ?27 ?28)
20034 join ?26 (meet ?27 (join ?26 (meet ?28 (join ?26 ?27))))
20035 [28, 27, 26] by equation_H68_dual ?26 ?27 ?28
20037 29015: Id : 1, {_}:
20038 meet a (join b (meet c (join a d)))
20040 meet a (join b (meet c (join b (join d (meet a c)))))
20045 29015: d 2 0 2 2,2,2,2,2
20046 29015: b 3 0 3 1,2,2
20047 29015: c 3 0 3 1,2,2,2
20049 29015: meet 17 2 5 0,2
20050 29015: join 18 2 5 0,2,2
20051 % SZS status Timeout for LAT131-1.p
20052 NO CLASH, using fixed ground order
20054 29032: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20055 29032: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20056 29032: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20057 29032: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20058 29032: Id : 6, {_}:
20059 meet ?12 ?13 =?= meet ?13 ?12
20060 [13, 12] by commutativity_of_meet ?12 ?13
20061 29032: Id : 7, {_}:
20062 join ?15 ?16 =?= join ?16 ?15
20063 [16, 15] by commutativity_of_join ?15 ?16
20064 29032: Id : 8, {_}:
20065 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
20066 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20067 29032: Id : 9, {_}:
20068 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
20069 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20070 29032: Id : 10, {_}:
20071 join ?26 (meet ?27 ?28)
20073 meet (join ?26 (meet ?28 (join ?26 ?27)))
20074 (join ?26 (meet ?27 (join ?26 ?28)))
20075 [28, 27, 26] by equation_H69_dual ?26 ?27 ?28
20077 29032: Id : 1, {_}:
20078 meet a (join b (meet c (join a d)))
20080 meet a (join b (meet c (join b (join d (meet a c)))))
20085 29032: d 2 0 2 2,2,2,2,2
20086 29032: b 3 0 3 1,2,2
20087 29032: c 3 0 3 1,2,2,2
20089 29032: meet 18 2 5 0,2
20090 29032: join 19 2 5 0,2,2
20091 NO CLASH, using fixed ground order
20093 29033: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20094 29033: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20095 29033: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20096 29033: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20097 29033: Id : 6, {_}:
20098 meet ?12 ?13 =?= meet ?13 ?12
20099 [13, 12] by commutativity_of_meet ?12 ?13
20100 29033: Id : 7, {_}:
20101 join ?15 ?16 =?= join ?16 ?15
20102 [16, 15] by commutativity_of_join ?15 ?16
20103 29033: Id : 8, {_}:
20104 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20105 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20106 29033: Id : 9, {_}:
20107 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20108 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20109 29033: Id : 10, {_}:
20110 join ?26 (meet ?27 ?28)
20112 meet (join ?26 (meet ?28 (join ?26 ?27)))
20113 (join ?26 (meet ?27 (join ?26 ?28)))
20114 [28, 27, 26] by equation_H69_dual ?26 ?27 ?28
20116 29033: Id : 1, {_}:
20117 meet a (join b (meet c (join a d)))
20119 meet a (join b (meet c (join b (join d (meet a c)))))
20124 29033: d 2 0 2 2,2,2,2,2
20125 29033: b 3 0 3 1,2,2
20126 29033: c 3 0 3 1,2,2,2
20128 29033: meet 18 2 5 0,2
20129 29033: join 19 2 5 0,2,2
20130 NO CLASH, using fixed ground order
20132 29034: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20133 29034: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20134 29034: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20135 29034: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20136 29034: Id : 6, {_}:
20137 meet ?12 ?13 =?= meet ?13 ?12
20138 [13, 12] by commutativity_of_meet ?12 ?13
20139 29034: Id : 7, {_}:
20140 join ?15 ?16 =?= join ?16 ?15
20141 [16, 15] by commutativity_of_join ?15 ?16
20142 29034: Id : 8, {_}:
20143 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20144 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20145 29034: Id : 9, {_}:
20146 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20147 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20148 29034: Id : 10, {_}:
20149 join ?26 (meet ?27 ?28)
20151 meet (join ?26 (meet ?28 (join ?26 ?27)))
20152 (join ?26 (meet ?27 (join ?26 ?28)))
20153 [28, 27, 26] by equation_H69_dual ?26 ?27 ?28
20155 29034: Id : 1, {_}:
20156 meet a (join b (meet c (join a d)))
20158 meet a (join b (meet c (join b (join d (meet a c)))))
20163 29034: d 2 0 2 2,2,2,2,2
20164 29034: b 3 0 3 1,2,2
20165 29034: c 3 0 3 1,2,2,2
20167 29034: meet 18 2 5 0,2
20168 29034: join 19 2 5 0,2,2
20169 % SZS status Timeout for LAT132-1.p
20170 NO CLASH, using fixed ground order
20172 29065: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20173 29065: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20174 29065: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20175 29065: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20176 29065: Id : 6, {_}:
20177 meet ?12 ?13 =?= meet ?13 ?12
20178 [13, 12] by commutativity_of_meet ?12 ?13
20179 29065: Id : 7, {_}:
20180 join ?15 ?16 =?= join ?16 ?15
20181 [16, 15] by commutativity_of_join ?15 ?16
20182 29065: Id : 8, {_}:
20183 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
20184 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20185 29065: Id : 9, {_}:
20186 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
20187 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20188 29065: Id : 10, {_}:
20189 join ?26 (meet ?27 (join ?26 ?28))
20191 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
20192 [28, 27, 26] by equation_H55 ?26 ?27 ?28
20194 29065: Id : 1, {_}:
20195 join a (meet b (join a c))
20197 join a (meet (join a (meet b (join a c))) (join c (meet a b)))
20198 [] by prove_H6_dual
20202 29065: b 3 0 3 1,2,2
20203 29065: c 3 0 3 2,2,2,2
20205 29065: meet 16 2 4 0,2,2
20206 29065: join 20 2 6 0,2
20207 NO CLASH, using fixed ground order
20209 29066: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20210 29066: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20211 29066: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20212 29066: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20213 29066: Id : 6, {_}:
20214 meet ?12 ?13 =?= meet ?13 ?12
20215 [13, 12] by commutativity_of_meet ?12 ?13
20216 29066: Id : 7, {_}:
20217 join ?15 ?16 =?= join ?16 ?15
20218 [16, 15] by commutativity_of_join ?15 ?16
20219 29066: Id : 8, {_}:
20220 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20221 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20222 29066: Id : 9, {_}:
20223 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20224 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20225 29066: Id : 10, {_}:
20226 join ?26 (meet ?27 (join ?26 ?28))
20228 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
20229 [28, 27, 26] by equation_H55 ?26 ?27 ?28
20231 29066: Id : 1, {_}:
20232 join a (meet b (join a c))
20234 join a (meet (join a (meet b (join a c))) (join c (meet a b)))
20235 [] by prove_H6_dual
20239 29066: b 3 0 3 1,2,2
20240 29066: c 3 0 3 2,2,2,2
20242 29066: meet 16 2 4 0,2,2
20243 29066: join 20 2 6 0,2
20244 NO CLASH, using fixed ground order
20246 29067: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20247 29067: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20248 29067: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20249 29067: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20250 29067: Id : 6, {_}:
20251 meet ?12 ?13 =?= meet ?13 ?12
20252 [13, 12] by commutativity_of_meet ?12 ?13
20253 29067: Id : 7, {_}:
20254 join ?15 ?16 =?= join ?16 ?15
20255 [16, 15] by commutativity_of_join ?15 ?16
20256 29067: Id : 8, {_}:
20257 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20258 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20259 29067: Id : 9, {_}:
20260 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20261 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20262 29067: Id : 10, {_}:
20263 join ?26 (meet ?27 (join ?26 ?28))
20265 join ?26 (meet ?27 (join ?28 (meet ?26 (join ?28 ?27))))
20266 [28, 27, 26] by equation_H55 ?26 ?27 ?28
20268 29067: Id : 1, {_}:
20269 join a (meet b (join a c))
20271 join a (meet (join a (meet b (join a c))) (join c (meet a b)))
20272 [] by prove_H6_dual
20276 29067: b 3 0 3 1,2,2
20277 29067: c 3 0 3 2,2,2,2
20279 29067: meet 16 2 4 0,2,2
20280 29067: join 20 2 6 0,2
20281 % SZS status Timeout for LAT133-1.p
20282 NO CLASH, using fixed ground order
20284 29084: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20285 29084: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20286 29084: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20287 29084: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20288 29084: Id : 6, {_}:
20289 meet ?12 ?13 =?= meet ?13 ?12
20290 [13, 12] by commutativity_of_meet ?12 ?13
20291 29084: Id : 7, {_}:
20292 join ?15 ?16 =?= join ?16 ?15
20293 [16, 15] by commutativity_of_join ?15 ?16
20294 29084: Id : 8, {_}:
20295 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
20296 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20297 29084: Id : 9, {_}:
20298 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
20299 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20300 29084: Id : 10, {_}:
20301 meet (join ?26 ?27) (join ?26 ?28)
20303 join ?26 (meet (join ?26 ?27) (join (meet ?26 ?27) ?28))
20304 [28, 27, 26] by equation_H61 ?26 ?27 ?28
20306 29084: Id : 1, {_}:
20307 meet (join a b) (join a c)
20309 join a (meet (join b (meet c (join a b))) (join c (meet a b)))
20310 [] by prove_H22_dual
20314 29084: c 3 0 3 2,2,2
20315 29084: b 4 0 4 2,1,2
20316 29084: a 5 0 5 1,1,2
20317 29084: meet 16 2 4 0,2
20318 29084: join 20 2 6 0,1,2
20319 NO CLASH, using fixed ground order
20321 29085: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20322 29085: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20323 29085: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20324 29085: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20325 29085: Id : 6, {_}:
20326 meet ?12 ?13 =?= meet ?13 ?12
20327 [13, 12] by commutativity_of_meet ?12 ?13
20328 29085: Id : 7, {_}:
20329 join ?15 ?16 =?= join ?16 ?15
20330 [16, 15] by commutativity_of_join ?15 ?16
20331 29085: Id : 8, {_}:
20332 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20333 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20334 29085: Id : 9, {_}:
20335 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20336 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20337 29085: Id : 10, {_}:
20338 meet (join ?26 ?27) (join ?26 ?28)
20340 join ?26 (meet (join ?26 ?27) (join (meet ?26 ?27) ?28))
20341 [28, 27, 26] by equation_H61 ?26 ?27 ?28
20343 29085: Id : 1, {_}:
20344 meet (join a b) (join a c)
20346 join a (meet (join b (meet c (join a b))) (join c (meet a b)))
20347 [] by prove_H22_dual
20351 29085: c 3 0 3 2,2,2
20352 29085: b 4 0 4 2,1,2
20353 29085: a 5 0 5 1,1,2
20354 29085: meet 16 2 4 0,2
20355 29085: join 20 2 6 0,1,2
20356 NO CLASH, using fixed ground order
20358 29086: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20359 29086: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20360 29086: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20361 29086: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20362 29086: Id : 6, {_}:
20363 meet ?12 ?13 =?= meet ?13 ?12
20364 [13, 12] by commutativity_of_meet ?12 ?13
20365 29086: Id : 7, {_}:
20366 join ?15 ?16 =?= join ?16 ?15
20367 [16, 15] by commutativity_of_join ?15 ?16
20368 29086: Id : 8, {_}:
20369 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20370 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20371 29086: Id : 9, {_}:
20372 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20373 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20374 29086: Id : 10, {_}:
20375 meet (join ?26 ?27) (join ?26 ?28)
20377 join ?26 (meet (join ?26 ?27) (join (meet ?26 ?27) ?28))
20378 [28, 27, 26] by equation_H61 ?26 ?27 ?28
20380 29086: Id : 1, {_}:
20381 meet (join a b) (join a c)
20383 join a (meet (join b (meet c (join a b))) (join c (meet a b)))
20384 [] by prove_H22_dual
20388 29086: c 3 0 3 2,2,2
20389 29086: b 4 0 4 2,1,2
20390 29086: a 5 0 5 1,1,2
20391 29086: meet 16 2 4 0,2
20392 29086: join 20 2 6 0,1,2
20393 % SZS status Timeout for LAT134-1.p
20394 NO CLASH, using fixed ground order
20395 NO CLASH, using fixed ground order
20397 29118: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20398 29118: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20399 29118: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20400 29118: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20401 29118: Id : 6, {_}:
20402 meet ?12 ?13 =?= meet ?13 ?12
20403 [13, 12] by commutativity_of_meet ?12 ?13
20404 29118: Id : 7, {_}:
20405 join ?15 ?16 =?= join ?16 ?15
20406 [16, 15] by commutativity_of_join ?15 ?16
20407 29118: Id : 8, {_}:
20408 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20409 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20410 29118: Id : 9, {_}:
20411 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20412 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20413 29118: Id : 10, {_}:
20414 meet ?26 (join ?27 ?28)
20416 meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))
20417 [28, 27, 26] by equation_H68 ?26 ?27 ?28
20419 29118: Id : 1, {_}:
20420 join a (meet b (join c (meet a d)))
20422 join a (meet b (join c (meet d (join a c))))
20423 [] by prove_H39_dual
20427 29118: b 2 0 2 1,2,2
20428 29118: d 2 0 2 2,2,2,2,2
20429 29118: c 3 0 3 1,2,2,2
20431 29118: meet 17 2 4 0,2,2
20432 29118: join 17 2 5 0,2
20434 29117: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20435 29117: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20436 29117: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20437 29117: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20438 29117: Id : 6, {_}:
20439 meet ?12 ?13 =?= meet ?13 ?12
20440 [13, 12] by commutativity_of_meet ?12 ?13
20441 29117: Id : 7, {_}:
20442 join ?15 ?16 =?= join ?16 ?15
20443 [16, 15] by commutativity_of_join ?15 ?16
20444 29117: Id : 8, {_}:
20445 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
20446 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20447 29117: Id : 9, {_}:
20448 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
20449 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20450 29117: Id : 10, {_}:
20451 meet ?26 (join ?27 ?28)
20453 meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))
20454 [28, 27, 26] by equation_H68 ?26 ?27 ?28
20456 29117: Id : 1, {_}:
20457 join a (meet b (join c (meet a d)))
20459 join a (meet b (join c (meet d (join a c))))
20460 [] by prove_H39_dual
20464 29117: b 2 0 2 1,2,2
20465 29117: d 2 0 2 2,2,2,2,2
20466 29117: c 3 0 3 1,2,2,2
20468 29117: meet 17 2 4 0,2,2
20469 29117: join 17 2 5 0,2
20470 NO CLASH, using fixed ground order
20472 29119: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20473 29119: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20474 29119: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20475 29119: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20476 29119: Id : 6, {_}:
20477 meet ?12 ?13 =?= meet ?13 ?12
20478 [13, 12] by commutativity_of_meet ?12 ?13
20479 29119: Id : 7, {_}:
20480 join ?15 ?16 =?= join ?16 ?15
20481 [16, 15] by commutativity_of_join ?15 ?16
20482 29119: Id : 8, {_}:
20483 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20484 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20485 29119: Id : 9, {_}:
20486 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20487 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20488 29119: Id : 10, {_}:
20489 meet ?26 (join ?27 ?28)
20491 meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))
20492 [28, 27, 26] by equation_H68 ?26 ?27 ?28
20494 29119: Id : 1, {_}:
20495 join a (meet b (join c (meet a d)))
20497 join a (meet b (join c (meet d (join a c))))
20498 [] by prove_H39_dual
20502 29119: b 2 0 2 1,2,2
20503 29119: d 2 0 2 2,2,2,2,2
20504 29119: c 3 0 3 1,2,2,2
20506 29119: meet 17 2 4 0,2,2
20507 29119: join 17 2 5 0,2
20508 % SZS status Timeout for LAT135-1.p
20509 NO CLASH, using fixed ground order
20511 29145: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20512 29145: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20513 29145: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20514 29145: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20515 29145: Id : 6, {_}:
20516 meet ?12 ?13 =?= meet ?13 ?12
20517 [13, 12] by commutativity_of_meet ?12 ?13
20518 29145: Id : 7, {_}:
20519 join ?15 ?16 =?= join ?16 ?15
20520 [16, 15] by commutativity_of_join ?15 ?16
20521 29145: Id : 8, {_}:
20522 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
20523 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20524 29145: Id : 9, {_}:
20525 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
20526 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20527 29145: Id : 10, {_}:
20528 meet ?26 (join ?27 ?28)
20530 join (meet ?26 (join ?28 (meet ?26 ?27)))
20531 (meet ?26 (join ?27 (meet ?26 ?28)))
20532 [28, 27, 26] by equation_H69 ?26 ?27 ?28
20534 29145: Id : 1, {_}:
20535 join a (meet b (join c (meet a d)))
20537 join a (meet b (join c (meet d (join a c))))
20538 [] by prove_H39_dual
20542 29145: b 2 0 2 1,2,2
20543 29145: d 2 0 2 2,2,2,2,2
20544 29145: c 3 0 3 1,2,2,2
20546 29145: meet 18 2 4 0,2,2
20547 29145: join 18 2 5 0,2
20548 NO CLASH, using fixed ground order
20550 29146: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20551 29146: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20552 29146: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20553 29146: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20554 29146: Id : 6, {_}:
20555 meet ?12 ?13 =?= meet ?13 ?12
20556 [13, 12] by commutativity_of_meet ?12 ?13
20557 29146: Id : 7, {_}:
20558 join ?15 ?16 =?= join ?16 ?15
20559 [16, 15] by commutativity_of_join ?15 ?16
20560 29146: Id : 8, {_}:
20561 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20562 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20563 29146: Id : 9, {_}:
20564 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20565 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20566 29146: Id : 10, {_}:
20567 meet ?26 (join ?27 ?28)
20569 join (meet ?26 (join ?28 (meet ?26 ?27)))
20570 (meet ?26 (join ?27 (meet ?26 ?28)))
20571 [28, 27, 26] by equation_H69 ?26 ?27 ?28
20573 29146: Id : 1, {_}:
20574 join a (meet b (join c (meet a d)))
20576 join a (meet b (join c (meet d (join a c))))
20577 [] by prove_H39_dual
20581 29146: b 2 0 2 1,2,2
20582 29146: d 2 0 2 2,2,2,2,2
20583 29146: c 3 0 3 1,2,2,2
20585 29146: meet 18 2 4 0,2,2
20586 29146: join 18 2 5 0,2
20587 NO CLASH, using fixed ground order
20589 29147: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20590 29147: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20591 29147: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20592 29147: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20593 29147: Id : 6, {_}:
20594 meet ?12 ?13 =?= meet ?13 ?12
20595 [13, 12] by commutativity_of_meet ?12 ?13
20596 29147: Id : 7, {_}:
20597 join ?15 ?16 =?= join ?16 ?15
20598 [16, 15] by commutativity_of_join ?15 ?16
20599 29147: Id : 8, {_}:
20600 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20601 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20602 29147: Id : 9, {_}:
20603 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20604 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20605 29147: Id : 10, {_}:
20606 meet ?26 (join ?27 ?28)
20608 join (meet ?26 (join ?28 (meet ?26 ?27)))
20609 (meet ?26 (join ?27 (meet ?26 ?28)))
20610 [28, 27, 26] by equation_H69 ?26 ?27 ?28
20612 29147: Id : 1, {_}:
20613 join a (meet b (join c (meet a d)))
20615 join a (meet b (join c (meet d (join a c))))
20616 [] by prove_H39_dual
20620 29147: b 2 0 2 1,2,2
20621 29147: d 2 0 2 2,2,2,2,2
20622 29147: c 3 0 3 1,2,2,2
20624 29147: meet 18 2 4 0,2,2
20625 29147: join 18 2 5 0,2
20626 % SZS status Timeout for LAT136-1.p
20627 NO CLASH, using fixed ground order
20629 29176: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20630 29176: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20631 29176: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20632 29176: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20633 29176: Id : 6, {_}:
20634 meet ?12 ?13 =?= meet ?13 ?12
20635 [13, 12] by commutativity_of_meet ?12 ?13
20636 29176: Id : 7, {_}:
20637 join ?15 ?16 =?= join ?16 ?15
20638 [16, 15] by commutativity_of_join ?15 ?16
20639 29176: Id : 8, {_}:
20640 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
20641 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20642 29176: Id : 9, {_}:
20643 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
20644 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20645 29176: Id : 10, {_}:
20646 meet ?26 (join ?27 ?28)
20648 join (meet ?26 (join ?28 (meet ?26 ?27)))
20649 (meet ?26 (join ?27 (meet ?26 ?28)))
20650 [28, 27, 26] by equation_H69 ?26 ?27 ?28
20652 29176: Id : 1, {_}:
20653 join a (meet b (join c (meet a d)))
20655 join a (meet b (join c (meet d (join c (meet a b)))))
20656 [] by prove_H40_dual
20660 29176: d 2 0 2 2,2,2,2,2
20661 29176: b 3 0 3 1,2,2
20662 29176: c 3 0 3 1,2,2,2
20664 29176: join 18 2 5 0,2
20665 29176: meet 19 2 5 0,2,2
20666 NO CLASH, using fixed ground order
20668 29177: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20669 29177: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20670 29177: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20671 29177: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20672 29177: Id : 6, {_}:
20673 meet ?12 ?13 =?= meet ?13 ?12
20674 [13, 12] by commutativity_of_meet ?12 ?13
20675 29177: Id : 7, {_}:
20676 join ?15 ?16 =?= join ?16 ?15
20677 [16, 15] by commutativity_of_join ?15 ?16
20678 29177: Id : 8, {_}:
20679 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20680 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20681 29177: Id : 9, {_}:
20682 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20683 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20684 29177: Id : 10, {_}:
20685 meet ?26 (join ?27 ?28)
20687 join (meet ?26 (join ?28 (meet ?26 ?27)))
20688 (meet ?26 (join ?27 (meet ?26 ?28)))
20689 [28, 27, 26] by equation_H69 ?26 ?27 ?28
20691 29177: Id : 1, {_}:
20692 join a (meet b (join c (meet a d)))
20694 join a (meet b (join c (meet d (join c (meet a b)))))
20695 [] by prove_H40_dual
20699 29177: d 2 0 2 2,2,2,2,2
20700 29177: b 3 0 3 1,2,2
20701 29177: c 3 0 3 1,2,2,2
20703 29177: join 18 2 5 0,2
20704 29177: meet 19 2 5 0,2,2
20705 NO CLASH, using fixed ground order
20707 29178: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20708 29178: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20709 29178: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20710 29178: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20711 29178: Id : 6, {_}:
20712 meet ?12 ?13 =?= meet ?13 ?12
20713 [13, 12] by commutativity_of_meet ?12 ?13
20714 29178: Id : 7, {_}:
20715 join ?15 ?16 =?= join ?16 ?15
20716 [16, 15] by commutativity_of_join ?15 ?16
20717 29178: Id : 8, {_}:
20718 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20719 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20720 29178: Id : 9, {_}:
20721 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20722 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20723 29178: Id : 10, {_}:
20724 meet ?26 (join ?27 ?28)
20726 join (meet ?26 (join ?28 (meet ?26 ?27)))
20727 (meet ?26 (join ?27 (meet ?26 ?28)))
20728 [28, 27, 26] by equation_H69 ?26 ?27 ?28
20730 29178: Id : 1, {_}:
20731 join a (meet b (join c (meet a d)))
20733 join a (meet b (join c (meet d (join c (meet a b)))))
20734 [] by prove_H40_dual
20738 29178: d 2 0 2 2,2,2,2,2
20739 29178: b 3 0 3 1,2,2
20740 29178: c 3 0 3 1,2,2,2
20742 29178: join 18 2 5 0,2
20743 29178: meet 19 2 5 0,2,2
20744 % SZS status Timeout for LAT137-1.p
20745 NO CLASH, using fixed ground order
20747 29197: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20748 29197: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20749 29197: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20750 29197: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20751 29197: Id : 6, {_}:
20752 meet ?12 ?13 =?= meet ?13 ?12
20753 [13, 12] by commutativity_of_meet ?12 ?13
20754 29197: Id : 7, {_}:
20755 join ?15 ?16 =?= join ?16 ?15
20756 [16, 15] by commutativity_of_join ?15 ?16
20757 29197: Id : 8, {_}:
20758 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
20759 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20760 29197: Id : 9, {_}:
20761 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
20762 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20763 29197: Id : 10, {_}:
20764 join (meet ?26 ?27) (meet ?26 ?28)
20766 meet ?26 (join (meet ?26 ?27) (meet (join ?26 ?27) ?28))
20767 [28, 27, 26] by equation_H61_dual ?26 ?27 ?28
20769 29197: Id : 1, {_}:
20770 meet a (join b (meet a c))
20772 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
20777 29197: b 3 0 3 1,2,2
20778 29197: c 3 0 3 2,2,2,2
20780 29197: join 16 2 4 0,2,2
20781 29197: meet 20 2 6 0,2
20782 NO CLASH, using fixed ground order
20784 29198: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20785 29198: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20786 29198: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20787 29198: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20788 29198: Id : 6, {_}:
20789 meet ?12 ?13 =?= meet ?13 ?12
20790 [13, 12] by commutativity_of_meet ?12 ?13
20791 29198: Id : 7, {_}:
20792 join ?15 ?16 =?= join ?16 ?15
20793 [16, 15] by commutativity_of_join ?15 ?16
20794 29198: Id : 8, {_}:
20795 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20796 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20797 29198: Id : 9, {_}:
20798 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20799 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20800 29198: Id : 10, {_}:
20801 join (meet ?26 ?27) (meet ?26 ?28)
20803 meet ?26 (join (meet ?26 ?27) (meet (join ?26 ?27) ?28))
20804 [28, 27, 26] by equation_H61_dual ?26 ?27 ?28
20806 29198: Id : 1, {_}:
20807 meet a (join b (meet a c))
20809 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
20814 29198: b 3 0 3 1,2,2
20815 29198: c 3 0 3 2,2,2,2
20817 29198: join 16 2 4 0,2,2
20818 29198: meet 20 2 6 0,2
20819 NO CLASH, using fixed ground order
20821 29199: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
20822 29199: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
20823 29199: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
20824 29199: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
20825 29199: Id : 6, {_}:
20826 meet ?12 ?13 =?= meet ?13 ?12
20827 [13, 12] by commutativity_of_meet ?12 ?13
20828 29199: Id : 7, {_}:
20829 join ?15 ?16 =?= join ?16 ?15
20830 [16, 15] by commutativity_of_join ?15 ?16
20831 29199: Id : 8, {_}:
20832 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
20833 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
20834 29199: Id : 9, {_}:
20835 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
20836 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
20837 29199: Id : 10, {_}:
20838 join (meet ?26 ?27) (meet ?26 ?28)
20840 meet ?26 (join (meet ?26 ?27) (meet (join ?26 ?27) ?28))
20841 [28, 27, 26] by equation_H61_dual ?26 ?27 ?28
20843 29199: Id : 1, {_}:
20844 meet a (join b (meet a c))
20846 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
20851 29199: b 3 0 3 1,2,2
20852 29199: c 3 0 3 2,2,2,2
20854 29199: join 16 2 4 0,2,2
20855 29199: meet 20 2 6 0,2
20856 % SZS status Timeout for LAT171-1.p
20857 NO CLASH, using fixed ground order
20859 29274: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
20860 29274: Id : 3, {_}:
20861 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
20864 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
20865 29274: Id : 4, {_}:
20866 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
20867 [9, 8] by wajsberg_3 ?8 ?9
20868 29274: Id : 5, {_}:
20869 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
20870 [12, 11] by wajsberg_4 ?11 ?12
20871 29274: Id : 6, {_}: implies x y =>= implies y z [] by lemma_antecedent
20873 29274: Id : 1, {_}: implies x z =>= truth [] by prove_wajsberg_lemma
20880 29274: truth 4 0 1 3
20882 29274: implies 16 2 1 0,2
20883 NO CLASH, using fixed ground order
20885 29275: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
20886 29275: Id : 3, {_}:
20887 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
20890 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
20891 29275: Id : 4, {_}:
20892 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
20893 [9, 8] by wajsberg_3 ?8 ?9
20894 29275: Id : 5, {_}:
20895 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
20896 [12, 11] by wajsberg_4 ?11 ?12
20897 29275: Id : 6, {_}: implies x y =>= implies y z [] by lemma_antecedent
20899 29275: Id : 1, {_}: implies x z =>= truth [] by prove_wajsberg_lemma
20906 29275: truth 4 0 1 3
20908 29275: implies 16 2 1 0,2
20909 NO CLASH, using fixed ground order
20911 29276: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
20912 29276: Id : 3, {_}:
20913 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
20916 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
20917 29276: Id : 4, {_}:
20918 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
20919 [9, 8] by wajsberg_3 ?8 ?9
20920 29276: Id : 5, {_}:
20921 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
20922 [12, 11] by wajsberg_4 ?11 ?12
20923 29276: Id : 6, {_}: implies x y =>= implies y z [] by lemma_antecedent
20925 29276: Id : 1, {_}: implies x z =>= truth [] by prove_wajsberg_lemma
20932 29276: truth 4 0 1 3
20934 29276: implies 16 2 1 0,2
20935 % SZS status Timeout for LCL136-1.p
20936 NO CLASH, using fixed ground order
20938 29293: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
20939 29293: Id : 3, {_}:
20940 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
20943 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
20944 29293: Id : 4, {_}:
20945 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
20946 [9, 8] by wajsberg_3 ?8 ?9
20947 29293: Id : 5, {_}:
20948 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
20949 [12, 11] by wajsberg_4 ?11 ?12
20951 29293: Id : 1, {_}:
20952 implies (implies (implies x y) y)
20953 (implies (implies y z) (implies x z))
20956 [] by prove_wajsberg_lemma
20960 29293: x 2 0 2 1,1,1,2
20961 29293: z 2 0 2 2,1,2,2
20962 29293: y 3 0 3 2,1,1,2
20963 29293: truth 4 0 1 3
20965 29293: implies 19 2 6 0,2
20966 NO CLASH, using fixed ground order
20968 29294: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
20969 29294: Id : 3, {_}:
20970 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
20973 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
20974 29294: Id : 4, {_}:
20975 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
20976 [9, 8] by wajsberg_3 ?8 ?9
20977 29294: Id : 5, {_}:
20978 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
20979 [12, 11] by wajsberg_4 ?11 ?12
20981 29294: Id : 1, {_}:
20982 implies (implies (implies x y) y)
20983 (implies (implies y z) (implies x z))
20986 [] by prove_wajsberg_lemma
20990 29294: x 2 0 2 1,1,1,2
20991 29294: z 2 0 2 2,1,2,2
20992 29294: y 3 0 3 2,1,1,2
20993 29294: truth 4 0 1 3
20995 29294: implies 19 2 6 0,2
20996 NO CLASH, using fixed ground order
20998 29295: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
20999 29295: Id : 3, {_}:
21000 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
21003 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
21004 29295: Id : 4, {_}:
21005 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
21006 [9, 8] by wajsberg_3 ?8 ?9
21007 29295: Id : 5, {_}:
21008 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
21009 [12, 11] by wajsberg_4 ?11 ?12
21011 29295: Id : 1, {_}:
21012 implies (implies (implies x y) y)
21013 (implies (implies y z) (implies x z))
21016 [] by prove_wajsberg_lemma
21020 29295: x 2 0 2 1,1,1,2
21021 29295: z 2 0 2 2,1,2,2
21022 29295: y 3 0 3 2,1,1,2
21023 29295: truth 4 0 1 3
21025 29295: implies 19 2 6 0,2
21026 % SZS status Timeout for LCL137-1.p
21027 NO CLASH, using fixed ground order
21028 NO CLASH, using fixed ground order
21030 29381: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
21031 29381: Id : 3, {_}:
21032 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
21035 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
21036 29381: Id : 4, {_}:
21037 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
21038 [9, 8] by wajsberg_3 ?8 ?9
21039 29381: Id : 5, {_}:
21040 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
21041 [12, 11] by wajsberg_4 ?11 ?12
21042 29381: Id : 6, {_}:
21043 or ?14 ?15 =<= implies (not ?14) ?15
21044 [15, 14] by or_definition ?14 ?15
21045 29381: Id : 7, {_}:
21046 or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19)
21047 [19, 18, 17] by or_associativity ?17 ?18 ?19
21048 29381: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
21049 29381: Id : 9, {_}:
21050 and ?24 ?25 =<= not (or (not ?24) (not ?25))
21051 [25, 24] by and_definition ?24 ?25
21052 29381: Id : 10, {_}:
21053 and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29)
21054 [29, 28, 27] by and_associativity ?27 ?28 ?29
21055 29381: Id : 11, {_}:
21056 and ?31 ?32 =?= and ?32 ?31
21057 [32, 31] by and_commutativity ?31 ?32
21059 29381: Id : 1, {_}:
21060 not (or (and x (or x x)) (and x x))
21062 and (not x) (or (or (not x) (not x)) (and (not x) (not x)))
21063 [] by prove_wajsberg_theorem
21068 29381: x 10 0 10 1,1,1,2
21069 29381: not 12 1 6 0,2
21070 29381: and 11 2 4 0,1,1,2
21071 29381: or 12 2 4 0,1,2
21072 29381: implies 14 2 0
21074 29380: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
21075 29380: Id : 3, {_}:
21076 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
21079 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
21080 29380: Id : 4, {_}:
21081 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
21082 [9, 8] by wajsberg_3 ?8 ?9
21083 29380: Id : 5, {_}:
21084 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
21085 [12, 11] by wajsberg_4 ?11 ?12
21086 29380: Id : 6, {_}:
21087 or ?14 ?15 =<= implies (not ?14) ?15
21088 [15, 14] by or_definition ?14 ?15
21089 29380: Id : 7, {_}:
21090 or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19)
21091 [19, 18, 17] by or_associativity ?17 ?18 ?19
21092 29380: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
21093 29380: Id : 9, {_}:
21094 and ?24 ?25 =<= not (or (not ?24) (not ?25))
21095 [25, 24] by and_definition ?24 ?25
21096 29380: Id : 10, {_}:
21097 and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29)
21098 [29, 28, 27] by and_associativity ?27 ?28 ?29
21099 29380: Id : 11, {_}:
21100 and ?31 ?32 =?= and ?32 ?31
21101 [32, 31] by and_commutativity ?31 ?32
21103 29380: Id : 1, {_}:
21104 not (or (and x (or x x)) (and x x))
21106 and (not x) (or (or (not x) (not x)) (and (not x) (not x)))
21107 [] by prove_wajsberg_theorem
21112 29380: x 10 0 10 1,1,1,2
21113 29380: not 12 1 6 0,2
21114 29380: and 11 2 4 0,1,1,2
21115 29380: or 12 2 4 0,1,2
21116 29380: implies 14 2 0
21117 NO CLASH, using fixed ground order
21119 29382: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
21120 29382: Id : 3, {_}:
21121 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
21124 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
21125 29382: Id : 4, {_}:
21126 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
21127 [9, 8] by wajsberg_3 ?8 ?9
21128 29382: Id : 5, {_}:
21129 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
21130 [12, 11] by wajsberg_4 ?11 ?12
21131 29382: Id : 6, {_}:
21132 or ?14 ?15 =<= implies (not ?14) ?15
21133 [15, 14] by or_definition ?14 ?15
21134 29382: Id : 7, {_}:
21135 or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19)
21136 [19, 18, 17] by or_associativity ?17 ?18 ?19
21137 29382: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
21138 29382: Id : 9, {_}:
21139 and ?24 ?25 =<= not (or (not ?24) (not ?25))
21140 [25, 24] by and_definition ?24 ?25
21141 29382: Id : 10, {_}:
21142 and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29)
21143 [29, 28, 27] by and_associativity ?27 ?28 ?29
21144 29382: Id : 11, {_}:
21145 and ?31 ?32 =?= and ?32 ?31
21146 [32, 31] by and_commutativity ?31 ?32
21148 29382: Id : 1, {_}:
21149 not (or (and x (or x x)) (and x x))
21151 and (not x) (or (or (not x) (not x)) (and (not x) (not x)))
21152 [] by prove_wajsberg_theorem
21157 29382: x 10 0 10 1,1,1,2
21158 29382: not 12 1 6 0,2
21159 29382: and 11 2 4 0,1,1,2
21160 29382: or 12 2 4 0,1,2
21161 29382: implies 14 2 0
21162 % SZS status Timeout for LCL165-1.p
21163 NO CLASH, using fixed ground order
21165 29399: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21166 29399: Id : 3, {_}:
21167 add ?4 additive_identity =>= ?4
21168 [4] by right_additive_identity ?4
21169 29399: Id : 4, {_}:
21170 multiply additive_identity ?6 =>= additive_identity
21171 [6] by left_multiplicative_zero ?6
21172 29399: Id : 5, {_}:
21173 multiply ?8 additive_identity =>= additive_identity
21174 [8] by right_multiplicative_zero ?8
21175 29399: Id : 6, {_}:
21176 add (additive_inverse ?10) ?10 =>= additive_identity
21177 [10] by left_additive_inverse ?10
21178 29399: Id : 7, {_}:
21179 add ?12 (additive_inverse ?12) =>= additive_identity
21180 [12] by right_additive_inverse ?12
21181 29399: Id : 8, {_}:
21182 additive_inverse (additive_inverse ?14) =>= ?14
21183 [14] by additive_inverse_additive_inverse ?14
21184 29399: Id : 9, {_}:
21185 multiply ?16 (add ?17 ?18)
21187 add (multiply ?16 ?17) (multiply ?16 ?18)
21188 [18, 17, 16] by distribute1 ?16 ?17 ?18
21189 29399: Id : 10, {_}:
21190 multiply (add ?20 ?21) ?22
21192 add (multiply ?20 ?22) (multiply ?21 ?22)
21193 [22, 21, 20] by distribute2 ?20 ?21 ?22
21194 29399: Id : 11, {_}:
21195 add ?24 ?25 =?= add ?25 ?24
21196 [25, 24] by commutativity_for_addition ?24 ?25
21197 29399: Id : 12, {_}:
21198 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
21199 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21200 29399: Id : 13, {_}:
21201 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
21202 [32, 31] by right_alternative ?31 ?32
21203 29399: Id : 14, {_}:
21204 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
21205 [35, 34] by left_alternative ?34 ?35
21206 29399: Id : 15, {_}:
21207 associator ?37 ?38 ?39
21209 add (multiply (multiply ?37 ?38) ?39)
21210 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21211 [39, 38, 37] by associator ?37 ?38 ?39
21212 29399: Id : 16, {_}:
21215 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21216 [42, 41] by commutator ?41 ?42
21217 29399: Id : 17, {_}:
21218 multiply (additive_inverse ?44) (additive_inverse ?45)
21221 [45, 44] by product_of_inverses ?44 ?45
21222 29399: Id : 18, {_}:
21223 multiply (additive_inverse ?47) ?48
21225 additive_inverse (multiply ?47 ?48)
21226 [48, 47] by inverse_product1 ?47 ?48
21227 29399: Id : 19, {_}:
21228 multiply ?50 (additive_inverse ?51)
21230 additive_inverse (multiply ?50 ?51)
21231 [51, 50] by inverse_product2 ?50 ?51
21232 29399: Id : 20, {_}:
21233 multiply ?53 (add ?54 (additive_inverse ?55))
21235 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
21236 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
21237 29399: Id : 21, {_}:
21238 multiply (add ?57 (additive_inverse ?58)) ?59
21240 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
21241 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
21242 29399: Id : 22, {_}:
21243 multiply (additive_inverse ?61) (add ?62 ?63)
21245 add (additive_inverse (multiply ?61 ?62))
21246 (additive_inverse (multiply ?61 ?63))
21247 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
21248 29399: Id : 23, {_}:
21249 multiply (add ?65 ?66) (additive_inverse ?67)
21251 add (additive_inverse (multiply ?65 ?67))
21252 (additive_inverse (multiply ?66 ?67))
21253 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
21255 29399: Id : 1, {_}:
21256 associator x y (add u v)
21258 add (associator x y u) (associator x y v)
21259 [] by prove_linearised_form1
21263 29399: u 2 0 2 1,3,2
21264 29399: v 2 0 2 2,3,2
21267 29399: additive_identity 8 0 0
21268 29399: additive_inverse 22 1 0
21269 29399: commutator 1 2 0
21270 29399: add 26 2 2 0,3,2
21271 29399: multiply 40 2 0
21272 29399: associator 4 3 3 0,2
21273 NO CLASH, using fixed ground order
21275 29400: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21276 29400: Id : 3, {_}:
21277 add ?4 additive_identity =>= ?4
21278 [4] by right_additive_identity ?4
21279 29400: Id : 4, {_}:
21280 multiply additive_identity ?6 =>= additive_identity
21281 [6] by left_multiplicative_zero ?6
21282 29400: Id : 5, {_}:
21283 multiply ?8 additive_identity =>= additive_identity
21284 [8] by right_multiplicative_zero ?8
21285 29400: Id : 6, {_}:
21286 add (additive_inverse ?10) ?10 =>= additive_identity
21287 [10] by left_additive_inverse ?10
21288 29400: Id : 7, {_}:
21289 add ?12 (additive_inverse ?12) =>= additive_identity
21290 [12] by right_additive_inverse ?12
21291 29400: Id : 8, {_}:
21292 additive_inverse (additive_inverse ?14) =>= ?14
21293 [14] by additive_inverse_additive_inverse ?14
21294 29400: Id : 9, {_}:
21295 multiply ?16 (add ?17 ?18)
21297 add (multiply ?16 ?17) (multiply ?16 ?18)
21298 [18, 17, 16] by distribute1 ?16 ?17 ?18
21299 29400: Id : 10, {_}:
21300 multiply (add ?20 ?21) ?22
21302 add (multiply ?20 ?22) (multiply ?21 ?22)
21303 [22, 21, 20] by distribute2 ?20 ?21 ?22
21304 29400: Id : 11, {_}:
21305 add ?24 ?25 =?= add ?25 ?24
21306 [25, 24] by commutativity_for_addition ?24 ?25
21307 29400: Id : 12, {_}:
21308 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
21309 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21310 29400: Id : 13, {_}:
21311 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
21312 [32, 31] by right_alternative ?31 ?32
21313 29400: Id : 14, {_}:
21314 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
21315 [35, 34] by left_alternative ?34 ?35
21316 29400: Id : 15, {_}:
21317 associator ?37 ?38 ?39
21319 add (multiply (multiply ?37 ?38) ?39)
21320 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21321 [39, 38, 37] by associator ?37 ?38 ?39
21322 29400: Id : 16, {_}:
21325 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21326 [42, 41] by commutator ?41 ?42
21327 29400: Id : 17, {_}:
21328 multiply (additive_inverse ?44) (additive_inverse ?45)
21331 [45, 44] by product_of_inverses ?44 ?45
21332 29400: Id : 18, {_}:
21333 multiply (additive_inverse ?47) ?48
21335 additive_inverse (multiply ?47 ?48)
21336 [48, 47] by inverse_product1 ?47 ?48
21337 29400: Id : 19, {_}:
21338 multiply ?50 (additive_inverse ?51)
21340 additive_inverse (multiply ?50 ?51)
21341 [51, 50] by inverse_product2 ?50 ?51
21342 29400: Id : 20, {_}:
21343 multiply ?53 (add ?54 (additive_inverse ?55))
21345 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
21346 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
21347 29400: Id : 21, {_}:
21348 multiply (add ?57 (additive_inverse ?58)) ?59
21350 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
21351 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
21352 29400: Id : 22, {_}:
21353 multiply (additive_inverse ?61) (add ?62 ?63)
21355 add (additive_inverse (multiply ?61 ?62))
21356 (additive_inverse (multiply ?61 ?63))
21357 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
21358 29400: Id : 23, {_}:
21359 multiply (add ?65 ?66) (additive_inverse ?67)
21361 add (additive_inverse (multiply ?65 ?67))
21362 (additive_inverse (multiply ?66 ?67))
21363 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
21365 29400: Id : 1, {_}:
21366 associator x y (add u v)
21368 add (associator x y u) (associator x y v)
21369 [] by prove_linearised_form1
21373 29400: u 2 0 2 1,3,2
21374 29400: v 2 0 2 2,3,2
21377 29400: additive_identity 8 0 0
21378 29400: additive_inverse 22 1 0
21379 29400: commutator 1 2 0
21380 29400: add 26 2 2 0,3,2
21381 29400: multiply 40 2 0
21382 29400: associator 4 3 3 0,2
21383 NO CLASH, using fixed ground order
21385 29401: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21386 29401: Id : 3, {_}:
21387 add ?4 additive_identity =>= ?4
21388 [4] by right_additive_identity ?4
21389 29401: Id : 4, {_}:
21390 multiply additive_identity ?6 =>= additive_identity
21391 [6] by left_multiplicative_zero ?6
21392 29401: Id : 5, {_}:
21393 multiply ?8 additive_identity =>= additive_identity
21394 [8] by right_multiplicative_zero ?8
21395 29401: Id : 6, {_}:
21396 add (additive_inverse ?10) ?10 =>= additive_identity
21397 [10] by left_additive_inverse ?10
21398 29401: Id : 7, {_}:
21399 add ?12 (additive_inverse ?12) =>= additive_identity
21400 [12] by right_additive_inverse ?12
21401 29401: Id : 8, {_}:
21402 additive_inverse (additive_inverse ?14) =>= ?14
21403 [14] by additive_inverse_additive_inverse ?14
21404 29401: Id : 9, {_}:
21405 multiply ?16 (add ?17 ?18)
21407 add (multiply ?16 ?17) (multiply ?16 ?18)
21408 [18, 17, 16] by distribute1 ?16 ?17 ?18
21409 29401: Id : 10, {_}:
21410 multiply (add ?20 ?21) ?22
21412 add (multiply ?20 ?22) (multiply ?21 ?22)
21413 [22, 21, 20] by distribute2 ?20 ?21 ?22
21414 29401: Id : 11, {_}:
21415 add ?24 ?25 =?= add ?25 ?24
21416 [25, 24] by commutativity_for_addition ?24 ?25
21417 29401: Id : 12, {_}:
21418 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
21419 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21420 29401: Id : 13, {_}:
21421 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
21422 [32, 31] by right_alternative ?31 ?32
21423 29401: Id : 14, {_}:
21424 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
21425 [35, 34] by left_alternative ?34 ?35
21426 29401: Id : 15, {_}:
21427 associator ?37 ?38 ?39
21429 add (multiply (multiply ?37 ?38) ?39)
21430 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21431 [39, 38, 37] by associator ?37 ?38 ?39
21432 29401: Id : 16, {_}:
21435 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21436 [42, 41] by commutator ?41 ?42
21437 29401: Id : 17, {_}:
21438 multiply (additive_inverse ?44) (additive_inverse ?45)
21441 [45, 44] by product_of_inverses ?44 ?45
21442 29401: Id : 18, {_}:
21443 multiply (additive_inverse ?47) ?48
21445 additive_inverse (multiply ?47 ?48)
21446 [48, 47] by inverse_product1 ?47 ?48
21447 29401: Id : 19, {_}:
21448 multiply ?50 (additive_inverse ?51)
21450 additive_inverse (multiply ?50 ?51)
21451 [51, 50] by inverse_product2 ?50 ?51
21452 29401: Id : 20, {_}:
21453 multiply ?53 (add ?54 (additive_inverse ?55))
21455 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
21456 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
21457 29401: Id : 21, {_}:
21458 multiply (add ?57 (additive_inverse ?58)) ?59
21460 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
21461 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
21462 29401: Id : 22, {_}:
21463 multiply (additive_inverse ?61) (add ?62 ?63)
21465 add (additive_inverse (multiply ?61 ?62))
21466 (additive_inverse (multiply ?61 ?63))
21467 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
21468 29401: Id : 23, {_}:
21469 multiply (add ?65 ?66) (additive_inverse ?67)
21471 add (additive_inverse (multiply ?65 ?67))
21472 (additive_inverse (multiply ?66 ?67))
21473 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
21475 29401: Id : 1, {_}:
21476 associator x y (add u v)
21478 add (associator x y u) (associator x y v)
21479 [] by prove_linearised_form1
21483 29401: u 2 0 2 1,3,2
21484 29401: v 2 0 2 2,3,2
21487 29401: additive_identity 8 0 0
21488 29401: additive_inverse 22 1 0
21489 29401: commutator 1 2 0
21490 29401: add 26 2 2 0,3,2
21491 29401: multiply 40 2 0
21492 29401: associator 4 3 3 0,2
21493 % SZS status Timeout for RNG019-7.p
21494 NO CLASH, using fixed ground order
21496 29433: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21497 29433: Id : 3, {_}:
21498 add ?4 additive_identity =>= ?4
21499 [4] by right_additive_identity ?4
21500 29433: Id : 4, {_}:
21501 multiply additive_identity ?6 =>= additive_identity
21502 [6] by left_multiplicative_zero ?6
21503 29433: Id : 5, {_}:
21504 multiply ?8 additive_identity =>= additive_identity
21505 [8] by right_multiplicative_zero ?8
21506 29433: Id : 6, {_}:
21507 add (additive_inverse ?10) ?10 =>= additive_identity
21508 [10] by left_additive_inverse ?10
21509 29433: Id : 7, {_}:
21510 add ?12 (additive_inverse ?12) =>= additive_identity
21511 [12] by right_additive_inverse ?12
21512 29433: Id : 8, {_}:
21513 additive_inverse (additive_inverse ?14) =>= ?14
21514 [14] by additive_inverse_additive_inverse ?14
21515 29433: Id : 9, {_}:
21516 multiply ?16 (add ?17 ?18)
21518 add (multiply ?16 ?17) (multiply ?16 ?18)
21519 [18, 17, 16] by distribute1 ?16 ?17 ?18
21520 29433: Id : 10, {_}:
21521 multiply (add ?20 ?21) ?22
21523 add (multiply ?20 ?22) (multiply ?21 ?22)
21524 [22, 21, 20] by distribute2 ?20 ?21 ?22
21525 29433: Id : 11, {_}:
21526 add ?24 ?25 =?= add ?25 ?24
21527 [25, 24] by commutativity_for_addition ?24 ?25
21528 29433: Id : 12, {_}:
21529 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
21530 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21531 29433: Id : 13, {_}:
21532 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
21533 [32, 31] by right_alternative ?31 ?32
21534 29433: Id : 14, {_}:
21535 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
21536 [35, 34] by left_alternative ?34 ?35
21537 29433: Id : 15, {_}:
21538 associator ?37 ?38 ?39
21540 add (multiply (multiply ?37 ?38) ?39)
21541 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21542 [39, 38, 37] by associator ?37 ?38 ?39
21543 29433: Id : 16, {_}:
21546 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21547 [42, 41] by commutator ?41 ?42
21549 29433: Id : 1, {_}:
21550 associator x (add u v) y
21552 add (associator x u y) (associator x v y)
21553 [] by prove_linearised_form2
21557 29433: u 2 0 2 1,2,2
21558 29433: v 2 0 2 2,2,2
21561 29433: additive_identity 8 0 0
21562 29433: additive_inverse 6 1 0
21563 29433: commutator 1 2 0
21564 29433: add 18 2 2 0,2,2
21565 29433: multiply 22 2 0
21566 29433: associator 4 3 3 0,2
21567 NO CLASH, using fixed ground order
21569 29434: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21570 29434: Id : 3, {_}:
21571 add ?4 additive_identity =>= ?4
21572 [4] by right_additive_identity ?4
21573 29434: Id : 4, {_}:
21574 multiply additive_identity ?6 =>= additive_identity
21575 [6] by left_multiplicative_zero ?6
21576 29434: Id : 5, {_}:
21577 multiply ?8 additive_identity =>= additive_identity
21578 [8] by right_multiplicative_zero ?8
21579 29434: Id : 6, {_}:
21580 add (additive_inverse ?10) ?10 =>= additive_identity
21581 [10] by left_additive_inverse ?10
21582 29434: Id : 7, {_}:
21583 add ?12 (additive_inverse ?12) =>= additive_identity
21584 [12] by right_additive_inverse ?12
21585 29434: Id : 8, {_}:
21586 additive_inverse (additive_inverse ?14) =>= ?14
21587 [14] by additive_inverse_additive_inverse ?14
21588 29434: Id : 9, {_}:
21589 multiply ?16 (add ?17 ?18)
21591 add (multiply ?16 ?17) (multiply ?16 ?18)
21592 [18, 17, 16] by distribute1 ?16 ?17 ?18
21593 29434: Id : 10, {_}:
21594 multiply (add ?20 ?21) ?22
21596 add (multiply ?20 ?22) (multiply ?21 ?22)
21597 [22, 21, 20] by distribute2 ?20 ?21 ?22
21598 29434: Id : 11, {_}:
21599 add ?24 ?25 =?= add ?25 ?24
21600 [25, 24] by commutativity_for_addition ?24 ?25
21601 29434: Id : 12, {_}:
21602 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
21603 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21604 29434: Id : 13, {_}:
21605 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
21606 [32, 31] by right_alternative ?31 ?32
21607 29434: Id : 14, {_}:
21608 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
21609 [35, 34] by left_alternative ?34 ?35
21610 29434: Id : 15, {_}:
21611 associator ?37 ?38 ?39
21613 add (multiply (multiply ?37 ?38) ?39)
21614 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21615 [39, 38, 37] by associator ?37 ?38 ?39
21616 29434: Id : 16, {_}:
21619 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21620 [42, 41] by commutator ?41 ?42
21622 29434: Id : 1, {_}:
21623 associator x (add u v) y
21625 add (associator x u y) (associator x v y)
21626 [] by prove_linearised_form2
21630 29434: u 2 0 2 1,2,2
21631 29434: v 2 0 2 2,2,2
21634 29434: additive_identity 8 0 0
21635 29434: additive_inverse 6 1 0
21636 29434: commutator 1 2 0
21637 29434: add 18 2 2 0,2,2
21638 29434: multiply 22 2 0
21639 29434: associator 4 3 3 0,2
21640 NO CLASH, using fixed ground order
21642 29432: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21643 29432: Id : 3, {_}:
21644 add ?4 additive_identity =>= ?4
21645 [4] by right_additive_identity ?4
21646 29432: Id : 4, {_}:
21647 multiply additive_identity ?6 =>= additive_identity
21648 [6] by left_multiplicative_zero ?6
21649 29432: Id : 5, {_}:
21650 multiply ?8 additive_identity =>= additive_identity
21651 [8] by right_multiplicative_zero ?8
21652 29432: Id : 6, {_}:
21653 add (additive_inverse ?10) ?10 =>= additive_identity
21654 [10] by left_additive_inverse ?10
21655 29432: Id : 7, {_}:
21656 add ?12 (additive_inverse ?12) =>= additive_identity
21657 [12] by right_additive_inverse ?12
21658 29432: Id : 8, {_}:
21659 additive_inverse (additive_inverse ?14) =>= ?14
21660 [14] by additive_inverse_additive_inverse ?14
21661 29432: Id : 9, {_}:
21662 multiply ?16 (add ?17 ?18)
21664 add (multiply ?16 ?17) (multiply ?16 ?18)
21665 [18, 17, 16] by distribute1 ?16 ?17 ?18
21666 29432: Id : 10, {_}:
21667 multiply (add ?20 ?21) ?22
21669 add (multiply ?20 ?22) (multiply ?21 ?22)
21670 [22, 21, 20] by distribute2 ?20 ?21 ?22
21671 29432: Id : 11, {_}:
21672 add ?24 ?25 =?= add ?25 ?24
21673 [25, 24] by commutativity_for_addition ?24 ?25
21674 29432: Id : 12, {_}:
21675 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
21676 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21677 29432: Id : 13, {_}:
21678 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
21679 [32, 31] by right_alternative ?31 ?32
21680 29432: Id : 14, {_}:
21681 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
21682 [35, 34] by left_alternative ?34 ?35
21683 29432: Id : 15, {_}:
21684 associator ?37 ?38 ?39
21686 add (multiply (multiply ?37 ?38) ?39)
21687 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21688 [39, 38, 37] by associator ?37 ?38 ?39
21689 29432: Id : 16, {_}:
21692 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21693 [42, 41] by commutator ?41 ?42
21695 29432: Id : 1, {_}:
21696 associator x (add u v) y
21698 add (associator x u y) (associator x v y)
21699 [] by prove_linearised_form2
21703 29432: u 2 0 2 1,2,2
21704 29432: v 2 0 2 2,2,2
21707 29432: additive_identity 8 0 0
21708 29432: additive_inverse 6 1 0
21709 29432: commutator 1 2 0
21710 29432: add 18 2 2 0,2,2
21711 29432: multiply 22 2 0
21712 29432: associator 4 3 3 0,2
21713 % SZS status Timeout for RNG020-6.p
21714 NO CLASH, using fixed ground order
21716 29471: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21717 29471: Id : 3, {_}:
21718 add ?4 additive_identity =>= ?4
21719 [4] by right_additive_identity ?4
21720 29471: Id : 4, {_}:
21721 multiply additive_identity ?6 =>= additive_identity
21722 [6] by left_multiplicative_zero ?6
21723 29471: Id : 5, {_}:
21724 multiply ?8 additive_identity =>= additive_identity
21725 [8] by right_multiplicative_zero ?8
21726 29471: Id : 6, {_}:
21727 add (additive_inverse ?10) ?10 =>= additive_identity
21728 [10] by left_additive_inverse ?10
21729 29471: Id : 7, {_}:
21730 add ?12 (additive_inverse ?12) =>= additive_identity
21731 [12] by right_additive_inverse ?12
21732 29471: Id : 8, {_}:
21733 additive_inverse (additive_inverse ?14) =>= ?14
21734 [14] by additive_inverse_additive_inverse ?14
21735 29471: Id : 9, {_}:
21736 multiply ?16 (add ?17 ?18)
21738 add (multiply ?16 ?17) (multiply ?16 ?18)
21739 [18, 17, 16] by distribute1 ?16 ?17 ?18
21740 29471: Id : 10, {_}:
21741 multiply (add ?20 ?21) ?22
21743 add (multiply ?20 ?22) (multiply ?21 ?22)
21744 [22, 21, 20] by distribute2 ?20 ?21 ?22
21745 29471: Id : 11, {_}:
21746 add ?24 ?25 =?= add ?25 ?24
21747 [25, 24] by commutativity_for_addition ?24 ?25
21748 29471: Id : 12, {_}:
21749 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
21750 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21751 29471: Id : 13, {_}:
21752 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
21753 [32, 31] by right_alternative ?31 ?32
21754 29471: Id : 14, {_}:
21755 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
21756 [35, 34] by left_alternative ?34 ?35
21757 29471: Id : 15, {_}:
21758 associator ?37 ?38 ?39
21760 add (multiply (multiply ?37 ?38) ?39)
21761 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21762 [39, 38, 37] by associator ?37 ?38 ?39
21763 29471: Id : 16, {_}:
21766 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21767 [42, 41] by commutator ?41 ?42
21768 29471: Id : 17, {_}:
21769 multiply (additive_inverse ?44) (additive_inverse ?45)
21772 [45, 44] by product_of_inverses ?44 ?45
21773 29471: Id : 18, {_}:
21774 multiply (additive_inverse ?47) ?48
21776 additive_inverse (multiply ?47 ?48)
21777 [48, 47] by inverse_product1 ?47 ?48
21778 29471: Id : 19, {_}:
21779 multiply ?50 (additive_inverse ?51)
21781 additive_inverse (multiply ?50 ?51)
21782 [51, 50] by inverse_product2 ?50 ?51
21783 29471: Id : 20, {_}:
21784 multiply ?53 (add ?54 (additive_inverse ?55))
21786 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
21787 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
21788 29471: Id : 21, {_}:
21789 multiply (add ?57 (additive_inverse ?58)) ?59
21791 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
21792 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
21793 29471: Id : 22, {_}:
21794 multiply (additive_inverse ?61) (add ?62 ?63)
21796 add (additive_inverse (multiply ?61 ?62))
21797 (additive_inverse (multiply ?61 ?63))
21798 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
21799 29471: Id : 23, {_}:
21800 multiply (add ?65 ?66) (additive_inverse ?67)
21802 add (additive_inverse (multiply ?65 ?67))
21803 (additive_inverse (multiply ?66 ?67))
21804 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
21806 29471: Id : 1, {_}:
21807 associator x (add u v) y
21809 add (associator x u y) (associator x v y)
21810 [] by prove_linearised_form2
21814 29471: u 2 0 2 1,2,2
21815 29471: v 2 0 2 2,2,2
21818 29471: additive_identity 8 0 0
21819 29471: additive_inverse 22 1 0
21820 29471: commutator 1 2 0
21821 29471: add 26 2 2 0,2,2
21822 29471: multiply 40 2 0
21823 29471: associator 4 3 3 0,2
21824 NO CLASH, using fixed ground order
21826 29472: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21827 29472: Id : 3, {_}:
21828 add ?4 additive_identity =>= ?4
21829 [4] by right_additive_identity ?4
21830 29472: Id : 4, {_}:
21831 multiply additive_identity ?6 =>= additive_identity
21832 [6] by left_multiplicative_zero ?6
21833 29472: Id : 5, {_}:
21834 multiply ?8 additive_identity =>= additive_identity
21835 [8] by right_multiplicative_zero ?8
21836 29472: Id : 6, {_}:
21837 add (additive_inverse ?10) ?10 =>= additive_identity
21838 [10] by left_additive_inverse ?10
21839 29472: Id : 7, {_}:
21840 add ?12 (additive_inverse ?12) =>= additive_identity
21841 [12] by right_additive_inverse ?12
21842 29472: Id : 8, {_}:
21843 additive_inverse (additive_inverse ?14) =>= ?14
21844 [14] by additive_inverse_additive_inverse ?14
21845 29472: Id : 9, {_}:
21846 multiply ?16 (add ?17 ?18)
21848 add (multiply ?16 ?17) (multiply ?16 ?18)
21849 [18, 17, 16] by distribute1 ?16 ?17 ?18
21850 29472: Id : 10, {_}:
21851 multiply (add ?20 ?21) ?22
21853 add (multiply ?20 ?22) (multiply ?21 ?22)
21854 [22, 21, 20] by distribute2 ?20 ?21 ?22
21855 29472: Id : 11, {_}:
21856 add ?24 ?25 =?= add ?25 ?24
21857 [25, 24] by commutativity_for_addition ?24 ?25
21858 29472: Id : 12, {_}:
21859 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
21860 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21861 29472: Id : 13, {_}:
21862 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
21863 [32, 31] by right_alternative ?31 ?32
21864 29472: Id : 14, {_}:
21865 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
21866 [35, 34] by left_alternative ?34 ?35
21867 29472: Id : 15, {_}:
21868 associator ?37 ?38 ?39
21870 add (multiply (multiply ?37 ?38) ?39)
21871 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21872 [39, 38, 37] by associator ?37 ?38 ?39
21873 29472: Id : 16, {_}:
21876 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21877 [42, 41] by commutator ?41 ?42
21878 29472: Id : 17, {_}:
21879 multiply (additive_inverse ?44) (additive_inverse ?45)
21882 [45, 44] by product_of_inverses ?44 ?45
21883 29472: Id : 18, {_}:
21884 multiply (additive_inverse ?47) ?48
21886 additive_inverse (multiply ?47 ?48)
21887 [48, 47] by inverse_product1 ?47 ?48
21888 29472: Id : 19, {_}:
21889 multiply ?50 (additive_inverse ?51)
21891 additive_inverse (multiply ?50 ?51)
21892 [51, 50] by inverse_product2 ?50 ?51
21893 29472: Id : 20, {_}:
21894 multiply ?53 (add ?54 (additive_inverse ?55))
21896 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
21897 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
21898 29472: Id : 21, {_}:
21899 multiply (add ?57 (additive_inverse ?58)) ?59
21901 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
21902 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
21903 29472: Id : 22, {_}:
21904 multiply (additive_inverse ?61) (add ?62 ?63)
21906 add (additive_inverse (multiply ?61 ?62))
21907 (additive_inverse (multiply ?61 ?63))
21908 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
21909 29472: Id : 23, {_}:
21910 multiply (add ?65 ?66) (additive_inverse ?67)
21912 add (additive_inverse (multiply ?65 ?67))
21913 (additive_inverse (multiply ?66 ?67))
21914 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
21916 29472: Id : 1, {_}:
21917 associator x (add u v) y
21919 add (associator x u y) (associator x v y)
21920 [] by prove_linearised_form2
21924 29472: u 2 0 2 1,2,2
21925 29472: v 2 0 2 2,2,2
21928 29472: additive_identity 8 0 0
21929 29472: additive_inverse 22 1 0
21930 29472: commutator 1 2 0
21931 29472: add 26 2 2 0,2,2
21932 29472: multiply 40 2 0
21933 29472: associator 4 3 3 0,2
21934 NO CLASH, using fixed ground order
21936 29473: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
21937 29473: Id : 3, {_}:
21938 add ?4 additive_identity =>= ?4
21939 [4] by right_additive_identity ?4
21940 29473: Id : 4, {_}:
21941 multiply additive_identity ?6 =>= additive_identity
21942 [6] by left_multiplicative_zero ?6
21943 29473: Id : 5, {_}:
21944 multiply ?8 additive_identity =>= additive_identity
21945 [8] by right_multiplicative_zero ?8
21946 29473: Id : 6, {_}:
21947 add (additive_inverse ?10) ?10 =>= additive_identity
21948 [10] by left_additive_inverse ?10
21949 29473: Id : 7, {_}:
21950 add ?12 (additive_inverse ?12) =>= additive_identity
21951 [12] by right_additive_inverse ?12
21952 29473: Id : 8, {_}:
21953 additive_inverse (additive_inverse ?14) =>= ?14
21954 [14] by additive_inverse_additive_inverse ?14
21955 29473: Id : 9, {_}:
21956 multiply ?16 (add ?17 ?18)
21958 add (multiply ?16 ?17) (multiply ?16 ?18)
21959 [18, 17, 16] by distribute1 ?16 ?17 ?18
21960 29473: Id : 10, {_}:
21961 multiply (add ?20 ?21) ?22
21963 add (multiply ?20 ?22) (multiply ?21 ?22)
21964 [22, 21, 20] by distribute2 ?20 ?21 ?22
21965 29473: Id : 11, {_}:
21966 add ?24 ?25 =?= add ?25 ?24
21967 [25, 24] by commutativity_for_addition ?24 ?25
21968 29473: Id : 12, {_}:
21969 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
21970 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
21971 29473: Id : 13, {_}:
21972 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
21973 [32, 31] by right_alternative ?31 ?32
21974 29473: Id : 14, {_}:
21975 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
21976 [35, 34] by left_alternative ?34 ?35
21977 29473: Id : 15, {_}:
21978 associator ?37 ?38 ?39
21980 add (multiply (multiply ?37 ?38) ?39)
21981 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
21982 [39, 38, 37] by associator ?37 ?38 ?39
21983 29473: Id : 16, {_}:
21986 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
21987 [42, 41] by commutator ?41 ?42
21988 29473: Id : 17, {_}:
21989 multiply (additive_inverse ?44) (additive_inverse ?45)
21992 [45, 44] by product_of_inverses ?44 ?45
21993 29473: Id : 18, {_}:
21994 multiply (additive_inverse ?47) ?48
21996 additive_inverse (multiply ?47 ?48)
21997 [48, 47] by inverse_product1 ?47 ?48
21998 29473: Id : 19, {_}:
21999 multiply ?50 (additive_inverse ?51)
22001 additive_inverse (multiply ?50 ?51)
22002 [51, 50] by inverse_product2 ?50 ?51
22003 29473: Id : 20, {_}:
22004 multiply ?53 (add ?54 (additive_inverse ?55))
22006 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
22007 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
22008 29473: Id : 21, {_}:
22009 multiply (add ?57 (additive_inverse ?58)) ?59
22011 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
22012 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
22013 29473: Id : 22, {_}:
22014 multiply (additive_inverse ?61) (add ?62 ?63)
22016 add (additive_inverse (multiply ?61 ?62))
22017 (additive_inverse (multiply ?61 ?63))
22018 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
22019 29473: Id : 23, {_}:
22020 multiply (add ?65 ?66) (additive_inverse ?67)
22022 add (additive_inverse (multiply ?65 ?67))
22023 (additive_inverse (multiply ?66 ?67))
22024 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
22026 29473: Id : 1, {_}:
22027 associator x (add u v) y
22029 add (associator x u y) (associator x v y)
22030 [] by prove_linearised_form2
22034 29473: u 2 0 2 1,2,2
22035 29473: v 2 0 2 2,2,2
22038 29473: additive_identity 8 0 0
22039 29473: additive_inverse 22 1 0
22040 29473: commutator 1 2 0
22041 29473: add 26 2 2 0,2,2
22042 29473: multiply 40 2 0
22043 29473: associator 4 3 3 0,2
22044 % SZS status Timeout for RNG020-7.p
22045 NO CLASH, using fixed ground order
22047 29501: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
22048 29501: Id : 3, {_}:
22049 add ?4 additive_identity =>= ?4
22050 [4] by right_additive_identity ?4
22051 29501: Id : 4, {_}:
22052 multiply additive_identity ?6 =>= additive_identity
22053 [6] by left_multiplicative_zero ?6
22054 29501: Id : 5, {_}:
22055 multiply ?8 additive_identity =>= additive_identity
22056 [8] by right_multiplicative_zero ?8
22057 29501: Id : 6, {_}:
22058 add (additive_inverse ?10) ?10 =>= additive_identity
22059 [10] by left_additive_inverse ?10
22060 29501: Id : 7, {_}:
22061 add ?12 (additive_inverse ?12) =>= additive_identity
22062 [12] by right_additive_inverse ?12
22063 29501: Id : 8, {_}:
22064 additive_inverse (additive_inverse ?14) =>= ?14
22065 [14] by additive_inverse_additive_inverse ?14
22066 29501: Id : 9, {_}:
22067 multiply ?16 (add ?17 ?18)
22069 add (multiply ?16 ?17) (multiply ?16 ?18)
22070 [18, 17, 16] by distribute1 ?16 ?17 ?18
22071 29501: Id : 10, {_}:
22072 multiply (add ?20 ?21) ?22
22074 add (multiply ?20 ?22) (multiply ?21 ?22)
22075 [22, 21, 20] by distribute2 ?20 ?21 ?22
22076 29501: Id : 11, {_}:
22077 add ?24 ?25 =?= add ?25 ?24
22078 [25, 24] by commutativity_for_addition ?24 ?25
22079 29501: Id : 12, {_}:
22080 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
22081 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
22082 29501: Id : 13, {_}:
22083 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
22084 [32, 31] by right_alternative ?31 ?32
22085 29501: Id : 14, {_}:
22086 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
22087 [35, 34] by left_alternative ?34 ?35
22088 29501: Id : 15, {_}:
22089 associator ?37 ?38 ?39
22091 add (multiply (multiply ?37 ?38) ?39)
22092 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
22093 [39, 38, 37] by associator ?37 ?38 ?39
22094 29501: Id : 16, {_}:
22097 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
22098 [42, 41] by commutator ?41 ?42
22099 29501: Id : 17, {_}:
22100 multiply (additive_inverse ?44) (additive_inverse ?45)
22103 [45, 44] by product_of_inverses ?44 ?45
22104 29501: Id : 18, {_}:
22105 multiply (additive_inverse ?47) ?48
22107 additive_inverse (multiply ?47 ?48)
22108 [48, 47] by inverse_product1 ?47 ?48
22109 29501: Id : 19, {_}:
22110 multiply ?50 (additive_inverse ?51)
22112 additive_inverse (multiply ?50 ?51)
22113 [51, 50] by inverse_product2 ?50 ?51
22114 29501: Id : 20, {_}:
22115 multiply ?53 (add ?54 (additive_inverse ?55))
22117 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
22118 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
22119 29501: Id : 21, {_}:
22120 multiply (add ?57 (additive_inverse ?58)) ?59
22122 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
22123 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
22124 29501: Id : 22, {_}:
22125 multiply (additive_inverse ?61) (add ?62 ?63)
22127 add (additive_inverse (multiply ?61 ?62))
22128 (additive_inverse (multiply ?61 ?63))
22129 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
22130 29501: Id : 23, {_}:
22131 multiply (add ?65 ?66) (additive_inverse ?67)
22133 add (additive_inverse (multiply ?65 ?67))
22134 (additive_inverse (multiply ?66 ?67))
22135 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
22137 29501: Id : 1, {_}:
22138 associator (add u v) x y
22140 add (associator u x y) (associator v x y)
22141 [] by prove_linearised_form3
22145 29501: u 2 0 2 1,1,2
22146 29501: v 2 0 2 2,1,2
22149 29501: additive_identity 8 0 0
22150 29501: additive_inverse 22 1 0
22151 29501: commutator 1 2 0
22152 29501: add 26 2 2 0,1,2
22153 29501: multiply 40 2 0
22154 29501: associator 4 3 3 0,2
22155 NO CLASH, using fixed ground order
22157 29502: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
22158 29502: Id : 3, {_}:
22159 add ?4 additive_identity =>= ?4
22160 [4] by right_additive_identity ?4
22161 NO CLASH, using fixed ground order
22163 29502: Id : 4, {_}:
22164 multiply additive_identity ?6 =>= additive_identity
22165 [6] by left_multiplicative_zero ?6
22166 29502: Id : 5, {_}:
22167 multiply ?8 additive_identity =>= additive_identity
22168 [8] by right_multiplicative_zero ?8
22169 29502: Id : 6, {_}:
22170 add (additive_inverse ?10) ?10 =>= additive_identity
22171 [10] by left_additive_inverse ?10
22172 29502: Id : 7, {_}:
22173 add ?12 (additive_inverse ?12) =>= additive_identity
22174 [12] by right_additive_inverse ?12
22175 29502: Id : 8, {_}:
22176 additive_inverse (additive_inverse ?14) =>= ?14
22177 [14] by additive_inverse_additive_inverse ?14
22178 29502: Id : 9, {_}:
22179 multiply ?16 (add ?17 ?18)
22181 add (multiply ?16 ?17) (multiply ?16 ?18)
22182 [18, 17, 16] by distribute1 ?16 ?17 ?18
22183 29502: Id : 10, {_}:
22184 multiply (add ?20 ?21) ?22
22186 add (multiply ?20 ?22) (multiply ?21 ?22)
22187 [22, 21, 20] by distribute2 ?20 ?21 ?22
22188 29502: Id : 11, {_}:
22189 add ?24 ?25 =?= add ?25 ?24
22190 [25, 24] by commutativity_for_addition ?24 ?25
22191 29502: Id : 12, {_}:
22192 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
22193 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
22194 29502: Id : 13, {_}:
22195 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
22196 [32, 31] by right_alternative ?31 ?32
22197 29502: Id : 14, {_}:
22198 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
22199 [35, 34] by left_alternative ?34 ?35
22200 29502: Id : 15, {_}:
22201 associator ?37 ?38 ?39
22203 add (multiply (multiply ?37 ?38) ?39)
22204 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
22205 [39, 38, 37] by associator ?37 ?38 ?39
22206 29502: Id : 16, {_}:
22209 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
22210 [42, 41] by commutator ?41 ?42
22211 29502: Id : 17, {_}:
22212 multiply (additive_inverse ?44) (additive_inverse ?45)
22215 [45, 44] by product_of_inverses ?44 ?45
22216 29502: Id : 18, {_}:
22217 multiply (additive_inverse ?47) ?48
22219 additive_inverse (multiply ?47 ?48)
22220 [48, 47] by inverse_product1 ?47 ?48
22221 29502: Id : 19, {_}:
22222 multiply ?50 (additive_inverse ?51)
22224 additive_inverse (multiply ?50 ?51)
22225 [51, 50] by inverse_product2 ?50 ?51
22226 29502: Id : 20, {_}:
22227 multiply ?53 (add ?54 (additive_inverse ?55))
22229 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
22230 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
22231 29502: Id : 21, {_}:
22232 multiply (add ?57 (additive_inverse ?58)) ?59
22234 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
22235 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
22236 29502: Id : 22, {_}:
22237 multiply (additive_inverse ?61) (add ?62 ?63)
22239 add (additive_inverse (multiply ?61 ?62))
22240 (additive_inverse (multiply ?61 ?63))
22241 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
22242 29502: Id : 23, {_}:
22243 multiply (add ?65 ?66) (additive_inverse ?67)
22245 add (additive_inverse (multiply ?65 ?67))
22246 (additive_inverse (multiply ?66 ?67))
22247 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
22249 29502: Id : 1, {_}:
22250 associator (add u v) x y
22252 add (associator u x y) (associator v x y)
22253 [] by prove_linearised_form3
22257 29502: u 2 0 2 1,1,2
22258 29502: v 2 0 2 2,1,2
22261 29502: additive_identity 8 0 0
22262 29502: additive_inverse 22 1 0
22263 29502: commutator 1 2 0
22264 29502: add 26 2 2 0,1,2
22265 29502: multiply 40 2 0
22266 29502: associator 4 3 3 0,2
22267 29503: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
22268 29503: Id : 3, {_}:
22269 add ?4 additive_identity =>= ?4
22270 [4] by right_additive_identity ?4
22271 29503: Id : 4, {_}:
22272 multiply additive_identity ?6 =>= additive_identity
22273 [6] by left_multiplicative_zero ?6
22274 29503: Id : 5, {_}:
22275 multiply ?8 additive_identity =>= additive_identity
22276 [8] by right_multiplicative_zero ?8
22277 29503: Id : 6, {_}:
22278 add (additive_inverse ?10) ?10 =>= additive_identity
22279 [10] by left_additive_inverse ?10
22280 29503: Id : 7, {_}:
22281 add ?12 (additive_inverse ?12) =>= additive_identity
22282 [12] by right_additive_inverse ?12
22283 29503: Id : 8, {_}:
22284 additive_inverse (additive_inverse ?14) =>= ?14
22285 [14] by additive_inverse_additive_inverse ?14
22286 29503: Id : 9, {_}:
22287 multiply ?16 (add ?17 ?18)
22289 add (multiply ?16 ?17) (multiply ?16 ?18)
22290 [18, 17, 16] by distribute1 ?16 ?17 ?18
22291 29503: Id : 10, {_}:
22292 multiply (add ?20 ?21) ?22
22294 add (multiply ?20 ?22) (multiply ?21 ?22)
22295 [22, 21, 20] by distribute2 ?20 ?21 ?22
22296 29503: Id : 11, {_}:
22297 add ?24 ?25 =?= add ?25 ?24
22298 [25, 24] by commutativity_for_addition ?24 ?25
22299 29503: Id : 12, {_}:
22300 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
22301 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
22302 29503: Id : 13, {_}:
22303 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
22304 [32, 31] by right_alternative ?31 ?32
22305 29503: Id : 14, {_}:
22306 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
22307 [35, 34] by left_alternative ?34 ?35
22308 29503: Id : 15, {_}:
22309 associator ?37 ?38 ?39
22311 add (multiply (multiply ?37 ?38) ?39)
22312 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
22313 [39, 38, 37] by associator ?37 ?38 ?39
22314 29503: Id : 16, {_}:
22317 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
22318 [42, 41] by commutator ?41 ?42
22319 29503: Id : 17, {_}:
22320 multiply (additive_inverse ?44) (additive_inverse ?45)
22323 [45, 44] by product_of_inverses ?44 ?45
22324 29503: Id : 18, {_}:
22325 multiply (additive_inverse ?47) ?48
22327 additive_inverse (multiply ?47 ?48)
22328 [48, 47] by inverse_product1 ?47 ?48
22329 29503: Id : 19, {_}:
22330 multiply ?50 (additive_inverse ?51)
22332 additive_inverse (multiply ?50 ?51)
22333 [51, 50] by inverse_product2 ?50 ?51
22334 29503: Id : 20, {_}:
22335 multiply ?53 (add ?54 (additive_inverse ?55))
22337 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
22338 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
22339 29503: Id : 21, {_}:
22340 multiply (add ?57 (additive_inverse ?58)) ?59
22342 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
22343 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
22344 29503: Id : 22, {_}:
22345 multiply (additive_inverse ?61) (add ?62 ?63)
22347 add (additive_inverse (multiply ?61 ?62))
22348 (additive_inverse (multiply ?61 ?63))
22349 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
22350 29503: Id : 23, {_}:
22351 multiply (add ?65 ?66) (additive_inverse ?67)
22353 add (additive_inverse (multiply ?65 ?67))
22354 (additive_inverse (multiply ?66 ?67))
22355 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
22357 29503: Id : 1, {_}:
22358 associator (add u v) x y
22360 add (associator u x y) (associator v x y)
22361 [] by prove_linearised_form3
22365 29503: u 2 0 2 1,1,2
22366 29503: v 2 0 2 2,1,2
22369 29503: additive_identity 8 0 0
22370 29503: additive_inverse 22 1 0
22371 29503: commutator 1 2 0
22372 29503: add 26 2 2 0,1,2
22373 29503: multiply 40 2 0
22374 29503: associator 4 3 3 0,2
22375 % SZS status Timeout for RNG021-7.p
22376 NO CLASH, using fixed ground order
22377 NO CLASH, using fixed ground order
22379 29520: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
22380 29520: Id : 3, {_}:
22381 add ?4 additive_identity =>= ?4
22382 [4] by right_additive_identity ?4
22383 29520: Id : 4, {_}:
22384 multiply additive_identity ?6 =>= additive_identity
22385 [6] by left_multiplicative_zero ?6
22386 29520: Id : 5, {_}:
22387 multiply ?8 additive_identity =>= additive_identity
22388 [8] by right_multiplicative_zero ?8
22389 29520: Id : 6, {_}:
22390 add (additive_inverse ?10) ?10 =>= additive_identity
22391 [10] by left_additive_inverse ?10
22392 29520: Id : 7, {_}:
22393 add ?12 (additive_inverse ?12) =>= additive_identity
22394 [12] by right_additive_inverse ?12
22395 29520: Id : 8, {_}:
22396 additive_inverse (additive_inverse ?14) =>= ?14
22397 [14] by additive_inverse_additive_inverse ?14
22398 29520: Id : 9, {_}:
22399 multiply ?16 (add ?17 ?18)
22401 add (multiply ?16 ?17) (multiply ?16 ?18)
22402 [18, 17, 16] by distribute1 ?16 ?17 ?18
22403 29520: Id : 10, {_}:
22404 multiply (add ?20 ?21) ?22
22406 add (multiply ?20 ?22) (multiply ?21 ?22)
22407 [22, 21, 20] by distribute2 ?20 ?21 ?22
22408 29520: Id : 11, {_}:
22409 add ?24 ?25 =?= add ?25 ?24
22410 [25, 24] by commutativity_for_addition ?24 ?25
22411 29520: Id : 12, {_}:
22412 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
22413 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
22414 29520: Id : 13, {_}:
22415 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
22416 [32, 31] by right_alternative ?31 ?32
22417 29520: Id : 14, {_}:
22418 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
22419 [35, 34] by left_alternative ?34 ?35
22420 29520: Id : 15, {_}:
22421 associator ?37 ?38 ?39
22423 add (multiply (multiply ?37 ?38) ?39)
22424 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
22425 [39, 38, 37] by associator ?37 ?38 ?39
22426 29520: Id : 16, {_}:
22429 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
22430 [42, 41] by commutator ?41 ?42
22432 29520: Id : 1, {_}:
22433 add (associator x y z) (associator x z y) =>= additive_identity
22434 [] by prove_equation
22438 29520: x 2 0 2 1,1,2
22439 29520: y 2 0 2 2,1,2
22440 29520: z 2 0 2 3,1,2
22441 29520: additive_identity 9 0 1 3
22442 29520: additive_inverse 6 1 0
22443 29520: commutator 1 2 0
22444 29520: add 17 2 1 0,2
22445 29520: multiply 22 2 0
22446 29520: associator 3 3 2 0,1,2
22448 29519: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
22449 29519: Id : 3, {_}:
22450 add ?4 additive_identity =>= ?4
22451 [4] by right_additive_identity ?4
22452 29519: Id : 4, {_}:
22453 multiply additive_identity ?6 =>= additive_identity
22454 [6] by left_multiplicative_zero ?6
22455 29519: Id : 5, {_}:
22456 multiply ?8 additive_identity =>= additive_identity
22457 [8] by right_multiplicative_zero ?8
22458 29519: Id : 6, {_}:
22459 add (additive_inverse ?10) ?10 =>= additive_identity
22460 [10] by left_additive_inverse ?10
22461 29519: Id : 7, {_}:
22462 add ?12 (additive_inverse ?12) =>= additive_identity
22463 [12] by right_additive_inverse ?12
22464 29519: Id : 8, {_}:
22465 additive_inverse (additive_inverse ?14) =>= ?14
22466 [14] by additive_inverse_additive_inverse ?14
22467 29519: Id : 9, {_}:
22468 multiply ?16 (add ?17 ?18)
22470 add (multiply ?16 ?17) (multiply ?16 ?18)
22471 [18, 17, 16] by distribute1 ?16 ?17 ?18
22472 29519: Id : 10, {_}:
22473 multiply (add ?20 ?21) ?22
22475 add (multiply ?20 ?22) (multiply ?21 ?22)
22476 [22, 21, 20] by distribute2 ?20 ?21 ?22
22477 29519: Id : 11, {_}:
22478 add ?24 ?25 =?= add ?25 ?24
22479 [25, 24] by commutativity_for_addition ?24 ?25
22480 29519: Id : 12, {_}:
22481 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
22482 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
22483 29519: Id : 13, {_}:
22484 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
22485 [32, 31] by right_alternative ?31 ?32
22486 29519: Id : 14, {_}:
22487 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
22488 [35, 34] by left_alternative ?34 ?35
22489 29519: Id : 15, {_}:
22490 associator ?37 ?38 ?39
22492 add (multiply (multiply ?37 ?38) ?39)
22493 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
22494 [39, 38, 37] by associator ?37 ?38 ?39
22495 29519: Id : 16, {_}:
22498 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
22499 [42, 41] by commutator ?41 ?42
22501 29519: Id : 1, {_}:
22502 add (associator x y z) (associator x z y) =>= additive_identity
22503 [] by prove_equation
22507 29519: x 2 0 2 1,1,2
22508 29519: y 2 0 2 2,1,2
22509 29519: z 2 0 2 3,1,2
22510 29519: additive_identity 9 0 1 3
22511 29519: additive_inverse 6 1 0
22512 29519: commutator 1 2 0
22513 29519: add 17 2 1 0,2
22514 29519: multiply 22 2 0
22515 29519: associator 3 3 2 0,1,2
22516 NO CLASH, using fixed ground order
22518 29521: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
22519 29521: Id : 3, {_}:
22520 add ?4 additive_identity =>= ?4
22521 [4] by right_additive_identity ?4
22522 29521: Id : 4, {_}:
22523 multiply additive_identity ?6 =>= additive_identity
22524 [6] by left_multiplicative_zero ?6
22525 29521: Id : 5, {_}:
22526 multiply ?8 additive_identity =>= additive_identity
22527 [8] by right_multiplicative_zero ?8
22528 29521: Id : 6, {_}:
22529 add (additive_inverse ?10) ?10 =>= additive_identity
22530 [10] by left_additive_inverse ?10
22531 29521: Id : 7, {_}:
22532 add ?12 (additive_inverse ?12) =>= additive_identity
22533 [12] by right_additive_inverse ?12
22534 29521: Id : 8, {_}:
22535 additive_inverse (additive_inverse ?14) =>= ?14
22536 [14] by additive_inverse_additive_inverse ?14
22537 29521: Id : 9, {_}:
22538 multiply ?16 (add ?17 ?18)
22540 add (multiply ?16 ?17) (multiply ?16 ?18)
22541 [18, 17, 16] by distribute1 ?16 ?17 ?18
22542 29521: Id : 10, {_}:
22543 multiply (add ?20 ?21) ?22
22545 add (multiply ?20 ?22) (multiply ?21 ?22)
22546 [22, 21, 20] by distribute2 ?20 ?21 ?22
22547 29521: Id : 11, {_}:
22548 add ?24 ?25 =?= add ?25 ?24
22549 [25, 24] by commutativity_for_addition ?24 ?25
22550 29521: Id : 12, {_}:
22551 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
22552 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
22553 29521: Id : 13, {_}:
22554 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
22555 [32, 31] by right_alternative ?31 ?32
22556 29521: Id : 14, {_}:
22557 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
22558 [35, 34] by left_alternative ?34 ?35
22559 29521: Id : 15, {_}:
22560 associator ?37 ?38 ?39
22562 add (multiply (multiply ?37 ?38) ?39)
22563 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
22564 [39, 38, 37] by associator ?37 ?38 ?39
22565 29521: Id : 16, {_}:
22568 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
22569 [42, 41] by commutator ?41 ?42
22571 29521: Id : 1, {_}:
22572 add (associator x y z) (associator x z y) =>= additive_identity
22573 [] by prove_equation
22577 29521: x 2 0 2 1,1,2
22578 29521: y 2 0 2 2,1,2
22579 29521: z 2 0 2 3,1,2
22580 29521: additive_identity 9 0 1 3
22581 29521: additive_inverse 6 1 0
22582 29521: commutator 1 2 0
22583 29521: add 17 2 1 0,2
22584 29521: multiply 22 2 0
22585 29521: associator 3 3 2 0,1,2
22586 % SZS status Timeout for RNG025-4.p
22587 NO CLASH, using fixed ground order
22589 29553: Id : 2, {_}:
22590 add ?2 ?3 =?= add ?3 ?2
22591 [3, 2] by commutativity_for_addition ?2 ?3
22592 29553: Id : 3, {_}:
22593 add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7
22594 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
22595 29553: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
22596 29553: Id : 5, {_}:
22597 add ?11 additive_identity =>= ?11
22598 [11] by right_additive_identity ?11
22599 29553: Id : 6, {_}:
22600 multiply additive_identity ?13 =>= additive_identity
22601 [13] by left_multiplicative_zero ?13
22602 29553: Id : 7, {_}:
22603 multiply ?15 additive_identity =>= additive_identity
22604 [15] by right_multiplicative_zero ?15
22605 29553: Id : 8, {_}:
22606 add (additive_inverse ?17) ?17 =>= additive_identity
22607 [17] by left_additive_inverse ?17
22608 29553: Id : 9, {_}:
22609 add ?19 (additive_inverse ?19) =>= additive_identity
22610 [19] by right_additive_inverse ?19
22611 29553: Id : 10, {_}:
22612 multiply ?21 (add ?22 ?23)
22614 add (multiply ?21 ?22) (multiply ?21 ?23)
22615 [23, 22, 21] by distribute1 ?21 ?22 ?23
22616 29553: Id : 11, {_}:
22617 multiply (add ?25 ?26) ?27
22619 add (multiply ?25 ?27) (multiply ?26 ?27)
22620 [27, 26, 25] by distribute2 ?25 ?26 ?27
22621 29553: Id : 12, {_}:
22622 additive_inverse (additive_inverse ?29) =>= ?29
22623 [29] by additive_inverse_additive_inverse ?29
22624 29553: Id : 13, {_}:
22625 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
22626 [32, 31] by right_alternative ?31 ?32
22627 29553: Id : 14, {_}:
22628 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
22629 [35, 34] by left_alternative ?34 ?35
22630 29553: Id : 15, {_}:
22631 associator ?37 ?38 (add ?39 ?40)
22633 add (associator ?37 ?38 ?39) (associator ?37 ?38 ?40)
22634 [40, 39, 38, 37] by linearised_associator1 ?37 ?38 ?39 ?40
22635 29553: Id : 16, {_}:
22636 associator ?42 (add ?43 ?44) ?45
22638 add (associator ?42 ?43 ?45) (associator ?42 ?44 ?45)
22639 [45, 44, 43, 42] by linearised_associator2 ?42 ?43 ?44 ?45
22640 29553: Id : 17, {_}:
22641 associator (add ?47 ?48) ?49 ?50
22643 add (associator ?47 ?49 ?50) (associator ?48 ?49 ?50)
22644 [50, 49, 48, 47] by linearised_associator3 ?47 ?48 ?49 ?50
22645 29553: Id : 18, {_}:
22648 add (multiply ?53 ?52) (additive_inverse (multiply ?52 ?53))
22649 [53, 52] by commutator ?52 ?53
22651 29553: Id : 1, {_}:
22652 add (associator a b c) (associator a c b) =>= additive_identity
22653 [] by prove_flexible_law
22657 29553: a 2 0 2 1,1,2
22658 29553: b 2 0 2 2,1,2
22659 29553: c 2 0 2 3,1,2
22660 29553: additive_identity 9 0 1 3
22661 29553: additive_inverse 5 1 0
22662 29553: commutator 1 2 0
22663 29553: multiply 18 2 0
22664 29553: add 22 2 1 0,2
22665 29553: associator 11 3 2 0,1,2
22666 NO CLASH, using fixed ground order
22668 29554: Id : 2, {_}:
22669 add ?2 ?3 =?= add ?3 ?2
22670 [3, 2] by commutativity_for_addition ?2 ?3
22671 29554: Id : 3, {_}:
22672 add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7
22673 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
22674 29554: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
22675 29554: Id : 5, {_}:
22676 add ?11 additive_identity =>= ?11
22677 [11] by right_additive_identity ?11
22678 29554: Id : 6, {_}:
22679 multiply additive_identity ?13 =>= additive_identity
22680 [13] by left_multiplicative_zero ?13
22681 29554: Id : 7, {_}:
22682 multiply ?15 additive_identity =>= additive_identity
22683 [15] by right_multiplicative_zero ?15
22684 29554: Id : 8, {_}:
22685 add (additive_inverse ?17) ?17 =>= additive_identity
22686 [17] by left_additive_inverse ?17
22687 29554: Id : 9, {_}:
22688 add ?19 (additive_inverse ?19) =>= additive_identity
22689 [19] by right_additive_inverse ?19
22690 29554: Id : 10, {_}:
22691 multiply ?21 (add ?22 ?23)
22693 add (multiply ?21 ?22) (multiply ?21 ?23)
22694 [23, 22, 21] by distribute1 ?21 ?22 ?23
22695 29554: Id : 11, {_}:
22696 multiply (add ?25 ?26) ?27
22698 add (multiply ?25 ?27) (multiply ?26 ?27)
22699 [27, 26, 25] by distribute2 ?25 ?26 ?27
22700 29554: Id : 12, {_}:
22701 additive_inverse (additive_inverse ?29) =>= ?29
22702 [29] by additive_inverse_additive_inverse ?29
22703 29554: Id : 13, {_}:
22704 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
22705 [32, 31] by right_alternative ?31 ?32
22706 29554: Id : 14, {_}:
22707 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
22708 [35, 34] by left_alternative ?34 ?35
22709 29554: Id : 15, {_}:
22710 associator ?37 ?38 (add ?39 ?40)
22712 add (associator ?37 ?38 ?39) (associator ?37 ?38 ?40)
22713 [40, 39, 38, 37] by linearised_associator1 ?37 ?38 ?39 ?40
22714 29554: Id : 16, {_}:
22715 associator ?42 (add ?43 ?44) ?45
22717 add (associator ?42 ?43 ?45) (associator ?42 ?44 ?45)
22718 [45, 44, 43, 42] by linearised_associator2 ?42 ?43 ?44 ?45
22719 29554: Id : 17, {_}:
22720 associator (add ?47 ?48) ?49 ?50
22722 add (associator ?47 ?49 ?50) (associator ?48 ?49 ?50)
22723 [50, 49, 48, 47] by linearised_associator3 ?47 ?48 ?49 ?50
22724 29554: Id : 18, {_}:
22727 add (multiply ?53 ?52) (additive_inverse (multiply ?52 ?53))
22728 [53, 52] by commutator ?52 ?53
22730 29554: Id : 1, {_}:
22731 add (associator a b c) (associator a c b) =>= additive_identity
22732 [] by prove_flexible_law
22736 29554: a 2 0 2 1,1,2
22737 29554: b 2 0 2 2,1,2
22738 29554: c 2 0 2 3,1,2
22739 29554: additive_identity 9 0 1 3
22740 29554: additive_inverse 5 1 0
22741 29554: commutator 1 2 0
22742 29554: multiply 18 2 0
22743 29554: add 22 2 1 0,2
22744 29554: associator 11 3 2 0,1,2
22745 NO CLASH, using fixed ground order
22747 29555: Id : 2, {_}:
22748 add ?2 ?3 =?= add ?3 ?2
22749 [3, 2] by commutativity_for_addition ?2 ?3
22750 29555: Id : 3, {_}:
22751 add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7
22752 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
22753 29555: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
22754 29555: Id : 5, {_}:
22755 add ?11 additive_identity =>= ?11
22756 [11] by right_additive_identity ?11
22757 29555: Id : 6, {_}:
22758 multiply additive_identity ?13 =>= additive_identity
22759 [13] by left_multiplicative_zero ?13
22760 29555: Id : 7, {_}:
22761 multiply ?15 additive_identity =>= additive_identity
22762 [15] by right_multiplicative_zero ?15
22763 29555: Id : 8, {_}:
22764 add (additive_inverse ?17) ?17 =>= additive_identity
22765 [17] by left_additive_inverse ?17
22766 29555: Id : 9, {_}:
22767 add ?19 (additive_inverse ?19) =>= additive_identity
22768 [19] by right_additive_inverse ?19
22769 29555: Id : 10, {_}:
22770 multiply ?21 (add ?22 ?23)
22772 add (multiply ?21 ?22) (multiply ?21 ?23)
22773 [23, 22, 21] by distribute1 ?21 ?22 ?23
22774 29555: Id : 11, {_}:
22775 multiply (add ?25 ?26) ?27
22777 add (multiply ?25 ?27) (multiply ?26 ?27)
22778 [27, 26, 25] by distribute2 ?25 ?26 ?27
22779 29555: Id : 12, {_}:
22780 additive_inverse (additive_inverse ?29) =>= ?29
22781 [29] by additive_inverse_additive_inverse ?29
22782 29555: Id : 13, {_}:
22783 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
22784 [32, 31] by right_alternative ?31 ?32
22785 29555: Id : 14, {_}:
22786 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
22787 [35, 34] by left_alternative ?34 ?35
22788 29555: Id : 15, {_}:
22789 associator ?37 ?38 (add ?39 ?40)
22791 add (associator ?37 ?38 ?39) (associator ?37 ?38 ?40)
22792 [40, 39, 38, 37] by linearised_associator1 ?37 ?38 ?39 ?40
22793 29555: Id : 16, {_}:
22794 associator ?42 (add ?43 ?44) ?45
22796 add (associator ?42 ?43 ?45) (associator ?42 ?44 ?45)
22797 [45, 44, 43, 42] by linearised_associator2 ?42 ?43 ?44 ?45
22798 29555: Id : 17, {_}:
22799 associator (add ?47 ?48) ?49 ?50
22801 add (associator ?47 ?49 ?50) (associator ?48 ?49 ?50)
22802 [50, 49, 48, 47] by linearised_associator3 ?47 ?48 ?49 ?50
22803 29555: Id : 18, {_}:
22806 add (multiply ?53 ?52) (additive_inverse (multiply ?52 ?53))
22807 [53, 52] by commutator ?52 ?53
22809 29555: Id : 1, {_}:
22810 add (associator a b c) (associator a c b) =>= additive_identity
22811 [] by prove_flexible_law
22815 29555: a 2 0 2 1,1,2
22816 29555: b 2 0 2 2,1,2
22817 29555: c 2 0 2 3,1,2
22818 29555: additive_identity 9 0 1 3
22819 29555: additive_inverse 5 1 0
22820 29555: commutator 1 2 0
22821 29555: multiply 18 2 0
22822 29555: add 22 2 1 0,2
22823 29555: associator 11 3 2 0,1,2
22824 % SZS status Timeout for RNG025-8.p
22825 NO CLASH, using fixed ground order
22827 29571: Id : 2, {_}:
22828 multiply (additive_inverse ?2) (additive_inverse ?3)
22831 [3, 2] by product_of_inverses ?2 ?3
22832 29571: Id : 3, {_}:
22833 multiply (additive_inverse ?5) ?6
22835 additive_inverse (multiply ?5 ?6)
22836 [6, 5] by inverse_product1 ?5 ?6
22837 29571: Id : 4, {_}:
22838 multiply ?8 (additive_inverse ?9)
22840 additive_inverse (multiply ?8 ?9)
22841 [9, 8] by inverse_product2 ?8 ?9
22842 29571: Id : 5, {_}:
22843 multiply ?11 (add ?12 (additive_inverse ?13))
22845 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
22846 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
22847 29571: Id : 6, {_}:
22848 multiply (add ?15 (additive_inverse ?16)) ?17
22850 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
22851 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
22852 29571: Id : 7, {_}:
22853 multiply (additive_inverse ?19) (add ?20 ?21)
22855 add (additive_inverse (multiply ?19 ?20))
22856 (additive_inverse (multiply ?19 ?21))
22857 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
22858 29571: Id : 8, {_}:
22859 multiply (add ?23 ?24) (additive_inverse ?25)
22861 add (additive_inverse (multiply ?23 ?25))
22862 (additive_inverse (multiply ?24 ?25))
22863 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
22864 29571: Id : 9, {_}:
22865 add ?27 ?28 =?= add ?28 ?27
22866 [28, 27] by commutativity_for_addition ?27 ?28
22867 29571: Id : 10, {_}:
22868 add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32
22869 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
22870 29571: Id : 11, {_}:
22871 add additive_identity ?34 =>= ?34
22872 [34] by left_additive_identity ?34
22873 29571: Id : 12, {_}:
22874 add ?36 additive_identity =>= ?36
22875 [36] by right_additive_identity ?36
22876 29571: Id : 13, {_}:
22877 multiply additive_identity ?38 =>= additive_identity
22878 [38] by left_multiplicative_zero ?38
22879 29571: Id : 14, {_}:
22880 multiply ?40 additive_identity =>= additive_identity
22881 [40] by right_multiplicative_zero ?40
22882 29571: Id : 15, {_}:
22883 add (additive_inverse ?42) ?42 =>= additive_identity
22884 [42] by left_additive_inverse ?42
22885 29571: Id : 16, {_}:
22886 add ?44 (additive_inverse ?44) =>= additive_identity
22887 [44] by right_additive_inverse ?44
22888 29571: Id : 17, {_}:
22889 multiply ?46 (add ?47 ?48)
22891 add (multiply ?46 ?47) (multiply ?46 ?48)
22892 [48, 47, 46] by distribute1 ?46 ?47 ?48
22893 29571: Id : 18, {_}:
22894 multiply (add ?50 ?51) ?52
22896 add (multiply ?50 ?52) (multiply ?51 ?52)
22897 [52, 51, 50] by distribute2 ?50 ?51 ?52
22898 29571: Id : 19, {_}:
22899 additive_inverse (additive_inverse ?54) =>= ?54
22900 [54] by additive_inverse_additive_inverse ?54
22901 29571: Id : 20, {_}:
22902 multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57)
22903 [57, 56] by right_alternative ?56 ?57
22904 29571: Id : 21, {_}:
22905 multiply (multiply ?59 ?59) ?60 =?= multiply ?59 (multiply ?59 ?60)
22906 [60, 59] by left_alternative ?59 ?60
22907 29571: Id : 22, {_}:
22908 associator ?62 ?63 (add ?64 ?65)
22910 add (associator ?62 ?63 ?64) (associator ?62 ?63 ?65)
22911 [65, 64, 63, 62] by linearised_associator1 ?62 ?63 ?64 ?65
22912 29571: Id : 23, {_}:
22913 associator ?67 (add ?68 ?69) ?70
22915 add (associator ?67 ?68 ?70) (associator ?67 ?69 ?70)
22916 [70, 69, 68, 67] by linearised_associator2 ?67 ?68 ?69 ?70
22917 29571: Id : 24, {_}:
22918 associator (add ?72 ?73) ?74 ?75
22920 add (associator ?72 ?74 ?75) (associator ?73 ?74 ?75)
22921 [75, 74, 73, 72] by linearised_associator3 ?72 ?73 ?74 ?75
22922 29571: Id : 25, {_}:
22925 add (multiply ?78 ?77) (additive_inverse (multiply ?77 ?78))
22926 [78, 77] by commutator ?77 ?78
22928 29571: Id : 1, {_}:
22929 add (associator a b c) (associator a c b) =>= additive_identity
22930 [] by prove_flexible_law
22934 29571: a 2 0 2 1,1,2
22935 29571: b 2 0 2 2,1,2
22936 29571: c 2 0 2 3,1,2
22937 29571: additive_identity 9 0 1 3
22938 29571: additive_inverse 21 1 0
22939 29571: commutator 1 2 0
22940 29571: add 30 2 1 0,2
22941 29571: multiply 36 2 0 add
22942 29571: associator 11 3 2 0,1,2
22943 NO CLASH, using fixed ground order
22945 NO CLASH, using fixed ground order
22946 29572: Id : 2, {_}:
22947 multiply (additive_inverse ?2) (additive_inverse ?3)
22950 [3, 2] by product_of_inverses ?2 ?3
22951 29572: Id : 3, {_}:
22952 multiply (additive_inverse ?5) ?6
22954 additive_inverse (multiply ?5 ?6)
22955 [6, 5] by inverse_product1 ?5 ?6
22956 29572: Id : 4, {_}:
22957 multiply ?8 (additive_inverse ?9)
22959 additive_inverse (multiply ?8 ?9)
22960 [9, 8] by inverse_product2 ?8 ?9
22961 29572: Id : 5, {_}:
22962 multiply ?11 (add ?12 (additive_inverse ?13))
22964 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
22965 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
22966 29572: Id : 6, {_}:
22967 multiply (add ?15 (additive_inverse ?16)) ?17
22969 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
22970 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
22971 29572: Id : 7, {_}:
22972 multiply (additive_inverse ?19) (add ?20 ?21)
22974 add (additive_inverse (multiply ?19 ?20))
22975 (additive_inverse (multiply ?19 ?21))
22976 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
22977 29572: Id : 8, {_}:
22978 multiply (add ?23 ?24) (additive_inverse ?25)
22980 add (additive_inverse (multiply ?23 ?25))
22981 (additive_inverse (multiply ?24 ?25))
22982 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
22983 29572: Id : 9, {_}:
22984 add ?27 ?28 =?= add ?28 ?27
22985 [28, 27] by commutativity_for_addition ?27 ?28
22986 29572: Id : 10, {_}:
22987 add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32
22988 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
22989 29572: Id : 11, {_}:
22990 add additive_identity ?34 =>= ?34
22991 [34] by left_additive_identity ?34
22992 29572: Id : 12, {_}:
22993 add ?36 additive_identity =>= ?36
22994 [36] by right_additive_identity ?36
22995 29572: Id : 13, {_}:
22996 multiply additive_identity ?38 =>= additive_identity
22997 [38] by left_multiplicative_zero ?38
22998 29572: Id : 14, {_}:
22999 multiply ?40 additive_identity =>= additive_identity
23000 [40] by right_multiplicative_zero ?40
23001 29572: Id : 15, {_}:
23002 add (additive_inverse ?42) ?42 =>= additive_identity
23003 [42] by left_additive_inverse ?42
23004 29572: Id : 16, {_}:
23005 add ?44 (additive_inverse ?44) =>= additive_identity
23006 [44] by right_additive_inverse ?44
23007 29572: Id : 17, {_}:
23008 multiply ?46 (add ?47 ?48)
23010 add (multiply ?46 ?47) (multiply ?46 ?48)
23011 [48, 47, 46] by distribute1 ?46 ?47 ?48
23012 29572: Id : 18, {_}:
23013 multiply (add ?50 ?51) ?52
23015 add (multiply ?50 ?52) (multiply ?51 ?52)
23016 [52, 51, 50] by distribute2 ?50 ?51 ?52
23017 29572: Id : 19, {_}:
23018 additive_inverse (additive_inverse ?54) =>= ?54
23019 [54] by additive_inverse_additive_inverse ?54
23020 29572: Id : 20, {_}:
23021 multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57)
23022 [57, 56] by right_alternative ?56 ?57
23023 29572: Id : 21, {_}:
23024 multiply (multiply ?59 ?59) ?60 =>= multiply ?59 (multiply ?59 ?60)
23025 [60, 59] by left_alternative ?59 ?60
23026 29572: Id : 22, {_}:
23027 associator ?62 ?63 (add ?64 ?65)
23029 add (associator ?62 ?63 ?64) (associator ?62 ?63 ?65)
23030 [65, 64, 63, 62] by linearised_associator1 ?62 ?63 ?64 ?65
23031 29572: Id : 23, {_}:
23032 associator ?67 (add ?68 ?69) ?70
23034 add (associator ?67 ?68 ?70) (associator ?67 ?69 ?70)
23035 [70, 69, 68, 67] by linearised_associator2 ?67 ?68 ?69 ?70
23036 29572: Id : 24, {_}:
23037 associator (add ?72 ?73) ?74 ?75
23039 add (associator ?72 ?74 ?75) (associator ?73 ?74 ?75)
23040 [75, 74, 73, 72] by linearised_associator3 ?72 ?73 ?74 ?75
23041 29572: Id : 25, {_}:
23044 add (multiply ?78 ?77) (additive_inverse (multiply ?77 ?78))
23045 [78, 77] by commutator ?77 ?78
23047 29572: Id : 1, {_}:
23048 add (associator a b c) (associator a c b) =>= additive_identity
23049 [] by prove_flexible_law
23053 29572: a 2 0 2 1,1,2
23054 29572: b 2 0 2 2,1,2
23055 29572: c 2 0 2 3,1,2
23056 29572: additive_identity 9 0 1 3
23057 29572: additive_inverse 21 1 0
23058 29572: commutator 1 2 0
23059 29572: add 30 2 1 0,2
23060 29572: multiply 36 2 0 add
23061 29572: associator 11 3 2 0,1,2
23063 29573: Id : 2, {_}:
23064 multiply (additive_inverse ?2) (additive_inverse ?3)
23067 [3, 2] by product_of_inverses ?2 ?3
23068 29573: Id : 3, {_}:
23069 multiply (additive_inverse ?5) ?6
23071 additive_inverse (multiply ?5 ?6)
23072 [6, 5] by inverse_product1 ?5 ?6
23073 29573: Id : 4, {_}:
23074 multiply ?8 (additive_inverse ?9)
23076 additive_inverse (multiply ?8 ?9)
23077 [9, 8] by inverse_product2 ?8 ?9
23078 29573: Id : 5, {_}:
23079 multiply ?11 (add ?12 (additive_inverse ?13))
23081 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
23082 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
23083 29573: Id : 6, {_}:
23084 multiply (add ?15 (additive_inverse ?16)) ?17
23086 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
23087 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
23088 29573: Id : 7, {_}:
23089 multiply (additive_inverse ?19) (add ?20 ?21)
23091 add (additive_inverse (multiply ?19 ?20))
23092 (additive_inverse (multiply ?19 ?21))
23093 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
23094 29573: Id : 8, {_}:
23095 multiply (add ?23 ?24) (additive_inverse ?25)
23097 add (additive_inverse (multiply ?23 ?25))
23098 (additive_inverse (multiply ?24 ?25))
23099 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
23100 29573: Id : 9, {_}:
23101 add ?27 ?28 =?= add ?28 ?27
23102 [28, 27] by commutativity_for_addition ?27 ?28
23103 29573: Id : 10, {_}:
23104 add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32
23105 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
23106 29573: Id : 11, {_}:
23107 add additive_identity ?34 =>= ?34
23108 [34] by left_additive_identity ?34
23109 29573: Id : 12, {_}:
23110 add ?36 additive_identity =>= ?36
23111 [36] by right_additive_identity ?36
23112 29573: Id : 13, {_}:
23113 multiply additive_identity ?38 =>= additive_identity
23114 [38] by left_multiplicative_zero ?38
23115 29573: Id : 14, {_}:
23116 multiply ?40 additive_identity =>= additive_identity
23117 [40] by right_multiplicative_zero ?40
23118 29573: Id : 15, {_}:
23119 add (additive_inverse ?42) ?42 =>= additive_identity
23120 [42] by left_additive_inverse ?42
23121 29573: Id : 16, {_}:
23122 add ?44 (additive_inverse ?44) =>= additive_identity
23123 [44] by right_additive_inverse ?44
23124 29573: Id : 17, {_}:
23125 multiply ?46 (add ?47 ?48)
23127 add (multiply ?46 ?47) (multiply ?46 ?48)
23128 [48, 47, 46] by distribute1 ?46 ?47 ?48
23129 29573: Id : 18, {_}:
23130 multiply (add ?50 ?51) ?52
23132 add (multiply ?50 ?52) (multiply ?51 ?52)
23133 [52, 51, 50] by distribute2 ?50 ?51 ?52
23134 29573: Id : 19, {_}:
23135 additive_inverse (additive_inverse ?54) =>= ?54
23136 [54] by additive_inverse_additive_inverse ?54
23137 29573: Id : 20, {_}:
23138 multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57)
23139 [57, 56] by right_alternative ?56 ?57
23140 29573: Id : 21, {_}:
23141 multiply (multiply ?59 ?59) ?60 =>= multiply ?59 (multiply ?59 ?60)
23142 [60, 59] by left_alternative ?59 ?60
23143 29573: Id : 22, {_}:
23144 associator ?62 ?63 (add ?64 ?65)
23146 add (associator ?62 ?63 ?64) (associator ?62 ?63 ?65)
23147 [65, 64, 63, 62] by linearised_associator1 ?62 ?63 ?64 ?65
23148 29573: Id : 23, {_}:
23149 associator ?67 (add ?68 ?69) ?70
23151 add (associator ?67 ?68 ?70) (associator ?67 ?69 ?70)
23152 [70, 69, 68, 67] by linearised_associator2 ?67 ?68 ?69 ?70
23153 29573: Id : 24, {_}:
23154 associator (add ?72 ?73) ?74 ?75
23156 add (associator ?72 ?74 ?75) (associator ?73 ?74 ?75)
23157 [75, 74, 73, 72] by linearised_associator3 ?72 ?73 ?74 ?75
23158 29573: Id : 25, {_}:
23161 add (multiply ?78 ?77) (additive_inverse (multiply ?77 ?78))
23162 [78, 77] by commutator ?77 ?78
23164 29573: Id : 1, {_}:
23165 add (associator a b c) (associator a c b) =>= additive_identity
23166 [] by prove_flexible_law
23170 29573: a 2 0 2 1,1,2
23171 29573: b 2 0 2 2,1,2
23172 29573: c 2 0 2 3,1,2
23173 29573: additive_identity 9 0 1 3
23174 29573: additive_inverse 21 1 0
23175 29573: commutator 1 2 0
23176 29573: add 30 2 1 0,2
23177 29573: multiply 36 2 0 add
23178 29573: associator 11 3 2 0,1,2
23179 % SZS status Timeout for RNG025-9.p
23180 NO CLASH, using fixed ground order
23182 29618: Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3
23183 29618: Id : 3, {_}:
23184 multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5)
23185 [7, 6, 5] by multiply_add_property ?5 ?6 ?7
23186 29618: Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9
23187 29618: Id : 5, {_}:
23190 add (multiply ?11 (inverse ?12))
23191 (add (multiply ?11 ?13) (multiply (inverse ?12) ?13))
23192 [13, 12, 11] by pixley_defn ?11 ?12 ?13
23193 29618: Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16
23194 29618: Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19
23195 29618: Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22
23197 29618: Id : 1, {_}:
23198 add a (multiply b c) =<= multiply (add a b) (add a c)
23199 [] by prove_add_multiply_property
23204 29618: b 2 0 2 1,2,2
23205 29618: c 2 0 2 2,2,2
23207 29618: inverse 3 1 0
23208 29618: multiply 9 2 2 0,2,2
23209 29618: add 9 2 3 0,2
23210 29618: pixley 4 3 0
23211 NO CLASH, using fixed ground order
23213 29619: Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3
23214 29619: Id : 3, {_}:
23215 multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5)
23216 [7, 6, 5] by multiply_add_property ?5 ?6 ?7
23217 29619: Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9
23218 29619: Id : 5, {_}:
23221 add (multiply ?11 (inverse ?12))
23222 (add (multiply ?11 ?13) (multiply (inverse ?12) ?13))
23223 [13, 12, 11] by pixley_defn ?11 ?12 ?13
23224 29619: Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16
23225 29619: Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19
23226 29619: Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22
23228 29619: Id : 1, {_}:
23229 add a (multiply b c) =<= multiply (add a b) (add a c)
23230 [] by prove_add_multiply_property
23235 29619: b 2 0 2 1,2,2
23236 29619: c 2 0 2 2,2,2
23238 29619: inverse 3 1 0
23239 29619: multiply 9 2 2 0,2,2
23240 29619: add 9 2 3 0,2
23241 29619: pixley 4 3 0
23242 NO CLASH, using fixed ground order
23244 29621: Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3
23245 29621: Id : 3, {_}:
23246 multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5)
23247 [7, 6, 5] by multiply_add_property ?5 ?6 ?7
23248 29621: Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9
23249 29621: Id : 5, {_}:
23252 add (multiply ?11 (inverse ?12))
23253 (add (multiply ?11 ?13) (multiply (inverse ?12) ?13))
23254 [13, 12, 11] by pixley_defn ?11 ?12 ?13
23255 29621: Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16
23256 29621: Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19
23257 29621: Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22
23259 29621: Id : 1, {_}:
23260 add a (multiply b c) =>= multiply (add a b) (add a c)
23261 [] by prove_add_multiply_property
23266 29621: b 2 0 2 1,2,2
23267 29621: c 2 0 2 2,2,2
23269 29621: inverse 3 1 0
23270 29621: multiply 9 2 2 0,2,2
23271 29621: add 9 2 3 0,2
23272 29621: pixley 4 3 0
23275 Found proof, 25.954748s
23276 % SZS status Unsatisfiable for BOO023-1.p
23277 % SZS output start CNFRefutation for BOO023-1.p
23278 Id : 6, {_}: pixley ?15 ?15 ?16 =>= ?16 [16, 15] by pixley1 ?15 ?16
23279 Id : 8, {_}: pixley ?21 ?22 ?21 =>= ?21 [22, 21] by pixley3 ?21 ?22
23280 Id : 7, {_}: pixley ?18 ?19 ?19 =>= ?18 [19, 18] by pixley2 ?18 ?19
23281 Id : 5, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (add (multiply ?11 ?13) (multiply (inverse ?12) ?13)) [13, 12, 11] by pixley_defn ?11 ?12 ?13
23282 Id : 4, {_}: add ?9 (inverse ?9) =>= n1 [9] by additive_inverse ?9
23283 Id : 12, {_}: multiply ?33 (add ?34 ?35) =<= add (multiply ?34 ?33) (multiply ?35 ?33) [35, 34, 33] by multiply_add_property ?33 ?34 ?35
23284 Id : 2, {_}: multiply (add ?2 ?3) ?3 =>= ?3 [3, 2] by multiply_add ?2 ?3
23285 Id : 3, {_}: multiply ?5 (add ?6 ?7) =<= add (multiply ?6 ?5) (multiply ?7 ?5) [7, 6, 5] by multiply_add_property ?5 ?6 ?7
23286 Id : 45, {_}: multiply (multiply ?127 (add ?128 ?129)) (multiply ?129 ?127) =>= multiply ?129 ?127 [129, 128, 127] by Super 2 with 3 at 1,2
23287 Id : 52, {_}: multiply (add ?156 ?157) (multiply ?157 (add ?158 (add ?156 ?157))) =>= multiply ?157 (add ?158 (add ?156 ?157)) [158, 157, 156] by Super 45 with 2 at 1,2
23288 Id : 13, {_}: multiply ?37 (add ?38 (add ?39 ?37)) =>= add (multiply ?38 ?37) ?37 [39, 38, 37] by Super 12 with 2 at 2,3
23289 Id : 49, {_}: multiply (multiply ?143 n1) (multiply (inverse ?144) ?143) =>= multiply (inverse ?144) ?143 [144, 143] by Super 45 with 4 at 2,1,2
23290 Id : 21, {_}: pixley ?58 ?59 ?60 =<= add (multiply ?58 (inverse ?59)) (multiply ?60 (add ?58 (inverse ?59))) [60, 59, 58] by Demod 5 with 3 at 2,3
23291 Id : 24, {_}: pixley (add ?69 (inverse ?70)) ?70 ?71 =<= add (inverse ?70) (multiply ?71 (add (add ?69 (inverse ?70)) (inverse ?70))) [71, 70, 69] by Super 21 with 2 at 1,3
23292 Id : 19, {_}: pixley ?11 ?12 ?13 =<= add (multiply ?11 (inverse ?12)) (multiply ?13 (add ?11 (inverse ?12))) [13, 12, 11] by Demod 5 with 3 at 2,3
23293 Id : 162, {_}: multiply (pixley ?407 ?408 ?409) (multiply ?409 (add ?407 (inverse ?408))) =>= multiply ?409 (add ?407 (inverse ?408)) [409, 408, 407] by Super 2 with 19 at 1,2
23294 Id : 500, {_}: multiply ?959 (multiply ?960 (add ?959 (inverse ?960))) =>= multiply ?960 (add ?959 (inverse ?960)) [960, 959] by Super 162 with 7 at 1,2
23295 Id : 207, {_}: multiply (multiply ?494 n1) (multiply (inverse ?495) ?494) =>= multiply (inverse ?495) ?494 [495, 494] by Super 45 with 4 at 2,1,2
23296 Id : 211, {_}: multiply n1 (multiply (inverse ?507) (add ?508 n1)) =>= multiply (inverse ?507) (add ?508 n1) [508, 507] by Super 207 with 2 at 1,2
23297 Id : 16, {_}: multiply n1 (inverse ?49) =>= inverse ?49 [49] by Super 2 with 4 at 1,2
23298 Id : 60, {_}: multiply (inverse ?174) (add ?175 n1) =<= add (multiply ?175 (inverse ?174)) (inverse ?174) [175, 174] by Super 3 with 16 at 2,3
23299 Id : 61, {_}: multiply (inverse ?177) (add (add ?178 (inverse ?177)) n1) =>= add (inverse ?177) (inverse ?177) [178, 177] by Super 60 with 2 at 1,3
23300 Id : 14, {_}: multiply ?41 (add (add ?42 ?41) ?43) =>= add ?41 (multiply ?43 ?41) [43, 42, 41] by Super 12 with 2 at 1,3
23301 Id : 283, {_}: add (inverse ?177) (multiply n1 (inverse ?177)) =>= add (inverse ?177) (inverse ?177) [177] by Demod 61 with 14 at 2
23302 Id : 40, {_}: multiply (inverse ?110) (add n1 ?111) =<= add (inverse ?110) (multiply ?111 (inverse ?110)) [111, 110] by Super 3 with 16 at 1,3
23303 Id : 284, {_}: multiply (inverse ?177) (add n1 n1) =?= add (inverse ?177) (inverse ?177) [177] by Demod 283 with 40 at 2
23304 Id : 297, {_}: multiply n1 (add (inverse ?660) (inverse ?660)) =>= multiply (inverse ?660) (add n1 n1) [660] by Super 211 with 284 at 2,2
23305 Id : 505, {_}: multiply (inverse n1) (multiply (inverse n1) (add n1 n1)) =>= multiply n1 (add (inverse n1) (inverse n1)) [] by Super 500 with 297 at 2,2
23306 Id : 513, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= multiply n1 (add (inverse n1) (inverse n1)) [] by Demod 505 with 284 at 2,2
23307 Id : 514, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= multiply (inverse n1) (add n1 n1) [] by Demod 513 with 297 at 3
23308 Id : 515, {_}: multiply (inverse n1) (add (inverse n1) (inverse n1)) =>= add (inverse n1) (inverse n1) [] by Demod 514 with 284 at 3
23309 Id : 522, {_}: pixley (inverse n1) n1 (inverse n1) =<= add (multiply (inverse n1) (inverse n1)) (add (inverse n1) (inverse n1)) [] by Super 19 with 515 at 2,3
23310 Id : 525, {_}: inverse n1 =<= add (multiply (inverse n1) (inverse n1)) (add (inverse n1) (inverse n1)) [] by Demod 522 with 8 at 2
23311 Id : 543, {_}: multiply (inverse n1) (inverse n1) =<= add (multiply (multiply (inverse n1) (inverse n1)) (inverse n1)) (inverse n1) [] by Super 13 with 525 at 2,2
23312 Id : 39, {_}: multiply (inverse ?107) (add ?108 n1) =<= add (multiply ?108 (inverse ?107)) (inverse ?107) [108, 107] by Super 3 with 16 at 2,3
23313 Id : 557, {_}: multiply (inverse n1) (inverse n1) =<= multiply (inverse n1) (add (multiply (inverse n1) (inverse n1)) n1) [] by Demod 543 with 39 at 3
23314 Id : 22, {_}: pixley ?62 ?62 ?63 =<= add (multiply ?62 (inverse ?62)) (multiply ?63 n1) [63, 62] by Super 21 with 4 at 2,2,3
23315 Id : 116, {_}: ?322 =<= add (multiply ?323 (inverse ?323)) (multiply ?322 n1) [323, 322] by Demod 22 with 6 at 2
23316 Id : 131, {_}: ?358 =<= add (inverse n1) (multiply ?358 n1) [358] by Super 116 with 16 at 1,3
23317 Id : 144, {_}: add ?384 n1 =?= add (inverse n1) n1 [384] by Super 131 with 2 at 2,3
23318 Id : 132, {_}: add ?360 n1 =?= add (inverse n1) n1 [360] by Super 131 with 2 at 2,3
23319 Id : 145, {_}: add ?386 n1 =?= add ?387 n1 [387, 386] by Super 144 with 132 at 3
23320 Id : 730, {_}: multiply (inverse n1) (inverse n1) =<= multiply (inverse n1) (add ?1307 n1) [1307] by Super 557 with 145 at 2,3
23321 Id : 734, {_}: multiply (inverse n1) (inverse n1) =<= add (inverse n1) (inverse n1) [] by Super 730 with 284 at 3
23322 Id : 756, {_}: multiply (inverse n1) (multiply (inverse n1) (inverse n1)) =>= add (inverse n1) (inverse n1) [] by Demod 515 with 734 at 2,2
23323 Id : 757, {_}: multiply (inverse n1) (multiply (inverse n1) (inverse n1)) =>= multiply (inverse n1) (inverse n1) [] by Demod 756 with 734 at 3
23324 Id : 758, {_}: inverse n1 =<= add (multiply (inverse n1) (inverse n1)) (multiply (inverse n1) (inverse n1)) [] by Demod 525 with 734 at 2,3
23325 Id : 759, {_}: inverse n1 =<= multiply (inverse n1) (add (inverse n1) (inverse n1)) [] by Demod 758 with 3 at 3
23326 Id : 760, {_}: inverse n1 =<= multiply (inverse n1) (multiply (inverse n1) (inverse n1)) [] by Demod 759 with 734 at 2,3
23327 Id : 761, {_}: inverse n1 =<= multiply (inverse n1) (inverse n1) [] by Demod 757 with 760 at 2
23328 Id : 765, {_}: inverse n1 =<= add (inverse n1) (inverse n1) [] by Demod 734 with 761 at 2
23329 Id : 771, {_}: pixley (add (inverse n1) (inverse n1)) n1 ?1319 =<= add (inverse n1) (multiply ?1319 (add (inverse n1) (inverse n1))) [1319] by Super 24 with 765 at 1,2,2,3
23330 Id : 809, {_}: pixley (inverse n1) n1 ?1319 =<= add (inverse n1) (multiply ?1319 (add (inverse n1) (inverse n1))) [1319] by Demod 771 with 765 at 1,2
23331 Id : 810, {_}: pixley (inverse n1) n1 ?1319 =<= add (inverse n1) (multiply ?1319 (inverse n1)) [1319] by Demod 809 with 765 at 2,2,3
23332 Id : 859, {_}: pixley (inverse n1) n1 ?1388 =<= multiply (inverse n1) (add n1 ?1388) [1388] by Demod 810 with 40 at 3
23333 Id : 860, {_}: pixley (inverse n1) n1 (inverse n1) =>= multiply (inverse n1) n1 [] by Super 859 with 4 at 2,3
23334 Id : 885, {_}: inverse n1 =<= multiply (inverse n1) n1 [] by Demod 860 with 8 at 2
23335 Id : 902, {_}: multiply n1 (add ?1409 (inverse n1)) =<= add (multiply ?1409 n1) (inverse n1) [1409] by Super 3 with 885 at 2,3
23336 Id : 168, {_}: multiply ?429 (multiply ?430 (add ?429 (inverse ?430))) =>= multiply ?430 (add ?429 (inverse ?430)) [430, 429] by Super 162 with 7 at 1,2
23337 Id : 903, {_}: multiply n1 (add (inverse n1) ?1411) =<= add (inverse n1) (multiply ?1411 n1) [1411] by Super 3 with 885 at 1,3
23338 Id : 118, {_}: ?328 =<= add (inverse n1) (multiply ?328 n1) [328] by Super 116 with 16 at 1,3
23339 Id : 1013, {_}: multiply n1 (add (inverse n1) ?1510) =>= ?1510 [1510] by Demod 903 with 118 at 3
23340 Id : 1014, {_}: multiply n1 n1 =>= inverse (inverse n1) [] by Super 1013 with 4 at 2,2
23341 Id : 1051, {_}: multiply n1 (add n1 (inverse n1)) =<= add (inverse (inverse n1)) (inverse n1) [] by Super 902 with 1014 at 1,3
23342 Id : 1091, {_}: multiply n1 n1 =<= add (inverse (inverse n1)) (inverse n1) [] by Demod 1051 with 4 at 2,2
23343 Id : 1092, {_}: inverse (inverse n1) =<= add (inverse (inverse n1)) (inverse n1) [] by Demod 1091 with 1014 at 2
23344 Id : 1370, {_}: multiply (inverse (inverse n1)) (multiply n1 (inverse (inverse n1))) =>= multiply n1 (add (inverse (inverse n1)) (inverse n1)) [] by Super 168 with 1092 at 2,2,2
23345 Id : 1373, {_}: multiply (inverse (inverse n1)) (inverse (inverse n1)) =<= multiply n1 (add (inverse (inverse n1)) (inverse n1)) [] by Demod 1370 with 16 at 2,2
23346 Id : 1374, {_}: multiply (inverse (inverse n1)) (inverse (inverse n1)) =>= multiply n1 (inverse (inverse n1)) [] by Demod 1373 with 1092 at 2,3
23347 Id : 1375, {_}: multiply (inverse (inverse n1)) (inverse (inverse n1)) =>= inverse (inverse n1) [] by Demod 1374 with 16 at 3
23348 Id : 1407, {_}: multiply (inverse (inverse n1)) (add n1 (inverse (inverse n1))) =>= add (inverse (inverse n1)) (inverse (inverse n1)) [] by Super 40 with 1375 at 2,3
23349 Id : 1015, {_}: multiply n1 (add ?1513 n1) =>= n1 [1513] by Super 1013 with 145 at 2,2
23350 Id : 1292, {_}: n1 =<= add n1 (multiply n1 n1) [] by Super 14 with 1015 at 2
23351 Id : 1307, {_}: n1 =<= add n1 (inverse (inverse n1)) [] by Demod 1292 with 1014 at 2,3
23352 Id : 1421, {_}: multiply (inverse (inverse n1)) n1 =<= add (inverse (inverse n1)) (inverse (inverse n1)) [] by Demod 1407 with 1307 at 2,2
23353 Id : 1422, {_}: multiply (inverse (inverse n1)) n1 =<= multiply (inverse (inverse n1)) (add n1 n1) [] by Demod 1421 with 284 at 3
23354 Id : 111, {_}: ?63 =<= add (multiply ?62 (inverse ?62)) (multiply ?63 n1) [62, 63] by Demod 22 with 6 at 2
23355 Id : 359, {_}: multiply (multiply ?774 n1) (add ?774 ?775) =<= add (multiply ?774 n1) (multiply ?775 (multiply ?774 n1)) [775, 774] by Super 14 with 111 at 1,2,2
23356 Id : 114, {_}: multiply ?317 (multiply ?317 n1) =>= multiply ?317 n1 [317] by Super 2 with 111 at 1,2
23357 Id : 364, {_}: multiply (multiply ?788 n1) (add ?788 ?788) =?= add (multiply ?788 n1) (multiply ?788 n1) [788] by Super 359 with 114 at 2,3
23358 Id : 390, {_}: multiply (multiply ?814 n1) (add ?814 ?814) =>= multiply n1 (add ?814 ?814) [814] by Demod 364 with 3 at 3
23359 Id : 391, {_}: multiply (multiply n1 n1) (add ?816 n1) =>= multiply n1 (add n1 n1) [816] by Super 390 with 145 at 2,2
23360 Id : 1050, {_}: multiply (inverse (inverse n1)) (add ?816 n1) =>= multiply n1 (add n1 n1) [816] by Demod 391 with 1014 at 1,2
23361 Id : 1286, {_}: multiply (inverse (inverse n1)) (add ?816 n1) =>= n1 [816] by Demod 1050 with 1015 at 3
23362 Id : 1423, {_}: multiply (inverse (inverse n1)) n1 =>= n1 [] by Demod 1422 with 1286 at 3
23363 Id : 1449, {_}: multiply n1 (add (inverse (inverse n1)) (inverse n1)) =>= add n1 (inverse n1) [] by Super 902 with 1423 at 1,3
23364 Id : 1452, {_}: multiply n1 (inverse (inverse n1)) =>= add n1 (inverse n1) [] by Demod 1449 with 1092 at 2,2
23365 Id : 1453, {_}: multiply n1 (inverse (inverse n1)) =>= n1 [] by Demod 1452 with 4 at 3
23366 Id : 1454, {_}: inverse (inverse n1) =>= n1 [] by Demod 1453 with 16 at 2
23367 Id : 1500, {_}: multiply (multiply ?2051 n1) (multiply n1 ?2051) =>= multiply (inverse (inverse n1)) ?2051 [2051] by Super 49 with 1454 at 1,2,2
23368 Id : 3169, {_}: multiply (multiply ?3985 n1) (multiply n1 ?3985) =>= multiply n1 ?3985 [3985] by Demod 1500 with 1454 at 1,3
23369 Id : 933, {_}: multiply n1 (add (inverse n1) ?1411) =>= ?1411 [1411] by Demod 903 with 118 at 3
23370 Id : 3175, {_}: multiply (multiply (add (inverse n1) ?3998) n1) ?3998 =>= multiply n1 (add (inverse n1) ?3998) [3998] by Super 3169 with 933 at 2,2
23371 Id : 1440, {_}: inverse (inverse n1) =<= add (inverse n1) n1 [] by Super 118 with 1423 at 2,3
23372 Id : 1591, {_}: n1 =<= add (inverse n1) n1 [] by Demod 1440 with 1454 at 2
23373 Id : 1602, {_}: add ?2105 n1 =>= n1 [2105] by Super 145 with 1591 at 3
23374 Id : 1719, {_}: multiply ?2217 n1 =<= add ?2217 (multiply n1 ?2217) [2217] by Super 14 with 1602 at 2,2
23375 Id : 1478, {_}: n1 =<= add n1 n1 [] by Demod 1307 with 1454 at 2,3
23376 Id : 1483, {_}: multiply n1 (add (inverse ?660) (inverse ?660)) =>= multiply (inverse ?660) n1 [660] by Demod 297 with 1478 at 2,3
23377 Id : 1482, {_}: multiply (inverse ?177) n1 =<= add (inverse ?177) (inverse ?177) [177] by Demod 284 with 1478 at 2,2
23378 Id : 1484, {_}: multiply n1 (multiply (inverse ?660) n1) =>= multiply (inverse ?660) n1 [660] by Demod 1483 with 1482 at 2,2
23379 Id : 1727, {_}: multiply (multiply (inverse ?2233) n1) n1 =<= add (multiply (inverse ?2233) n1) (multiply (inverse ?2233) n1) [2233] by Super 1719 with 1484 at 2,3
23380 Id : 1763, {_}: multiply (multiply (inverse ?2233) n1) n1 =<= multiply n1 (add (inverse ?2233) (inverse ?2233)) [2233] by Demod 1727 with 3 at 3
23381 Id : 1764, {_}: multiply (multiply (inverse ?2233) n1) n1 =>= multiply n1 (multiply (inverse ?2233) n1) [2233] by Demod 1763 with 1482 at 2,3
23382 Id : 1765, {_}: multiply (multiply (inverse ?2233) n1) n1 =>= multiply (inverse ?2233) n1 [2233] by Demod 1764 with 1484 at 3
23383 Id : 1914, {_}: multiply (inverse ?2603) n1 =<= add (inverse n1) (multiply (inverse ?2603) n1) [2603] by Super 118 with 1765 at 2,3
23384 Id : 1949, {_}: multiply (inverse ?2603) n1 =>= inverse ?2603 [2603] by Demod 1914 with 118 at 3
23385 Id : 1994, {_}: multiply n1 (add (inverse ?2679) ?2680) =<= add (inverse ?2679) (multiply ?2680 n1) [2680, 2679] by Super 3 with 1949 at 1,3
23386 Id : 2422, {_}: multiply n1 (multiply n1 (add (inverse n1) ?3107)) =>= multiply ?3107 n1 [3107] by Super 933 with 1994 at 2,2
23387 Id : 2437, {_}: multiply n1 ?3107 =?= multiply ?3107 n1 [3107] by Demod 2422 with 933 at 2,2
23388 Id : 3237, {_}: multiply (multiply n1 (add (inverse n1) ?3998)) ?3998 =>= multiply n1 (add (inverse n1) ?3998) [3998] by Demod 3175 with 2437 at 1,2
23389 Id : 3238, {_}: multiply (multiply n1 (add (inverse n1) ?3998)) ?3998 =>= ?3998 [3998] by Demod 3237 with 933 at 3
23390 Id : 3239, {_}: multiply ?3998 ?3998 =>= ?3998 [3998] by Demod 3238 with 933 at 1,2
23391 Id : 3295, {_}: multiply ?4085 (add ?4086 ?4085) =<= add (multiply ?4086 ?4085) ?4085 [4086, 4085] by Super 3 with 3239 at 2,3
23392 Id : 3506, {_}: multiply ?37 (add ?38 (add ?39 ?37)) =>= multiply ?37 (add ?38 ?37) [39, 38, 37] by Demod 13 with 3295 at 3
23393 Id : 4221, {_}: multiply (add ?156 ?157) (multiply ?157 (add ?158 ?157)) =>= multiply ?157 (add ?158 (add ?156 ?157)) [158, 157, 156] by Demod 52 with 3506 at 2,2
23394 Id : 4233, {_}: multiply (add ?4966 ?4967) (multiply ?4967 (add ?4968 ?4967)) =>= multiply ?4967 (add ?4968 ?4967) [4968, 4967, 4966] by Demod 4221 with 3506 at 3
23395 Id : 1725, {_}: multiply (add (inverse n1) ?2230) n1 =<= add (add (inverse n1) ?2230) ?2230 [2230] by Super 1719 with 933 at 2,3
23396 Id : 2746, {_}: multiply n1 (add (inverse n1) ?2230) =<= add (add (inverse n1) ?2230) ?2230 [2230] by Demod 1725 with 2437 at 2
23397 Id : 2751, {_}: ?2230 =<= add (add (inverse n1) ?2230) ?2230 [2230] by Demod 2746 with 933 at 2
23398 Id : 4246, {_}: multiply (add ?5016 ?5017) (multiply ?5017 ?5017) =?= multiply ?5017 (add (add (inverse n1) ?5017) ?5017) [5017, 5016] by Super 4233 with 2751 at 2,2,2
23399 Id : 4327, {_}: multiply (add ?5016 ?5017) ?5017 =?= multiply ?5017 (add (add (inverse n1) ?5017) ?5017) [5017, 5016] by Demod 4246 with 3239 at 2,2
23400 Id : 3296, {_}: multiply ?4088 (add ?4088 ?4089) =<= add ?4088 (multiply ?4089 ?4088) [4089, 4088] by Super 3 with 3239 at 1,3
23401 Id : 3736, {_}: multiply ?41 (add (add ?42 ?41) ?43) =>= multiply ?41 (add ?41 ?43) [43, 42, 41] by Demod 14 with 3296 at 3
23402 Id : 4328, {_}: multiply (add ?5016 ?5017) ?5017 =?= multiply ?5017 (add ?5017 ?5017) [5017, 5016] by Demod 4327 with 3736 at 3
23403 Id : 4329, {_}: ?5017 =<= multiply ?5017 (add ?5017 ?5017) [5017] by Demod 4328 with 2 at 2
23404 Id : 3529, {_}: multiply ?4289 (add ?4290 ?4289) =<= add (multiply ?4290 ?4289) ?4289 [4290, 4289] by Super 3 with 3239 at 2,3
23405 Id : 3546, {_}: multiply ?4342 (add ?4342 ?4342) =>= add ?4342 ?4342 [4342] by Super 3529 with 3239 at 1,3
23406 Id : 4330, {_}: ?5017 =<= add ?5017 ?5017 [5017] by Demod 4329 with 3546 at 3
23407 Id : 4419, {_}: multiply ?5179 (add ?5180 ?5180) =>= multiply ?5180 ?5179 [5180, 5179] by Super 3 with 4330 at 3
23408 Id : 4472, {_}: multiply ?5179 ?5180 =?= multiply ?5180 ?5179 [5180, 5179] by Demod 4419 with 4330 at 2,2
23409 Id : 6559, {_}: multiply ?7216 (add ?7217 ?7218) =<= add (multiply ?7217 ?7216) (multiply ?7216 ?7218) [7218, 7217, 7216] by Super 3 with 4472 at 2,3
23410 Id : 4435, {_}: multiply ?5223 (add ?5224 ?5223) =<= multiply ?5223 (add ?5223 (add ?5224 ?5223)) [5224, 5223] by Super 3736 with 4330 at 2,2
23411 Id : 4446, {_}: multiply ?5223 (add ?5224 ?5223) =?= multiply ?5223 (add ?5223 ?5223) [5224, 5223] by Demod 4435 with 3506 at 3
23412 Id : 4447, {_}: multiply ?5223 (add ?5224 ?5223) =>= multiply ?5223 ?5223 [5224, 5223] by Demod 4446 with 4330 at 2,3
23413 Id : 4448, {_}: multiply ?5223 (add ?5224 ?5223) =>= ?5223 [5224, 5223] by Demod 4447 with 3239 at 3
23414 Id : 4587, {_}: multiply (add ?5347 ?5348) (add ?5349 ?5348) =<= add (multiply ?5349 (add ?5347 ?5348)) ?5348 [5349, 5348, 5347] by Super 3 with 4448 at 2,3
23415 Id : 13274, {_}: multiply ?16470 (add ?16471 ?16472) =<= add (multiply ?16471 ?16470) (multiply ?16470 ?16472) [16472, 16471, 16470] by Super 3 with 4472 at 2,3
23416 Id : 1990, {_}: inverse ?2668 =<= add (inverse n1) (inverse ?2668) [2668] by Super 118 with 1949 at 2,3
23417 Id : 2035, {_}: multiply (inverse n1) (multiply ?2698 (inverse ?2698)) =?= multiply ?2698 (add (inverse n1) (inverse ?2698)) [2698] by Super 168 with 1990 at 2,2,2
23418 Id : 2073, {_}: multiply (inverse n1) (multiply ?2698 (inverse ?2698)) =>= multiply ?2698 (inverse ?2698) [2698] by Demod 2035 with 1990 at 2,3
23419 Id : 3753, {_}: multiply n1 (multiply (inverse n1) (add (inverse n1) ?4498)) =>= multiply ?4498 (inverse n1) [4498] by Super 933 with 3296 at 2,2
23420 Id : 3737, {_}: multiply (inverse ?110) (add n1 ?111) =<= multiply (inverse ?110) (add (inverse ?110) ?111) [111, 110] by Demod 40 with 3296 at 3
23421 Id : 3799, {_}: multiply n1 (multiply (inverse n1) (add n1 ?4498)) =>= multiply ?4498 (inverse n1) [4498] by Demod 3753 with 3737 at 2,2
23422 Id : 811, {_}: pixley (inverse n1) n1 ?1319 =<= multiply (inverse n1) (add n1 ?1319) [1319] by Demod 810 with 40 at 3
23423 Id : 3800, {_}: multiply n1 (pixley (inverse n1) n1 ?4498) =>= multiply ?4498 (inverse n1) [4498] by Demod 3799 with 811 at 2,2
23424 Id : 1503, {_}: multiply (inverse (inverse n1)) (add n1 ?2058) =<= add (inverse (inverse n1)) (multiply ?2058 n1) [2058] by Super 40 with 1454 at 2,2,3
23425 Id : 1564, {_}: multiply n1 (add n1 ?2058) =<= add (inverse (inverse n1)) (multiply ?2058 n1) [2058] by Demod 1503 with 1454 at 1,2
23426 Id : 1565, {_}: multiply n1 (add n1 ?2058) =<= add n1 (multiply ?2058 n1) [2058] by Demod 1564 with 1454 at 1,3
23427 Id : 1981, {_}: multiply n1 (add n1 (inverse ?2643)) =>= add n1 (inverse ?2643) [2643] by Super 1565 with 1949 at 2,3
23428 Id : 2089, {_}: pixley n1 ?2784 n1 =<= add (multiply n1 (inverse ?2784)) (add n1 (inverse ?2784)) [2784] by Super 19 with 1981 at 2,3
23429 Id : 2096, {_}: n1 =<= add (multiply n1 (inverse ?2784)) (add n1 (inverse ?2784)) [2784] by Demod 2089 with 8 at 2
23430 Id : 2097, {_}: n1 =<= add (inverse ?2784) (add n1 (inverse ?2784)) [2784] by Demod 2096 with 16 at 1,3
23431 Id : 4563, {_}: ?4085 =<= add (multiply ?4086 ?4085) ?4085 [4086, 4085] by Demod 3295 with 4448 at 2
23432 Id : 4567, {_}: add ?5289 ?5290 =<= add ?5290 (add ?5289 ?5290) [5290, 5289] by Super 4563 with 4448 at 1,3
23433 Id : 5426, {_}: n1 =<= add n1 (inverse ?2784) [2784] by Demod 2097 with 4567 at 3
23434 Id : 5450, {_}: multiply n1 (multiply ?6117 n1) =<= multiply ?6117 (add n1 (inverse ?6117)) [6117] by Super 168 with 5426 at 2,2,2
23435 Id : 5478, {_}: multiply n1 (multiply ?6117 n1) =>= multiply ?6117 n1 [6117] by Demod 5450 with 5426 at 2,3
23436 Id : 2780, {_}: multiply n1 (add (inverse ?3598) ?3599) =<= add (inverse ?3598) (multiply n1 ?3599) [3599, 3598] by Super 1994 with 2437 at 2,3
23437 Id : 38, {_}: pixley n1 ?104 ?105 =<= add (inverse ?104) (multiply ?105 (add n1 (inverse ?104))) [105, 104] by Super 19 with 16 at 1,3
23438 Id : 5427, {_}: pixley n1 ?104 ?105 =<= add (inverse ?104) (multiply ?105 n1) [105, 104] by Demod 38 with 5426 at 2,2,3
23439 Id : 5431, {_}: pixley n1 ?104 ?105 =<= multiply n1 (add (inverse ?104) ?105) [105, 104] by Demod 5427 with 1994 at 3
23440 Id : 5434, {_}: pixley n1 ?3598 ?3599 =<= add (inverse ?3598) (multiply n1 ?3599) [3599, 3598] by Demod 2780 with 5431 at 2
23441 Id : 5505, {_}: pixley n1 ?6141 (multiply ?6142 n1) =>= add (inverse ?6141) (multiply ?6142 n1) [6142, 6141] by Super 5434 with 5478 at 2,3
23442 Id : 5432, {_}: pixley n1 ?2679 ?2680 =<= add (inverse ?2679) (multiply ?2680 n1) [2680, 2679] by Demod 1994 with 5431 at 2
23443 Id : 5574, {_}: pixley n1 ?6141 (multiply ?6142 n1) =>= pixley n1 ?6141 ?6142 [6142, 6141] by Demod 5505 with 5432 at 3
23444 Id : 5935, {_}: pixley n1 n1 ?6510 =>= multiply ?6510 n1 [6510] by Super 6 with 5574 at 2
23445 Id : 5952, {_}: ?6510 =<= multiply ?6510 n1 [6510] by Demod 5935 with 6 at 2
23446 Id : 5985, {_}: multiply n1 ?6117 =?= multiply ?6117 n1 [6117] by Demod 5478 with 5952 at 2,2
23447 Id : 5986, {_}: multiply n1 ?6117 =>= ?6117 [6117] by Demod 5985 with 5952 at 3
23448 Id : 5995, {_}: pixley (inverse n1) n1 ?4498 =>= multiply ?4498 (inverse n1) [4498] by Demod 3800 with 5986 at 2
23449 Id : 4560, {_}: multiply ?37 (add ?38 (add ?39 ?37)) =>= ?37 [39, 38, 37] by Demod 3506 with 4448 at 3
23450 Id : 4745, {_}: multiply n1 (add ?5532 (inverse n1)) =>= add ?5532 (inverse n1) [5532] by Super 933 with 4567 at 2,2
23451 Id : 4852, {_}: multiply ?5678 (add ?5678 (inverse n1)) =?= multiply n1 (add ?5678 (inverse n1)) [5678] by Super 168 with 4745 at 2,2
23452 Id : 4888, {_}: multiply ?5678 (add ?5678 (inverse n1)) =>= add ?5678 (inverse n1) [5678] by Demod 4852 with 4745 at 3
23453 Id : 5026, {_}: multiply (inverse ?5768) (add n1 (inverse n1)) =>= add (inverse ?5768) (inverse n1) [5768] by Super 3737 with 4888 at 3
23454 Id : 5122, {_}: multiply (inverse ?5768) n1 =<= add (inverse ?5768) (inverse n1) [5768] by Demod 5026 with 4 at 2,2
23455 Id : 5123, {_}: multiply n1 (inverse ?5768) =<= add (inverse ?5768) (inverse n1) [5768] by Demod 5122 with 2437 at 2
23456 Id : 5124, {_}: inverse ?5768 =<= add (inverse ?5768) (inverse n1) [5768] by Demod 5123 with 16 at 2
23457 Id : 5166, {_}: multiply (inverse n1) (add ?5860 (inverse ?5861)) =>= inverse n1 [5861, 5860] by Super 4560 with 5124 at 2,2,2
23458 Id : 6158, {_}: multiply ?6712 (inverse n1) =<= multiply (inverse n1) (add ?6712 (inverse (inverse n1))) [6712] by Super 168 with 5166 at 2,2
23459 Id : 6219, {_}: multiply ?6712 (inverse n1) =>= inverse n1 [6712] by Demod 6158 with 5166 at 3
23460 Id : 6251, {_}: pixley (inverse n1) n1 ?4498 =>= inverse n1 [4498] by Demod 5995 with 6219 at 3
23461 Id : 2037, {_}: pixley (inverse n1) ?2703 ?2704 =<= add (multiply (inverse n1) (inverse ?2703)) (multiply ?2704 (inverse ?2703)) [2704, 2703] by Super 19 with 1990 at 2,2,3
23462 Id : 2071, {_}: pixley (inverse n1) ?2703 ?2704 =<= multiply (inverse ?2703) (add (inverse n1) ?2704) [2704, 2703] by Demod 2037 with 3 at 3
23463 Id : 5976, {_}: ?63 =<= add (multiply ?62 (inverse ?62)) ?63 [62, 63] by Demod 111 with 5952 at 2,3
23464 Id : 6253, {_}: ?6806 =<= add (inverse n1) ?6806 [6806] by Super 5976 with 6219 at 1,3
23465 Id : 6304, {_}: pixley (inverse n1) ?2703 ?2704 =>= multiply (inverse ?2703) ?2704 [2704, 2703] by Demod 2071 with 6253 at 2,3
23466 Id : 6308, {_}: multiply (inverse n1) ?4498 =>= inverse n1 [4498] by Demod 6251 with 6304 at 2
23467 Id : 6315, {_}: inverse n1 =<= multiply ?2698 (inverse ?2698) [2698] by Demod 2073 with 6308 at 2
23468 Id : 6591, {_}: inverse n1 =<= multiply (inverse ?7342) ?7342 [7342] by Super 6315 with 4472 at 3
23469 Id : 13310, {_}: multiply (inverse ?16623) (add ?16624 ?16623) =?= add (multiply ?16624 (inverse ?16623)) (inverse n1) [16624, 16623] by Super 13274 with 6591 at 2,3
23470 Id : 6698, {_}: multiply ?7545 (add ?7545 (inverse ?7545)) =>= add ?7545 (inverse n1) [7545] by Super 3296 with 6591 at 2,3
23471 Id : 6721, {_}: multiply ?7545 n1 =<= add ?7545 (inverse n1) [7545] by Demod 6698 with 4 at 2,2
23472 Id : 6722, {_}: ?7545 =<= add ?7545 (inverse n1) [7545] by Demod 6721 with 5952 at 2
23473 Id : 13428, {_}: multiply (inverse ?16623) (add ?16624 ?16623) =>= multiply ?16624 (inverse ?16623) [16624, 16623] by Demod 13310 with 6722 at 3
23474 Id : 13655, {_}: multiply (add ?17100 ?17101) (add (inverse ?17101) ?17101) =>= add (multiply ?17100 (inverse ?17101)) ?17101 [17101, 17100] by Super 4587 with 13428 at 1,3
23475 Id : 6531, {_}: ?7094 =<= add (multiply ?7094 ?7095) ?7094 [7095, 7094] by Super 4563 with 4472 at 1,3
23476 Id : 6689, {_}: multiply ?7513 (add (inverse ?7513) ?7514) =?= add (inverse n1) (multiply ?7514 ?7513) [7514, 7513] by Super 3 with 6591 at 1,3
23477 Id : 7566, {_}: multiply ?8615 (add (inverse ?8615) ?8616) =>= multiply ?8616 ?8615 [8616, 8615] by Demod 6689 with 6253 at 3
23478 Id : 7568, {_}: multiply ?8620 n1 =<= multiply (inverse (inverse ?8620)) ?8620 [8620] by Super 7566 with 4 at 2,2
23479 Id : 7615, {_}: ?8620 =<= multiply (inverse (inverse ?8620)) ?8620 [8620] by Demod 7568 with 5952 at 2
23480 Id : 7635, {_}: inverse (inverse ?8669) =<= add ?8669 (inverse (inverse ?8669)) [8669] by Super 6531 with 7615 at 1,3
23481 Id : 7710, {_}: pixley ?8783 (inverse ?8783) ?8784 =<= add (multiply ?8783 (inverse (inverse ?8783))) (multiply ?8784 (inverse (inverse ?8783))) [8784, 8783] by Super 19 with 7635 at 2,2,3
23482 Id : 9183, {_}: pixley ?10684 (inverse ?10684) ?10685 =<= multiply (inverse (inverse ?10684)) (add ?10684 ?10685) [10685, 10684] by Demod 7710 with 3 at 3
23483 Id : 9184, {_}: pixley ?10687 (inverse ?10687) (inverse ?10687) =>= multiply (inverse (inverse ?10687)) n1 [10687] by Super 9183 with 4 at 2,3
23484 Id : 9239, {_}: ?10687 =<= multiply (inverse (inverse ?10687)) n1 [10687] by Demod 9184 with 7 at 2
23485 Id : 9240, {_}: ?10687 =<= multiply n1 (inverse (inverse ?10687)) [10687] by Demod 9239 with 4472 at 3
23486 Id : 9241, {_}: ?10687 =<= inverse (inverse ?10687) [10687] by Demod 9240 with 5986 at 3
23487 Id : 9328, {_}: add (inverse ?10804) ?10804 =>= n1 [10804] by Super 4 with 9241 at 2,2
23488 Id : 13791, {_}: multiply (add ?17100 ?17101) n1 =<= add (multiply ?17100 (inverse ?17101)) ?17101 [17101, 17100] by Demod 13655 with 9328 at 2,2
23489 Id : 13792, {_}: multiply n1 (add ?17100 ?17101) =<= add (multiply ?17100 (inverse ?17101)) ?17101 [17101, 17100] by Demod 13791 with 4472 at 2
23490 Id : 14391, {_}: add ?18258 ?18259 =<= add (multiply ?18258 (inverse ?18259)) ?18259 [18259, 18258] by Demod 13792 with 5986 at 2
23491 Id : 6742, {_}: multiply ?7513 (add (inverse ?7513) ?7514) =>= multiply ?7514 ?7513 [7514, 7513] by Demod 6689 with 6253 at 3
23492 Id : 7563, {_}: multiply (add (inverse ?8606) ?8607) ?8606 =>= multiply ?8607 ?8606 [8607, 8606] by Super 4472 with 6742 at 3
23493 Id : 14401, {_}: add (add (inverse (inverse ?18285)) ?18286) ?18285 =>= add (multiply ?18286 (inverse ?18285)) ?18285 [18286, 18285] by Super 14391 with 7563 at 1,3
23494 Id : 14494, {_}: add (add ?18285 ?18286) ?18285 =<= add (multiply ?18286 (inverse ?18285)) ?18285 [18286, 18285] by Demod 14401 with 9241 at 1,1,2
23495 Id : 13793, {_}: add ?17100 ?17101 =<= add (multiply ?17100 (inverse ?17101)) ?17101 [17101, 17100] by Demod 13792 with 5986 at 2
23496 Id : 14495, {_}: add (add ?18285 ?18286) ?18285 =>= add ?18286 ?18285 [18286, 18285] by Demod 14494 with 13793 at 3
23497 Id : 6533, {_}: multiply ?7100 (add ?7100 ?7101) =<= add ?7100 (multiply ?7100 ?7101) [7101, 7100] by Super 3296 with 4472 at 2,3
23498 Id : 7753, {_}: pixley ?8783 (inverse ?8783) ?8784 =<= multiply (inverse (inverse ?8783)) (add ?8783 ?8784) [8784, 8783] by Demod 7710 with 3 at 3
23499 Id : 9278, {_}: pixley ?8783 (inverse ?8783) ?8784 =>= multiply ?8783 (add ?8783 ?8784) [8784, 8783] by Demod 7753 with 9241 at 1,3
23500 Id : 7714, {_}: pixley (add ?8794 (inverse (inverse ?8794))) (inverse ?8794) ?8795 =<= add (inverse (inverse ?8794)) (multiply ?8795 (add (inverse (inverse ?8794)) (inverse (inverse ?8794)))) [8795, 8794] by Super 24 with 7635 at 1,2,2,3
23501 Id : 7746, {_}: pixley (inverse (inverse ?8794)) (inverse ?8794) ?8795 =<= add (inverse (inverse ?8794)) (multiply ?8795 (add (inverse (inverse ?8794)) (inverse (inverse ?8794)))) [8795, 8794] by Demod 7714 with 7635 at 1,2
23502 Id : 7747, {_}: pixley (inverse (inverse ?8794)) (inverse ?8794) ?8795 =<= add (inverse (inverse ?8794)) (multiply ?8795 (inverse (inverse ?8794))) [8795, 8794] by Demod 7746 with 4330 at 2,2,3
23503 Id : 7748, {_}: pixley (inverse (inverse ?8794)) (inverse ?8794) ?8795 =<= multiply (inverse (inverse ?8794)) (add (inverse (inverse ?8794)) ?8795) [8795, 8794] by Demod 7747 with 3296 at 3
23504 Id : 7749, {_}: pixley (inverse (inverse ?8794)) (inverse ?8794) ?8795 =>= multiply (inverse (inverse ?8794)) (add n1 ?8795) [8795, 8794] by Demod 7748 with 3737 at 3
23505 Id : 9298, {_}: pixley ?8794 (inverse ?8794) ?8795 =?= multiply (inverse (inverse ?8794)) (add n1 ?8795) [8795, 8794] by Demod 7749 with 9241 at 1,2
23506 Id : 9299, {_}: pixley ?8794 (inverse ?8794) ?8795 =>= multiply ?8794 (add n1 ?8795) [8795, 8794] by Demod 9298 with 9241 at 1,3
23507 Id : 9310, {_}: multiply ?8783 (add n1 ?8784) =?= multiply ?8783 (add ?8783 ?8784) [8784, 8783] by Demod 9278 with 9299 at 2
23508 Id : 9334, {_}: n1 =<= add n1 ?10824 [10824] by Super 5426 with 9241 at 2,3
23509 Id : 9392, {_}: multiply ?8783 n1 =<= multiply ?8783 (add ?8783 ?8784) [8784, 8783] by Demod 9310 with 9334 at 2,2
23510 Id : 9393, {_}: ?8783 =<= multiply ?8783 (add ?8783 ?8784) [8784, 8783] by Demod 9392 with 5952 at 2
23511 Id : 9397, {_}: ?7100 =<= add ?7100 (multiply ?7100 ?7101) [7101, 7100] by Demod 6533 with 9393 at 2
23512 Id : 7652, {_}: multiply ?8717 (add (inverse (inverse ?8717)) ?8718) =>= add ?8717 (multiply ?8718 ?8717) [8718, 8717] by Super 3 with 7615 at 1,3
23513 Id : 8997, {_}: multiply ?10489 (add (inverse (inverse ?10489)) ?10490) =>= multiply ?10489 (add ?10489 ?10490) [10490, 10489] by Demod 7652 with 3296 at 3
23514 Id : 9013, {_}: multiply (add (inverse (inverse ?10527)) ?10528) ?10527 =>= multiply ?10527 (add ?10527 ?10528) [10528, 10527] by Super 8997 with 4472 at 2
23515 Id : 11578, {_}: multiply (add ?10527 ?10528) ?10527 =?= multiply ?10527 (add ?10527 ?10528) [10528, 10527] by Demod 9013 with 9241 at 1,1,2
23516 Id : 11579, {_}: multiply (add ?10527 ?10528) ?10527 =>= ?10527 [10528, 10527] by Demod 11578 with 9393 at 3
23517 Id : 11608, {_}: add ?13907 ?13908 =<= add (add ?13907 ?13908) ?13907 [13908, 13907] by Super 9397 with 11579 at 2,3
23518 Id : 14496, {_}: add ?18285 ?18286 =?= add ?18286 ?18285 [18286, 18285] by Demod 14495 with 11608 at 2
23519 Id : 20857, {_}: multiply ?26392 (add ?26393 ?26394) =<= add (multiply ?26392 ?26394) (multiply ?26393 ?26392) [26394, 26393, 26392] by Super 6559 with 14496 at 3
23520 Id : 6561, {_}: multiply ?7224 (add ?7225 ?7226) =<= add (multiply ?7224 ?7225) (multiply ?7226 ?7224) [7226, 7225, 7224] by Super 3 with 4472 at 1,3
23521 Id : 45701, {_}: multiply ?26392 (add ?26393 ?26394) =?= multiply ?26392 (add ?26394 ?26393) [26394, 26393, 26392] by Demod 20857 with 6561 at 3
23522 Id : 92, {_}: pixley (add ?268 ?269) ?270 ?269 =<= add (multiply (add ?268 ?269) (inverse ?270)) (add ?269 (multiply (inverse ?270) ?269)) [270, 269, 268] by Super 19 with 14 at 2,3
23523 Id : 88314, {_}: pixley (add ?268 ?269) ?270 ?269 =<= add (multiply (inverse ?270) (add ?268 ?269)) (add ?269 (multiply (inverse ?270) ?269)) [270, 269, 268] by Demod 92 with 4472 at 1,3
23524 Id : 9395, {_}: ?4088 =<= add ?4088 (multiply ?4089 ?4088) [4089, 4088] by Demod 3296 with 9393 at 2
23525 Id : 88315, {_}: pixley (add ?268 ?269) ?270 ?269 =<= add (multiply (inverse ?270) (add ?268 ?269)) ?269 [270, 269, 268] by Demod 88314 with 9395 at 2,3
23526 Id : 88452, {_}: pixley (add ?145802 ?145803) ?145804 ?145803 =<= multiply (add ?145802 ?145803) (add (inverse ?145804) ?145803) [145804, 145803, 145802] by Demod 88315 with 4587 at 3
23527 Id : 88455, {_}: pixley (add ?145816 ?145817) (inverse ?145818) ?145817 =>= multiply (add ?145816 ?145817) (add ?145818 ?145817) [145818, 145817, 145816] by Super 88452 with 9241 at 1,2,3
23528 Id : 11, {_}: multiply (multiply ?29 (add ?30 ?31)) (multiply ?31 ?29) =>= multiply ?31 ?29 [31, 30, 29] by Super 2 with 3 at 1,2
23529 Id : 6691, {_}: multiply (inverse n1) (multiply ?7519 (inverse (add ?7520 ?7519))) =>= multiply ?7519 (inverse (add ?7520 ?7519)) [7520, 7519] by Super 11 with 6591 at 1,2
23530 Id : 6741, {_}: inverse n1 =<= multiply ?7519 (inverse (add ?7520 ?7519)) [7520, 7519] by Demod 6691 with 6308 at 2
23531 Id : 7453, {_}: pixley ?8439 (add ?8440 ?8439) ?8441 =<= add (inverse n1) (multiply ?8441 (add ?8439 (inverse (add ?8440 ?8439)))) [8441, 8440, 8439] by Super 19 with 6741 at 1,3
23532 Id : 7492, {_}: pixley ?8439 (add ?8440 ?8439) ?8441 =<= multiply ?8441 (add ?8439 (inverse (add ?8440 ?8439))) [8441, 8440, 8439] by Demod 7453 with 6253 at 3
23533 Id : 98274, {_}: pixley ?163996 (add ?163997 ?163996) n1 =>= add ?163996 (inverse (add ?163997 ?163996)) [163997, 163996] by Super 5986 with 7492 at 2
23534 Id : 4588, {_}: multiply (add ?5351 ?5352) (add ?5352 ?5353) =<= add ?5352 (multiply ?5353 (add ?5351 ?5352)) [5353, 5352, 5351] by Super 3 with 4448 at 1,3
23535 Id : 13309, {_}: multiply ?16620 (add ?16621 (inverse ?16620)) =?= add (multiply ?16621 ?16620) (inverse n1) [16621, 16620] by Super 13274 with 6315 at 2,3
23536 Id : 13427, {_}: multiply ?16620 (add ?16621 (inverse ?16620)) =>= multiply ?16621 ?16620 [16621, 16620] by Demod 13309 with 6722 at 3
23537 Id : 13531, {_}: multiply (add ?17007 (inverse ?17008)) (add (inverse ?17008) ?17008) =>= add (inverse ?17008) (multiply ?17007 ?17008) [17008, 17007] by Super 4588 with 13427 at 2,3
23538 Id : 11835, {_}: add ?14300 ?14301 =<= add (add ?14300 ?14301) ?14300 [14301, 14300] by Super 9397 with 11579 at 2,3
23539 Id : 11844, {_}: add ?14326 (add ?14327 ?14326) =?= add (add ?14327 ?14326) ?14326 [14327, 14326] by Super 11835 with 4567 at 1,3
23540 Id : 11909, {_}: add ?14327 ?14326 =<= add (add ?14327 ?14326) ?14326 [14326, 14327] by Demod 11844 with 4567 at 2
23541 Id : 11970, {_}: pixley (add ?69 (inverse ?70)) ?70 ?71 =<= add (inverse ?70) (multiply ?71 (add ?69 (inverse ?70))) [71, 70, 69] by Demod 24 with 11909 at 2,2,3
23542 Id : 12697, {_}: pixley (add ?69 (inverse ?70)) ?70 ?71 =<= multiply (add ?69 (inverse ?70)) (add (inverse ?70) ?71) [71, 70, 69] by Demod 11970 with 4588 at 3
23543 Id : 13561, {_}: pixley (add ?17007 (inverse ?17008)) ?17008 ?17008 =>= add (inverse ?17008) (multiply ?17007 ?17008) [17008, 17007] by Demod 13531 with 12697 at 2
23544 Id : 14017, {_}: add ?17647 (inverse ?17648) =<= add (inverse ?17648) (multiply ?17647 ?17648) [17648, 17647] by Demod 13561 with 7 at 2
23545 Id : 10227, {_}: multiply (inverse ?12001) (add ?12001 ?12002) =>= multiply ?12002 (inverse ?12001) [12002, 12001] by Super 6742 with 9241 at 1,2,2
23546 Id : 10243, {_}: multiply (inverse ?12047) ?12047 =<= multiply (multiply ?12047 ?12048) (inverse ?12047) [12048, 12047] by Super 10227 with 9397 at 2,2
23547 Id : 10311, {_}: inverse n1 =<= multiply (multiply ?12047 ?12048) (inverse ?12047) [12048, 12047] by Demod 10243 with 6591 at 2
23548 Id : 10454, {_}: inverse n1 =<= multiply (inverse ?12293) (multiply ?12293 ?12294) [12294, 12293] by Demod 10311 with 4472 at 3
23549 Id : 10488, {_}: inverse n1 =<= multiply ?12387 (multiply (inverse ?12387) ?12388) [12388, 12387] by Super 10454 with 9241 at 1,3
23550 Id : 14062, {_}: add ?17790 (inverse (multiply (inverse ?17790) ?17791)) =?= add (inverse (multiply (inverse ?17790) ?17791)) (inverse n1) [17791, 17790] by Super 14017 with 10488 at 2,3
23551 Id : 14147, {_}: add ?17790 (inverse (multiply (inverse ?17790) ?17791)) =>= inverse (multiply (inverse ?17790) ?17791) [17791, 17790] by Demod 14062 with 6722 at 3
23552 Id : 20167, {_}: add ?25476 (inverse (multiply (inverse ?25476) ?25477)) =?= add (inverse (multiply (inverse ?25476) ?25477)) ?25476 [25477, 25476] by Super 11608 with 14147 at 1,3
23553 Id : 20309, {_}: inverse (multiply (inverse ?25476) ?25477) =<= add (inverse (multiply (inverse ?25476) ?25477)) ?25476 [25477, 25476] by Demod 20167 with 14147 at 2
23554 Id : 98343, {_}: pixley ?164219 (inverse (multiply (inverse ?164219) ?164220)) n1 =<= add ?164219 (inverse (add (inverse (multiply (inverse ?164219) ?164220)) ?164219)) [164220, 164219] by Super 98274 with 20309 at 2,2
23555 Id : 98565, {_}: pixley ?164219 (inverse (multiply (inverse ?164219) ?164220)) n1 =>= add ?164219 (inverse (inverse (multiply (inverse ?164219) ?164220))) [164220, 164219] by Demod 98343 with 20309 at 1,2,3
23556 Id : 98566, {_}: pixley ?164219 (inverse (multiply (inverse ?164219) ?164220)) n1 =>= add ?164219 (multiply (inverse ?164219) ?164220) [164220, 164219] by Demod 98565 with 9241 at 2,3
23557 Id : 13654, {_}: multiply (add ?17097 ?17098) (add ?17098 (inverse ?17098)) =>= add ?17098 (multiply ?17097 (inverse ?17098)) [17098, 17097] by Super 4588 with 13428 at 2,3
23558 Id : 13794, {_}: multiply (add ?17097 ?17098) n1 =<= add ?17098 (multiply ?17097 (inverse ?17098)) [17098, 17097] by Demod 13654 with 4 at 2,2
23559 Id : 13795, {_}: multiply n1 (add ?17097 ?17098) =<= add ?17098 (multiply ?17097 (inverse ?17098)) [17098, 17097] by Demod 13794 with 4472 at 2
23560 Id : 14561, {_}: add ?18466 ?18467 =<= add ?18467 (multiply ?18466 (inverse ?18467)) [18467, 18466] by Demod 13795 with 5986 at 2
23561 Id : 14565, {_}: add ?18477 ?18478 =<= add ?18478 (multiply (inverse ?18478) ?18477) [18478, 18477] by Super 14561 with 4472 at 2,3
23562 Id : 98567, {_}: pixley ?164219 (inverse (multiply (inverse ?164219) ?164220)) n1 =>= add ?164220 ?164219 [164220, 164219] by Demod 98566 with 14565 at 3
23563 Id : 7451, {_}: multiply (inverse (add ?8431 ?8432)) (add ?8433 ?8432) =?= add (multiply ?8433 (inverse (add ?8431 ?8432))) (inverse n1) [8433, 8432, 8431] by Super 3 with 6741 at 2,3
23564 Id : 7493, {_}: multiply (inverse (add ?8431 ?8432)) (add ?8433 ?8432) =>= multiply ?8433 (inverse (add ?8431 ?8432)) [8433, 8432, 8431] by Demod 7451 with 6722 at 3
23565 Id : 105415, {_}: pixley (add ?172221 ?172222) (inverse (multiply ?172223 (inverse (add ?172221 ?172222)))) n1 =>= add (add ?172223 ?172222) (add ?172221 ?172222) [172223, 172222, 172221] by Super 98567 with 7493 at 1,2,2
23566 Id : 10242, {_}: multiply (inverse ?12044) ?12044 =<= multiply (multiply ?12045 ?12044) (inverse ?12044) [12045, 12044] by Super 10227 with 9395 at 2,2
23567 Id : 10309, {_}: inverse n1 =<= multiply (multiply ?12045 ?12044) (inverse ?12044) [12044, 12045] by Demod 10242 with 6591 at 2
23568 Id : 10337, {_}: inverse n1 =<= multiply (inverse ?12122) (multiply ?12123 ?12122) [12123, 12122] by Demod 10309 with 4472 at 3
23569 Id : 10370, {_}: inverse n1 =<= multiply ?12222 (multiply ?12223 (inverse ?12222)) [12223, 12222] by Super 10337 with 9241 at 1,3
23570 Id : 14061, {_}: add ?17787 (inverse (multiply ?17788 (inverse ?17787))) =?= add (inverse (multiply ?17788 (inverse ?17787))) (inverse n1) [17788, 17787] by Super 14017 with 10370 at 2,3
23571 Id : 14146, {_}: add ?17787 (inverse (multiply ?17788 (inverse ?17787))) =>= inverse (multiply ?17788 (inverse ?17787)) [17788, 17787] by Demod 14061 with 6722 at 3
23572 Id : 19953, {_}: add ?25324 (inverse (multiply ?25325 (inverse ?25324))) =?= add (inverse (multiply ?25325 (inverse ?25324))) ?25324 [25325, 25324] by Super 11608 with 14146 at 1,3
23573 Id : 20011, {_}: inverse (multiply ?25325 (inverse ?25324)) =<= add (inverse (multiply ?25325 (inverse ?25324))) ?25324 [25324, 25325] by Demod 19953 with 14146 at 2
23574 Id : 98342, {_}: pixley ?164216 (inverse (multiply ?164217 (inverse ?164216))) n1 =<= add ?164216 (inverse (add (inverse (multiply ?164217 (inverse ?164216))) ?164216)) [164217, 164216] by Super 98274 with 20011 at 2,2
23575 Id : 98562, {_}: pixley ?164216 (inverse (multiply ?164217 (inverse ?164216))) n1 =>= add ?164216 (inverse (inverse (multiply ?164217 (inverse ?164216)))) [164217, 164216] by Demod 98342 with 20011 at 1,2,3
23576 Id : 98563, {_}: pixley ?164216 (inverse (multiply ?164217 (inverse ?164216))) n1 =>= add ?164216 (multiply ?164217 (inverse ?164216)) [164217, 164216] by Demod 98562 with 9241 at 2,3
23577 Id : 13796, {_}: add ?17097 ?17098 =<= add ?17098 (multiply ?17097 (inverse ?17098)) [17098, 17097] by Demod 13795 with 5986 at 2
23578 Id : 98564, {_}: pixley ?164216 (inverse (multiply ?164217 (inverse ?164216))) n1 =>= add ?164217 ?164216 [164217, 164216] by Demod 98563 with 13796 at 3
23579 Id : 106322, {_}: add ?173840 (add ?173841 ?173842) =<= add (add ?173840 ?173842) (add ?173841 ?173842) [173842, 173841, 173840] by Demod 105415 with 98564 at 2
23580 Id : 106366, {_}: add ?174020 (add ?174021 (multiply ?174021 ?174022)) =?= add (add ?174020 (multiply ?174021 ?174022)) ?174021 [174022, 174021, 174020] by Super 106322 with 9397 at 2,3
23581 Id : 110603, {_}: add ?183991 ?183992 =<= add (add ?183991 (multiply ?183992 ?183993)) ?183992 [183993, 183992, 183991] by Demod 106366 with 9397 at 2,2
23582 Id : 111365, {_}: add (multiply ?185632 (inverse ?185633)) ?185634 =<= add (pixley ?185632 ?185633 ?185634) ?185634 [185634, 185633, 185632] by Super 110603 with 19 at 1,3
23583 Id : 5975, {_}: multiply ?143 (multiply (inverse ?144) ?143) =>= multiply (inverse ?144) ?143 [144, 143] by Demod 49 with 5952 at 1,2
23584 Id : 6517, {_}: multiply ?7054 (multiply ?7054 (inverse ?7055)) =>= multiply (inverse ?7055) ?7054 [7055, 7054] by Super 5975 with 4472 at 2,2
23585 Id : 7244, {_}: multiply (multiply ?8105 (inverse ?8106)) ?8105 =>= multiply (inverse ?8106) ?8105 [8106, 8105] by Super 4472 with 6517 at 3
23586 Id : 9315, {_}: multiply (multiply ?10762 ?10763) ?10762 =>= multiply (inverse (inverse ?10763)) ?10762 [10763, 10762] by Super 7244 with 9241 at 2,1,2
23587 Id : 9383, {_}: multiply (multiply ?10762 ?10763) ?10762 =>= multiply ?10763 ?10762 [10763, 10762] by Demod 9315 with 9241 at 1,3
23588 Id : 10069, {_}: pixley (multiply (inverse ?11745) ?11746) ?11745 ?11747 =<= add (multiply ?11746 (inverse ?11745)) (multiply ?11747 (add (multiply (inverse ?11745) ?11746) (inverse ?11745))) [11747, 11746, 11745] by Super 19 with 9383 at 1,3
23589 Id : 10131, {_}: pixley (multiply (inverse ?11745) ?11746) ?11745 ?11747 =<= add (multiply ?11746 (inverse ?11745)) (multiply ?11747 (inverse ?11745)) [11747, 11746, 11745] by Demod 10069 with 6531 at 2,2,3
23590 Id : 10132, {_}: pixley (multiply (inverse ?11745) ?11746) ?11745 ?11747 =>= multiply (inverse ?11745) (add ?11746 ?11747) [11747, 11746, 11745] by Demod 10131 with 3 at 3
23591 Id : 111375, {_}: add (multiply (multiply (inverse ?185663) ?185664) (inverse ?185663)) ?185665 =?= add (multiply (inverse ?185663) (add ?185664 ?185665)) ?185665 [185665, 185664, 185663] by Super 111365 with 10132 at 1,3
23592 Id : 111673, {_}: add (multiply (inverse ?185663) (multiply (inverse ?185663) ?185664)) ?185665 =?= add (multiply (inverse ?185663) (add ?185664 ?185665)) ?185665 [185665, 185664, 185663] by Demod 111375 with 4472 at 1,2
23593 Id : 111674, {_}: add (multiply (inverse ?185663) (multiply (inverse ?185663) ?185664)) ?185665 =?= multiply (add ?185664 ?185665) (add (inverse ?185663) ?185665) [185665, 185664, 185663] by Demod 111673 with 4587 at 3
23594 Id : 9338, {_}: multiply ?10835 (multiply ?10835 ?10836) =?= multiply (inverse (inverse ?10836)) ?10835 [10836, 10835] by Super 6517 with 9241 at 2,2,2
23595 Id : 9347, {_}: multiply ?10835 (multiply ?10835 ?10836) =>= multiply ?10836 ?10835 [10836, 10835] by Demod 9338 with 9241 at 1,3
23596 Id : 111675, {_}: add (multiply ?185664 (inverse ?185663)) ?185665 =<= multiply (add ?185664 ?185665) (add (inverse ?185663) ?185665) [185665, 185663, 185664] by Demod 111674 with 9347 at 1,2
23597 Id : 88316, {_}: pixley (add ?268 ?269) ?270 ?269 =<= multiply (add ?268 ?269) (add (inverse ?270) ?269) [270, 269, 268] by Demod 88315 with 4587 at 3
23598 Id : 111676, {_}: add (multiply ?185664 (inverse ?185663)) ?185665 =<= pixley (add ?185664 ?185665) ?185663 ?185665 [185665, 185663, 185664] by Demod 111675 with 88316 at 3
23599 Id : 111830, {_}: add (multiply ?145816 (inverse (inverse ?145818))) ?145817 =?= multiply (add ?145816 ?145817) (add ?145818 ?145817) [145817, 145818, 145816] by Demod 88455 with 111676 at 2
23600 Id : 111831, {_}: add (multiply ?145816 ?145818) ?145817 =<= multiply (add ?145816 ?145817) (add ?145818 ?145817) [145817, 145818, 145816] by Demod 111830 with 9241 at 2,1,2
23601 Id : 112319, {_}: add a (multiply b c) === add a (multiply b c) [] by Demod 112318 with 14496 at 3
23602 Id : 112318, {_}: add a (multiply b c) =<= add (multiply b c) a [] by Demod 112317 with 111831 at 3
23603 Id : 112317, {_}: add a (multiply b c) =<= multiply (add b a) (add c a) [] by Demod 112316 with 4472 at 3
23604 Id : 112316, {_}: add a (multiply b c) =<= multiply (add c a) (add b a) [] by Demod 112315 with 45701 at 3
23605 Id : 112315, {_}: add a (multiply b c) =<= multiply (add c a) (add a b) [] by Demod 112314 with 4472 at 3
23606 Id : 112314, {_}: add a (multiply b c) =<= multiply (add a b) (add c a) [] by Demod 1 with 45701 at 3
23607 Id : 1, {_}: add a (multiply b c) =<= multiply (add a b) (add a c) [] by prove_add_multiply_property
23608 % SZS output end CNFRefutation for BOO023-1.p
23609 29618: solved BOO023-1.p in 25.957622 using nrkbo
23610 29618: status Unsatisfiable for BOO023-1.p
23611 NO CLASH, using fixed ground order
23613 29626: Id : 2, {_}:
23614 multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6)
23616 multiply ?2 ?3 (multiply ?4 ?5 ?6)
23617 [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
23618 29626: Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9
23619 29626: Id : 4, {_}:
23620 multiply ?11 ?11 ?12 =>= ?11
23621 [12, 11] by ternary_multiply_2 ?11 ?12
23622 29626: Id : 5, {_}:
23623 multiply (inverse ?14) ?14 ?15 =>= ?15
23624 [15, 14] by left_inverse ?14 ?15
23625 29626: Id : 6, {_}:
23626 multiply ?17 ?18 (inverse ?18) =>= ?17
23627 [18, 17] by right_inverse ?17 ?18
23629 29626: Id : 1, {_}:
23630 multiply (multiply a (inverse a) b)
23631 (inverse (multiply (multiply c d e) f (multiply c d g)))
23632 (multiply d (multiply g f e) c)
23635 [] by prove_single_axiom
23639 29626: a 2 0 2 1,1,2
23640 29626: f 2 0 2 2,1,2,2
23641 29626: e 2 0 2 3,1,1,2,2
23642 29626: b 2 0 2 3,1,2
23643 29626: g 2 0 2 3,3,1,2,2
23644 29626: c 3 0 3 1,1,1,2,2
23645 29626: d 3 0 3 2,1,1,2,2
23646 29626: inverse 4 1 2 0,2,1,2
23647 29626: multiply 16 3 7 0,2
23648 NO CLASH, using fixed ground order
23650 29627: Id : 2, {_}:
23651 multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6)
23653 multiply ?2 ?3 (multiply ?4 ?5 ?6)
23654 [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
23655 29627: Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9
23656 29627: Id : 4, {_}:
23657 multiply ?11 ?11 ?12 =>= ?11
23658 [12, 11] by ternary_multiply_2 ?11 ?12
23659 29627: Id : 5, {_}:
23660 multiply (inverse ?14) ?14 ?15 =>= ?15
23661 [15, 14] by left_inverse ?14 ?15
23662 29627: Id : 6, {_}:
23663 multiply ?17 ?18 (inverse ?18) =>= ?17
23664 [18, 17] by right_inverse ?17 ?18
23666 29627: Id : 1, {_}:
23667 multiply (multiply a (inverse a) b)
23668 (inverse (multiply (multiply c d e) f (multiply c d g)))
23669 (multiply d (multiply g f e) c)
23672 [] by prove_single_axiom
23676 29627: a 2 0 2 1,1,2
23677 29627: f 2 0 2 2,1,2,2
23678 29627: e 2 0 2 3,1,1,2,2
23679 29627: b 2 0 2 3,1,2
23680 29627: g 2 0 2 3,3,1,2,2
23681 29627: c 3 0 3 1,1,1,2,2
23682 29627: d 3 0 3 2,1,1,2,2
23683 29627: inverse 4 1 2 0,2,1,2
23684 29627: multiply 16 3 7 0,2
23685 NO CLASH, using fixed ground order
23687 29628: Id : 2, {_}:
23688 multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6)
23690 multiply ?2 ?3 (multiply ?4 ?5 ?6)
23691 [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
23692 29628: Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9
23693 29628: Id : 4, {_}:
23694 multiply ?11 ?11 ?12 =>= ?11
23695 [12, 11] by ternary_multiply_2 ?11 ?12
23696 29628: Id : 5, {_}:
23697 multiply (inverse ?14) ?14 ?15 =>= ?15
23698 [15, 14] by left_inverse ?14 ?15
23699 29628: Id : 6, {_}:
23700 multiply ?17 ?18 (inverse ?18) =>= ?17
23701 [18, 17] by right_inverse ?17 ?18
23703 29628: Id : 1, {_}:
23704 multiply (multiply a (inverse a) b)
23705 (inverse (multiply (multiply c d e) f (multiply c d g)))
23706 (multiply d (multiply g f e) c)
23709 [] by prove_single_axiom
23713 29628: a 2 0 2 1,1,2
23714 29628: f 2 0 2 2,1,2,2
23715 29628: e 2 0 2 3,1,1,2,2
23716 29628: b 2 0 2 3,1,2
23717 29628: g 2 0 2 3,3,1,2,2
23718 29628: c 3 0 3 1,1,1,2,2
23719 29628: d 3 0 3 2,1,1,2,2
23720 29628: inverse 4 1 2 0,2,1,2
23721 29628: multiply 16 3 7 0,2
23724 Found proof, 10.457305s
23725 % SZS status Unsatisfiable for BOO034-1.p
23726 % SZS output start CNFRefutation for BOO034-1.p
23727 Id : 5, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15
23728 Id : 6, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18
23729 Id : 4, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12
23730 Id : 3, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9
23731 Id : 2, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6
23732 Id : 13, {_}: multiply ?53 ?54 (multiply ?55 ?53 ?56) =?= multiply ?55 ?53 (multiply ?53 ?54 ?56) [56, 55, 54, 53] by Super 2 with 3 at 1,2
23733 Id : 12, {_}: multiply (multiply ?48 ?49 ?50) ?51 ?49 =?= multiply ?48 ?49 (multiply ?50 ?51 ?49) [51, 50, 49, 48] by Super 2 with 3 at 3,2
23734 Id : 919, {_}: multiply (multiply ?2933 ?2934 ?2935) ?2933 ?2934 =?= multiply ?2935 ?2933 (multiply ?2933 ?2934 ?2934) [2935, 2934, 2933] by Super 12 with 13 at 3
23735 Id : 1358, {_}: multiply (multiply ?4047 ?4048 ?4049) ?4047 ?4048 =>= multiply ?4049 ?4047 ?4048 [4049, 4048, 4047] by Demod 919 with 3 at 3,3
23736 Id : 518, {_}: multiply (multiply ?1782 ?1783 ?1784) ?1785 ?1783 =?= multiply ?1782 ?1783 (multiply ?1784 ?1785 ?1783) [1785, 1784, 1783, 1782] by Super 2 with 3 at 3,2
23737 Id : 658, {_}: multiply (multiply ?2168 ?2169 ?2170) ?2170 ?2169 =>= multiply ?2168 ?2169 ?2170 [2170, 2169, 2168] by Super 518 with 4 at 3,3
23738 Id : 663, {_}: multiply ?2187 (inverse ?2188) ?2188 =?= multiply ?2187 ?2188 (inverse ?2188) [2188, 2187] by Super 658 with 6 at 1,2
23739 Id : 700, {_}: multiply ?2187 (inverse ?2188) ?2188 =>= ?2187 [2188, 2187] by Demod 663 with 6 at 3
23740 Id : 1370, {_}: multiply ?4102 ?4102 (inverse ?4103) =?= multiply ?4103 ?4102 (inverse ?4103) [4103, 4102] by Super 1358 with 700 at 1,2
23741 Id : 1414, {_}: ?4102 =<= multiply ?4103 ?4102 (inverse ?4103) [4103, 4102] by Demod 1370 with 4 at 2
23742 Id : 1523, {_}: multiply ?4433 ?4434 (multiply ?4435 ?4433 (inverse ?4433)) =>= multiply ?4435 ?4433 ?4434 [4435, 4434, 4433] by Super 13 with 1414 at 3,3
23743 Id : 1537, {_}: multiply ?4433 ?4434 ?4435 =?= multiply ?4435 ?4433 ?4434 [4435, 4434, 4433] by Demod 1523 with 6 at 3,2
23744 Id : 1363, {_}: multiply ?4066 ?4066 ?4067 =?= multiply (inverse ?4067) ?4066 ?4067 [4067, 4066] by Super 1358 with 6 at 1,2
23745 Id : 1412, {_}: ?4066 =<= multiply (inverse ?4067) ?4066 ?4067 [4067, 4066] by Demod 1363 with 4 at 2
23746 Id : 1452, {_}: multiply (multiply ?4284 ?4285 (inverse ?4285)) ?4286 ?4285 =>= multiply ?4284 ?4285 ?4286 [4286, 4285, 4284] by Super 12 with 1412 at 3,3
23747 Id : 1474, {_}: multiply ?4284 ?4286 ?4285 =?= multiply ?4284 ?4285 ?4286 [4285, 4286, 4284] by Demod 1452 with 6 at 1,2
23748 Id : 726, {_}: inverse (inverse ?2325) =>= ?2325 [2325] by Super 5 with 700 at 2
23749 Id : 760, {_}: multiply ?2416 (inverse ?2416) ?2417 =>= ?2417 [2417, 2416] by Super 5 with 726 at 1,2
23750 Id : 41048, {_}: b === b [] by Demod 41047 with 700 at 2
23751 Id : 41047, {_}: multiply b (inverse (multiply c d (multiply f e g))) (multiply c d (multiply f e g)) =>= b [] by Demod 41046 with 1474 at 3,3,2
23752 Id : 41046, {_}: multiply b (inverse (multiply c d (multiply f e g))) (multiply c d (multiply f g e)) =>= b [] by Demod 41045 with 1537 at 3,3,2
23753 Id : 41045, {_}: multiply b (inverse (multiply c d (multiply f e g))) (multiply c d (multiply e f g)) =>= b [] by Demod 41044 with 1474 at 3,3,2
23754 Id : 41044, {_}: multiply b (inverse (multiply c d (multiply f e g))) (multiply c d (multiply e g f)) =>= b [] by Demod 41043 with 1537 at 3,3,2
23755 Id : 41043, {_}: multiply b (inverse (multiply c d (multiply f e g))) (multiply c d (multiply g f e)) =>= b [] by Demod 41042 with 1474 at 3,2
23756 Id : 41042, {_}: multiply b (inverse (multiply c d (multiply f e g))) (multiply c (multiply g f e) d) =>= b [] by Demod 41041 with 1537 at 3,2
23757 Id : 41041, {_}: multiply b (inverse (multiply c d (multiply f e g))) (multiply d c (multiply g f e)) =>= b [] by Demod 41040 with 1474 at 3,1,2,2
23758 Id : 41040, {_}: multiply b (inverse (multiply c d (multiply f g e))) (multiply d c (multiply g f e)) =>= b [] by Demod 41039 with 1474 at 2
23759 Id : 41039, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply c d (multiply f g e))) =>= b [] by Demod 41038 with 1537 at 2
23760 Id : 41038, {_}: multiply (inverse (multiply c d (multiply f g e))) b (multiply d c (multiply g f e)) =>= b [] by Demod 41037 with 1474 at 3,2
23761 Id : 41037, {_}: multiply (inverse (multiply c d (multiply f g e))) b (multiply d (multiply g f e) c) =>= b [] by Demod 41036 with 760 at 2,2
23762 Id : 41036, {_}: multiply (inverse (multiply c d (multiply f g e))) (multiply a (inverse a) b) (multiply d (multiply g f e) c) =>= b [] by Demod 41035 with 1537 at 3,1,1,2
23763 Id : 41035, {_}: multiply (inverse (multiply c d (multiply e f g))) (multiply a (inverse a) b) (multiply d (multiply g f e) c) =>= b [] by Demod 41034 with 1474 at 2
23764 Id : 41034, {_}: multiply (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) (multiply a (inverse a) b) =>= b [] by Demod 11 with 1537 at 2
23765 Id : 11, {_}: multiply (multiply a (inverse a) b) (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 1 with 2 at 1,2,2
23766 Id : 1, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom
23767 % SZS output end CNFRefutation for BOO034-1.p
23768 29626: solved BOO034-1.p in 10.42465 using nrkbo
23769 29626: status Unsatisfiable for BOO034-1.p
23770 CLASH, statistics insufficient
23772 29634: Id : 2, {_}:
23773 apply (apply (apply s ?3) ?4) ?5
23775 apply (apply ?3 ?5) (apply ?4 ?5)
23776 [5, 4, 3] by s_definition ?3 ?4 ?5
23777 29634: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8
23779 29634: Id : 1, {_}:
23780 apply (apply ?1 (f ?1)) (g ?1)
23782 apply (g ?1) (apply (apply (f ?1) (f ?1)) (g ?1))
23783 [1] by prove_u_combinator ?1
23789 29634: f 3 1 3 0,2,1,2
23790 29634: g 3 1 3 0,2,2
23791 29634: apply 13 2 5 0,2
23792 CLASH, statistics insufficient
23794 29635: Id : 2, {_}:
23795 apply (apply (apply s ?3) ?4) ?5
23797 apply (apply ?3 ?5) (apply ?4 ?5)
23798 [5, 4, 3] by s_definition ?3 ?4 ?5
23799 29635: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8
23801 29635: Id : 1, {_}:
23802 apply (apply ?1 (f ?1)) (g ?1)
23804 apply (g ?1) (apply (apply (f ?1) (f ?1)) (g ?1))
23805 [1] by prove_u_combinator ?1
23811 29635: f 3 1 3 0,2,1,2
23812 29635: g 3 1 3 0,2,2
23813 29635: apply 13 2 5 0,2
23814 CLASH, statistics insufficient
23816 29636: Id : 2, {_}:
23817 apply (apply (apply s ?3) ?4) ?5
23819 apply (apply ?3 ?5) (apply ?4 ?5)
23820 [5, 4, 3] by s_definition ?3 ?4 ?5
23821 29636: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8
23823 29636: Id : 1, {_}:
23824 apply (apply ?1 (f ?1)) (g ?1)
23826 apply (g ?1) (apply (apply (f ?1) (f ?1)) (g ?1))
23827 [1] by prove_u_combinator ?1
23833 29636: f 3 1 3 0,2,1,2
23834 29636: g 3 1 3 0,2,2
23835 29636: apply 13 2 5 0,2
23836 % SZS status Timeout for COL004-1.p
23837 NO CLASH, using fixed ground order
23839 29663: Id : 2, {_}:
23840 apply (apply (apply s ?2) ?3) ?4
23842 apply (apply ?2 ?4) (apply ?3 ?4)
23843 [4, 3, 2] by s_definition ?2 ?3 ?4
23844 29663: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
23845 29663: Id : 4, {_}:
23851 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
23852 (apply (apply s (apply (apply s (apply k s)) k))
23854 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
23855 [] by strong_fixed_point
23857 29663: Id : 1, {_}:
23858 apply strong_fixed_point fixed_pt
23860 apply fixed_pt (apply strong_fixed_point fixed_pt)
23861 [] by prove_strong_fixed_point
23865 29663: strong_fixed_point 3 0 2 1,2
23866 29663: fixed_pt 3 0 3 2,2
23869 29663: apply 32 2 3 0,2
23870 NO CLASH, using fixed ground order
23872 29664: Id : 2, {_}:
23873 apply (apply (apply s ?2) ?3) ?4
23875 apply (apply ?2 ?4) (apply ?3 ?4)
23876 [4, 3, 2] by s_definition ?2 ?3 ?4
23877 29664: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
23878 29664: Id : 4, {_}:
23884 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
23885 (apply (apply s (apply (apply s (apply k s)) k))
23887 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
23888 [] by strong_fixed_point
23890 29664: Id : 1, {_}:
23891 apply strong_fixed_point fixed_pt
23893 apply fixed_pt (apply strong_fixed_point fixed_pt)
23894 [] by prove_strong_fixed_point
23898 29664: strong_fixed_point 3 0 2 1,2
23899 29664: fixed_pt 3 0 3 2,2
23902 29664: apply 32 2 3 0,2
23903 NO CLASH, using fixed ground order
23905 29665: Id : 2, {_}:
23906 apply (apply (apply s ?2) ?3) ?4
23908 apply (apply ?2 ?4) (apply ?3 ?4)
23909 [4, 3, 2] by s_definition ?2 ?3 ?4
23910 29665: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
23911 29665: Id : 4, {_}:
23917 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
23918 (apply (apply s (apply (apply s (apply k s)) k))
23920 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
23921 [] by strong_fixed_point
23923 29665: Id : 1, {_}:
23924 apply strong_fixed_point fixed_pt
23926 apply fixed_pt (apply strong_fixed_point fixed_pt)
23927 [] by prove_strong_fixed_point
23931 29665: strong_fixed_point 3 0 2 1,2
23932 29665: fixed_pt 3 0 3 2,2
23935 29665: apply 32 2 3 0,2
23936 % SZS status Timeout for COL006-6.p
23937 CLASH, statistics insufficient
23939 29690: Id : 2, {_}:
23940 apply (apply (apply s ?3) ?4) ?5
23942 apply (apply ?3 ?5) (apply ?4 ?5)
23943 [5, 4, 3] by s_definition ?3 ?4 ?5
23944 29690: Id : 3, {_}:
23945 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
23946 [9, 8, 7] by b_definition ?7 ?8 ?9
23947 29690: Id : 4, {_}:
23948 apply (apply t ?11) ?12 =>= apply ?12 ?11
23949 [12, 11] by t_definition ?11 ?12
23951 29690: Id : 1, {_}:
23952 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
23953 [1] by prove_fixed_point ?1
23960 29690: f 3 1 3 0,2,2
23961 29690: apply 17 2 3 0,2
23962 CLASH, statistics insufficient
23964 29691: Id : 2, {_}:
23965 apply (apply (apply s ?3) ?4) ?5
23967 apply (apply ?3 ?5) (apply ?4 ?5)
23968 [5, 4, 3] by s_definition ?3 ?4 ?5
23969 29691: Id : 3, {_}:
23970 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
23971 [9, 8, 7] by b_definition ?7 ?8 ?9
23972 29691: Id : 4, {_}:
23973 apply (apply t ?11) ?12 =>= apply ?12 ?11
23974 [12, 11] by t_definition ?11 ?12
23976 29691: Id : 1, {_}:
23977 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
23978 [1] by prove_fixed_point ?1
23985 29691: f 3 1 3 0,2,2
23986 29691: apply 17 2 3 0,2
23987 CLASH, statistics insufficient
23989 29692: Id : 2, {_}:
23990 apply (apply (apply s ?3) ?4) ?5
23992 apply (apply ?3 ?5) (apply ?4 ?5)
23993 [5, 4, 3] by s_definition ?3 ?4 ?5
23994 29692: Id : 3, {_}:
23995 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
23996 [9, 8, 7] by b_definition ?7 ?8 ?9
23997 29692: Id : 4, {_}:
23998 apply (apply t ?11) ?12 =?= apply ?12 ?11
23999 [12, 11] by t_definition ?11 ?12
24001 29692: Id : 1, {_}:
24002 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
24003 [1] by prove_fixed_point ?1
24010 29692: f 3 1 3 0,2,2
24011 29692: apply 17 2 3 0,2
24012 % SZS status Timeout for COL036-1.p
24013 CLASH, statistics insufficient
24015 29776: Id : 2, {_}:
24016 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
24017 [5, 4, 3] by b_definition ?3 ?4 ?5
24018 29776: Id : 3, {_}:
24019 apply (apply t ?7) ?8 =>= apply ?8 ?7
24020 [8, 7] by t_definition ?7 ?8
24022 29776: Id : 1, {_}:
24023 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
24025 apply (apply (h ?1) (g ?1)) (f ?1)
24026 [1] by prove_f_combinator ?1
24032 29776: f 2 1 2 0,2,1,1,2
24033 29776: g 2 1 2 0,2,1,2
24034 29776: h 2 1 2 0,2,2
24035 29776: apply 13 2 5 0,2
24036 CLASH, statistics insufficient
24038 29777: Id : 2, {_}:
24039 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
24040 [5, 4, 3] by b_definition ?3 ?4 ?5
24041 29777: Id : 3, {_}:
24042 apply (apply t ?7) ?8 =>= apply ?8 ?7
24043 [8, 7] by t_definition ?7 ?8
24045 29777: Id : 1, {_}:
24046 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
24048 apply (apply (h ?1) (g ?1)) (f ?1)
24049 [1] by prove_f_combinator ?1
24055 29777: f 2 1 2 0,2,1,1,2
24056 29777: g 2 1 2 0,2,1,2
24057 29777: h 2 1 2 0,2,2
24058 29777: apply 13 2 5 0,2
24059 CLASH, statistics insufficient
24061 29778: Id : 2, {_}:
24062 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
24063 [5, 4, 3] by b_definition ?3 ?4 ?5
24064 29778: Id : 3, {_}:
24065 apply (apply t ?7) ?8 =?= apply ?8 ?7
24066 [8, 7] by t_definition ?7 ?8
24068 29778: Id : 1, {_}:
24069 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
24071 apply (apply (h ?1) (g ?1)) (f ?1)
24072 [1] by prove_f_combinator ?1
24078 29778: f 2 1 2 0,2,1,1,2
24079 29778: g 2 1 2 0,2,1,2
24080 29778: h 2 1 2 0,2,2
24081 29778: apply 13 2 5 0,2
24085 Found proof, 5.339173s
24086 % SZS status Unsatisfiable for COL063-1.p
24087 % SZS output start CNFRefutation for COL063-1.p
24088 Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
24089 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
24090 Id : 3189, {_}: apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) [] by Super 3184 with 3 at 2
24091 Id : 3184, {_}: apply (apply ?10590 (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) =>= apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?10590)))) [10590] by Super 3164 with 3 at 2,2
24092 Id : 3164, {_}: apply (apply ?10539 (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (apply (apply ?10540 (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) =>= apply (apply (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) [10540, 10539] by Super 442 with 2 at 2
24093 Id : 442, {_}: apply (apply (apply ?1394 (apply ?1395 (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (apply ?1396 (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) =>= apply (apply (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395))))) (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) [1396, 1395, 1394] by Super 277 with 2 at 1,1,2
24094 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (apply (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) [901, 900] by Super 29 with 2 at 1,2
24095 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (apply (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) [87, 86, 85] by Super 13 with 3 at 1,1,2
24096 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (apply (h (apply (apply b ?33) (apply (apply b ?34) ?35))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (f (apply (apply b ?33) (apply (apply b ?34) ?35))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2
24097 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (apply (h (apply (apply b ?18) ?19)) (g (apply (apply b ?18) ?19))) (f (apply (apply b ?18) ?19)) [19, 18] by Super 1 with 2 at 1,1,2
24098 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1
24099 % SZS output end CNFRefutation for COL063-1.p
24100 29776: solved COL063-1.p in 5.300331 using nrkbo
24101 29776: status Unsatisfiable for COL063-1.p
24102 NO CLASH, using fixed ground order
24104 29785: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24105 29785: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24106 29785: Id : 4, {_}:
24107 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
24108 [8, 7, 6] by associativity ?6 ?7 ?8
24109 29785: Id : 5, {_}:
24110 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24111 [11, 10] by symmetry_of_glb ?10 ?11
24112 29785: Id : 6, {_}:
24113 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24114 [14, 13] by symmetry_of_lub ?13 ?14
24115 29785: Id : 7, {_}:
24116 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24118 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24119 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24120 29785: Id : 8, {_}:
24121 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24123 least_upper_bound (least_upper_bound ?20 ?21) ?22
24124 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24125 29785: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24126 29785: Id : 10, {_}:
24127 greatest_lower_bound ?26 ?26 =>= ?26
24128 [26] by idempotence_of_gld ?26
24129 29785: Id : 11, {_}:
24130 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24131 [29, 28] by lub_absorbtion ?28 ?29
24132 29785: Id : 12, {_}:
24133 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24134 [32, 31] by glb_absorbtion ?31 ?32
24135 29785: Id : 13, {_}:
24136 multiply ?34 (least_upper_bound ?35 ?36)
24138 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24139 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24140 29785: Id : 14, {_}:
24141 multiply ?38 (greatest_lower_bound ?39 ?40)
24143 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24144 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24145 29785: Id : 15, {_}:
24146 multiply (least_upper_bound ?42 ?43) ?44
24148 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24149 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24150 29785: Id : 16, {_}:
24151 multiply (greatest_lower_bound ?46 ?47) ?48
24153 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24154 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24156 29785: Id : 1, {_}:
24159 multiply (least_upper_bound a identity)
24160 (greatest_lower_bound a identity)
24166 29785: identity 4 0 2 2,1,3
24167 29785: inverse 1 1 0
24168 29785: least_upper_bound 14 2 1 0,1,3
24169 29785: greatest_lower_bound 14 2 1 0,2,3
24170 29785: multiply 19 2 1 0,3
24171 NO CLASH, using fixed ground order
24173 29786: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24174 29786: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24175 29786: Id : 4, {_}:
24176 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
24177 [8, 7, 6] by associativity ?6 ?7 ?8
24178 29786: Id : 5, {_}:
24179 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24180 [11, 10] by symmetry_of_glb ?10 ?11
24181 29786: Id : 6, {_}:
24182 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24183 [14, 13] by symmetry_of_lub ?13 ?14
24184 29786: Id : 7, {_}:
24185 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24187 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24188 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24189 29786: Id : 8, {_}:
24190 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24192 least_upper_bound (least_upper_bound ?20 ?21) ?22
24193 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24194 29786: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24195 29786: Id : 10, {_}:
24196 greatest_lower_bound ?26 ?26 =>= ?26
24197 [26] by idempotence_of_gld ?26
24198 29786: Id : 11, {_}:
24199 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24200 [29, 28] by lub_absorbtion ?28 ?29
24201 29786: Id : 12, {_}:
24202 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24203 [32, 31] by glb_absorbtion ?31 ?32
24204 29786: Id : 13, {_}:
24205 multiply ?34 (least_upper_bound ?35 ?36)
24207 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24208 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24209 29786: Id : 14, {_}:
24210 multiply ?38 (greatest_lower_bound ?39 ?40)
24212 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24213 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24214 29786: Id : 15, {_}:
24215 multiply (least_upper_bound ?42 ?43) ?44
24217 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24218 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24219 29786: Id : 16, {_}:
24220 multiply (greatest_lower_bound ?46 ?47) ?48
24222 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24223 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24225 29786: Id : 1, {_}:
24228 multiply (least_upper_bound a identity)
24229 (greatest_lower_bound a identity)
24235 29786: identity 4 0 2 2,1,3
24236 29786: inverse 1 1 0
24237 29786: least_upper_bound 14 2 1 0,1,3
24238 29786: greatest_lower_bound 14 2 1 0,2,3
24239 29786: multiply 19 2 1 0,3
24240 NO CLASH, using fixed ground order
24242 29787: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24243 29787: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24244 29787: Id : 4, {_}:
24245 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
24246 [8, 7, 6] by associativity ?6 ?7 ?8
24247 29787: Id : 5, {_}:
24248 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24249 [11, 10] by symmetry_of_glb ?10 ?11
24250 29787: Id : 6, {_}:
24251 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24252 [14, 13] by symmetry_of_lub ?13 ?14
24253 29787: Id : 7, {_}:
24254 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24256 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24257 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24258 29787: Id : 8, {_}:
24259 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24261 least_upper_bound (least_upper_bound ?20 ?21) ?22
24262 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24263 29787: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24264 29787: Id : 10, {_}:
24265 greatest_lower_bound ?26 ?26 =>= ?26
24266 [26] by idempotence_of_gld ?26
24267 29787: Id : 11, {_}:
24268 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24269 [29, 28] by lub_absorbtion ?28 ?29
24270 29787: Id : 12, {_}:
24271 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24272 [32, 31] by glb_absorbtion ?31 ?32
24273 29787: Id : 13, {_}:
24274 multiply ?34 (least_upper_bound ?35 ?36)
24276 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24277 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24278 29787: Id : 14, {_}:
24279 multiply ?38 (greatest_lower_bound ?39 ?40)
24281 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24282 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24283 29787: Id : 15, {_}:
24284 multiply (least_upper_bound ?42 ?43) ?44
24286 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24287 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24288 29787: Id : 16, {_}:
24289 multiply (greatest_lower_bound ?46 ?47) ?48
24291 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24292 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24294 29787: Id : 1, {_}:
24297 multiply (least_upper_bound a identity)
24298 (greatest_lower_bound a identity)
24304 29787: identity 4 0 2 2,1,3
24305 29787: inverse 1 1 0
24306 29787: least_upper_bound 14 2 1 0,1,3
24307 29787: greatest_lower_bound 14 2 1 0,2,3
24308 29787: multiply 19 2 1 0,3
24309 % SZS status Timeout for GRP167-3.p
24310 NO CLASH, using fixed ground order
24312 29831: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24313 29831: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24314 29831: Id : 4, {_}:
24315 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
24316 [8, 7, 6] by associativity ?6 ?7 ?8
24317 29831: Id : 5, {_}:
24318 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24319 [11, 10] by symmetry_of_glb ?10 ?11
24320 29831: Id : 6, {_}:
24321 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24322 [14, 13] by symmetry_of_lub ?13 ?14
24323 29831: Id : 7, {_}:
24324 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24326 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24327 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24328 29831: Id : 8, {_}:
24329 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24331 least_upper_bound (least_upper_bound ?20 ?21) ?22
24332 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24333 29831: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24334 29831: Id : 10, {_}:
24335 greatest_lower_bound ?26 ?26 =>= ?26
24336 [26] by idempotence_of_gld ?26
24337 29831: Id : 11, {_}:
24338 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24339 [29, 28] by lub_absorbtion ?28 ?29
24340 29831: Id : 12, {_}:
24341 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24342 [32, 31] by glb_absorbtion ?31 ?32
24343 29831: Id : 13, {_}:
24344 multiply ?34 (least_upper_bound ?35 ?36)
24346 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24347 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24348 29831: Id : 14, {_}:
24349 multiply ?38 (greatest_lower_bound ?39 ?40)
24351 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24352 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24353 29831: Id : 15, {_}:
24354 multiply (least_upper_bound ?42 ?43) ?44
24356 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24357 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24358 29831: Id : 16, {_}:
24359 multiply (greatest_lower_bound ?46 ?47) ?48
24361 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24362 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24364 29831: Id : 1, {_}:
24365 inverse (least_upper_bound a b)
24367 greatest_lower_bound (inverse a) (inverse b)
24372 29831: identity 2 0 0
24373 29831: a 2 0 2 1,1,2
24374 29831: b 2 0 2 2,1,2
24375 29831: inverse 4 1 3 0,2
24376 29831: least_upper_bound 14 2 1 0,1,2
24377 29831: greatest_lower_bound 14 2 1 0,3
24378 29831: multiply 18 2 0
24379 NO CLASH, using fixed ground order
24381 29832: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24382 29832: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24383 29832: Id : 4, {_}:
24384 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
24385 [8, 7, 6] by associativity ?6 ?7 ?8
24386 29832: Id : 5, {_}:
24387 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24388 [11, 10] by symmetry_of_glb ?10 ?11
24389 29832: Id : 6, {_}:
24390 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24391 [14, 13] by symmetry_of_lub ?13 ?14
24392 29832: Id : 7, {_}:
24393 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24395 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24396 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24397 29832: Id : 8, {_}:
24398 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24400 least_upper_bound (least_upper_bound ?20 ?21) ?22
24401 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24402 29832: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24403 NO CLASH, using fixed ground order
24405 29833: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24406 29833: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24407 29833: Id : 4, {_}:
24408 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
24409 [8, 7, 6] by associativity ?6 ?7 ?8
24410 29833: Id : 5, {_}:
24411 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24412 [11, 10] by symmetry_of_glb ?10 ?11
24413 29833: Id : 6, {_}:
24414 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24415 [14, 13] by symmetry_of_lub ?13 ?14
24416 29833: Id : 7, {_}:
24417 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24419 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24420 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24421 29832: Id : 10, {_}:
24422 greatest_lower_bound ?26 ?26 =>= ?26
24423 [26] by idempotence_of_gld ?26
24424 29832: Id : 11, {_}:
24425 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24426 [29, 28] by lub_absorbtion ?28 ?29
24427 29832: Id : 12, {_}:
24428 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24429 [32, 31] by glb_absorbtion ?31 ?32
24430 29832: Id : 13, {_}:
24431 multiply ?34 (least_upper_bound ?35 ?36)
24433 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24434 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24435 29832: Id : 14, {_}:
24436 multiply ?38 (greatest_lower_bound ?39 ?40)
24438 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24439 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24440 29832: Id : 15, {_}:
24441 multiply (least_upper_bound ?42 ?43) ?44
24443 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24444 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24445 29832: Id : 16, {_}:
24446 multiply (greatest_lower_bound ?46 ?47) ?48
24448 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24449 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24451 29832: Id : 1, {_}:
24452 inverse (least_upper_bound a b)
24454 greatest_lower_bound (inverse a) (inverse b)
24459 29832: identity 2 0 0
24460 29832: a 2 0 2 1,1,2
24461 29832: b 2 0 2 2,1,2
24462 29832: inverse 4 1 3 0,2
24463 29832: least_upper_bound 14 2 1 0,1,2
24464 29832: greatest_lower_bound 14 2 1 0,3
24465 29832: multiply 18 2 0
24466 29833: Id : 8, {_}:
24467 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24469 least_upper_bound (least_upper_bound ?20 ?21) ?22
24470 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24471 29833: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24472 29833: Id : 10, {_}:
24473 greatest_lower_bound ?26 ?26 =>= ?26
24474 [26] by idempotence_of_gld ?26
24475 29833: Id : 11, {_}:
24476 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24477 [29, 28] by lub_absorbtion ?28 ?29
24478 29833: Id : 12, {_}:
24479 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24480 [32, 31] by glb_absorbtion ?31 ?32
24481 29833: Id : 13, {_}:
24482 multiply ?34 (least_upper_bound ?35 ?36)
24484 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24485 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24486 29833: Id : 14, {_}:
24487 multiply ?38 (greatest_lower_bound ?39 ?40)
24489 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24490 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24491 29833: Id : 15, {_}:
24492 multiply (least_upper_bound ?42 ?43) ?44
24494 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24495 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24496 29833: Id : 16, {_}:
24497 multiply (greatest_lower_bound ?46 ?47) ?48
24499 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24500 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24502 29833: Id : 1, {_}:
24503 inverse (least_upper_bound a b)
24505 greatest_lower_bound (inverse a) (inverse b)
24510 29833: identity 2 0 0
24511 29833: a 2 0 2 1,1,2
24512 29833: b 2 0 2 2,1,2
24513 29833: inverse 4 1 3 0,2
24514 29833: least_upper_bound 14 2 1 0,1,2
24515 29833: greatest_lower_bound 14 2 1 0,3
24516 29833: multiply 18 2 0
24517 % SZS status Timeout for GRP179-1.p
24518 NO CLASH, using fixed ground order
24520 29866: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24521 29866: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24522 29866: Id : 4, {_}:
24523 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
24524 [8, 7, 6] by associativity ?6 ?7 ?8
24525 29866: Id : 5, {_}:
24526 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24527 [11, 10] by symmetry_of_glb ?10 ?11
24528 29866: Id : 6, {_}:
24529 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24530 [14, 13] by symmetry_of_lub ?13 ?14
24531 29866: Id : 7, {_}:
24532 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24534 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24535 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24536 29866: Id : 8, {_}:
24537 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24539 least_upper_bound (least_upper_bound ?20 ?21) ?22
24540 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24541 29866: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24542 29866: Id : 10, {_}:
24543 greatest_lower_bound ?26 ?26 =>= ?26
24544 [26] by idempotence_of_gld ?26
24545 29866: Id : 11, {_}:
24546 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24547 [29, 28] by lub_absorbtion ?28 ?29
24548 29866: Id : 12, {_}:
24549 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24550 [32, 31] by glb_absorbtion ?31 ?32
24551 29866: Id : 13, {_}:
24552 multiply ?34 (least_upper_bound ?35 ?36)
24554 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24555 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24556 29866: Id : 14, {_}:
24557 multiply ?38 (greatest_lower_bound ?39 ?40)
24559 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24560 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24561 29866: Id : 15, {_}:
24562 multiply (least_upper_bound ?42 ?43) ?44
24564 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24565 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24566 29866: Id : 16, {_}:
24567 multiply (greatest_lower_bound ?46 ?47) ?48
24569 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24570 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24572 29866: Id : 1, {_}:
24573 least_upper_bound (inverse a) identity
24575 inverse (greatest_lower_bound a identity)
24580 29866: a 2 0 2 1,1,2
24581 29866: identity 4 0 2 2,2
24582 29866: inverse 3 1 2 0,1,2
24583 29866: greatest_lower_bound 14 2 1 0,1,3
24584 29866: least_upper_bound 14 2 1 0,2
24585 29866: multiply 18 2 0
24586 NO CLASH, using fixed ground order
24588 29867: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24589 29867: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24590 29867: Id : 4, {_}:
24591 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
24592 [8, 7, 6] by associativity ?6 ?7 ?8
24593 29867: Id : 5, {_}:
24594 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24595 [11, 10] by symmetry_of_glb ?10 ?11
24596 29867: Id : 6, {_}:
24597 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24598 [14, 13] by symmetry_of_lub ?13 ?14
24599 29867: Id : 7, {_}:
24600 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24602 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24603 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24604 29867: Id : 8, {_}:
24605 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24607 least_upper_bound (least_upper_bound ?20 ?21) ?22
24608 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24609 29867: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24610 29867: Id : 10, {_}:
24611 greatest_lower_bound ?26 ?26 =>= ?26
24612 [26] by idempotence_of_gld ?26
24613 29867: Id : 11, {_}:
24614 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24615 [29, 28] by lub_absorbtion ?28 ?29
24616 29867: Id : 12, {_}:
24617 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24618 [32, 31] by glb_absorbtion ?31 ?32
24619 29867: Id : 13, {_}:
24620 multiply ?34 (least_upper_bound ?35 ?36)
24622 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24623 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24624 29867: Id : 14, {_}:
24625 multiply ?38 (greatest_lower_bound ?39 ?40)
24627 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24628 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24629 29867: Id : 15, {_}:
24630 multiply (least_upper_bound ?42 ?43) ?44
24632 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24633 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24634 29867: Id : 16, {_}:
24635 multiply (greatest_lower_bound ?46 ?47) ?48
24637 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24638 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24640 29867: Id : 1, {_}:
24641 least_upper_bound (inverse a) identity
24643 inverse (greatest_lower_bound a identity)
24648 29867: a 2 0 2 1,1,2
24649 29867: identity 4 0 2 2,2
24650 29867: inverse 3 1 2 0,1,2
24651 29867: greatest_lower_bound 14 2 1 0,1,3
24652 29867: least_upper_bound 14 2 1 0,2
24653 29867: multiply 18 2 0
24654 NO CLASH, using fixed ground order
24656 29868: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24657 29868: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24658 29868: Id : 4, {_}:
24659 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
24660 [8, 7, 6] by associativity ?6 ?7 ?8
24661 29868: Id : 5, {_}:
24662 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24663 [11, 10] by symmetry_of_glb ?10 ?11
24664 29868: Id : 6, {_}:
24665 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24666 [14, 13] by symmetry_of_lub ?13 ?14
24667 29868: Id : 7, {_}:
24668 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24670 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24671 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24672 29868: Id : 8, {_}:
24673 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24675 least_upper_bound (least_upper_bound ?20 ?21) ?22
24676 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24677 29868: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24678 29868: Id : 10, {_}:
24679 greatest_lower_bound ?26 ?26 =>= ?26
24680 [26] by idempotence_of_gld ?26
24681 29868: Id : 11, {_}:
24682 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24683 [29, 28] by lub_absorbtion ?28 ?29
24684 29868: Id : 12, {_}:
24685 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24686 [32, 31] by glb_absorbtion ?31 ?32
24687 29868: Id : 13, {_}:
24688 multiply ?34 (least_upper_bound ?35 ?36)
24690 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24691 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24692 29868: Id : 14, {_}:
24693 multiply ?38 (greatest_lower_bound ?39 ?40)
24695 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24696 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24697 29868: Id : 15, {_}:
24698 multiply (least_upper_bound ?42 ?43) ?44
24700 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24701 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24702 29868: Id : 16, {_}:
24703 multiply (greatest_lower_bound ?46 ?47) ?48
24705 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24706 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24708 29868: Id : 1, {_}:
24709 least_upper_bound (inverse a) identity
24711 inverse (greatest_lower_bound a identity)
24716 29868: a 2 0 2 1,1,2
24717 29868: identity 4 0 2 2,2
24718 29868: inverse 3 1 2 0,1,2
24719 29868: greatest_lower_bound 14 2 1 0,1,3
24720 29868: least_upper_bound 14 2 1 0,2
24721 29868: multiply 18 2 0
24722 % SZS status Timeout for GRP179-2.p
24723 NO CLASH, using fixed ground order
24725 29889: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24726 29889: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24727 29889: Id : 4, {_}:
24728 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
24729 [8, 7, 6] by associativity ?6 ?7 ?8
24730 29889: Id : 5, {_}:
24731 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24732 [11, 10] by symmetry_of_glb ?10 ?11
24733 29889: Id : 6, {_}:
24734 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24735 [14, 13] by symmetry_of_lub ?13 ?14
24736 29889: Id : 7, {_}:
24737 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24739 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24740 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24741 29889: Id : 8, {_}:
24742 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24744 least_upper_bound (least_upper_bound ?20 ?21) ?22
24745 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24746 29889: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24747 29889: Id : 10, {_}:
24748 greatest_lower_bound ?26 ?26 =>= ?26
24749 [26] by idempotence_of_gld ?26
24750 29889: Id : 11, {_}:
24751 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24752 [29, 28] by lub_absorbtion ?28 ?29
24753 29889: Id : 12, {_}:
24754 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24755 [32, 31] by glb_absorbtion ?31 ?32
24756 29889: Id : 13, {_}:
24757 multiply ?34 (least_upper_bound ?35 ?36)
24759 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24760 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24761 29889: Id : 14, {_}:
24762 multiply ?38 (greatest_lower_bound ?39 ?40)
24764 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24765 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24766 29889: Id : 15, {_}:
24767 multiply (least_upper_bound ?42 ?43) ?44
24769 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24770 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24771 29889: Id : 16, {_}:
24772 multiply (greatest_lower_bound ?46 ?47) ?48
24774 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24775 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24777 29889: Id : 1, {_}:
24778 multiply a (multiply (inverse (greatest_lower_bound a b)) b)
24780 least_upper_bound a b
24785 29889: identity 2 0 0
24787 29889: b 3 0 3 2,1,1,2,2
24788 29889: inverse 2 1 1 0,1,2,2
24789 29889: greatest_lower_bound 14 2 1 0,1,1,2,2
24790 29889: least_upper_bound 14 2 1 0,3
24791 29889: multiply 20 2 2 0,2
24792 NO CLASH, using fixed ground order
24794 29890: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24795 29890: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24796 29890: Id : 4, {_}:
24797 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
24798 [8, 7, 6] by associativity ?6 ?7 ?8
24799 29890: Id : 5, {_}:
24800 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24801 [11, 10] by symmetry_of_glb ?10 ?11
24802 29890: Id : 6, {_}:
24803 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24804 [14, 13] by symmetry_of_lub ?13 ?14
24805 29890: Id : 7, {_}:
24806 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24808 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24809 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24810 29890: Id : 8, {_}:
24811 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24813 least_upper_bound (least_upper_bound ?20 ?21) ?22
24814 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24815 29890: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24816 29890: Id : 10, {_}:
24817 greatest_lower_bound ?26 ?26 =>= ?26
24818 [26] by idempotence_of_gld ?26
24819 29890: Id : 11, {_}:
24820 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24821 [29, 28] by lub_absorbtion ?28 ?29
24822 29890: Id : 12, {_}:
24823 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24824 [32, 31] by glb_absorbtion ?31 ?32
24825 29890: Id : 13, {_}:
24826 multiply ?34 (least_upper_bound ?35 ?36)
24828 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24829 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24830 29890: Id : 14, {_}:
24831 multiply ?38 (greatest_lower_bound ?39 ?40)
24833 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24834 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24835 29890: Id : 15, {_}:
24836 multiply (least_upper_bound ?42 ?43) ?44
24838 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24839 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24840 29890: Id : 16, {_}:
24841 multiply (greatest_lower_bound ?46 ?47) ?48
24843 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24844 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24846 29890: Id : 1, {_}:
24847 multiply a (multiply (inverse (greatest_lower_bound a b)) b)
24849 least_upper_bound a b
24854 29890: identity 2 0 0
24856 29890: b 3 0 3 2,1,1,2,2
24857 29890: inverse 2 1 1 0,1,2,2
24858 29890: greatest_lower_bound 14 2 1 0,1,1,2,2
24859 29890: least_upper_bound 14 2 1 0,3
24860 29890: multiply 20 2 2 0,2
24861 NO CLASH, using fixed ground order
24863 29891: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24864 29891: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24865 29891: Id : 4, {_}:
24866 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
24867 [8, 7, 6] by associativity ?6 ?7 ?8
24868 29891: Id : 5, {_}:
24869 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24870 [11, 10] by symmetry_of_glb ?10 ?11
24871 29891: Id : 6, {_}:
24872 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24873 [14, 13] by symmetry_of_lub ?13 ?14
24874 29891: Id : 7, {_}:
24875 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24877 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24878 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24879 29891: Id : 8, {_}:
24880 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24882 least_upper_bound (least_upper_bound ?20 ?21) ?22
24883 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24884 29891: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24885 29891: Id : 10, {_}:
24886 greatest_lower_bound ?26 ?26 =>= ?26
24887 [26] by idempotence_of_gld ?26
24888 29891: Id : 11, {_}:
24889 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24890 [29, 28] by lub_absorbtion ?28 ?29
24891 29891: Id : 12, {_}:
24892 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24893 [32, 31] by glb_absorbtion ?31 ?32
24894 29891: Id : 13, {_}:
24895 multiply ?34 (least_upper_bound ?35 ?36)
24897 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24898 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24899 29891: Id : 14, {_}:
24900 multiply ?38 (greatest_lower_bound ?39 ?40)
24902 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24903 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24904 29891: Id : 15, {_}:
24905 multiply (least_upper_bound ?42 ?43) ?44
24907 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24908 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24909 29891: Id : 16, {_}:
24910 multiply (greatest_lower_bound ?46 ?47) ?48
24912 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24913 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24915 29891: Id : 1, {_}:
24916 multiply a (multiply (inverse (greatest_lower_bound a b)) b)
24918 least_upper_bound a b
24923 29891: identity 2 0 0
24925 29891: b 3 0 3 2,1,1,2,2
24926 29891: inverse 2 1 1 0,1,2,2
24927 29891: greatest_lower_bound 14 2 1 0,1,1,2,2
24928 29891: least_upper_bound 14 2 1 0,3
24929 29891: multiply 20 2 2 0,2
24930 % SZS status Timeout for GRP180-1.p
24931 NO CLASH, using fixed ground order
24933 29925: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
24934 29925: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
24935 29925: Id : 4, {_}:
24936 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
24937 [8, 7, 6] by associativity ?6 ?7 ?8
24938 29925: Id : 5, {_}:
24939 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
24940 [11, 10] by symmetry_of_glb ?10 ?11
24941 29925: Id : 6, {_}:
24942 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
24943 [14, 13] by symmetry_of_lub ?13 ?14
24944 29925: Id : 7, {_}:
24945 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
24947 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
24948 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
24949 29925: Id : 8, {_}:
24950 least_upper_bound ?20 (least_upper_bound ?21 ?22)
24952 least_upper_bound (least_upper_bound ?20 ?21) ?22
24953 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
24954 29925: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
24955 29925: Id : 10, {_}:
24956 greatest_lower_bound ?26 ?26 =>= ?26
24957 [26] by idempotence_of_gld ?26
24958 29925: Id : 11, {_}:
24959 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
24960 [29, 28] by lub_absorbtion ?28 ?29
24961 29925: Id : 12, {_}:
24962 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
24963 [32, 31] by glb_absorbtion ?31 ?32
24964 29925: Id : 13, {_}:
24965 multiply ?34 (least_upper_bound ?35 ?36)
24967 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
24968 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
24969 29925: Id : 14, {_}:
24970 multiply ?38 (greatest_lower_bound ?39 ?40)
24972 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
24973 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
24974 29925: Id : 15, {_}:
24975 multiply (least_upper_bound ?42 ?43) ?44
24977 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
24978 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
24979 29925: Id : 16, {_}:
24980 multiply (greatest_lower_bound ?46 ?47) ?48
24982 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
24983 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
24984 29925: Id : 17, {_}: inverse identity =>= identity [] by p20_1
24985 29925: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20_2 ?51
24986 29925: Id : 19, {_}:
24987 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
24988 [54, 53] by p20_3 ?53 ?54
24990 29925: Id : 1, {_}:
24991 greatest_lower_bound (least_upper_bound a identity)
24992 (inverse (greatest_lower_bound a identity))
24999 29925: a 2 0 2 1,1,2
25000 29925: identity 7 0 3 2,1,2
25001 29925: inverse 8 1 1 0,2,2
25002 29925: least_upper_bound 14 2 1 0,1,2
25003 29925: greatest_lower_bound 15 2 2 0,2
25004 29925: multiply 20 2 0
25005 NO CLASH, using fixed ground order
25007 29926: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
25008 29926: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
25009 29926: Id : 4, {_}:
25010 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
25011 [8, 7, 6] by associativity ?6 ?7 ?8
25012 29926: Id : 5, {_}:
25013 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
25014 [11, 10] by symmetry_of_glb ?10 ?11
25015 29926: Id : 6, {_}:
25016 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
25017 [14, 13] by symmetry_of_lub ?13 ?14
25018 29926: Id : 7, {_}:
25019 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
25021 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
25022 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
25023 29926: Id : 8, {_}:
25024 least_upper_bound ?20 (least_upper_bound ?21 ?22)
25026 least_upper_bound (least_upper_bound ?20 ?21) ?22
25027 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
25028 29926: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
25029 29926: Id : 10, {_}:
25030 greatest_lower_bound ?26 ?26 =>= ?26
25031 [26] by idempotence_of_gld ?26
25032 29926: Id : 11, {_}:
25033 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
25034 [29, 28] by lub_absorbtion ?28 ?29
25035 29926: Id : 12, {_}:
25036 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
25037 [32, 31] by glb_absorbtion ?31 ?32
25038 29926: Id : 13, {_}:
25039 multiply ?34 (least_upper_bound ?35 ?36)
25041 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
25042 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
25043 29926: Id : 14, {_}:
25044 multiply ?38 (greatest_lower_bound ?39 ?40)
25046 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
25047 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
25048 29926: Id : 15, {_}:
25049 multiply (least_upper_bound ?42 ?43) ?44
25051 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
25052 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
25053 29926: Id : 16, {_}:
25054 multiply (greatest_lower_bound ?46 ?47) ?48
25056 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
25057 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
25058 29926: Id : 17, {_}: inverse identity =>= identity [] by p20_1
25059 29926: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20_2 ?51
25060 29926: Id : 19, {_}:
25061 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
25062 [54, 53] by p20_3 ?53 ?54
25064 29926: Id : 1, {_}:
25065 greatest_lower_bound (least_upper_bound a identity)
25066 (inverse (greatest_lower_bound a identity))
25073 29926: a 2 0 2 1,1,2
25074 29926: identity 7 0 3 2,1,2
25075 29926: inverse 8 1 1 0,2,2
25076 29926: least_upper_bound 14 2 1 0,1,2
25077 29926: greatest_lower_bound 15 2 2 0,2
25078 29926: multiply 20 2 0
25079 NO CLASH, using fixed ground order
25081 29928: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
25082 29928: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
25083 29928: Id : 4, {_}:
25084 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
25085 [8, 7, 6] by associativity ?6 ?7 ?8
25086 29928: Id : 5, {_}:
25087 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
25088 [11, 10] by symmetry_of_glb ?10 ?11
25089 29928: Id : 6, {_}:
25090 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
25091 [14, 13] by symmetry_of_lub ?13 ?14
25092 29928: Id : 7, {_}:
25093 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
25095 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
25096 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
25097 29928: Id : 8, {_}:
25098 least_upper_bound ?20 (least_upper_bound ?21 ?22)
25100 least_upper_bound (least_upper_bound ?20 ?21) ?22
25101 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
25102 29928: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
25103 29928: Id : 10, {_}:
25104 greatest_lower_bound ?26 ?26 =>= ?26
25105 [26] by idempotence_of_gld ?26
25106 29928: Id : 11, {_}:
25107 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
25108 [29, 28] by lub_absorbtion ?28 ?29
25109 29928: Id : 12, {_}:
25110 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
25111 [32, 31] by glb_absorbtion ?31 ?32
25112 29928: Id : 13, {_}:
25113 multiply ?34 (least_upper_bound ?35 ?36)
25115 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
25116 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
25117 29928: Id : 14, {_}:
25118 multiply ?38 (greatest_lower_bound ?39 ?40)
25120 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
25121 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
25122 29928: Id : 15, {_}:
25123 multiply (least_upper_bound ?42 ?43) ?44
25125 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
25126 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
25127 29928: Id : 16, {_}:
25128 multiply (greatest_lower_bound ?46 ?47) ?48
25130 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
25131 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
25132 29928: Id : 17, {_}: inverse identity =>= identity [] by p20_1
25133 29928: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p20_2 ?51
25134 29928: Id : 19, {_}:
25135 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
25136 [54, 53] by p20_3 ?53 ?54
25138 29928: Id : 1, {_}:
25139 greatest_lower_bound (least_upper_bound a identity)
25140 (inverse (greatest_lower_bound a identity))
25147 29928: a 2 0 2 1,1,2
25148 29928: identity 7 0 3 2,1,2
25149 29928: inverse 8 1 1 0,2,2
25150 29928: least_upper_bound 14 2 1 0,1,2
25151 29928: greatest_lower_bound 15 2 2 0,2
25152 29928: multiply 20 2 0
25153 % SZS status Timeout for GRP183-2.p
25154 NO CLASH, using fixed ground order
25156 29950: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
25157 29950: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
25158 29950: Id : 4, {_}:
25159 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
25160 [8, 7, 6] by associativity ?6 ?7 ?8
25161 29950: Id : 5, {_}:
25162 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
25163 [11, 10] by symmetry_of_glb ?10 ?11
25164 29950: Id : 6, {_}:
25165 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
25166 [14, 13] by symmetry_of_lub ?13 ?14
25167 29950: Id : 7, {_}:
25168 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
25170 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
25171 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
25172 29950: Id : 8, {_}:
25173 least_upper_bound ?20 (least_upper_bound ?21 ?22)
25175 least_upper_bound (least_upper_bound ?20 ?21) ?22
25176 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
25177 29950: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
25178 29950: Id : 10, {_}:
25179 greatest_lower_bound ?26 ?26 =>= ?26
25180 [26] by idempotence_of_gld ?26
25181 29950: Id : 11, {_}:
25182 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
25183 [29, 28] by lub_absorbtion ?28 ?29
25184 29950: Id : 12, {_}:
25185 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
25186 [32, 31] by glb_absorbtion ?31 ?32
25187 29950: Id : 13, {_}:
25188 multiply ?34 (least_upper_bound ?35 ?36)
25190 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
25191 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
25192 29950: Id : 14, {_}:
25193 multiply ?38 (greatest_lower_bound ?39 ?40)
25195 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
25196 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
25197 29950: Id : 15, {_}:
25198 multiply (least_upper_bound ?42 ?43) ?44
25200 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
25201 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
25202 29950: Id : 16, {_}:
25203 multiply (greatest_lower_bound ?46 ?47) ?48
25205 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
25206 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
25208 29950: Id : 1, {_}:
25209 least_upper_bound (multiply a b) identity
25211 multiply a (inverse (greatest_lower_bound a (inverse b)))
25216 29950: b 2 0 2 2,1,2
25217 29950: identity 3 0 1 2,2
25218 29950: a 3 0 3 1,1,2
25219 29950: inverse 3 1 2 0,2,3
25220 29950: greatest_lower_bound 14 2 1 0,1,2,3
25221 29950: least_upper_bound 14 2 1 0,2
25222 29950: multiply 20 2 2 0,1,2
25223 NO CLASH, using fixed ground order
25225 29951: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
25226 29951: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
25227 29951: Id : 4, {_}:
25228 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
25229 [8, 7, 6] by associativity ?6 ?7 ?8
25230 29951: Id : 5, {_}:
25231 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
25232 [11, 10] by symmetry_of_glb ?10 ?11
25233 29951: Id : 6, {_}:
25234 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
25235 [14, 13] by symmetry_of_lub ?13 ?14
25236 29951: Id : 7, {_}:
25237 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
25239 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
25240 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
25241 29951: Id : 8, {_}:
25242 least_upper_bound ?20 (least_upper_bound ?21 ?22)
25244 least_upper_bound (least_upper_bound ?20 ?21) ?22
25245 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
25246 29951: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
25247 29951: Id : 10, {_}:
25248 greatest_lower_bound ?26 ?26 =>= ?26
25249 [26] by idempotence_of_gld ?26
25250 29951: Id : 11, {_}:
25251 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
25252 [29, 28] by lub_absorbtion ?28 ?29
25253 29951: Id : 12, {_}:
25254 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
25255 [32, 31] by glb_absorbtion ?31 ?32
25256 29951: Id : 13, {_}:
25257 multiply ?34 (least_upper_bound ?35 ?36)
25259 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
25260 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
25261 29951: Id : 14, {_}:
25262 multiply ?38 (greatest_lower_bound ?39 ?40)
25264 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
25265 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
25266 29951: Id : 15, {_}:
25267 multiply (least_upper_bound ?42 ?43) ?44
25269 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
25270 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
25271 29951: Id : 16, {_}:
25272 multiply (greatest_lower_bound ?46 ?47) ?48
25274 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
25275 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
25277 29951: Id : 1, {_}:
25278 least_upper_bound (multiply a b) identity
25280 multiply a (inverse (greatest_lower_bound a (inverse b)))
25285 29951: b 2 0 2 2,1,2
25286 29951: identity 3 0 1 2,2
25287 29951: a 3 0 3 1,1,2
25288 29951: inverse 3 1 2 0,2,3
25289 29951: greatest_lower_bound 14 2 1 0,1,2,3
25290 29951: least_upper_bound 14 2 1 0,2
25291 29951: multiply 20 2 2 0,1,2
25292 NO CLASH, using fixed ground order
25294 29952: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
25295 29952: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
25296 29952: Id : 4, {_}:
25297 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
25298 [8, 7, 6] by associativity ?6 ?7 ?8
25299 29952: Id : 5, {_}:
25300 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
25301 [11, 10] by symmetry_of_glb ?10 ?11
25302 29952: Id : 6, {_}:
25303 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
25304 [14, 13] by symmetry_of_lub ?13 ?14
25305 29952: Id : 7, {_}:
25306 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
25308 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
25309 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
25310 29952: Id : 8, {_}:
25311 least_upper_bound ?20 (least_upper_bound ?21 ?22)
25313 least_upper_bound (least_upper_bound ?20 ?21) ?22
25314 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
25315 29952: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
25316 29952: Id : 10, {_}:
25317 greatest_lower_bound ?26 ?26 =>= ?26
25318 [26] by idempotence_of_gld ?26
25319 29952: Id : 11, {_}:
25320 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
25321 [29, 28] by lub_absorbtion ?28 ?29
25322 29952: Id : 12, {_}:
25323 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
25324 [32, 31] by glb_absorbtion ?31 ?32
25325 29952: Id : 13, {_}:
25326 multiply ?34 (least_upper_bound ?35 ?36)
25328 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
25329 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
25330 29952: Id : 14, {_}:
25331 multiply ?38 (greatest_lower_bound ?39 ?40)
25333 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
25334 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
25335 29952: Id : 15, {_}:
25336 multiply (least_upper_bound ?42 ?43) ?44
25338 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
25339 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
25340 29952: Id : 16, {_}:
25341 multiply (greatest_lower_bound ?46 ?47) ?48
25343 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
25344 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
25346 29952: Id : 1, {_}:
25347 least_upper_bound (multiply a b) identity
25349 multiply a (inverse (greatest_lower_bound a (inverse b)))
25354 29952: b 2 0 2 2,1,2
25355 29952: identity 3 0 1 2,2
25356 29952: a 3 0 3 1,1,2
25357 29952: inverse 3 1 2 0,2,3
25358 29952: greatest_lower_bound 14 2 1 0,1,2,3
25359 29952: least_upper_bound 14 2 1 0,2
25360 29952: multiply 20 2 2 0,1,2
25361 % SZS status Timeout for GRP186-1.p
25362 NO CLASH, using fixed ground order
25364 29976: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
25365 29976: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
25366 29976: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
25367 29976: Id : 5, {_}:
25368 meet ?9 ?10 =?= meet ?10 ?9
25369 [10, 9] by commutativity_of_meet ?9 ?10
25370 29976: Id : 6, {_}:
25371 join ?12 ?13 =?= join ?13 ?12
25372 [13, 12] by commutativity_of_join ?12 ?13
25373 29976: Id : 7, {_}:
25374 meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17)
25375 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
25376 29976: Id : 8, {_}:
25377 join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21)
25378 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
25379 29976: Id : 9, {_}:
25380 complement (complement ?23) =>= ?23
25381 [23] by complement_involution ?23
25382 29976: Id : 10, {_}:
25383 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
25384 [26, 25] by join_complement ?25 ?26
25385 29976: Id : 11, {_}:
25386 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
25387 [29, 28] by meet_complement ?28 ?29
25389 29976: Id : 1, {_}:
25392 (meet (complement a) (meet (join a (complement b)) (join a b)))
25393 (meet (complement a)
25394 (join (meet (complement a) b)
25395 (meet (complement a) (complement b)))))
25404 29976: b 4 0 4 1,2,1,2,1,2,2
25406 29976: complement 15 1 6 0,1,1,2,2
25407 29976: meet 14 2 5 0,1,2,2
25408 29976: join 17 2 5 0,2
25409 NO CLASH, using fixed ground order
25411 29977: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
25412 29977: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
25413 29977: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
25414 29977: Id : 5, {_}:
25415 meet ?9 ?10 =?= meet ?10 ?9
25416 [10, 9] by commutativity_of_meet ?9 ?10
25417 29977: Id : 6, {_}:
25418 join ?12 ?13 =?= join ?13 ?12
25419 [13, 12] by commutativity_of_join ?12 ?13
25420 29977: Id : 7, {_}:
25421 meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17)
25422 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
25423 29977: Id : 8, {_}:
25424 join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21)
25425 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
25426 29977: Id : 9, {_}:
25427 complement (complement ?23) =>= ?23
25428 [23] by complement_involution ?23
25429 29977: Id : 10, {_}:
25430 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
25431 [26, 25] by join_complement ?25 ?26
25432 29977: Id : 11, {_}:
25433 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
25434 [29, 28] by meet_complement ?28 ?29
25436 29977: Id : 1, {_}:
25439 (meet (complement a) (meet (join a (complement b)) (join a b)))
25440 (meet (complement a)
25441 (join (meet (complement a) b)
25442 (meet (complement a) (complement b)))))
25451 29977: b 4 0 4 1,2,1,2,1,2,2
25453 29977: complement 15 1 6 0,1,1,2,2
25454 29977: meet 14 2 5 0,1,2,2
25455 29977: join 17 2 5 0,2
25456 NO CLASH, using fixed ground order
25458 29978: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
25459 29978: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
25460 29978: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
25461 29978: Id : 5, {_}:
25462 meet ?9 ?10 =?= meet ?10 ?9
25463 [10, 9] by commutativity_of_meet ?9 ?10
25464 29978: Id : 6, {_}:
25465 join ?12 ?13 =?= join ?13 ?12
25466 [13, 12] by commutativity_of_join ?12 ?13
25467 29978: Id : 7, {_}:
25468 meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17)
25469 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
25470 29978: Id : 8, {_}:
25471 join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21)
25472 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
25473 29978: Id : 9, {_}:
25474 complement (complement ?23) =>= ?23
25475 [23] by complement_involution ?23
25476 29978: Id : 10, {_}:
25477 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
25478 [26, 25] by join_complement ?25 ?26
25479 29978: Id : 11, {_}:
25480 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
25481 [29, 28] by meet_complement ?28 ?29
25483 29978: Id : 1, {_}:
25486 (meet (complement a) (meet (join a (complement b)) (join a b)))
25487 (meet (complement a)
25488 (join (meet (complement a) b)
25489 (meet (complement a) (complement b)))))
25498 29978: b 4 0 4 1,2,1,2,1,2,2
25500 29978: complement 15 1 6 0,1,1,2,2
25501 29978: meet 14 2 5 0,1,2,2
25502 29978: join 17 2 5 0,2
25503 % SZS status Timeout for LAT017-1.p
25504 NO CLASH, using fixed ground order
25506 30001: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
25507 30001: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
25508 30001: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7
25509 30001: Id : 5, {_}:
25510 join ?9 ?10 =?= join ?10 ?9
25511 [10, 9] by commutativity_of_join ?9 ?10
25512 30001: Id : 6, {_}:
25513 meet (meet ?12 ?13) ?14 =?= meet ?12 (meet ?13 ?14)
25514 [14, 13, 12] by associativity_of_meet ?12 ?13 ?14
25515 30001: Id : 7, {_}:
25516 join (join ?16 ?17) ?18 =?= join ?16 (join ?17 ?18)
25517 [18, 17, 16] by associativity_of_join ?16 ?17 ?18
25518 30001: Id : 8, {_}:
25519 join (meet ?20 (join ?21 ?22)) (meet ?20 ?21)
25521 meet ?20 (join ?21 ?22)
25522 [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22
25523 30001: Id : 9, {_}:
25524 meet (join ?24 (meet ?25 ?26)) (join ?24 ?25)
25526 join ?24 (meet ?25 ?26)
25527 [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26
25528 30001: Id : 10, {_}:
25529 join (meet (join (meet ?28 ?29) ?30) ?29) (meet ?30 ?28)
25531 meet (join (meet (join ?28 ?29) ?30) ?29) (join ?30 ?28)
25532 [30, 29, 28] by self_dual_distributivity ?28 ?29 ?30
25534 30001: Id : 1, {_}:
25535 meet a (join b c) =<= join (meet a b) (meet a c)
25536 [] by prove_distributivity
25540 30001: b 2 0 2 1,2,2
25541 30001: c 2 0 2 2,2,2
25543 30001: join 20 2 2 0,2,2
25544 30001: meet 21 2 3 0,2
25545 NO CLASH, using fixed ground order
25547 30002: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
25548 30002: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
25549 30002: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7
25550 30002: Id : 5, {_}:
25551 join ?9 ?10 =?= join ?10 ?9
25552 [10, 9] by commutativity_of_join ?9 ?10
25553 30002: Id : 6, {_}:
25554 meet (meet ?12 ?13) ?14 =>= meet ?12 (meet ?13 ?14)
25555 [14, 13, 12] by associativity_of_meet ?12 ?13 ?14
25556 30002: Id : 7, {_}:
25557 join (join ?16 ?17) ?18 =>= join ?16 (join ?17 ?18)
25558 [18, 17, 16] by associativity_of_join ?16 ?17 ?18
25559 30002: Id : 8, {_}:
25560 join (meet ?20 (join ?21 ?22)) (meet ?20 ?21)
25562 meet ?20 (join ?21 ?22)
25563 [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22
25564 30002: Id : 9, {_}:
25565 meet (join ?24 (meet ?25 ?26)) (join ?24 ?25)
25567 join ?24 (meet ?25 ?26)
25568 [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26
25569 30002: Id : 10, {_}:
25570 join (meet (join (meet ?28 ?29) ?30) ?29) (meet ?30 ?28)
25572 meet (join (meet (join ?28 ?29) ?30) ?29) (join ?30 ?28)
25573 [30, 29, 28] by self_dual_distributivity ?28 ?29 ?30
25575 30002: Id : 1, {_}:
25576 meet a (join b c) =<= join (meet a b) (meet a c)
25577 [] by prove_distributivity
25581 30002: b 2 0 2 1,2,2
25582 30002: c 2 0 2 2,2,2
25584 30002: join 20 2 2 0,2,2
25585 30002: meet 21 2 3 0,2
25586 NO CLASH, using fixed ground order
25588 30003: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
25589 30003: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
25590 30003: Id : 4, {_}: meet ?6 ?7 =?= meet ?7 ?6 [7, 6] by commutativity_of_meet ?6 ?7
25591 30003: Id : 5, {_}:
25592 join ?9 ?10 =?= join ?10 ?9
25593 [10, 9] by commutativity_of_join ?9 ?10
25594 30003: Id : 6, {_}:
25595 meet (meet ?12 ?13) ?14 =>= meet ?12 (meet ?13 ?14)
25596 [14, 13, 12] by associativity_of_meet ?12 ?13 ?14
25597 30003: Id : 7, {_}:
25598 join (join ?16 ?17) ?18 =>= join ?16 (join ?17 ?18)
25599 [18, 17, 16] by associativity_of_join ?16 ?17 ?18
25600 30003: Id : 8, {_}:
25601 join (meet ?20 (join ?21 ?22)) (meet ?20 ?21)
25603 meet ?20 (join ?21 ?22)
25604 [22, 21, 20] by quasi_lattice1 ?20 ?21 ?22
25605 30003: Id : 9, {_}:
25606 meet (join ?24 (meet ?25 ?26)) (join ?24 ?25)
25608 join ?24 (meet ?25 ?26)
25609 [26, 25, 24] by quasi_lattice2 ?24 ?25 ?26
25610 30003: Id : 10, {_}:
25611 join (meet (join (meet ?28 ?29) ?30) ?29) (meet ?30 ?28)
25613 meet (join (meet (join ?28 ?29) ?30) ?29) (join ?30 ?28)
25614 [30, 29, 28] by self_dual_distributivity ?28 ?29 ?30
25616 30003: Id : 1, {_}:
25617 meet a (join b c) =>= join (meet a b) (meet a c)
25618 [] by prove_distributivity
25622 30003: b 2 0 2 1,2,2
25623 30003: c 2 0 2 2,2,2
25625 30003: join 20 2 2 0,2,2
25626 30003: meet 21 2 3 0,2
25627 % SZS status Timeout for LAT020-1.p
25628 NO CLASH, using fixed ground order
25630 30025: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
25631 30025: Id : 3, {_}:
25632 add ?4 additive_identity =>= ?4
25633 [4] by right_additive_identity ?4
25634 30025: Id : 4, {_}:
25635 multiply additive_identity ?6 =>= additive_identity
25636 [6] by left_multiplicative_zero ?6
25637 30025: Id : 5, {_}:
25638 multiply ?8 additive_identity =>= additive_identity
25639 [8] by right_multiplicative_zero ?8
25640 30025: Id : 6, {_}:
25641 add (additive_inverse ?10) ?10 =>= additive_identity
25642 [10] by left_additive_inverse ?10
25643 30025: Id : 7, {_}:
25644 add ?12 (additive_inverse ?12) =>= additive_identity
25645 [12] by right_additive_inverse ?12
25646 30025: Id : 8, {_}:
25647 additive_inverse (additive_inverse ?14) =>= ?14
25648 [14] by additive_inverse_additive_inverse ?14
25649 30025: Id : 9, {_}:
25650 multiply ?16 (add ?17 ?18)
25652 add (multiply ?16 ?17) (multiply ?16 ?18)
25653 [18, 17, 16] by distribute1 ?16 ?17 ?18
25654 30025: Id : 10, {_}:
25655 multiply (add ?20 ?21) ?22
25657 add (multiply ?20 ?22) (multiply ?21 ?22)
25658 [22, 21, 20] by distribute2 ?20 ?21 ?22
25659 30025: Id : 11, {_}:
25660 add ?24 ?25 =?= add ?25 ?24
25661 [25, 24] by commutativity_for_addition ?24 ?25
25662 30025: Id : 12, {_}:
25663 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
25664 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
25665 30025: Id : 13, {_}:
25666 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
25667 [32, 31] by right_alternative ?31 ?32
25668 30025: Id : 14, {_}:
25669 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
25670 [35, 34] by left_alternative ?34 ?35
25671 30025: Id : 15, {_}:
25672 associator ?37 ?38 ?39
25674 add (multiply (multiply ?37 ?38) ?39)
25675 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
25676 [39, 38, 37] by associator ?37 ?38 ?39
25677 30025: Id : 16, {_}:
25680 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
25681 [42, 41] by commutator ?41 ?42
25682 30025: Id : 17, {_}:
25683 multiply (additive_inverse ?44) (additive_inverse ?45)
25686 [45, 44] by product_of_inverses ?44 ?45
25687 30025: Id : 18, {_}:
25688 multiply (additive_inverse ?47) ?48
25690 additive_inverse (multiply ?47 ?48)
25691 [48, 47] by inverse_product1 ?47 ?48
25692 30025: Id : 19, {_}:
25693 multiply ?50 (additive_inverse ?51)
25695 additive_inverse (multiply ?50 ?51)
25696 [51, 50] by inverse_product2 ?50 ?51
25697 30025: Id : 20, {_}:
25698 multiply ?53 (add ?54 (additive_inverse ?55))
25700 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
25701 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
25702 30025: Id : 21, {_}:
25703 multiply (add ?57 (additive_inverse ?58)) ?59
25705 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
25706 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
25707 30025: Id : 22, {_}:
25708 multiply (additive_inverse ?61) (add ?62 ?63)
25710 add (additive_inverse (multiply ?61 ?62))
25711 (additive_inverse (multiply ?61 ?63))
25712 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
25713 30025: Id : 23, {_}:
25714 multiply (add ?65 ?66) (additive_inverse ?67)
25716 add (additive_inverse (multiply ?65 ?67))
25717 (additive_inverse (multiply ?66 ?67))
25718 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
25720 30025: Id : 1, {_}:
25721 add (associator x y z) (associator x z y) =>= additive_identity
25722 [] by prove_equation
25726 30025: x 2 0 2 1,1,2
25727 30025: y 2 0 2 2,1,2
25728 30025: z 2 0 2 3,1,2
25729 30025: additive_identity 9 0 1 3
25730 30025: additive_inverse 22 1 0
25731 30025: commutator 1 2 0
25732 30025: add 25 2 1 0,2
25733 30025: multiply 40 2 0
25734 30025: associator 3 3 2 0,1,2
25735 NO CLASH, using fixed ground order
25737 30026: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
25738 30026: Id : 3, {_}:
25739 add ?4 additive_identity =>= ?4
25740 [4] by right_additive_identity ?4
25741 30026: Id : 4, {_}:
25742 multiply additive_identity ?6 =>= additive_identity
25743 [6] by left_multiplicative_zero ?6
25744 30026: Id : 5, {_}:
25745 multiply ?8 additive_identity =>= additive_identity
25746 [8] by right_multiplicative_zero ?8
25747 30026: Id : 6, {_}:
25748 add (additive_inverse ?10) ?10 =>= additive_identity
25749 [10] by left_additive_inverse ?10
25750 30026: Id : 7, {_}:
25751 add ?12 (additive_inverse ?12) =>= additive_identity
25752 [12] by right_additive_inverse ?12
25753 30026: Id : 8, {_}:
25754 additive_inverse (additive_inverse ?14) =>= ?14
25755 [14] by additive_inverse_additive_inverse ?14
25756 30026: Id : 9, {_}:
25757 multiply ?16 (add ?17 ?18)
25759 add (multiply ?16 ?17) (multiply ?16 ?18)
25760 [18, 17, 16] by distribute1 ?16 ?17 ?18
25761 30026: Id : 10, {_}:
25762 multiply (add ?20 ?21) ?22
25764 add (multiply ?20 ?22) (multiply ?21 ?22)
25765 [22, 21, 20] by distribute2 ?20 ?21 ?22
25766 30026: Id : 11, {_}:
25767 add ?24 ?25 =?= add ?25 ?24
25768 [25, 24] by commutativity_for_addition ?24 ?25
25769 30026: Id : 12, {_}:
25770 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
25771 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
25772 30026: Id : 13, {_}:
25773 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
25774 [32, 31] by right_alternative ?31 ?32
25775 30026: Id : 14, {_}:
25776 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
25777 [35, 34] by left_alternative ?34 ?35
25778 30026: Id : 15, {_}:
25779 associator ?37 ?38 ?39
25781 add (multiply (multiply ?37 ?38) ?39)
25782 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
25783 [39, 38, 37] by associator ?37 ?38 ?39
25784 30026: Id : 16, {_}:
25787 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
25788 [42, 41] by commutator ?41 ?42
25789 30026: Id : 17, {_}:
25790 multiply (additive_inverse ?44) (additive_inverse ?45)
25793 [45, 44] by product_of_inverses ?44 ?45
25794 30026: Id : 18, {_}:
25795 multiply (additive_inverse ?47) ?48
25797 additive_inverse (multiply ?47 ?48)
25798 [48, 47] by inverse_product1 ?47 ?48
25799 30026: Id : 19, {_}:
25800 multiply ?50 (additive_inverse ?51)
25802 additive_inverse (multiply ?50 ?51)
25803 [51, 50] by inverse_product2 ?50 ?51
25804 30026: Id : 20, {_}:
25805 multiply ?53 (add ?54 (additive_inverse ?55))
25807 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
25808 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
25809 30026: Id : 21, {_}:
25810 multiply (add ?57 (additive_inverse ?58)) ?59
25812 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
25813 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
25814 30026: Id : 22, {_}:
25815 multiply (additive_inverse ?61) (add ?62 ?63)
25817 add (additive_inverse (multiply ?61 ?62))
25818 (additive_inverse (multiply ?61 ?63))
25819 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
25820 30026: Id : 23, {_}:
25821 multiply (add ?65 ?66) (additive_inverse ?67)
25823 add (additive_inverse (multiply ?65 ?67))
25824 (additive_inverse (multiply ?66 ?67))
25825 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
25827 30026: Id : 1, {_}:
25828 add (associator x y z) (associator x z y) =>= additive_identity
25829 [] by prove_equation
25833 30026: x 2 0 2 1,1,2
25834 30026: y 2 0 2 2,1,2
25835 30026: z 2 0 2 3,1,2
25836 30026: additive_identity 9 0 1 3
25837 30026: additive_inverse 22 1 0
25838 30026: commutator 1 2 0
25839 30026: add 25 2 1 0,2
25840 30026: multiply 40 2 0
25841 30026: associator 3 3 2 0,1,2
25842 NO CLASH, using fixed ground order
25844 30027: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
25845 30027: Id : 3, {_}:
25846 add ?4 additive_identity =>= ?4
25847 [4] by right_additive_identity ?4
25848 30027: Id : 4, {_}:
25849 multiply additive_identity ?6 =>= additive_identity
25850 [6] by left_multiplicative_zero ?6
25851 30027: Id : 5, {_}:
25852 multiply ?8 additive_identity =>= additive_identity
25853 [8] by right_multiplicative_zero ?8
25854 30027: Id : 6, {_}:
25855 add (additive_inverse ?10) ?10 =>= additive_identity
25856 [10] by left_additive_inverse ?10
25857 30027: Id : 7, {_}:
25858 add ?12 (additive_inverse ?12) =>= additive_identity
25859 [12] by right_additive_inverse ?12
25860 30027: Id : 8, {_}:
25861 additive_inverse (additive_inverse ?14) =>= ?14
25862 [14] by additive_inverse_additive_inverse ?14
25863 30027: Id : 9, {_}:
25864 multiply ?16 (add ?17 ?18)
25866 add (multiply ?16 ?17) (multiply ?16 ?18)
25867 [18, 17, 16] by distribute1 ?16 ?17 ?18
25868 30027: Id : 10, {_}:
25869 multiply (add ?20 ?21) ?22
25871 add (multiply ?20 ?22) (multiply ?21 ?22)
25872 [22, 21, 20] by distribute2 ?20 ?21 ?22
25873 30027: Id : 11, {_}:
25874 add ?24 ?25 =?= add ?25 ?24
25875 [25, 24] by commutativity_for_addition ?24 ?25
25876 30027: Id : 12, {_}:
25877 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
25878 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
25879 30027: Id : 13, {_}:
25880 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
25881 [32, 31] by right_alternative ?31 ?32
25882 30027: Id : 14, {_}:
25883 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
25884 [35, 34] by left_alternative ?34 ?35
25885 30027: Id : 15, {_}:
25886 associator ?37 ?38 ?39
25888 add (multiply (multiply ?37 ?38) ?39)
25889 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
25890 [39, 38, 37] by associator ?37 ?38 ?39
25891 30027: Id : 16, {_}:
25894 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
25895 [42, 41] by commutator ?41 ?42
25896 30027: Id : 17, {_}:
25897 multiply (additive_inverse ?44) (additive_inverse ?45)
25900 [45, 44] by product_of_inverses ?44 ?45
25901 30027: Id : 18, {_}:
25902 multiply (additive_inverse ?47) ?48
25904 additive_inverse (multiply ?47 ?48)
25905 [48, 47] by inverse_product1 ?47 ?48
25906 30027: Id : 19, {_}:
25907 multiply ?50 (additive_inverse ?51)
25909 additive_inverse (multiply ?50 ?51)
25910 [51, 50] by inverse_product2 ?50 ?51
25911 30027: Id : 20, {_}:
25912 multiply ?53 (add ?54 (additive_inverse ?55))
25914 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
25915 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
25916 30027: Id : 21, {_}:
25917 multiply (add ?57 (additive_inverse ?58)) ?59
25919 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
25920 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
25921 30027: Id : 22, {_}:
25922 multiply (additive_inverse ?61) (add ?62 ?63)
25924 add (additive_inverse (multiply ?61 ?62))
25925 (additive_inverse (multiply ?61 ?63))
25926 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
25927 30027: Id : 23, {_}:
25928 multiply (add ?65 ?66) (additive_inverse ?67)
25930 add (additive_inverse (multiply ?65 ?67))
25931 (additive_inverse (multiply ?66 ?67))
25932 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
25934 30027: Id : 1, {_}:
25935 add (associator x y z) (associator x z y) =>= additive_identity
25936 [] by prove_equation
25940 30027: x 2 0 2 1,1,2
25941 30027: y 2 0 2 2,1,2
25942 30027: z 2 0 2 3,1,2
25943 30027: additive_identity 9 0 1 3
25944 30027: additive_inverse 22 1 0
25945 30027: commutator 1 2 0
25946 30027: add 25 2 1 0,2
25947 30027: multiply 40 2 0
25948 30027: associator 3 3 2 0,1,2
25949 % SZS status Timeout for RNG025-5.p
25950 NO CLASH, using fixed ground order
25952 30048: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
25953 30048: Id : 3, {_}:
25954 add ?4 additive_identity =>= ?4
25955 [4] by right_additive_identity ?4
25956 30048: Id : 4, {_}:
25957 multiply additive_identity ?6 =>= additive_identity
25958 [6] by left_multiplicative_zero ?6
25959 30048: Id : 5, {_}:
25960 multiply ?8 additive_identity =>= additive_identity
25961 [8] by right_multiplicative_zero ?8
25962 30048: Id : 6, {_}:
25963 add (additive_inverse ?10) ?10 =>= additive_identity
25964 [10] by left_additive_inverse ?10
25965 30048: Id : 7, {_}:
25966 add ?12 (additive_inverse ?12) =>= additive_identity
25967 [12] by right_additive_inverse ?12
25968 30048: Id : 8, {_}:
25969 additive_inverse (additive_inverse ?14) =>= ?14
25970 [14] by additive_inverse_additive_inverse ?14
25971 30048: Id : 9, {_}:
25972 multiply ?16 (add ?17 ?18)
25974 add (multiply ?16 ?17) (multiply ?16 ?18)
25975 [18, 17, 16] by distribute1 ?16 ?17 ?18
25976 30048: Id : 10, {_}:
25977 multiply (add ?20 ?21) ?22
25979 add (multiply ?20 ?22) (multiply ?21 ?22)
25980 [22, 21, 20] by distribute2 ?20 ?21 ?22
25981 30048: Id : 11, {_}:
25982 add ?24 ?25 =?= add ?25 ?24
25983 [25, 24] by commutativity_for_addition ?24 ?25
25984 30048: Id : 12, {_}:
25985 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
25986 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
25987 30048: Id : 13, {_}:
25988 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
25989 [32, 31] by right_alternative ?31 ?32
25990 30048: Id : 14, {_}:
25991 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
25992 [35, 34] by left_alternative ?34 ?35
25993 30048: Id : 15, {_}:
25994 associator ?37 ?38 ?39
25996 add (multiply (multiply ?37 ?38) ?39)
25997 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
25998 [39, 38, 37] by associator ?37 ?38 ?39
25999 30048: Id : 16, {_}:
26002 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
26003 [42, 41] by commutator ?41 ?42
26004 30048: Id : 17, {_}:
26005 multiply (additive_inverse ?44) (additive_inverse ?45)
26008 [45, 44] by product_of_inverses ?44 ?45
26009 30048: Id : 18, {_}:
26010 multiply (additive_inverse ?47) ?48
26012 additive_inverse (multiply ?47 ?48)
26013 [48, 47] by inverse_product1 ?47 ?48
26014 30048: Id : 19, {_}:
26015 multiply ?50 (additive_inverse ?51)
26017 additive_inverse (multiply ?50 ?51)
26018 [51, 50] by inverse_product2 ?50 ?51
26019 30048: Id : 20, {_}:
26020 multiply ?53 (add ?54 (additive_inverse ?55))
26022 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
26023 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
26024 30048: Id : 21, {_}:
26025 multiply (add ?57 (additive_inverse ?58)) ?59
26027 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
26028 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
26029 30048: Id : 22, {_}:
26030 multiply (additive_inverse ?61) (add ?62 ?63)
26032 add (additive_inverse (multiply ?61 ?62))
26033 (additive_inverse (multiply ?61 ?63))
26034 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
26035 30048: Id : 23, {_}:
26036 multiply (add ?65 ?66) (additive_inverse ?67)
26038 add (additive_inverse (multiply ?65 ?67))
26039 (additive_inverse (multiply ?66 ?67))
26040 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
26042 30048: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law
26048 30048: additive_identity 9 0 1 3
26049 30048: additive_inverse 22 1 0
26050 30048: commutator 1 2 0
26052 30048: multiply 40 2 0
26053 30048: associator 2 3 1 0,2
26054 NO CLASH, using fixed ground order
26056 30049: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
26057 30049: Id : 3, {_}:
26058 add ?4 additive_identity =>= ?4
26059 [4] by right_additive_identity ?4
26060 30049: Id : 4, {_}:
26061 multiply additive_identity ?6 =>= additive_identity
26062 [6] by left_multiplicative_zero ?6
26063 30049: Id : 5, {_}:
26064 multiply ?8 additive_identity =>= additive_identity
26065 [8] by right_multiplicative_zero ?8
26066 30049: Id : 6, {_}:
26067 add (additive_inverse ?10) ?10 =>= additive_identity
26068 [10] by left_additive_inverse ?10
26069 30049: Id : 7, {_}:
26070 add ?12 (additive_inverse ?12) =>= additive_identity
26071 [12] by right_additive_inverse ?12
26072 30049: Id : 8, {_}:
26073 additive_inverse (additive_inverse ?14) =>= ?14
26074 [14] by additive_inverse_additive_inverse ?14
26075 30049: Id : 9, {_}:
26076 multiply ?16 (add ?17 ?18)
26078 add (multiply ?16 ?17) (multiply ?16 ?18)
26079 [18, 17, 16] by distribute1 ?16 ?17 ?18
26080 30049: Id : 10, {_}:
26081 multiply (add ?20 ?21) ?22
26083 add (multiply ?20 ?22) (multiply ?21 ?22)
26084 [22, 21, 20] by distribute2 ?20 ?21 ?22
26085 30049: Id : 11, {_}:
26086 add ?24 ?25 =?= add ?25 ?24
26087 [25, 24] by commutativity_for_addition ?24 ?25
26088 30049: Id : 12, {_}:
26089 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
26090 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
26091 30049: Id : 13, {_}:
26092 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
26093 [32, 31] by right_alternative ?31 ?32
26094 30049: Id : 14, {_}:
26095 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
26096 [35, 34] by left_alternative ?34 ?35
26097 30049: Id : 15, {_}:
26098 associator ?37 ?38 ?39
26100 add (multiply (multiply ?37 ?38) ?39)
26101 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
26102 [39, 38, 37] by associator ?37 ?38 ?39
26103 30049: Id : 16, {_}:
26106 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
26107 [42, 41] by commutator ?41 ?42
26108 30049: Id : 17, {_}:
26109 multiply (additive_inverse ?44) (additive_inverse ?45)
26112 [45, 44] by product_of_inverses ?44 ?45
26113 30049: Id : 18, {_}:
26114 multiply (additive_inverse ?47) ?48
26116 additive_inverse (multiply ?47 ?48)
26117 [48, 47] by inverse_product1 ?47 ?48
26118 30049: Id : 19, {_}:
26119 multiply ?50 (additive_inverse ?51)
26121 additive_inverse (multiply ?50 ?51)
26122 [51, 50] by inverse_product2 ?50 ?51
26123 30049: Id : 20, {_}:
26124 multiply ?53 (add ?54 (additive_inverse ?55))
26126 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
26127 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
26128 30049: Id : 21, {_}:
26129 multiply (add ?57 (additive_inverse ?58)) ?59
26131 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
26132 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
26133 30049: Id : 22, {_}:
26134 multiply (additive_inverse ?61) (add ?62 ?63)
26136 add (additive_inverse (multiply ?61 ?62))
26137 (additive_inverse (multiply ?61 ?63))
26138 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
26139 30049: Id : 23, {_}:
26140 multiply (add ?65 ?66) (additive_inverse ?67)
26142 add (additive_inverse (multiply ?65 ?67))
26143 (additive_inverse (multiply ?66 ?67))
26144 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
26146 30049: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law
26152 30049: additive_identity 9 0 1 3
26153 30049: additive_inverse 22 1 0
26154 30049: commutator 1 2 0
26156 30049: multiply 40 2 0
26157 30049: associator 2 3 1 0,2
26158 NO CLASH, using fixed ground order
26160 30050: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
26161 30050: Id : 3, {_}:
26162 add ?4 additive_identity =>= ?4
26163 [4] by right_additive_identity ?4
26164 30050: Id : 4, {_}:
26165 multiply additive_identity ?6 =>= additive_identity
26166 [6] by left_multiplicative_zero ?6
26167 30050: Id : 5, {_}:
26168 multiply ?8 additive_identity =>= additive_identity
26169 [8] by right_multiplicative_zero ?8
26170 30050: Id : 6, {_}:
26171 add (additive_inverse ?10) ?10 =>= additive_identity
26172 [10] by left_additive_inverse ?10
26173 30050: Id : 7, {_}:
26174 add ?12 (additive_inverse ?12) =>= additive_identity
26175 [12] by right_additive_inverse ?12
26176 30050: Id : 8, {_}:
26177 additive_inverse (additive_inverse ?14) =>= ?14
26178 [14] by additive_inverse_additive_inverse ?14
26179 30050: Id : 9, {_}:
26180 multiply ?16 (add ?17 ?18)
26182 add (multiply ?16 ?17) (multiply ?16 ?18)
26183 [18, 17, 16] by distribute1 ?16 ?17 ?18
26184 30050: Id : 10, {_}:
26185 multiply (add ?20 ?21) ?22
26187 add (multiply ?20 ?22) (multiply ?21 ?22)
26188 [22, 21, 20] by distribute2 ?20 ?21 ?22
26189 30050: Id : 11, {_}:
26190 add ?24 ?25 =?= add ?25 ?24
26191 [25, 24] by commutativity_for_addition ?24 ?25
26192 30050: Id : 12, {_}:
26193 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
26194 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
26195 30050: Id : 13, {_}:
26196 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
26197 [32, 31] by right_alternative ?31 ?32
26198 30050: Id : 14, {_}:
26199 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
26200 [35, 34] by left_alternative ?34 ?35
26201 30050: Id : 15, {_}:
26202 associator ?37 ?38 ?39
26204 add (multiply (multiply ?37 ?38) ?39)
26205 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
26206 [39, 38, 37] by associator ?37 ?38 ?39
26207 30050: Id : 16, {_}:
26210 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
26211 [42, 41] by commutator ?41 ?42
26212 30050: Id : 17, {_}:
26213 multiply (additive_inverse ?44) (additive_inverse ?45)
26216 [45, 44] by product_of_inverses ?44 ?45
26217 30050: Id : 18, {_}:
26218 multiply (additive_inverse ?47) ?48
26220 additive_inverse (multiply ?47 ?48)
26221 [48, 47] by inverse_product1 ?47 ?48
26222 30050: Id : 19, {_}:
26223 multiply ?50 (additive_inverse ?51)
26225 additive_inverse (multiply ?50 ?51)
26226 [51, 50] by inverse_product2 ?50 ?51
26227 30050: Id : 20, {_}:
26228 multiply ?53 (add ?54 (additive_inverse ?55))
26230 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
26231 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
26232 30050: Id : 21, {_}:
26233 multiply (add ?57 (additive_inverse ?58)) ?59
26235 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
26236 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
26237 30050: Id : 22, {_}:
26238 multiply (additive_inverse ?61) (add ?62 ?63)
26240 add (additive_inverse (multiply ?61 ?62))
26241 (additive_inverse (multiply ?61 ?63))
26242 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
26243 30050: Id : 23, {_}:
26244 multiply (add ?65 ?66) (additive_inverse ?67)
26246 add (additive_inverse (multiply ?65 ?67))
26247 (additive_inverse (multiply ?66 ?67))
26248 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
26250 30050: Id : 1, {_}: associator x y x =>= additive_identity [] by prove_flexible_law
26256 30050: additive_identity 9 0 1 3
26257 30050: additive_inverse 22 1 0
26258 30050: commutator 1 2 0
26260 30050: multiply 40 2 0
26261 30050: associator 2 3 1 0,2
26262 % SZS status Timeout for RNG025-7.p
26263 CLASH, statistics insufficient
26265 30088: Id : 2, {_}:
26266 apply (apply (apply s ?3) ?4) ?5
26268 apply (apply ?3 ?5) (apply ?4 ?5)
26269 [5, 4, 3] by s_definition ?3 ?4 ?5
26270 30088: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8
26272 30088: Id : 1, {_}:
26273 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
26274 [1] by prove_fixed_point ?1
26280 30088: f 3 1 3 0,2,2
26281 30088: apply 11 2 3 0,2
26282 CLASH, statistics insufficient
26284 30089: Id : 2, {_}:
26285 apply (apply (apply s ?3) ?4) ?5
26287 apply (apply ?3 ?5) (apply ?4 ?5)
26288 [5, 4, 3] by s_definition ?3 ?4 ?5
26289 30089: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8
26291 30089: Id : 1, {_}:
26292 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
26293 [1] by prove_fixed_point ?1
26299 30089: f 3 1 3 0,2,2
26300 30089: apply 11 2 3 0,2
26301 CLASH, statistics insufficient
26303 30090: Id : 2, {_}:
26304 apply (apply (apply s ?3) ?4) ?5
26306 apply (apply ?3 ?5) (apply ?4 ?5)
26307 [5, 4, 3] by s_definition ?3 ?4 ?5
26308 30090: Id : 3, {_}: apply (apply k ?7) ?8 =>= ?7 [8, 7] by k_definition ?7 ?8
26310 30090: Id : 1, {_}:
26311 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
26312 [1] by prove_fixed_point ?1
26318 30090: f 3 1 3 0,2,2
26319 30090: apply 11 2 3 0,2
26320 % SZS status Timeout for COL006-1.p
26321 NO CLASH, using fixed ground order
26323 30176: Id : 2, {_}:
26324 apply (apply (apply s ?2) ?3) ?4
26326 apply (apply ?2 ?4) (apply ?3 ?4)
26327 [4, 3, 2] by s_definition ?2 ?3 ?4
26328 30176: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
26329 30176: Id : 4, {_}:
26335 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
26336 (apply (apply s (apply k (apply (apply s s) (apply s k))))
26337 (apply (apply s (apply k s)) k))
26338 [] by strong_fixed_point
26340 30176: Id : 1, {_}:
26341 apply strong_fixed_point fixed_pt
26343 apply fixed_pt (apply strong_fixed_point fixed_pt)
26344 [] by prove_strong_fixed_point
26348 30176: strong_fixed_point 3 0 2 1,2
26349 30176: fixed_pt 3 0 3 2,2
26352 30176: apply 29 2 3 0,2
26353 NO CLASH, using fixed ground order
26355 30177: Id : 2, {_}:
26356 apply (apply (apply s ?2) ?3) ?4
26358 apply (apply ?2 ?4) (apply ?3 ?4)
26359 [4, 3, 2] by s_definition ?2 ?3 ?4
26360 30177: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
26361 30177: Id : 4, {_}:
26367 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
26368 (apply (apply s (apply k (apply (apply s s) (apply s k))))
26369 (apply (apply s (apply k s)) k))
26370 [] by strong_fixed_point
26372 30177: Id : 1, {_}:
26373 apply strong_fixed_point fixed_pt
26375 apply fixed_pt (apply strong_fixed_point fixed_pt)
26376 [] by prove_strong_fixed_point
26380 30177: strong_fixed_point 3 0 2 1,2
26381 30177: fixed_pt 3 0 3 2,2
26384 30177: apply 29 2 3 0,2
26385 NO CLASH, using fixed ground order
26387 30178: Id : 2, {_}:
26388 apply (apply (apply s ?2) ?3) ?4
26390 apply (apply ?2 ?4) (apply ?3 ?4)
26391 [4, 3, 2] by s_definition ?2 ?3 ?4
26392 30178: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
26393 30178: Id : 4, {_}:
26399 (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))
26400 (apply (apply s (apply k (apply (apply s s) (apply s k))))
26401 (apply (apply s (apply k s)) k))
26402 [] by strong_fixed_point
26404 30178: Id : 1, {_}:
26405 apply strong_fixed_point fixed_pt
26407 apply fixed_pt (apply strong_fixed_point fixed_pt)
26408 [] by prove_strong_fixed_point
26412 30178: strong_fixed_point 3 0 2 1,2
26413 30178: fixed_pt 3 0 3 2,2
26416 30178: apply 29 2 3 0,2
26417 % SZS status Timeout for COL006-5.p
26418 NO CLASH, using fixed ground order
26420 30201: Id : 2, {_}:
26421 apply (apply (apply s ?2) ?3) ?4
26423 apply (apply ?2 ?4) (apply ?3 ?4)
26424 [4, 3, 2] by s_definition ?2 ?3 ?4
26425 30201: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
26426 30201: Id : 4, {_}:
26432 (apply (apply (apply s s) (apply (apply s k) k))
26433 (apply (apply s s) (apply s k)))))
26434 (apply (apply s (apply k s)) k)
26435 [] by strong_fixed_point
26437 30201: Id : 1, {_}:
26438 apply strong_fixed_point fixed_pt
26440 apply fixed_pt (apply strong_fixed_point fixed_pt)
26441 [] by prove_strong_fixed_point
26445 30201: strong_fixed_point 3 0 2 1,2
26446 30201: fixed_pt 3 0 3 2,2
26449 30201: apply 25 2 3 0,2
26450 NO CLASH, using fixed ground order
26452 30202: Id : 2, {_}:
26453 apply (apply (apply s ?2) ?3) ?4
26455 apply (apply ?2 ?4) (apply ?3 ?4)
26456 [4, 3, 2] by s_definition ?2 ?3 ?4
26457 30202: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
26458 30202: Id : 4, {_}:
26464 (apply (apply (apply s s) (apply (apply s k) k))
26465 (apply (apply s s) (apply s k)))))
26466 (apply (apply s (apply k s)) k)
26467 [] by strong_fixed_point
26469 30202: Id : 1, {_}:
26470 apply strong_fixed_point fixed_pt
26472 apply fixed_pt (apply strong_fixed_point fixed_pt)
26473 [] by prove_strong_fixed_point
26477 30202: strong_fixed_point 3 0 2 1,2
26478 30202: fixed_pt 3 0 3 2,2
26481 30202: apply 25 2 3 0,2
26482 NO CLASH, using fixed ground order
26484 30203: Id : 2, {_}:
26485 apply (apply (apply s ?2) ?3) ?4
26487 apply (apply ?2 ?4) (apply ?3 ?4)
26488 [4, 3, 2] by s_definition ?2 ?3 ?4
26489 30203: Id : 3, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7
26490 30203: Id : 4, {_}:
26496 (apply (apply (apply s s) (apply (apply s k) k))
26497 (apply (apply s s) (apply s k)))))
26498 (apply (apply s (apply k s)) k)
26499 [] by strong_fixed_point
26501 30203: Id : 1, {_}:
26502 apply strong_fixed_point fixed_pt
26504 apply fixed_pt (apply strong_fixed_point fixed_pt)
26505 [] by prove_strong_fixed_point
26509 30203: strong_fixed_point 3 0 2 1,2
26510 30203: fixed_pt 3 0 3 2,2
26513 30203: apply 25 2 3 0,2
26514 % SZS status Timeout for COL006-7.p
26515 NO CLASH, using fixed ground order
26517 30224: Id : 2, {_}:
26518 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
26519 [4, 3, 2] by b_definition ?2 ?3 ?4
26520 30224: Id : 3, {_}:
26521 apply (apply (apply n ?6) ?7) ?8
26523 apply (apply (apply ?6 ?8) ?7) ?8
26524 [8, 7, 6] by n_definition ?6 ?7 ?8
26525 NO CLASH, using fixed ground order
26527 30225: Id : 2, {_}:
26528 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
26529 [4, 3, 2] by b_definition ?2 ?3 ?4
26530 30225: Id : 3, {_}:
26531 apply (apply (apply n ?6) ?7) ?8
26533 apply (apply (apply ?6 ?8) ?7) ?8
26534 [8, 7, 6] by n_definition ?6 ?7 ?8
26535 30225: Id : 4, {_}:
26545 (apply (apply n (apply (apply b b) n)) n))) n)) b)) b
26546 [] by strong_fixed_point
26548 30225: Id : 1, {_}:
26549 apply strong_fixed_point fixed_pt
26551 apply fixed_pt (apply strong_fixed_point fixed_pt)
26552 [] by prove_strong_fixed_point
26556 30225: strong_fixed_point 3 0 2 1,2
26557 30225: fixed_pt 3 0 3 2,2
26560 30225: apply 26 2 3 0,2
26561 NO CLASH, using fixed ground order
26563 30226: Id : 2, {_}:
26564 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
26565 [4, 3, 2] by b_definition ?2 ?3 ?4
26566 30226: Id : 3, {_}:
26567 apply (apply (apply n ?6) ?7) ?8
26569 apply (apply (apply ?6 ?8) ?7) ?8
26570 [8, 7, 6] by n_definition ?6 ?7 ?8
26571 30226: Id : 4, {_}:
26581 (apply (apply n (apply (apply b b) n)) n))) n)) b)) b
26582 [] by strong_fixed_point
26584 30226: Id : 1, {_}:
26585 apply strong_fixed_point fixed_pt
26587 apply fixed_pt (apply strong_fixed_point fixed_pt)
26588 [] by prove_strong_fixed_point
26592 30226: strong_fixed_point 3 0 2 1,2
26593 30226: fixed_pt 3 0 3 2,2
26596 30226: apply 26 2 3 0,2
26597 30224: Id : 4, {_}:
26607 (apply (apply n (apply (apply b b) n)) n))) n)) b)) b
26608 [] by strong_fixed_point
26610 30224: Id : 1, {_}:
26611 apply strong_fixed_point fixed_pt
26613 apply fixed_pt (apply strong_fixed_point fixed_pt)
26614 [] by prove_strong_fixed_point
26618 30224: strong_fixed_point 3 0 2 1,2
26619 30224: fixed_pt 3 0 3 2,2
26622 30224: apply 26 2 3 0,2
26623 % SZS status Timeout for COL044-6.p
26624 NO CLASH, using fixed ground order
26626 30249: Id : 2, {_}:
26627 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
26628 [4, 3, 2] by b_definition ?2 ?3 ?4
26629 30249: Id : 3, {_}:
26630 apply (apply (apply n ?6) ?7) ?8
26632 apply (apply (apply ?6 ?8) ?7) ?8
26633 [8, 7, 6] by n_definition ?6 ?7 ?8
26634 30249: Id : 4, {_}:
26644 (apply (apply n (apply n (apply b b))) n))) n)) b)) b
26645 [] by strong_fixed_point
26647 30249: Id : 1, {_}:
26648 apply strong_fixed_point fixed_pt
26650 apply fixed_pt (apply strong_fixed_point fixed_pt)
26651 [] by prove_strong_fixed_point
26655 30249: strong_fixed_point 3 0 2 1,2
26656 30249: fixed_pt 3 0 3 2,2
26659 30249: apply 26 2 3 0,2
26660 NO CLASH, using fixed ground order
26662 30250: Id : 2, {_}:
26663 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
26664 [4, 3, 2] by b_definition ?2 ?3 ?4
26665 30250: Id : 3, {_}:
26666 apply (apply (apply n ?6) ?7) ?8
26668 apply (apply (apply ?6 ?8) ?7) ?8
26669 [8, 7, 6] by n_definition ?6 ?7 ?8
26670 30250: Id : 4, {_}:
26680 (apply (apply n (apply n (apply b b))) n))) n)) b)) b
26681 [] by strong_fixed_point
26683 30250: Id : 1, {_}:
26684 apply strong_fixed_point fixed_pt
26686 apply fixed_pt (apply strong_fixed_point fixed_pt)
26687 [] by prove_strong_fixed_point
26691 30250: strong_fixed_point 3 0 2 1,2
26692 30250: fixed_pt 3 0 3 2,2
26695 30250: apply 26 2 3 0,2
26696 NO CLASH, using fixed ground order
26698 30251: Id : 2, {_}:
26699 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
26700 [4, 3, 2] by b_definition ?2 ?3 ?4
26701 30251: Id : 3, {_}:
26702 apply (apply (apply n ?6) ?7) ?8
26704 apply (apply (apply ?6 ?8) ?7) ?8
26705 [8, 7, 6] by n_definition ?6 ?7 ?8
26706 30251: Id : 4, {_}:
26716 (apply (apply n (apply n (apply b b))) n))) n)) b)) b
26717 [] by strong_fixed_point
26719 30251: Id : 1, {_}:
26720 apply strong_fixed_point fixed_pt
26722 apply fixed_pt (apply strong_fixed_point fixed_pt)
26723 [] by prove_strong_fixed_point
26727 30251: strong_fixed_point 3 0 2 1,2
26728 30251: fixed_pt 3 0 3 2,2
26731 30251: apply 26 2 3 0,2
26732 % SZS status Timeout for COL044-7.p
26733 CLASH, statistics insufficient
26735 30275: Id : 2, {_}:
26736 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
26737 [5, 4, 3] by b_definition ?3 ?4 ?5
26738 30275: Id : 3, {_}:
26739 apply (apply t ?7) ?8 =>= apply ?8 ?7
26740 [8, 7] by t_definition ?7 ?8
26742 30275: Id : 1, {_}:
26743 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
26745 apply (apply (h ?1) (f ?1)) (g ?1)
26746 [1] by prove_v_combinator ?1
26752 30275: f 2 1 2 0,2,1,1,2
26753 30275: g 2 1 2 0,2,1,2
26754 30275: h 2 1 2 0,2,2
26755 30275: apply 13 2 5 0,2
26756 CLASH, statistics insufficient
26758 30276: Id : 2, {_}:
26759 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
26760 [5, 4, 3] by b_definition ?3 ?4 ?5
26761 30276: Id : 3, {_}:
26762 apply (apply t ?7) ?8 =>= apply ?8 ?7
26763 [8, 7] by t_definition ?7 ?8
26765 30276: Id : 1, {_}:
26766 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
26768 apply (apply (h ?1) (f ?1)) (g ?1)
26769 [1] by prove_v_combinator ?1
26775 30276: f 2 1 2 0,2,1,1,2
26776 30276: g 2 1 2 0,2,1,2
26777 30276: h 2 1 2 0,2,2
26778 30276: apply 13 2 5 0,2
26779 CLASH, statistics insufficient
26781 30277: Id : 2, {_}:
26782 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
26783 [5, 4, 3] by b_definition ?3 ?4 ?5
26784 30277: Id : 3, {_}:
26785 apply (apply t ?7) ?8 =?= apply ?8 ?7
26786 [8, 7] by t_definition ?7 ?8
26788 30277: Id : 1, {_}:
26789 apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)
26791 apply (apply (h ?1) (f ?1)) (g ?1)
26792 [1] by prove_v_combinator ?1
26798 30277: f 2 1 2 0,2,1,1,2
26799 30277: g 2 1 2 0,2,1,2
26800 30277: h 2 1 2 0,2,2
26801 30277: apply 13 2 5 0,2
26805 Found proof, 34.381663s
26806 % SZS status Unsatisfiable for COL064-1.p
26807 % SZS output start CNFRefutation for COL064-1.p
26808 Id : 3, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8
26809 Id : 2, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5
26810 Id : 10997, {_}: apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) [] by Super 10996 with 3 at 2
26811 Id : 10996, {_}: apply (apply ?37685 (g (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t))))) (apply (h (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t))))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) ?37685))) (apply (apply b b) (apply (apply b b) t)))) [37685] by Super 3193 with 2 at 2
26812 Id : 3193, {_}: apply (apply (apply ?10612 (apply ?10613 (g (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t)))))) (h (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b ?10612) ?10613))) (apply (apply b b) (apply (apply b b) t)))) [10613, 10612] by Super 3188 with 2 at 1,1,2
26813 Id : 3188, {_}: apply (apply (apply ?10602 (g (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t))))) (h (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t ?10602)) (apply (apply b b) (apply (apply b b) t)))) [10602] by Super 3164 with 3 at 2
26814 Id : 3164, {_}: apply (apply ?10539 (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (apply (apply ?10540 (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) =>= apply (apply (h (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) (f (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539))))) (g (apply (apply b (apply t ?10540)) (apply (apply b b) (apply (apply b b) ?10539)))) [10540, 10539] by Super 442 with 2 at 2
26815 Id : 442, {_}: apply (apply (apply ?1394 (apply ?1395 (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (apply ?1396 (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))))) (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) =>= apply (apply (h (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) (f (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395))))) (g (apply (apply b (apply t ?1396)) (apply (apply b b) (apply (apply b ?1394) ?1395)))) [1396, 1395, 1394] by Super 277 with 2 at 1,1,2
26816 Id : 277, {_}: apply (apply (apply ?900 (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (apply ?901 (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))))) (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) =>= apply (apply (h (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) (f (apply (apply b (apply t ?901)) (apply (apply b b) ?900)))) (g (apply (apply b (apply t ?901)) (apply (apply b b) ?900))) [901, 900] by Super 29 with 2 at 1,2
26817 Id : 29, {_}: apply (apply (apply (apply ?85 (apply ?86 (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))))) ?87) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) =>= apply (apply (h (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) (f (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86)))) (g (apply (apply b (apply t ?87)) (apply (apply b ?85) ?86))) [87, 86, 85] by Super 13 with 3 at 1,1,2
26818 Id : 13, {_}: apply (apply (apply ?33 (apply ?34 (apply ?35 (f (apply (apply b ?33) (apply (apply b ?34) ?35)))))) (g (apply (apply b ?33) (apply (apply b ?34) ?35)))) (h (apply (apply b ?33) (apply (apply b ?34) ?35))) =>= apply (apply (h (apply (apply b ?33) (apply (apply b ?34) ?35))) (f (apply (apply b ?33) (apply (apply b ?34) ?35)))) (g (apply (apply b ?33) (apply (apply b ?34) ?35))) [35, 34, 33] by Super 6 with 2 at 2,1,1,2
26819 Id : 6, {_}: apply (apply (apply ?18 (apply ?19 (f (apply (apply b ?18) ?19)))) (g (apply (apply b ?18) ?19))) (h (apply (apply b ?18) ?19)) =>= apply (apply (h (apply (apply b ?18) ?19)) (f (apply (apply b ?18) ?19))) (g (apply (apply b ?18) ?19)) [19, 18] by Super 1 with 2 at 1,1,2
26820 Id : 1, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1
26821 % SZS output end CNFRefutation for COL064-1.p
26822 30275: solved COL064-1.p in 34.366147 using nrkbo
26823 30275: status Unsatisfiable for COL064-1.p
26824 CLASH, statistics insufficient
26826 30288: Id : 2, {_}:
26827 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
26828 [5, 4, 3] by b_definition ?3 ?4 ?5
26829 30288: Id : 3, {_}:
26830 apply (apply t ?7) ?8 =>= apply ?8 ?7
26831 [8, 7] by t_definition ?7 ?8
26833 30288: Id : 1, {_}:
26834 apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1)
26836 apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1))
26837 [1] by prove_g_combinator ?1
26843 30288: f 2 1 2 0,2,1,1,1,2
26844 30288: g 2 1 2 0,2,1,1,2
26845 30288: h 2 1 2 0,2,1,2
26846 30288: i 2 1 2 0,2,2
26847 30288: apply 15 2 7 0,2
26848 CLASH, statistics insufficient
26850 30289: Id : 2, {_}:
26851 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
26852 [5, 4, 3] by b_definition ?3 ?4 ?5
26853 30289: Id : 3, {_}:
26854 apply (apply t ?7) ?8 =>= apply ?8 ?7
26855 [8, 7] by t_definition ?7 ?8
26857 30289: Id : 1, {_}:
26858 apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1)
26860 apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1))
26861 [1] by prove_g_combinator ?1
26867 30289: f 2 1 2 0,2,1,1,1,2
26868 30289: g 2 1 2 0,2,1,1,2
26869 30289: h 2 1 2 0,2,1,2
26870 30289: i 2 1 2 0,2,2
26871 30289: apply 15 2 7 0,2
26872 CLASH, statistics insufficient
26874 30290: Id : 2, {_}:
26875 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
26876 [5, 4, 3] by b_definition ?3 ?4 ?5
26877 30290: Id : 3, {_}:
26878 apply (apply t ?7) ?8 =?= apply ?8 ?7
26879 [8, 7] by t_definition ?7 ?8
26881 30290: Id : 1, {_}:
26882 apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1)
26884 apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1))
26885 [1] by prove_g_combinator ?1
26891 30290: f 2 1 2 0,2,1,1,1,2
26892 30290: g 2 1 2 0,2,1,1,2
26893 30290: h 2 1 2 0,2,1,2
26894 30290: i 2 1 2 0,2,2
26895 30290: apply 15 2 7 0,2
26896 % SZS status Timeout for COL065-1.p
26897 CLASH, statistics insufficient
26899 30319: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
26900 30319: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
26901 30319: Id : 4, {_}:
26902 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
26903 [8, 7, 6] by associativity ?6 ?7 ?8
26904 30319: Id : 5, {_}:
26905 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
26906 [11, 10] by symmetry_of_glb ?10 ?11
26907 30319: Id : 6, {_}:
26908 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
26909 [14, 13] by symmetry_of_lub ?13 ?14
26910 30319: Id : 7, {_}:
26911 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
26913 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
26914 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
26915 30319: Id : 8, {_}:
26916 least_upper_bound ?20 (least_upper_bound ?21 ?22)
26918 least_upper_bound (least_upper_bound ?20 ?21) ?22
26919 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
26920 30319: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
26921 30319: Id : 10, {_}:
26922 greatest_lower_bound ?26 ?26 =>= ?26
26923 [26] by idempotence_of_gld ?26
26924 30319: Id : 11, {_}:
26925 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
26926 [29, 28] by lub_absorbtion ?28 ?29
26927 30319: Id : 12, {_}:
26928 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
26929 [32, 31] by glb_absorbtion ?31 ?32
26930 30319: Id : 13, {_}:
26931 multiply ?34 (least_upper_bound ?35 ?36)
26933 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
26934 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
26935 30319: Id : 14, {_}:
26936 multiply ?38 (greatest_lower_bound ?39 ?40)
26938 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
26939 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
26940 30319: Id : 15, {_}:
26941 multiply (least_upper_bound ?42 ?43) ?44
26943 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
26944 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
26945 30319: Id : 16, {_}:
26946 multiply (greatest_lower_bound ?46 ?47) ?48
26948 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
26949 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
26950 30319: Id : 17, {_}:
26951 greatest_lower_bound a c =>= greatest_lower_bound b c
26953 30319: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_2
26955 30319: Id : 1, {_}: a =>= b [] by prove_p12
26959 30319: identity 2 0 0
26963 30319: inverse 1 1 0
26964 30319: greatest_lower_bound 15 2 0
26965 30319: least_upper_bound 15 2 0
26966 30319: multiply 18 2 0
26967 CLASH, statistics insufficient
26969 30320: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
26970 30320: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
26971 30320: Id : 4, {_}:
26972 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
26973 [8, 7, 6] by associativity ?6 ?7 ?8
26974 30320: Id : 5, {_}:
26975 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
26976 [11, 10] by symmetry_of_glb ?10 ?11
26977 30320: Id : 6, {_}:
26978 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
26979 [14, 13] by symmetry_of_lub ?13 ?14
26980 30320: Id : 7, {_}:
26981 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
26983 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
26984 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
26985 30320: Id : 8, {_}:
26986 least_upper_bound ?20 (least_upper_bound ?21 ?22)
26988 least_upper_bound (least_upper_bound ?20 ?21) ?22
26989 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
26990 30320: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
26991 30320: Id : 10, {_}:
26992 greatest_lower_bound ?26 ?26 =>= ?26
26993 [26] by idempotence_of_gld ?26
26994 30320: Id : 11, {_}:
26995 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
26996 [29, 28] by lub_absorbtion ?28 ?29
26997 30320: Id : 12, {_}:
26998 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
26999 [32, 31] by glb_absorbtion ?31 ?32
27000 30320: Id : 13, {_}:
27001 multiply ?34 (least_upper_bound ?35 ?36)
27003 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
27004 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
27005 30320: Id : 14, {_}:
27006 multiply ?38 (greatest_lower_bound ?39 ?40)
27008 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
27009 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
27010 30320: Id : 15, {_}:
27011 multiply (least_upper_bound ?42 ?43) ?44
27013 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
27014 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
27015 30320: Id : 16, {_}:
27016 multiply (greatest_lower_bound ?46 ?47) ?48
27018 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
27019 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
27020 30320: Id : 17, {_}:
27021 greatest_lower_bound a c =>= greatest_lower_bound b c
27023 30320: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_2
27025 30320: Id : 1, {_}: a =>= b [] by prove_p12
27029 30320: identity 2 0 0
27033 30320: inverse 1 1 0
27034 30320: greatest_lower_bound 15 2 0
27035 30320: least_upper_bound 15 2 0
27036 30320: multiply 18 2 0
27037 CLASH, statistics insufficient
27039 30321: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
27040 30321: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
27041 30321: Id : 4, {_}:
27042 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
27043 [8, 7, 6] by associativity ?6 ?7 ?8
27044 30321: Id : 5, {_}:
27045 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
27046 [11, 10] by symmetry_of_glb ?10 ?11
27047 30321: Id : 6, {_}:
27048 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
27049 [14, 13] by symmetry_of_lub ?13 ?14
27050 30321: Id : 7, {_}:
27051 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
27053 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
27054 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
27055 30321: Id : 8, {_}:
27056 least_upper_bound ?20 (least_upper_bound ?21 ?22)
27058 least_upper_bound (least_upper_bound ?20 ?21) ?22
27059 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
27060 30321: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
27061 30321: Id : 10, {_}:
27062 greatest_lower_bound ?26 ?26 =>= ?26
27063 [26] by idempotence_of_gld ?26
27064 30321: Id : 11, {_}:
27065 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
27066 [29, 28] by lub_absorbtion ?28 ?29
27067 30321: Id : 12, {_}:
27068 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
27069 [32, 31] by glb_absorbtion ?31 ?32
27070 30321: Id : 13, {_}:
27071 multiply ?34 (least_upper_bound ?35 ?36)
27073 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
27074 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
27075 30321: Id : 14, {_}:
27076 multiply ?38 (greatest_lower_bound ?39 ?40)
27078 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
27079 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
27080 30321: Id : 15, {_}:
27081 multiply (least_upper_bound ?42 ?43) ?44
27083 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
27084 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
27085 30321: Id : 16, {_}:
27086 multiply (greatest_lower_bound ?46 ?47) ?48
27088 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
27089 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
27090 30321: Id : 17, {_}:
27091 greatest_lower_bound a c =>= greatest_lower_bound b c
27093 30321: Id : 18, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_2
27095 30321: Id : 1, {_}: a =>= b [] by prove_p12
27099 30321: identity 2 0 0
27103 30321: inverse 1 1 0
27104 30321: greatest_lower_bound 15 2 0
27105 30321: least_upper_bound 15 2 0
27106 30321: multiply 18 2 0
27107 % SZS status Timeout for GRP181-1.p
27108 CLASH, statistics insufficient
27110 30347: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
27111 30347: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
27112 30347: Id : 4, {_}:
27113 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
27114 [8, 7, 6] by associativity ?6 ?7 ?8
27115 30347: Id : 5, {_}:
27116 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
27117 [11, 10] by symmetry_of_glb ?10 ?11
27118 30347: Id : 6, {_}:
27119 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
27120 [14, 13] by symmetry_of_lub ?13 ?14
27121 30347: Id : 7, {_}:
27122 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
27124 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
27125 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
27126 30347: Id : 8, {_}:
27127 least_upper_bound ?20 (least_upper_bound ?21 ?22)
27129 least_upper_bound (least_upper_bound ?20 ?21) ?22
27130 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
27131 30347: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
27132 30347: Id : 10, {_}:
27133 greatest_lower_bound ?26 ?26 =>= ?26
27134 [26] by idempotence_of_gld ?26
27135 30347: Id : 11, {_}:
27136 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
27137 [29, 28] by lub_absorbtion ?28 ?29
27138 30347: Id : 12, {_}:
27139 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
27140 [32, 31] by glb_absorbtion ?31 ?32
27141 30347: Id : 13, {_}:
27142 multiply ?34 (least_upper_bound ?35 ?36)
27144 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
27145 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
27146 30347: Id : 14, {_}:
27147 multiply ?38 (greatest_lower_bound ?39 ?40)
27149 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
27150 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
27151 30347: Id : 15, {_}:
27152 multiply (least_upper_bound ?42 ?43) ?44
27154 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
27155 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
27156 30347: Id : 16, {_}:
27157 multiply (greatest_lower_bound ?46 ?47) ?48
27159 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
27160 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
27161 30347: Id : 17, {_}: inverse identity =>= identity [] by p12_1
27162 30347: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12_2 ?51
27163 30347: Id : 19, {_}:
27164 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
27165 [54, 53] by p12_3 ?53 ?54
27166 30347: Id : 20, {_}:
27167 greatest_lower_bound a c =>= greatest_lower_bound b c
27169 30347: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_5
27171 30347: Id : 1, {_}: a =>= b [] by prove_p12
27177 30347: identity 4 0 0
27179 30347: inverse 7 1 0
27180 30347: greatest_lower_bound 15 2 0
27181 30347: least_upper_bound 15 2 0
27182 30347: multiply 20 2 0
27183 CLASH, statistics insufficient
27185 30348: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
27186 30348: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
27187 30348: Id : 4, {_}:
27188 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
27189 [8, 7, 6] by associativity ?6 ?7 ?8
27190 30348: Id : 5, {_}:
27191 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
27192 [11, 10] by symmetry_of_glb ?10 ?11
27193 30348: Id : 6, {_}:
27194 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
27195 [14, 13] by symmetry_of_lub ?13 ?14
27196 30348: Id : 7, {_}:
27197 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
27199 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
27200 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
27201 30348: Id : 8, {_}:
27202 least_upper_bound ?20 (least_upper_bound ?21 ?22)
27204 least_upper_bound (least_upper_bound ?20 ?21) ?22
27205 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
27206 30348: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
27207 30348: Id : 10, {_}:
27208 greatest_lower_bound ?26 ?26 =>= ?26
27209 [26] by idempotence_of_gld ?26
27210 30348: Id : 11, {_}:
27211 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
27212 [29, 28] by lub_absorbtion ?28 ?29
27213 30348: Id : 12, {_}:
27214 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
27215 [32, 31] by glb_absorbtion ?31 ?32
27216 30348: Id : 13, {_}:
27217 multiply ?34 (least_upper_bound ?35 ?36)
27219 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
27220 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
27221 30348: Id : 14, {_}:
27222 multiply ?38 (greatest_lower_bound ?39 ?40)
27224 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
27225 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
27226 30348: Id : 15, {_}:
27227 multiply (least_upper_bound ?42 ?43) ?44
27229 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
27230 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
27231 30348: Id : 16, {_}:
27232 multiply (greatest_lower_bound ?46 ?47) ?48
27234 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
27235 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
27236 30348: Id : 17, {_}: inverse identity =>= identity [] by p12_1
27237 30348: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12_2 ?51
27238 30348: Id : 19, {_}:
27239 inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53)
27240 [54, 53] by p12_3 ?53 ?54
27241 30348: Id : 20, {_}:
27242 greatest_lower_bound a c =>= greatest_lower_bound b c
27244 30348: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_5
27246 30348: Id : 1, {_}: a =>= b [] by prove_p12
27252 30348: identity 4 0 0
27254 30348: inverse 7 1 0
27255 30348: greatest_lower_bound 15 2 0
27256 30348: least_upper_bound 15 2 0
27257 30348: multiply 20 2 0
27258 CLASH, statistics insufficient
27260 30349: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
27261 30349: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
27262 30349: Id : 4, {_}:
27263 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
27264 [8, 7, 6] by associativity ?6 ?7 ?8
27265 30349: Id : 5, {_}:
27266 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
27267 [11, 10] by symmetry_of_glb ?10 ?11
27268 30349: Id : 6, {_}:
27269 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
27270 [14, 13] by symmetry_of_lub ?13 ?14
27271 30349: Id : 7, {_}:
27272 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
27274 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
27275 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
27276 30349: Id : 8, {_}:
27277 least_upper_bound ?20 (least_upper_bound ?21 ?22)
27279 least_upper_bound (least_upper_bound ?20 ?21) ?22
27280 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
27281 30349: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
27282 30349: Id : 10, {_}:
27283 greatest_lower_bound ?26 ?26 =>= ?26
27284 [26] by idempotence_of_gld ?26
27285 30349: Id : 11, {_}:
27286 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
27287 [29, 28] by lub_absorbtion ?28 ?29
27288 30349: Id : 12, {_}:
27289 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
27290 [32, 31] by glb_absorbtion ?31 ?32
27291 30349: Id : 13, {_}:
27292 multiply ?34 (least_upper_bound ?35 ?36)
27294 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
27295 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
27296 30349: Id : 14, {_}:
27297 multiply ?38 (greatest_lower_bound ?39 ?40)
27299 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
27300 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
27301 30349: Id : 15, {_}:
27302 multiply (least_upper_bound ?42 ?43) ?44
27304 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
27305 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
27306 30349: Id : 16, {_}:
27307 multiply (greatest_lower_bound ?46 ?47) ?48
27309 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
27310 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
27311 30349: Id : 17, {_}: inverse identity =>= identity [] by p12_1
27312 30349: Id : 18, {_}: inverse (inverse ?51) =>= ?51 [51] by p12_2 ?51
27313 30349: Id : 19, {_}:
27314 inverse (multiply ?53 ?54) =?= multiply (inverse ?54) (inverse ?53)
27315 [54, 53] by p12_3 ?53 ?54
27316 30349: Id : 20, {_}:
27317 greatest_lower_bound a c =>= greatest_lower_bound b c
27319 30349: Id : 21, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12_5
27321 30349: Id : 1, {_}: a =>= b [] by prove_p12
27327 30349: identity 4 0 0
27329 30349: inverse 7 1 0
27330 30349: greatest_lower_bound 15 2 0
27331 30349: least_upper_bound 15 2 0
27332 30349: multiply 20 2 0
27333 % SZS status Timeout for GRP181-2.p
27334 NO CLASH, using fixed ground order
27336 30391: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
27337 30391: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
27338 30391: Id : 4, {_}:
27339 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
27340 [8, 7, 6] by associativity ?6 ?7 ?8
27341 30391: Id : 5, {_}:
27342 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
27343 [11, 10] by symmetry_of_glb ?10 ?11
27344 30391: Id : 6, {_}:
27345 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
27346 [14, 13] by symmetry_of_lub ?13 ?14
27347 30391: Id : 7, {_}:
27348 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
27350 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
27351 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
27352 30391: Id : 8, {_}:
27353 least_upper_bound ?20 (least_upper_bound ?21 ?22)
27355 least_upper_bound (least_upper_bound ?20 ?21) ?22
27356 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
27357 30391: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
27358 30391: Id : 10, {_}:
27359 greatest_lower_bound ?26 ?26 =>= ?26
27360 [26] by idempotence_of_gld ?26
27361 30391: Id : 11, {_}:
27362 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
27363 [29, 28] by lub_absorbtion ?28 ?29
27364 30391: Id : 12, {_}:
27365 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
27366 [32, 31] by glb_absorbtion ?31 ?32
27367 30391: Id : 13, {_}:
27368 multiply ?34 (least_upper_bound ?35 ?36)
27370 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
27371 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
27372 30391: Id : 14, {_}:
27373 multiply ?38 (greatest_lower_bound ?39 ?40)
27375 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
27376 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
27377 30391: Id : 15, {_}:
27378 multiply (least_upper_bound ?42 ?43) ?44
27380 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
27381 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
27382 30391: Id : 16, {_}:
27383 multiply (greatest_lower_bound ?46 ?47) ?48
27385 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
27386 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
27387 30391: Id : 17, {_}:
27388 greatest_lower_bound (least_upper_bound a (inverse a))
27389 (least_upper_bound b (inverse b))
27394 30391: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_p33
27398 30391: identity 3 0 0
27401 30391: inverse 3 1 0
27402 30391: greatest_lower_bound 14 2 0
27403 30391: least_upper_bound 15 2 0
27404 30391: multiply 20 2 2 0,2
27405 NO CLASH, using fixed ground order
27407 30392: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
27408 30392: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
27409 30392: Id : 4, {_}:
27410 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
27411 [8, 7, 6] by associativity ?6 ?7 ?8
27412 30392: Id : 5, {_}:
27413 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
27414 [11, 10] by symmetry_of_glb ?10 ?11
27415 30392: Id : 6, {_}:
27416 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
27417 [14, 13] by symmetry_of_lub ?13 ?14
27418 30392: Id : 7, {_}:
27419 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
27421 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
27422 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
27423 30392: Id : 8, {_}:
27424 least_upper_bound ?20 (least_upper_bound ?21 ?22)
27426 least_upper_bound (least_upper_bound ?20 ?21) ?22
27427 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
27428 30392: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
27429 30392: Id : 10, {_}:
27430 greatest_lower_bound ?26 ?26 =>= ?26
27431 [26] by idempotence_of_gld ?26
27432 30392: Id : 11, {_}:
27433 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
27434 [29, 28] by lub_absorbtion ?28 ?29
27435 NO CLASH, using fixed ground order
27437 30393: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
27438 30393: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
27439 30393: Id : 4, {_}:
27440 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
27441 [8, 7, 6] by associativity ?6 ?7 ?8
27442 30393: Id : 5, {_}:
27443 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
27444 [11, 10] by symmetry_of_glb ?10 ?11
27445 30393: Id : 6, {_}:
27446 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
27447 [14, 13] by symmetry_of_lub ?13 ?14
27448 30393: Id : 7, {_}:
27449 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
27451 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
27452 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
27453 30393: Id : 8, {_}:
27454 least_upper_bound ?20 (least_upper_bound ?21 ?22)
27456 least_upper_bound (least_upper_bound ?20 ?21) ?22
27457 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
27458 30393: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
27459 30393: Id : 10, {_}:
27460 greatest_lower_bound ?26 ?26 =>= ?26
27461 [26] by idempotence_of_gld ?26
27462 30393: Id : 11, {_}:
27463 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
27464 [29, 28] by lub_absorbtion ?28 ?29
27465 30393: Id : 12, {_}:
27466 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
27467 [32, 31] by glb_absorbtion ?31 ?32
27468 30393: Id : 13, {_}:
27469 multiply ?34 (least_upper_bound ?35 ?36)
27471 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
27472 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
27473 30393: Id : 14, {_}:
27474 multiply ?38 (greatest_lower_bound ?39 ?40)
27476 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
27477 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
27478 30393: Id : 15, {_}:
27479 multiply (least_upper_bound ?42 ?43) ?44
27481 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
27482 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
27483 30393: Id : 16, {_}:
27484 multiply (greatest_lower_bound ?46 ?47) ?48
27486 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
27487 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
27488 30393: Id : 17, {_}:
27489 greatest_lower_bound (least_upper_bound a (inverse a))
27490 (least_upper_bound b (inverse b))
27495 30393: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_p33
27499 30393: identity 3 0 0
27502 30393: inverse 3 1 0
27503 30393: greatest_lower_bound 14 2 0
27504 30393: least_upper_bound 15 2 0
27505 30393: multiply 20 2 2 0,2
27506 30392: Id : 12, {_}:
27507 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
27508 [32, 31] by glb_absorbtion ?31 ?32
27509 30392: Id : 13, {_}:
27510 multiply ?34 (least_upper_bound ?35 ?36)
27512 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
27513 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
27514 30392: Id : 14, {_}:
27515 multiply ?38 (greatest_lower_bound ?39 ?40)
27517 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
27518 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
27519 30392: Id : 15, {_}:
27520 multiply (least_upper_bound ?42 ?43) ?44
27522 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
27523 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
27524 30392: Id : 16, {_}:
27525 multiply (greatest_lower_bound ?46 ?47) ?48
27527 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
27528 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
27529 30392: Id : 17, {_}:
27530 greatest_lower_bound (least_upper_bound a (inverse a))
27531 (least_upper_bound b (inverse b))
27536 30392: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_p33
27540 30392: identity 3 0 0
27543 30392: inverse 3 1 0
27544 30392: greatest_lower_bound 14 2 0
27545 30392: least_upper_bound 15 2 0
27546 30392: multiply 20 2 2 0,2
27547 % SZS status Timeout for GRP187-1.p
27548 NO CLASH, using fixed ground order
27550 30417: Id : 2, {_}:
27555 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27556 (multiply (inverse (multiply ?4 ?5))
27559 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27563 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27565 30417: Id : 1, {_}:
27566 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
27567 [] by prove_these_axioms_1
27571 30417: a1 2 0 2 1,1,2
27572 30417: b1 2 0 2 1,1,3
27573 30417: inverse 9 1 2 0,1,2
27574 30417: multiply 12 2 2 0,2
27575 NO CLASH, using fixed ground order
27577 30418: Id : 2, {_}:
27582 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27583 (multiply (inverse (multiply ?4 ?5))
27586 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27590 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27592 30418: Id : 1, {_}:
27593 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
27594 [] by prove_these_axioms_1
27598 30418: a1 2 0 2 1,1,2
27599 30418: b1 2 0 2 1,1,3
27600 30418: inverse 9 1 2 0,1,2
27601 30418: multiply 12 2 2 0,2
27602 NO CLASH, using fixed ground order
27604 30419: Id : 2, {_}:
27609 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27610 (multiply (inverse (multiply ?4 ?5))
27613 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27617 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27619 30419: Id : 1, {_}:
27620 multiply (inverse a1) a1 =<= multiply (inverse b1) b1
27621 [] by prove_these_axioms_1
27625 30419: a1 2 0 2 1,1,2
27626 30419: b1 2 0 2 1,1,3
27627 30419: inverse 9 1 2 0,1,2
27628 30419: multiply 12 2 2 0,2
27629 % SZS status Timeout for GRP505-1.p
27630 NO CLASH, using fixed ground order
27632 30445: Id : 2, {_}:
27637 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27638 (multiply (inverse (multiply ?4 ?5))
27641 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27645 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27647 30445: Id : 1, {_}:
27648 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
27649 [] by prove_these_axioms_3
27653 30445: a3 2 0 2 1,1,2
27654 30445: b3 2 0 2 2,1,2
27655 30445: c3 2 0 2 2,2
27656 30445: inverse 7 1 0
27657 30445: multiply 14 2 4 0,2
27658 NO CLASH, using fixed ground order
27660 30446: Id : 2, {_}:
27665 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27666 (multiply (inverse (multiply ?4 ?5))
27669 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27673 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27675 30446: Id : 1, {_}:
27676 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
27677 [] by prove_these_axioms_3
27681 30446: a3 2 0 2 1,1,2
27682 30446: b3 2 0 2 2,1,2
27683 30446: c3 2 0 2 2,2
27684 30446: inverse 7 1 0
27685 30446: multiply 14 2 4 0,2
27686 NO CLASH, using fixed ground order
27688 30447: Id : 2, {_}:
27693 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27694 (multiply (inverse (multiply ?4 ?5))
27697 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27701 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27703 30447: Id : 1, {_}:
27704 multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3)
27705 [] by prove_these_axioms_3
27709 30447: a3 2 0 2 1,1,2
27710 30447: b3 2 0 2 2,1,2
27711 30447: c3 2 0 2 2,2
27712 30447: inverse 7 1 0
27713 30447: multiply 14 2 4 0,2
27714 % SZS status Timeout for GRP507-1.p
27715 NO CLASH, using fixed ground order
27717 30481: Id : 2, {_}:
27722 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27723 (multiply (inverse (multiply ?4 ?5))
27726 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27730 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27732 30481: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_these_axioms_4
27738 30481: inverse 7 1 0
27739 30481: multiply 12 2 2 0,2
27740 NO CLASH, using fixed ground order
27742 30482: Id : 2, {_}:
27747 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27748 (multiply (inverse (multiply ?4 ?5))
27751 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27755 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27757 30482: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_these_axioms_4
27763 30482: inverse 7 1 0
27764 30482: multiply 12 2 2 0,2
27765 NO CLASH, using fixed ground order
27767 30483: Id : 2, {_}:
27772 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
27773 (multiply (inverse (multiply ?4 ?5))
27776 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
27780 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27782 30483: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_these_axioms_4
27788 30483: inverse 7 1 0
27789 30483: multiply 12 2 2 0,2
27790 % SZS status Timeout for GRP508-1.p
27791 NO CLASH, using fixed ground order
27793 31468: Id : 2, {_}:
27794 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
27796 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
27800 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
27803 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
27804 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
27805 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
27808 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
27810 31468: Id : 1, {_}: meet a a =>= a [] by prove_normal_axioms_1
27815 31468: meet 19 2 1 0,2
27817 NO CLASH, using fixed ground order
27819 31469: Id : 2, {_}:
27820 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
27822 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
27826 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
27829 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
27830 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
27831 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
27834 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
27836 31469: Id : 1, {_}: meet a a =>= a [] by prove_normal_axioms_1
27841 31469: meet 19 2 1 0,2
27843 NO CLASH, using fixed ground order
27845 31470: Id : 2, {_}:
27846 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
27848 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
27852 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
27855 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
27856 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
27857 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
27860 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
27862 31470: Id : 1, {_}: meet a a =>= a [] by prove_normal_axioms_1
27867 31470: meet 19 2 1 0,2
27869 % SZS status Timeout for LAT080-1.p
27870 NO CLASH, using fixed ground order
27872 31492: Id : 2, {_}:
27873 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
27875 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
27879 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
27882 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
27883 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
27884 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
27887 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
27889 31492: Id : 1, {_}: join a a =>= a [] by prove_normal_axioms_4
27895 31492: join 21 2 1 0,2
27896 NO CLASH, using fixed ground order
27898 31493: Id : 2, {_}:
27899 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
27901 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
27905 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
27908 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
27909 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
27910 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
27913 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
27915 31493: Id : 1, {_}: join a a =>= a [] by prove_normal_axioms_4
27921 31493: join 21 2 1 0,2
27922 NO CLASH, using fixed ground order
27924 31494: Id : 2, {_}:
27925 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
27927 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
27931 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
27934 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
27935 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
27936 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
27939 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
27941 31494: Id : 1, {_}: join a a =>= a [] by prove_normal_axioms_4
27947 31494: join 21 2 1 0,2
27948 % SZS status Timeout for LAT083-1.p
27949 NO CLASH, using fixed ground order
27951 31519: Id : 2, {_}:
27952 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
27954 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
27956 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
27958 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
27959 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
27960 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
27963 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27965 31519: Id : 1, {_}: meet a a =>= a [] by prove_wal_axioms_1
27971 31519: meet 19 2 1 0,2
27972 NO CLASH, using fixed ground order
27974 31521: Id : 2, {_}:
27975 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
27977 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
27979 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
27981 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
27982 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
27983 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
27986 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
27988 31521: Id : 1, {_}: meet a a =>= a [] by prove_wal_axioms_1
27994 31521: meet 19 2 1 0,2
27995 NO CLASH, using fixed ground order
27997 31520: Id : 2, {_}:
27998 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28000 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28002 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28004 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28005 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28006 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28009 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28011 31520: Id : 1, {_}: meet a a =>= a [] by prove_wal_axioms_1
28017 31520: meet 19 2 1 0,2
28018 % SZS status Timeout for LAT092-1.p
28019 NO CLASH, using fixed ground order
28021 31546: Id : 2, {_}:
28022 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28024 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28026 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28028 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28029 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28030 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28033 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28035 31546: Id : 1, {_}: meet b a =<= meet a b [] by prove_wal_axioms_2
28042 31546: meet 20 2 2 0,2
28043 NO CLASH, using fixed ground order
28045 31547: Id : 2, {_}:
28046 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28048 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28050 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28052 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28053 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28054 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28057 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28059 31547: Id : 1, {_}: meet b a =<= meet a b [] by prove_wal_axioms_2
28066 31547: meet 20 2 2 0,2
28067 NO CLASH, using fixed ground order
28069 31548: Id : 2, {_}:
28070 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28072 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28074 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28076 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28077 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28078 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28081 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28083 31548: Id : 1, {_}: meet b a =<= meet a b [] by prove_wal_axioms_2
28090 31548: meet 20 2 2 0,2
28091 % SZS status Timeout for LAT093-1.p
28092 NO CLASH, using fixed ground order
28094 31571: Id : 2, {_}:
28095 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28097 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28099 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28101 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28102 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28103 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28106 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28108 31571: Id : 1, {_}: join a a =>= a [] by prove_wal_axioms_3
28114 31571: join 19 2 1 0,2
28115 NO CLASH, using fixed ground order
28117 31572: Id : 2, {_}:
28118 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28120 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28122 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28124 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28125 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28126 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28129 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28131 31572: Id : 1, {_}: join a a =>= a [] by prove_wal_axioms_3
28137 31572: join 19 2 1 0,2
28138 NO CLASH, using fixed ground order
28140 31573: Id : 2, {_}:
28141 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28143 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28145 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28147 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28148 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28149 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28152 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28154 31573: Id : 1, {_}: join a a =>= a [] by prove_wal_axioms_3
28160 31573: join 19 2 1 0,2
28161 % SZS status Timeout for LAT094-1.p
28162 NO CLASH, using fixed ground order
28164 31595: Id : 2, {_}:
28165 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28167 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28169 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28171 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28172 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28173 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28176 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28178 31595: Id : 1, {_}: join b a =<= join a b [] by prove_wal_axioms_4
28185 31595: join 20 2 2 0,2
28186 NO CLASH, using fixed ground order
28188 31596: Id : 2, {_}:
28189 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28191 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28193 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28195 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28196 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28197 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28200 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28202 31596: Id : 1, {_}: join b a =<= join a b [] by prove_wal_axioms_4
28209 31596: join 20 2 2 0,2
28210 NO CLASH, using fixed ground order
28212 31597: Id : 2, {_}:
28213 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28215 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28217 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28219 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28220 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28221 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28224 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28226 31597: Id : 1, {_}: join b a =<= join a b [] by prove_wal_axioms_4
28233 31597: join 20 2 2 0,2
28234 % SZS status Timeout for LAT095-1.p
28235 NO CLASH, using fixed ground order
28237 31621: Id : 2, {_}:
28238 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28240 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28242 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28244 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28245 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28246 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28249 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28251 31621: Id : 1, {_}:
28252 meet (meet (join a b) (join c b)) b =>= b
28253 [] by prove_wal_axioms_5
28257 31621: a 1 0 1 1,1,1,2
28258 31621: c 1 0 1 1,2,1,2
28259 31621: b 4 0 4 2,1,1,2
28260 31621: join 20 2 2 0,1,1,2
28261 31621: meet 20 2 2 0,2
28262 NO CLASH, using fixed ground order
28264 31622: Id : 2, {_}:
28265 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28267 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28269 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28271 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28272 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28273 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28276 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28278 31622: Id : 1, {_}:
28279 meet (meet (join a b) (join c b)) b =>= b
28280 [] by prove_wal_axioms_5
28284 31622: a 1 0 1 1,1,1,2
28285 31622: c 1 0 1 1,2,1,2
28286 31622: b 4 0 4 2,1,1,2
28287 31622: join 20 2 2 0,1,1,2
28288 31622: meet 20 2 2 0,2
28289 NO CLASH, using fixed ground order
28291 31623: Id : 2, {_}:
28292 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28294 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28296 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28298 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28299 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28300 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28303 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28305 31623: Id : 1, {_}:
28306 meet (meet (join a b) (join c b)) b =>= b
28307 [] by prove_wal_axioms_5
28311 31623: a 1 0 1 1,1,1,2
28312 31623: c 1 0 1 1,2,1,2
28313 31623: b 4 0 4 2,1,1,2
28314 31623: join 20 2 2 0,1,1,2
28315 31623: meet 20 2 2 0,2
28316 % SZS status Timeout for LAT096-1.p
28317 NO CLASH, using fixed ground order
28319 31646: Id : 2, {_}:
28320 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28322 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28324 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28326 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28327 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28328 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28331 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28333 31646: Id : 1, {_}:
28334 join (join (meet a b) (meet c b)) b =>= b
28335 [] by prove_wal_axioms_6
28339 31646: a 1 0 1 1,1,1,2
28340 31646: c 1 0 1 1,2,1,2
28341 31646: b 4 0 4 2,1,1,2
28342 31646: meet 20 2 2 0,1,1,2
28343 31646: join 20 2 2 0,2
28344 NO CLASH, using fixed ground order
28346 31647: Id : 2, {_}:
28347 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28349 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28351 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28353 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28354 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28355 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28358 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28360 31647: Id : 1, {_}:
28361 join (join (meet a b) (meet c b)) b =>= b
28362 [] by prove_wal_axioms_6
28366 31647: a 1 0 1 1,1,1,2
28367 31647: c 1 0 1 1,2,1,2
28368 31647: b 4 0 4 2,1,1,2
28369 31647: meet 20 2 2 0,1,1,2
28370 31647: join 20 2 2 0,2
28371 NO CLASH, using fixed ground order
28373 31648: Id : 2, {_}:
28374 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
28376 (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))
28378 (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))
28380 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3))))
28381 (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3))))
28382 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
28385 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
28387 31648: Id : 1, {_}:
28388 join (join (meet a b) (meet c b)) b =>= b
28389 [] by prove_wal_axioms_6
28393 31648: a 1 0 1 1,1,1,2
28394 31648: c 1 0 1 1,2,1,2
28395 31648: b 4 0 4 2,1,1,2
28396 31648: meet 20 2 2 0,1,1,2
28397 31648: join 20 2 2 0,2
28398 % SZS status Timeout for LAT097-1.p
28399 NO CLASH, using fixed ground order
28401 31673: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28402 31673: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28403 31673: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28404 31673: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28405 31673: Id : 6, {_}:
28406 meet ?12 ?13 =?= meet ?13 ?12
28407 [13, 12] by commutativity_of_meet ?12 ?13
28408 31673: Id : 7, {_}:
28409 join ?15 ?16 =?= join ?16 ?15
28410 [16, 15] by commutativity_of_join ?15 ?16
28411 31673: Id : 8, {_}:
28412 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
28413 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28414 31673: Id : 9, {_}:
28415 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
28416 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28417 31673: Id : 10, {_}:
28418 meet ?26 (join ?27 (meet ?28 ?29))
28420 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
28421 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
28423 31673: Id : 1, {_}:
28424 meet a (join b (meet a (meet c d)))
28426 meet a (join b (meet c (meet d (join a (meet b d)))))
28431 31673: c 2 0 2 1,2,2,2,2
28432 31673: b 3 0 3 1,2,2
28433 31673: d 3 0 3 2,2,2,2,2
28435 31673: join 16 2 3 0,2,2
28436 31673: meet 21 2 7 0,2
28437 NO CLASH, using fixed ground order
28439 31675: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28440 31675: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28441 31675: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28442 31675: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28443 31675: Id : 6, {_}:
28444 meet ?12 ?13 =?= meet ?13 ?12
28445 [13, 12] by commutativity_of_meet ?12 ?13
28446 31675: Id : 7, {_}:
28447 join ?15 ?16 =?= join ?16 ?15
28448 [16, 15] by commutativity_of_join ?15 ?16
28449 31675: Id : 8, {_}:
28450 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
28451 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28452 31675: Id : 9, {_}:
28453 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
28454 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28455 31675: Id : 10, {_}:
28456 meet ?26 (join ?27 (meet ?28 ?29))
28458 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
28459 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
28461 31675: Id : 1, {_}:
28462 meet a (join b (meet a (meet c d)))
28464 meet a (join b (meet c (meet d (join a (meet b d)))))
28469 31675: c 2 0 2 1,2,2,2,2
28470 31675: b 3 0 3 1,2,2
28471 31675: d 3 0 3 2,2,2,2,2
28473 31675: join 16 2 3 0,2,2
28474 31675: meet 21 2 7 0,2
28475 NO CLASH, using fixed ground order
28477 31674: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28478 31674: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28479 31674: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28480 31674: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28481 31674: Id : 6, {_}:
28482 meet ?12 ?13 =?= meet ?13 ?12
28483 [13, 12] by commutativity_of_meet ?12 ?13
28484 31674: Id : 7, {_}:
28485 join ?15 ?16 =?= join ?16 ?15
28486 [16, 15] by commutativity_of_join ?15 ?16
28487 31674: Id : 8, {_}:
28488 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
28489 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28490 31674: Id : 9, {_}:
28491 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
28492 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28493 31674: Id : 10, {_}:
28494 meet ?26 (join ?27 (meet ?28 ?29))
28496 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
28497 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
28499 31674: Id : 1, {_}:
28500 meet a (join b (meet a (meet c d)))
28502 meet a (join b (meet c (meet d (join a (meet b d)))))
28507 31674: c 2 0 2 1,2,2,2,2
28508 31674: b 3 0 3 1,2,2
28509 31674: d 3 0 3 2,2,2,2,2
28511 31674: join 16 2 3 0,2,2
28512 31674: meet 21 2 7 0,2
28513 % SZS status Timeout for LAT146-1.p
28514 NO CLASH, using fixed ground order
28516 31717: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28517 31717: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28518 31717: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28519 31717: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28520 31717: Id : 6, {_}:
28521 meet ?12 ?13 =?= meet ?13 ?12
28522 [13, 12] by commutativity_of_meet ?12 ?13
28523 31717: Id : 7, {_}:
28524 join ?15 ?16 =?= join ?16 ?15
28525 [16, 15] by commutativity_of_join ?15 ?16
28526 31717: Id : 8, {_}:
28527 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
28528 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28529 31717: Id : 9, {_}:
28530 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
28531 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28532 31717: Id : 10, {_}:
28533 meet ?26 (join ?27 (meet ?28 ?29))
28535 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
28536 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
28538 31717: Id : 1, {_}:
28539 meet a (join b (meet a c))
28541 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
28546 31717: c 2 0 2 2,2,2,2
28547 31717: b 4 0 4 1,2,2
28549 31717: join 17 2 4 0,2,2
28550 31717: meet 20 2 6 0,2
28551 NO CLASH, using fixed ground order
28553 31718: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28554 31718: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28555 31718: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28556 31718: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28557 31718: Id : 6, {_}:
28558 meet ?12 ?13 =?= meet ?13 ?12
28559 [13, 12] by commutativity_of_meet ?12 ?13
28560 31718: Id : 7, {_}:
28561 join ?15 ?16 =?= join ?16 ?15
28562 [16, 15] by commutativity_of_join ?15 ?16
28563 31718: Id : 8, {_}:
28564 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
28565 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28566 31718: Id : 9, {_}:
28567 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
28568 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28569 31718: Id : 10, {_}:
28570 meet ?26 (join ?27 (meet ?28 ?29))
28572 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
28573 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
28575 31718: Id : 1, {_}:
28576 meet a (join b (meet a c))
28578 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
28583 31718: c 2 0 2 2,2,2,2
28584 31718: b 4 0 4 1,2,2
28586 31718: join 17 2 4 0,2,2
28587 31718: meet 20 2 6 0,2
28588 NO CLASH, using fixed ground order
28590 31719: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28591 31719: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28592 31719: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28593 31719: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28594 31719: Id : 6, {_}:
28595 meet ?12 ?13 =?= meet ?13 ?12
28596 [13, 12] by commutativity_of_meet ?12 ?13
28597 31719: Id : 7, {_}:
28598 join ?15 ?16 =?= join ?16 ?15
28599 [16, 15] by commutativity_of_join ?15 ?16
28600 31719: Id : 8, {_}:
28601 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
28602 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28603 31719: Id : 9, {_}:
28604 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
28605 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28606 31719: Id : 10, {_}:
28607 meet ?26 (join ?27 (meet ?28 ?29))
28609 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
28610 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
28612 31719: Id : 1, {_}:
28613 meet a (join b (meet a c))
28615 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
28620 31719: c 2 0 2 2,2,2,2
28621 31719: b 4 0 4 1,2,2
28623 31719: join 17 2 4 0,2,2
28624 31719: meet 20 2 6 0,2
28625 % SZS status Timeout for LAT148-1.p
28626 NO CLASH, using fixed ground order
28628 31740: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28629 31740: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28630 31740: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28631 31740: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28632 31740: Id : 6, {_}:
28633 meet ?12 ?13 =?= meet ?13 ?12
28634 [13, 12] by commutativity_of_meet ?12 ?13
28635 31740: Id : 7, {_}:
28636 join ?15 ?16 =?= join ?16 ?15
28637 [16, 15] by commutativity_of_join ?15 ?16
28638 31740: Id : 8, {_}:
28639 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
28640 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28641 31740: Id : 9, {_}:
28642 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
28643 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28644 31740: Id : 10, {_}:
28645 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
28647 meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29))))
28648 [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29
28650 31740: Id : 1, {_}:
28651 meet a (join b (meet a c))
28653 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
28658 31740: b 3 0 3 1,2,2
28659 31740: c 3 0 3 2,2,2,2
28661 31740: join 18 2 4 0,2,2
28662 31740: meet 20 2 6 0,2
28663 NO CLASH, using fixed ground order
28665 31741: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28666 31741: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28667 31741: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28668 31741: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28669 31741: Id : 6, {_}:
28670 meet ?12 ?13 =?= meet ?13 ?12
28671 [13, 12] by commutativity_of_meet ?12 ?13
28672 31741: Id : 7, {_}:
28673 join ?15 ?16 =?= join ?16 ?15
28674 [16, 15] by commutativity_of_join ?15 ?16
28675 31741: Id : 8, {_}:
28676 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
28677 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28678 31741: Id : 9, {_}:
28679 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
28680 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28681 31741: Id : 10, {_}:
28682 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
28684 meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29))))
28685 [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29
28687 31741: Id : 1, {_}:
28688 meet a (join b (meet a c))
28690 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
28695 31741: b 3 0 3 1,2,2
28696 31741: c 3 0 3 2,2,2,2
28698 31741: join 18 2 4 0,2,2
28699 31741: meet 20 2 6 0,2
28700 NO CLASH, using fixed ground order
28702 31742: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28703 31742: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28704 31742: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28705 31742: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28706 31742: Id : 6, {_}:
28707 meet ?12 ?13 =?= meet ?13 ?12
28708 [13, 12] by commutativity_of_meet ?12 ?13
28709 31742: Id : 7, {_}:
28710 join ?15 ?16 =?= join ?16 ?15
28711 [16, 15] by commutativity_of_join ?15 ?16
28712 31742: Id : 8, {_}:
28713 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
28714 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28715 31742: Id : 9, {_}:
28716 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
28717 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28718 31742: Id : 10, {_}:
28719 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
28721 meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29))))
28722 [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29
28724 31742: Id : 1, {_}:
28725 meet a (join b (meet a c))
28727 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
28732 31742: b 3 0 3 1,2,2
28733 31742: c 3 0 3 2,2,2,2
28735 31742: join 18 2 4 0,2,2
28736 31742: meet 20 2 6 0,2
28737 % SZS status Timeout for LAT156-1.p
28738 NO CLASH, using fixed ground order
28740 31822: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28741 31822: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28742 31822: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28743 31822: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28744 31822: Id : 6, {_}:
28745 meet ?12 ?13 =?= meet ?13 ?12
28746 [13, 12] by commutativity_of_meet ?12 ?13
28747 31822: Id : 7, {_}:
28748 join ?15 ?16 =?= join ?16 ?15
28749 [16, 15] by commutativity_of_join ?15 ?16
28750 31822: Id : 8, {_}:
28751 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
28752 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28753 31822: Id : 9, {_}:
28754 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
28755 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28756 31822: Id : 10, {_}:
28757 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
28759 meet ?26 (join ?27 (join (meet ?28 ?29) (meet ?28 (join ?26 ?27))))
28760 [29, 28, 27, 26] by equation_H52 ?26 ?27 ?28 ?29
28762 31822: Id : 1, {_}:
28763 meet a (join b (meet c (join a d)))
28765 meet a (join b (join (meet a c) (meet c d)))
28770 31822: b 2 0 2 1,2,2
28771 31822: d 2 0 2 2,2,2,2,2
28772 31822: c 3 0 3 1,2,2,2
28774 31822: join 18 2 4 0,2,2
28775 31822: meet 19 2 5 0,2
28776 NO CLASH, using fixed ground order
28778 31823: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28779 31823: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28780 31823: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28781 31823: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28782 31823: Id : 6, {_}:
28783 meet ?12 ?13 =?= meet ?13 ?12
28784 [13, 12] by commutativity_of_meet ?12 ?13
28785 31823: Id : 7, {_}:
28786 join ?15 ?16 =?= join ?16 ?15
28787 [16, 15] by commutativity_of_join ?15 ?16
28788 31823: Id : 8, {_}:
28789 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
28790 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28791 31823: Id : 9, {_}:
28792 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
28793 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28794 31823: Id : 10, {_}:
28795 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
28797 meet ?26 (join ?27 (join (meet ?28 ?29) (meet ?28 (join ?26 ?27))))
28798 [29, 28, 27, 26] by equation_H52 ?26 ?27 ?28 ?29
28800 31823: Id : 1, {_}:
28801 meet a (join b (meet c (join a d)))
28803 meet a (join b (join (meet a c) (meet c d)))
28808 31823: b 2 0 2 1,2,2
28809 31823: d 2 0 2 2,2,2,2,2
28810 31823: c 3 0 3 1,2,2,2
28812 31823: join 18 2 4 0,2,2
28813 31823: meet 19 2 5 0,2
28814 NO CLASH, using fixed ground order
28816 31824: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
28817 31824: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
28818 31824: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
28819 31824: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
28820 31824: Id : 6, {_}:
28821 meet ?12 ?13 =?= meet ?13 ?12
28822 [13, 12] by commutativity_of_meet ?12 ?13
28823 31824: Id : 7, {_}:
28824 join ?15 ?16 =?= join ?16 ?15
28825 [16, 15] by commutativity_of_join ?15 ?16
28826 31824: Id : 8, {_}:
28827 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
28828 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
28829 31824: Id : 9, {_}:
28830 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
28831 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
28832 31824: Id : 10, {_}:
28833 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
28835 meet ?26 (join ?27 (join (meet ?28 ?29) (meet ?28 (join ?26 ?27))))
28836 [29, 28, 27, 26] by equation_H52 ?26 ?27 ?28 ?29
28838 31824: Id : 1, {_}:
28839 meet a (join b (meet c (join a d)))
28841 meet a (join b (join (meet a c) (meet c d)))
28846 31824: b 2 0 2 1,2,2
28847 31824: d 2 0 2 2,2,2,2,2
28848 31824: c 3 0 3 1,2,2,2
28850 31824: join 18 2 4 0,2,2
28851 31824: meet 19 2 5 0,2
28852 % SZS status Timeout for LAT160-1.p
28853 NO CLASH, using fixed ground order
28855 31846: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
28856 31846: Id : 3, {_}:
28857 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
28860 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
28861 31846: Id : 4, {_}:
28862 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
28863 [9, 8] by wajsberg_3 ?8 ?9
28864 31846: Id : 5, {_}:
28865 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
28866 [12, 11] by wajsberg_4 ?11 ?12
28867 31846: Id : 6, {_}:
28868 or ?14 ?15 =<= implies (not ?14) ?15
28869 [15, 14] by or_definition ?14 ?15
28870 31846: Id : 7, {_}:
28871 or (or ?17 ?18) ?19 =?= or ?17 (or ?18 ?19)
28872 [19, 18, 17] by or_associativity ?17 ?18 ?19
28873 31846: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
28874 31846: Id : 9, {_}:
28875 and ?24 ?25 =<= not (or (not ?24) (not ?25))
28876 [25, 24] by and_definition ?24 ?25
28877 31846: Id : 10, {_}:
28878 and (and ?27 ?28) ?29 =?= and ?27 (and ?28 ?29)
28879 [29, 28, 27] by and_associativity ?27 ?28 ?29
28880 31846: Id : 11, {_}:
28881 and ?31 ?32 =?= and ?32 ?31
28882 [32, 31] by and_commutativity ?31 ?32
28883 31846: Id : 12, {_}:
28884 xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35)
28885 [35, 34] by xor_definition ?34 ?35
28886 31846: Id : 13, {_}:
28887 xor ?37 ?38 =?= xor ?38 ?37
28888 [38, 37] by xor_commutativity ?37 ?38
28889 31846: Id : 14, {_}:
28890 and_star ?40 ?41 =<= not (or (not ?40) (not ?41))
28891 [41, 40] by and_star_definition ?40 ?41
28892 31846: Id : 15, {_}:
28893 and_star (and_star ?43 ?44) ?45 =?= and_star ?43 (and_star ?44 ?45)
28894 [45, 44, 43] by and_star_associativity ?43 ?44 ?45
28895 31846: Id : 16, {_}:
28896 and_star ?47 ?48 =?= and_star ?48 ?47
28897 [48, 47] by and_star_commutativity ?47 ?48
28898 31846: Id : 17, {_}: not truth =>= falsehood [] by false_definition
28900 31846: Id : 1, {_}:
28901 and_star (xor (and_star (xor truth x) y) truth) y
28903 and_star (xor (and_star (xor truth y) x) truth) x
28904 [] by prove_alternative_wajsberg_axiom
28908 31846: falsehood 1 0 0
28909 31846: x 3 0 3 2,1,1,1,2
28910 31846: y 3 0 3 2,1,1,2
28911 31846: truth 8 0 4 1,1,1,1,2
28913 31846: xor 7 2 4 0,1,2
28916 31846: and_star 11 2 4 0,2
28917 31846: implies 14 2 0
28918 NO CLASH, using fixed ground order
28920 31847: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
28921 31847: Id : 3, {_}:
28922 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
28925 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
28926 31847: Id : 4, {_}:
28927 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
28928 [9, 8] by wajsberg_3 ?8 ?9
28929 31847: Id : 5, {_}:
28930 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
28931 [12, 11] by wajsberg_4 ?11 ?12
28932 31847: Id : 6, {_}:
28933 or ?14 ?15 =<= implies (not ?14) ?15
28934 [15, 14] by or_definition ?14 ?15
28935 31847: Id : 7, {_}:
28936 or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19)
28937 [19, 18, 17] by or_associativity ?17 ?18 ?19
28938 31847: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
28939 31847: Id : 9, {_}:
28940 and ?24 ?25 =<= not (or (not ?24) (not ?25))
28941 [25, 24] by and_definition ?24 ?25
28942 31847: Id : 10, {_}:
28943 and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29)
28944 [29, 28, 27] by and_associativity ?27 ?28 ?29
28945 31847: Id : 11, {_}:
28946 and ?31 ?32 =?= and ?32 ?31
28947 [32, 31] by and_commutativity ?31 ?32
28948 31847: Id : 12, {_}:
28949 xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35)
28950 [35, 34] by xor_definition ?34 ?35
28951 31847: Id : 13, {_}:
28952 xor ?37 ?38 =?= xor ?38 ?37
28953 [38, 37] by xor_commutativity ?37 ?38
28954 31847: Id : 14, {_}:
28955 and_star ?40 ?41 =<= not (or (not ?40) (not ?41))
28956 [41, 40] by and_star_definition ?40 ?41
28957 31847: Id : 15, {_}:
28958 and_star (and_star ?43 ?44) ?45 =>= and_star ?43 (and_star ?44 ?45)
28959 [45, 44, 43] by and_star_associativity ?43 ?44 ?45
28960 31847: Id : 16, {_}:
28961 and_star ?47 ?48 =?= and_star ?48 ?47
28962 [48, 47] by and_star_commutativity ?47 ?48
28963 31847: Id : 17, {_}: not truth =>= falsehood [] by false_definition
28965 31847: Id : 1, {_}:
28966 and_star (xor (and_star (xor truth x) y) truth) y
28968 and_star (xor (and_star (xor truth y) x) truth) x
28969 [] by prove_alternative_wajsberg_axiom
28973 31847: falsehood 1 0 0
28974 31847: x 3 0 3 2,1,1,1,2
28975 31847: y 3 0 3 2,1,1,2
28976 31847: truth 8 0 4 1,1,1,1,2
28978 31847: xor 7 2 4 0,1,2
28981 31847: and_star 11 2 4 0,2
28982 31847: implies 14 2 0
28983 NO CLASH, using fixed ground order
28985 31848: Id : 2, {_}: implies truth ?2 =>= ?2 [2] by wajsberg_1 ?2
28986 31848: Id : 3, {_}:
28987 implies (implies ?4 ?5) (implies (implies ?5 ?6) (implies ?4 ?6))
28990 [6, 5, 4] by wajsberg_2 ?4 ?5 ?6
28991 31848: Id : 4, {_}:
28992 implies (implies ?8 ?9) ?9 =?= implies (implies ?9 ?8) ?8
28993 [9, 8] by wajsberg_3 ?8 ?9
28994 31848: Id : 5, {_}:
28995 implies (implies (not ?11) (not ?12)) (implies ?12 ?11) =>= truth
28996 [12, 11] by wajsberg_4 ?11 ?12
28997 31848: Id : 6, {_}:
28998 or ?14 ?15 =<= implies (not ?14) ?15
28999 [15, 14] by or_definition ?14 ?15
29000 31848: Id : 7, {_}:
29001 or (or ?17 ?18) ?19 =>= or ?17 (or ?18 ?19)
29002 [19, 18, 17] by or_associativity ?17 ?18 ?19
29003 31848: Id : 8, {_}: or ?21 ?22 =?= or ?22 ?21 [22, 21] by or_commutativity ?21 ?22
29004 31848: Id : 9, {_}:
29005 and ?24 ?25 =<= not (or (not ?24) (not ?25))
29006 [25, 24] by and_definition ?24 ?25
29007 31848: Id : 10, {_}:
29008 and (and ?27 ?28) ?29 =>= and ?27 (and ?28 ?29)
29009 [29, 28, 27] by and_associativity ?27 ?28 ?29
29010 31848: Id : 11, {_}:
29011 and ?31 ?32 =?= and ?32 ?31
29012 [32, 31] by and_commutativity ?31 ?32
29013 31848: Id : 12, {_}:
29014 xor ?34 ?35 =<= or (and ?34 (not ?35)) (and (not ?34) ?35)
29015 [35, 34] by xor_definition ?34 ?35
29016 31848: Id : 13, {_}:
29017 xor ?37 ?38 =?= xor ?38 ?37
29018 [38, 37] by xor_commutativity ?37 ?38
29019 31848: Id : 14, {_}:
29020 and_star ?40 ?41 =>= not (or (not ?40) (not ?41))
29021 [41, 40] by and_star_definition ?40 ?41
29022 31848: Id : 15, {_}:
29023 and_star (and_star ?43 ?44) ?45 =>= and_star ?43 (and_star ?44 ?45)
29024 [45, 44, 43] by and_star_associativity ?43 ?44 ?45
29025 31848: Id : 16, {_}:
29026 and_star ?47 ?48 =?= and_star ?48 ?47
29027 [48, 47] by and_star_commutativity ?47 ?48
29028 31848: Id : 17, {_}: not truth =>= falsehood [] by false_definition
29030 31848: Id : 1, {_}:
29031 and_star (xor (and_star (xor truth x) y) truth) y
29033 and_star (xor (and_star (xor truth y) x) truth) x
29034 [] by prove_alternative_wajsberg_axiom
29038 31848: falsehood 1 0 0
29039 31848: x 3 0 3 2,1,1,1,2
29040 31848: y 3 0 3 2,1,1,2
29041 31848: truth 8 0 4 1,1,1,1,2
29043 31848: xor 7 2 4 0,1,2
29046 31848: and_star 11 2 4 0,2
29047 31848: implies 14 2 0
29048 % SZS status Timeout for LCL160-1.p
29049 NO CLASH, using fixed ground order
29051 31871: Id : 2, {_}: add ?2 additive_identity =>= ?2 [2] by right_identity ?2
29052 31871: Id : 3, {_}:
29053 add ?4 (additive_inverse ?4) =>= additive_identity
29054 [4] by right_additive_inverse ?4
29055 31871: Id : 4, {_}:
29056 multiply ?6 (add ?7 ?8) =<= add (multiply ?6 ?7) (multiply ?6 ?8)
29057 [8, 7, 6] by distribute1 ?6 ?7 ?8
29058 31871: Id : 5, {_}:
29059 multiply (add ?10 ?11) ?12
29061 add (multiply ?10 ?12) (multiply ?11 ?12)
29062 [12, 11, 10] by distribute2 ?10 ?11 ?12
29063 31871: Id : 6, {_}:
29064 add (add ?14 ?15) ?16 =?= add ?14 (add ?15 ?16)
29065 [16, 15, 14] by associative_addition ?14 ?15 ?16
29066 31871: Id : 7, {_}:
29067 add ?18 ?19 =?= add ?19 ?18
29068 [19, 18] by commutative_addition ?18 ?19
29069 31871: Id : 8, {_}:
29070 multiply (multiply ?21 ?22) ?23 =?= multiply ?21 (multiply ?22 ?23)
29071 [23, 22, 21] by associative_multiplication ?21 ?22 ?23
29072 31871: Id : 9, {_}: multiply ?25 (multiply ?25 ?25) =>= ?25 [25] by x_cubed_is_x ?25
29074 31871: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_commutativity
29078 31871: additive_identity 2 0 0
29081 31871: additive_inverse 1 1 0
29083 31871: multiply 14 2 2 0,2
29084 NO CLASH, using fixed ground order
29086 31872: Id : 2, {_}: add ?2 additive_identity =>= ?2 [2] by right_identity ?2
29087 31872: Id : 3, {_}:
29088 add ?4 (additive_inverse ?4) =>= additive_identity
29089 [4] by right_additive_inverse ?4
29090 31872: Id : 4, {_}:
29091 multiply ?6 (add ?7 ?8) =<= add (multiply ?6 ?7) (multiply ?6 ?8)
29092 [8, 7, 6] by distribute1 ?6 ?7 ?8
29093 31872: Id : 5, {_}:
29094 multiply (add ?10 ?11) ?12
29096 add (multiply ?10 ?12) (multiply ?11 ?12)
29097 [12, 11, 10] by distribute2 ?10 ?11 ?12
29098 31872: Id : 6, {_}:
29099 add (add ?14 ?15) ?16 =>= add ?14 (add ?15 ?16)
29100 [16, 15, 14] by associative_addition ?14 ?15 ?16
29101 31872: Id : 7, {_}:
29102 add ?18 ?19 =?= add ?19 ?18
29103 [19, 18] by commutative_addition ?18 ?19
29104 31872: Id : 8, {_}:
29105 multiply (multiply ?21 ?22) ?23 =>= multiply ?21 (multiply ?22 ?23)
29106 [23, 22, 21] by associative_multiplication ?21 ?22 ?23
29107 31872: Id : 9, {_}: multiply ?25 (multiply ?25 ?25) =>= ?25 [25] by x_cubed_is_x ?25
29109 31872: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_commutativity
29113 31872: additive_identity 2 0 0
29116 31872: additive_inverse 1 1 0
29118 31872: multiply 14 2 2 0,2
29119 NO CLASH, using fixed ground order
29121 31873: Id : 2, {_}: add ?2 additive_identity =>= ?2 [2] by right_identity ?2
29122 31873: Id : 3, {_}:
29123 add ?4 (additive_inverse ?4) =>= additive_identity
29124 [4] by right_additive_inverse ?4
29125 31873: Id : 4, {_}:
29126 multiply ?6 (add ?7 ?8) =>= add (multiply ?6 ?7) (multiply ?6 ?8)
29127 [8, 7, 6] by distribute1 ?6 ?7 ?8
29128 31873: Id : 5, {_}:
29129 multiply (add ?10 ?11) ?12
29131 add (multiply ?10 ?12) (multiply ?11 ?12)
29132 [12, 11, 10] by distribute2 ?10 ?11 ?12
29133 31873: Id : 6, {_}:
29134 add (add ?14 ?15) ?16 =>= add ?14 (add ?15 ?16)
29135 [16, 15, 14] by associative_addition ?14 ?15 ?16
29136 31873: Id : 7, {_}:
29137 add ?18 ?19 =?= add ?19 ?18
29138 [19, 18] by commutative_addition ?18 ?19
29139 31873: Id : 8, {_}:
29140 multiply (multiply ?21 ?22) ?23 =>= multiply ?21 (multiply ?22 ?23)
29141 [23, 22, 21] by associative_multiplication ?21 ?22 ?23
29142 31873: Id : 9, {_}: multiply ?25 (multiply ?25 ?25) =>= ?25 [25] by x_cubed_is_x ?25
29144 31873: Id : 1, {_}: multiply a b =<= multiply b a [] by prove_commutativity
29148 31873: additive_identity 2 0 0
29151 31873: additive_inverse 1 1 0
29153 31873: multiply 14 2 2 0,2
29154 % SZS status Timeout for RNG009-5.p
29155 NO CLASH, using fixed ground order
29157 31898: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29158 31898: Id : 3, {_}:
29159 add ?4 additive_identity =>= ?4
29160 [4] by right_additive_identity ?4
29161 31898: Id : 4, {_}:
29162 add (additive_inverse ?6) ?6 =>= additive_identity
29163 [6] by left_additive_inverse ?6
29164 31898: Id : 5, {_}:
29165 add ?8 (additive_inverse ?8) =>= additive_identity
29166 [8] by right_additive_inverse ?8
29167 31898: Id : 6, {_}:
29168 add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12
29169 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
29170 31898: Id : 7, {_}:
29171 add ?14 ?15 =?= add ?15 ?14
29172 [15, 14] by commutativity_for_addition ?14 ?15
29173 31898: Id : 8, {_}:
29174 multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19
29175 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
29176 31898: Id : 9, {_}:
29177 multiply ?21 (add ?22 ?23)
29179 add (multiply ?21 ?22) (multiply ?21 ?23)
29180 [23, 22, 21] by distribute1 ?21 ?22 ?23
29181 31898: Id : 10, {_}:
29182 multiply (add ?25 ?26) ?27
29184 add (multiply ?25 ?27) (multiply ?26 ?27)
29185 [27, 26, 25] by distribute2 ?25 ?26 ?27
29186 31898: Id : 11, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29
29187 31898: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
29189 31898: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
29196 31898: additive_identity 4 0 0
29197 31898: additive_inverse 2 1 0
29199 31898: multiply 14 2 1 0,2
29200 NO CLASH, using fixed ground order
29202 31899: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29203 31899: Id : 3, {_}:
29204 add ?4 additive_identity =>= ?4
29205 [4] by right_additive_identity ?4
29206 31899: Id : 4, {_}:
29207 add (additive_inverse ?6) ?6 =>= additive_identity
29208 [6] by left_additive_inverse ?6
29209 31899: Id : 5, {_}:
29210 add ?8 (additive_inverse ?8) =>= additive_identity
29211 [8] by right_additive_inverse ?8
29212 31899: Id : 6, {_}:
29213 add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12
29214 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
29215 31899: Id : 7, {_}:
29216 add ?14 ?15 =?= add ?15 ?14
29217 [15, 14] by commutativity_for_addition ?14 ?15
29218 31899: Id : 8, {_}:
29219 multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19
29220 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
29221 31899: Id : 9, {_}:
29222 multiply ?21 (add ?22 ?23)
29224 add (multiply ?21 ?22) (multiply ?21 ?23)
29225 [23, 22, 21] by distribute1 ?21 ?22 ?23
29226 31899: Id : 10, {_}:
29227 multiply (add ?25 ?26) ?27
29229 add (multiply ?25 ?27) (multiply ?26 ?27)
29230 [27, 26, 25] by distribute2 ?25 ?26 ?27
29231 31899: Id : 11, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29
29232 31899: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
29234 31899: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
29241 31899: additive_identity 4 0 0
29242 31899: additive_inverse 2 1 0
29244 31899: multiply 14 2 1 0,2
29245 NO CLASH, using fixed ground order
29247 31900: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29248 31900: Id : 3, {_}:
29249 add ?4 additive_identity =>= ?4
29250 [4] by right_additive_identity ?4
29251 31900: Id : 4, {_}:
29252 add (additive_inverse ?6) ?6 =>= additive_identity
29253 [6] by left_additive_inverse ?6
29254 31900: Id : 5, {_}:
29255 add ?8 (additive_inverse ?8) =>= additive_identity
29256 [8] by right_additive_inverse ?8
29257 31900: Id : 6, {_}:
29258 add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12
29259 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
29260 31900: Id : 7, {_}:
29261 add ?14 ?15 =?= add ?15 ?14
29262 [15, 14] by commutativity_for_addition ?14 ?15
29263 31900: Id : 8, {_}:
29264 multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19
29265 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
29266 31900: Id : 9, {_}:
29267 multiply ?21 (add ?22 ?23)
29269 add (multiply ?21 ?22) (multiply ?21 ?23)
29270 [23, 22, 21] by distribute1 ?21 ?22 ?23
29271 31900: Id : 10, {_}:
29272 multiply (add ?25 ?26) ?27
29274 add (multiply ?25 ?27) (multiply ?26 ?27)
29275 [27, 26, 25] by distribute2 ?25 ?26 ?27
29276 31900: Id : 11, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29
29277 31900: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
29279 31900: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
29286 31900: additive_identity 4 0 0
29287 31900: additive_inverse 2 1 0
29289 31900: multiply 14 2 1 0,2
29290 % SZS status Timeout for RNG009-7.p
29291 NO CLASH, using fixed ground order
29293 31923: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29294 31923: Id : 3, {_}:
29295 add ?4 additive_identity =>= ?4
29296 [4] by right_additive_identity ?4
29297 31923: Id : 4, {_}:
29298 multiply additive_identity ?6 =>= additive_identity
29299 [6] by left_multiplicative_zero ?6
29300 31923: Id : 5, {_}:
29301 multiply ?8 additive_identity =>= additive_identity
29302 [8] by right_multiplicative_zero ?8
29303 31923: Id : 6, {_}:
29304 add (additive_inverse ?10) ?10 =>= additive_identity
29305 [10] by left_additive_inverse ?10
29306 31923: Id : 7, {_}:
29307 add ?12 (additive_inverse ?12) =>= additive_identity
29308 [12] by right_additive_inverse ?12
29309 31923: Id : 8, {_}:
29310 additive_inverse (additive_inverse ?14) =>= ?14
29311 [14] by additive_inverse_additive_inverse ?14
29312 31923: Id : 9, {_}:
29313 multiply ?16 (add ?17 ?18)
29315 add (multiply ?16 ?17) (multiply ?16 ?18)
29316 [18, 17, 16] by distribute1 ?16 ?17 ?18
29317 31923: Id : 10, {_}:
29318 multiply (add ?20 ?21) ?22
29320 add (multiply ?20 ?22) (multiply ?21 ?22)
29321 [22, 21, 20] by distribute2 ?20 ?21 ?22
29322 31923: Id : 11, {_}:
29323 add ?24 ?25 =?= add ?25 ?24
29324 [25, 24] by commutativity_for_addition ?24 ?25
29325 31923: Id : 12, {_}:
29326 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
29327 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
29328 31923: Id : 13, {_}:
29329 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
29330 [32, 31] by right_alternative ?31 ?32
29331 31923: Id : 14, {_}:
29332 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
29333 [35, 34] by left_alternative ?34 ?35
29334 31923: Id : 15, {_}:
29335 associator ?37 ?38 ?39
29337 add (multiply (multiply ?37 ?38) ?39)
29338 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
29339 [39, 38, 37] by associator ?37 ?38 ?39
29340 31923: Id : 16, {_}:
29343 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
29344 [42, 41] by commutator ?41 ?42
29346 31923: Id : 1, {_}:
29348 (add (associator (multiply a b) c d)
29349 (associator a b (multiply c d)))
29352 (add (associator a (multiply b c) d)
29353 (multiply a (associator b c d)))
29354 (multiply (associator a b c) d)))
29357 [] by prove_teichmuller_identity
29361 31923: a 5 0 5 1,1,1,1,2
29362 31923: b 5 0 5 2,1,1,1,2
29363 31923: c 5 0 5 2,1,1,2
29364 31923: d 5 0 5 3,1,1,2
29365 31923: additive_identity 9 0 1 3
29366 31923: additive_inverse 7 1 1 0,2,2
29367 31923: commutator 1 2 0
29368 31923: add 20 2 4 0,2
29369 31923: multiply 27 2 5 0,1,1,1,2
29370 31923: associator 6 3 5 0,1,1,2
29371 NO CLASH, using fixed ground order
29373 31924: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29374 31924: Id : 3, {_}:
29375 add ?4 additive_identity =>= ?4
29376 [4] by right_additive_identity ?4
29377 31924: Id : 4, {_}:
29378 multiply additive_identity ?6 =>= additive_identity
29379 [6] by left_multiplicative_zero ?6
29380 31924: Id : 5, {_}:
29381 multiply ?8 additive_identity =>= additive_identity
29382 [8] by right_multiplicative_zero ?8
29383 31924: Id : 6, {_}:
29384 add (additive_inverse ?10) ?10 =>= additive_identity
29385 [10] by left_additive_inverse ?10
29386 31924: Id : 7, {_}:
29387 add ?12 (additive_inverse ?12) =>= additive_identity
29388 [12] by right_additive_inverse ?12
29389 31924: Id : 8, {_}:
29390 additive_inverse (additive_inverse ?14) =>= ?14
29391 [14] by additive_inverse_additive_inverse ?14
29392 31924: Id : 9, {_}:
29393 multiply ?16 (add ?17 ?18)
29395 add (multiply ?16 ?17) (multiply ?16 ?18)
29396 [18, 17, 16] by distribute1 ?16 ?17 ?18
29397 31924: Id : 10, {_}:
29398 multiply (add ?20 ?21) ?22
29400 add (multiply ?20 ?22) (multiply ?21 ?22)
29401 [22, 21, 20] by distribute2 ?20 ?21 ?22
29402 31924: Id : 11, {_}:
29403 add ?24 ?25 =?= add ?25 ?24
29404 [25, 24] by commutativity_for_addition ?24 ?25
29405 31924: Id : 12, {_}:
29406 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
29407 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
29408 31924: Id : 13, {_}:
29409 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
29410 [32, 31] by right_alternative ?31 ?32
29411 31924: Id : 14, {_}:
29412 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
29413 [35, 34] by left_alternative ?34 ?35
29414 31924: Id : 15, {_}:
29415 associator ?37 ?38 ?39
29417 add (multiply (multiply ?37 ?38) ?39)
29418 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
29419 [39, 38, 37] by associator ?37 ?38 ?39
29420 31924: Id : 16, {_}:
29423 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
29424 [42, 41] by commutator ?41 ?42
29426 31924: Id : 1, {_}:
29428 (add (associator (multiply a b) c d)
29429 (associator a b (multiply c d)))
29432 (add (associator a (multiply b c) d)
29433 (multiply a (associator b c d)))
29434 (multiply (associator a b c) d)))
29437 [] by prove_teichmuller_identity
29441 31924: a 5 0 5 1,1,1,1,2
29442 31924: b 5 0 5 2,1,1,1,2
29443 31924: c 5 0 5 2,1,1,2
29444 31924: d 5 0 5 3,1,1,2
29445 31924: additive_identity 9 0 1 3
29446 31924: additive_inverse 7 1 1 0,2,2
29447 31924: commutator 1 2 0
29448 31924: add 20 2 4 0,2
29449 31924: multiply 27 2 5 0,1,1,1,2
29450 31924: associator 6 3 5 0,1,1,2
29451 NO CLASH, using fixed ground order
29453 31925: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29454 31925: Id : 3, {_}:
29455 add ?4 additive_identity =>= ?4
29456 [4] by right_additive_identity ?4
29457 31925: Id : 4, {_}:
29458 multiply additive_identity ?6 =>= additive_identity
29459 [6] by left_multiplicative_zero ?6
29460 31925: Id : 5, {_}:
29461 multiply ?8 additive_identity =>= additive_identity
29462 [8] by right_multiplicative_zero ?8
29463 31925: Id : 6, {_}:
29464 add (additive_inverse ?10) ?10 =>= additive_identity
29465 [10] by left_additive_inverse ?10
29466 31925: Id : 7, {_}:
29467 add ?12 (additive_inverse ?12) =>= additive_identity
29468 [12] by right_additive_inverse ?12
29469 31925: Id : 8, {_}:
29470 additive_inverse (additive_inverse ?14) =>= ?14
29471 [14] by additive_inverse_additive_inverse ?14
29472 31925: Id : 9, {_}:
29473 multiply ?16 (add ?17 ?18)
29475 add (multiply ?16 ?17) (multiply ?16 ?18)
29476 [18, 17, 16] by distribute1 ?16 ?17 ?18
29477 31925: Id : 10, {_}:
29478 multiply (add ?20 ?21) ?22
29480 add (multiply ?20 ?22) (multiply ?21 ?22)
29481 [22, 21, 20] by distribute2 ?20 ?21 ?22
29482 31925: Id : 11, {_}:
29483 add ?24 ?25 =?= add ?25 ?24
29484 [25, 24] by commutativity_for_addition ?24 ?25
29485 31925: Id : 12, {_}:
29486 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
29487 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
29488 31925: Id : 13, {_}:
29489 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
29490 [32, 31] by right_alternative ?31 ?32
29491 31925: Id : 14, {_}:
29492 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
29493 [35, 34] by left_alternative ?34 ?35
29494 31925: Id : 15, {_}:
29495 associator ?37 ?38 ?39
29497 add (multiply (multiply ?37 ?38) ?39)
29498 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
29499 [39, 38, 37] by associator ?37 ?38 ?39
29500 31925: Id : 16, {_}:
29503 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
29504 [42, 41] by commutator ?41 ?42
29506 31925: Id : 1, {_}:
29508 (add (associator (multiply a b) c d)
29509 (associator a b (multiply c d)))
29512 (add (associator a (multiply b c) d)
29513 (multiply a (associator b c d)))
29514 (multiply (associator a b c) d)))
29517 [] by prove_teichmuller_identity
29521 31925: a 5 0 5 1,1,1,1,2
29522 31925: b 5 0 5 2,1,1,1,2
29523 31925: c 5 0 5 2,1,1,2
29524 31925: d 5 0 5 3,1,1,2
29525 31925: additive_identity 9 0 1 3
29526 31925: additive_inverse 7 1 1 0,2,2
29527 31925: commutator 1 2 0
29528 31925: add 20 2 4 0,2
29529 31925: multiply 27 2 5 0,1,1,1,2
29530 31925: associator 6 3 5 0,1,1,2
29531 % SZS status Timeout for RNG026-6.p
29532 NO CLASH, using fixed ground order
29534 31946: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29535 31946: Id : 3, {_}:
29536 add ?4 additive_identity =>= ?4
29537 [4] by right_additive_identity ?4
29538 31946: Id : 4, {_}:
29539 multiply additive_identity ?6 =>= additive_identity
29540 [6] by left_multiplicative_zero ?6
29541 31946: Id : 5, {_}:
29542 multiply ?8 additive_identity =>= additive_identity
29543 [8] by right_multiplicative_zero ?8
29544 31946: Id : 6, {_}:
29545 add (additive_inverse ?10) ?10 =>= additive_identity
29546 [10] by left_additive_inverse ?10
29547 31946: Id : 7, {_}:
29548 add ?12 (additive_inverse ?12) =>= additive_identity
29549 [12] by right_additive_inverse ?12
29550 31946: Id : 8, {_}:
29551 additive_inverse (additive_inverse ?14) =>= ?14
29552 [14] by additive_inverse_additive_inverse ?14
29553 31946: Id : 9, {_}:
29554 multiply ?16 (add ?17 ?18)
29556 add (multiply ?16 ?17) (multiply ?16 ?18)
29557 [18, 17, 16] by distribute1 ?16 ?17 ?18
29558 31946: Id : 10, {_}:
29559 multiply (add ?20 ?21) ?22
29561 add (multiply ?20 ?22) (multiply ?21 ?22)
29562 [22, 21, 20] by distribute2 ?20 ?21 ?22
29563 31946: Id : 11, {_}:
29564 add ?24 ?25 =?= add ?25 ?24
29565 [25, 24] by commutativity_for_addition ?24 ?25
29566 31946: Id : 12, {_}:
29567 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
29568 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
29569 31946: Id : 13, {_}:
29570 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
29571 [32, 31] by right_alternative ?31 ?32
29572 31946: Id : 14, {_}:
29573 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
29574 [35, 34] by left_alternative ?34 ?35
29575 31946: Id : 15, {_}:
29576 associator ?37 ?38 ?39
29578 add (multiply (multiply ?37 ?38) ?39)
29579 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
29580 [39, 38, 37] by associator ?37 ?38 ?39
29581 31946: Id : 16, {_}:
29584 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
29585 [42, 41] by commutator ?41 ?42
29586 31946: Id : 17, {_}:
29587 multiply (additive_inverse ?44) (additive_inverse ?45)
29590 [45, 44] by product_of_inverses ?44 ?45
29591 31946: Id : 18, {_}:
29592 multiply (additive_inverse ?47) ?48
29594 additive_inverse (multiply ?47 ?48)
29595 [48, 47] by inverse_product1 ?47 ?48
29596 31946: Id : 19, {_}:
29597 multiply ?50 (additive_inverse ?51)
29599 additive_inverse (multiply ?50 ?51)
29600 [51, 50] by inverse_product2 ?50 ?51
29601 31946: Id : 20, {_}:
29602 multiply ?53 (add ?54 (additive_inverse ?55))
29604 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
29605 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
29606 31946: Id : 21, {_}:
29607 multiply (add ?57 (additive_inverse ?58)) ?59
29609 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
29610 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
29611 31946: Id : 22, {_}:
29612 multiply (additive_inverse ?61) (add ?62 ?63)
29614 add (additive_inverse (multiply ?61 ?62))
29615 (additive_inverse (multiply ?61 ?63))
29616 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
29617 31946: Id : 23, {_}:
29618 multiply (add ?65 ?66) (additive_inverse ?67)
29620 add (additive_inverse (multiply ?65 ?67))
29621 (additive_inverse (multiply ?66 ?67))
29622 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
29624 31946: Id : 1, {_}:
29626 (add (associator (multiply a b) c d)
29627 (associator a b (multiply c d)))
29630 (add (associator a (multiply b c) d)
29631 (multiply a (associator b c d)))
29632 (multiply (associator a b c) d)))
29635 [] by prove_teichmuller_identity
29639 31946: a 5 0 5 1,1,1,1,2
29640 31946: b 5 0 5 2,1,1,1,2
29641 31946: c 5 0 5 2,1,1,2
29642 31946: d 5 0 5 3,1,1,2
29643 31946: additive_identity 9 0 1 3
29644 31946: additive_inverse 23 1 1 0,2,2
29645 31946: commutator 1 2 0
29646 31946: add 28 2 4 0,2
29647 31946: multiply 45 2 5 0,1,1,1,2
29648 31946: associator 6 3 5 0,1,1,2
29649 NO CLASH, using fixed ground order
29651 31947: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29652 31947: Id : 3, {_}:
29653 add ?4 additive_identity =>= ?4
29654 [4] by right_additive_identity ?4
29655 31947: Id : 4, {_}:
29656 multiply additive_identity ?6 =>= additive_identity
29657 [6] by left_multiplicative_zero ?6
29658 31947: Id : 5, {_}:
29659 multiply ?8 additive_identity =>= additive_identity
29660 [8] by right_multiplicative_zero ?8
29661 31947: Id : 6, {_}:
29662 add (additive_inverse ?10) ?10 =>= additive_identity
29663 [10] by left_additive_inverse ?10
29664 31947: Id : 7, {_}:
29665 add ?12 (additive_inverse ?12) =>= additive_identity
29666 [12] by right_additive_inverse ?12
29667 31947: Id : 8, {_}:
29668 additive_inverse (additive_inverse ?14) =>= ?14
29669 [14] by additive_inverse_additive_inverse ?14
29670 31947: Id : 9, {_}:
29671 multiply ?16 (add ?17 ?18)
29673 add (multiply ?16 ?17) (multiply ?16 ?18)
29674 [18, 17, 16] by distribute1 ?16 ?17 ?18
29675 31947: Id : 10, {_}:
29676 multiply (add ?20 ?21) ?22
29678 add (multiply ?20 ?22) (multiply ?21 ?22)
29679 [22, 21, 20] by distribute2 ?20 ?21 ?22
29680 31947: Id : 11, {_}:
29681 add ?24 ?25 =?= add ?25 ?24
29682 [25, 24] by commutativity_for_addition ?24 ?25
29683 31947: Id : 12, {_}:
29684 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
29685 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
29686 31947: Id : 13, {_}:
29687 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
29688 [32, 31] by right_alternative ?31 ?32
29689 31947: Id : 14, {_}:
29690 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
29691 [35, 34] by left_alternative ?34 ?35
29692 31947: Id : 15, {_}:
29693 associator ?37 ?38 ?39
29695 add (multiply (multiply ?37 ?38) ?39)
29696 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
29697 [39, 38, 37] by associator ?37 ?38 ?39
29698 31947: Id : 16, {_}:
29701 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
29702 [42, 41] by commutator ?41 ?42
29703 31947: Id : 17, {_}:
29704 multiply (additive_inverse ?44) (additive_inverse ?45)
29707 [45, 44] by product_of_inverses ?44 ?45
29708 31947: Id : 18, {_}:
29709 multiply (additive_inverse ?47) ?48
29711 additive_inverse (multiply ?47 ?48)
29712 [48, 47] by inverse_product1 ?47 ?48
29713 31947: Id : 19, {_}:
29714 multiply ?50 (additive_inverse ?51)
29716 additive_inverse (multiply ?50 ?51)
29717 [51, 50] by inverse_product2 ?50 ?51
29718 31947: Id : 20, {_}:
29719 multiply ?53 (add ?54 (additive_inverse ?55))
29721 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
29722 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
29723 31947: Id : 21, {_}:
29724 multiply (add ?57 (additive_inverse ?58)) ?59
29726 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
29727 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
29728 31947: Id : 22, {_}:
29729 multiply (additive_inverse ?61) (add ?62 ?63)
29731 add (additive_inverse (multiply ?61 ?62))
29732 (additive_inverse (multiply ?61 ?63))
29733 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
29734 31947: Id : 23, {_}:
29735 multiply (add ?65 ?66) (additive_inverse ?67)
29737 add (additive_inverse (multiply ?65 ?67))
29738 (additive_inverse (multiply ?66 ?67))
29739 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
29741 31947: Id : 1, {_}:
29743 (add (associator (multiply a b) c d)
29744 (associator a b (multiply c d)))
29747 (add (associator a (multiply b c) d)
29748 (multiply a (associator b c d)))
29749 (multiply (associator a b c) d)))
29752 [] by prove_teichmuller_identity
29756 31947: a 5 0 5 1,1,1,1,2
29757 31947: b 5 0 5 2,1,1,1,2
29758 31947: c 5 0 5 2,1,1,2
29759 31947: d 5 0 5 3,1,1,2
29760 31947: additive_identity 9 0 1 3
29761 31947: additive_inverse 23 1 1 0,2,2
29762 31947: commutator 1 2 0
29763 31947: add 28 2 4 0,2
29764 31947: multiply 45 2 5 0,1,1,1,2
29765 31947: associator 6 3 5 0,1,1,2
29766 NO CLASH, using fixed ground order
29768 31948: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
29769 31948: Id : 3, {_}:
29770 add ?4 additive_identity =>= ?4
29771 [4] by right_additive_identity ?4
29772 31948: Id : 4, {_}:
29773 multiply additive_identity ?6 =>= additive_identity
29774 [6] by left_multiplicative_zero ?6
29775 31948: Id : 5, {_}:
29776 multiply ?8 additive_identity =>= additive_identity
29777 [8] by right_multiplicative_zero ?8
29778 31948: Id : 6, {_}:
29779 add (additive_inverse ?10) ?10 =>= additive_identity
29780 [10] by left_additive_inverse ?10
29781 31948: Id : 7, {_}:
29782 add ?12 (additive_inverse ?12) =>= additive_identity
29783 [12] by right_additive_inverse ?12
29784 31948: Id : 8, {_}:
29785 additive_inverse (additive_inverse ?14) =>= ?14
29786 [14] by additive_inverse_additive_inverse ?14
29787 31948: Id : 9, {_}:
29788 multiply ?16 (add ?17 ?18)
29790 add (multiply ?16 ?17) (multiply ?16 ?18)
29791 [18, 17, 16] by distribute1 ?16 ?17 ?18
29792 31948: Id : 10, {_}:
29793 multiply (add ?20 ?21) ?22
29795 add (multiply ?20 ?22) (multiply ?21 ?22)
29796 [22, 21, 20] by distribute2 ?20 ?21 ?22
29797 31948: Id : 11, {_}:
29798 add ?24 ?25 =?= add ?25 ?24
29799 [25, 24] by commutativity_for_addition ?24 ?25
29800 31948: Id : 12, {_}:
29801 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
29802 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
29803 31948: Id : 13, {_}:
29804 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
29805 [32, 31] by right_alternative ?31 ?32
29806 31948: Id : 14, {_}:
29807 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
29808 [35, 34] by left_alternative ?34 ?35
29809 31948: Id : 15, {_}:
29810 associator ?37 ?38 ?39
29812 add (multiply (multiply ?37 ?38) ?39)
29813 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
29814 [39, 38, 37] by associator ?37 ?38 ?39
29815 31948: Id : 16, {_}:
29818 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
29819 [42, 41] by commutator ?41 ?42
29820 31948: Id : 17, {_}:
29821 multiply (additive_inverse ?44) (additive_inverse ?45)
29824 [45, 44] by product_of_inverses ?44 ?45
29825 31948: Id : 18, {_}:
29826 multiply (additive_inverse ?47) ?48
29828 additive_inverse (multiply ?47 ?48)
29829 [48, 47] by inverse_product1 ?47 ?48
29830 31948: Id : 19, {_}:
29831 multiply ?50 (additive_inverse ?51)
29833 additive_inverse (multiply ?50 ?51)
29834 [51, 50] by inverse_product2 ?50 ?51
29835 31948: Id : 20, {_}:
29836 multiply ?53 (add ?54 (additive_inverse ?55))
29838 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
29839 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
29840 31948: Id : 21, {_}:
29841 multiply (add ?57 (additive_inverse ?58)) ?59
29843 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
29844 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
29845 31948: Id : 22, {_}:
29846 multiply (additive_inverse ?61) (add ?62 ?63)
29848 add (additive_inverse (multiply ?61 ?62))
29849 (additive_inverse (multiply ?61 ?63))
29850 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
29851 31948: Id : 23, {_}:
29852 multiply (add ?65 ?66) (additive_inverse ?67)
29854 add (additive_inverse (multiply ?65 ?67))
29855 (additive_inverse (multiply ?66 ?67))
29856 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
29858 31948: Id : 1, {_}:
29860 (add (associator (multiply a b) c d)
29861 (associator a b (multiply c d)))
29864 (add (associator a (multiply b c) d)
29865 (multiply a (associator b c d)))
29866 (multiply (associator a b c) d)))
29869 [] by prove_teichmuller_identity
29873 31948: a 5 0 5 1,1,1,1,2
29874 31948: b 5 0 5 2,1,1,1,2
29875 31948: c 5 0 5 2,1,1,2
29876 31948: d 5 0 5 3,1,1,2
29877 31948: additive_identity 9 0 1 3
29878 31948: additive_inverse 23 1 1 0,2,2
29879 31948: commutator 1 2 0
29880 31948: add 28 2 4 0,2
29881 31948: multiply 45 2 5 0,1,1,1,2
29882 31948: associator 6 3 5 0,1,1,2
29883 % SZS status Timeout for RNG026-7.p
29884 NO CLASH, using fixed ground order
29886 31979: Id : 2, {_}:
29887 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3
29888 [4, 3, 2] by sh_1 ?2 ?3 ?4
29890 31979: Id : 1, {_}:
29891 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
29892 [] by prove_meredith_2_basis_2
29896 31979: c 2 0 2 2,2,2,2
29898 31979: b 3 0 3 1,2,2
29899 31979: nand 12 2 6 0,2
29900 NO CLASH, using fixed ground order
29902 31980: Id : 2, {_}:
29903 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3
29904 [4, 3, 2] by sh_1 ?2 ?3 ?4
29906 31980: Id : 1, {_}:
29907 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
29908 [] by prove_meredith_2_basis_2
29912 31980: c 2 0 2 2,2,2,2
29914 31980: b 3 0 3 1,2,2
29915 31980: nand 12 2 6 0,2
29916 NO CLASH, using fixed ground order
29918 31981: Id : 2, {_}:
29919 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3
29920 [4, 3, 2] by sh_1 ?2 ?3 ?4
29922 31981: Id : 1, {_}:
29923 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
29924 [] by prove_meredith_2_basis_2
29928 31981: c 2 0 2 2,2,2,2
29930 31981: b 3 0 3 1,2,2
29931 31981: nand 12 2 6 0,2
29932 % SZS status Timeout for BOO076-1.p
29933 CLASH, statistics insufficient
29935 32007: Id : 2, {_}:
29936 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
29937 [5, 4, 3] by b_definition ?3 ?4 ?5
29938 32007: Id : 3, {_}:
29939 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
29940 [8, 7] by w_definition ?7 ?8
29942 32007: Id : 1, {_}:
29943 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
29944 [1] by prove_strong_fixed_point ?1
29950 32007: f 3 1 3 0,2,2
29951 32007: apply 12 2 3 0,2
29952 CLASH, statistics insufficient
29954 32008: Id : 2, {_}:
29955 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
29956 [5, 4, 3] by b_definition ?3 ?4 ?5
29957 32008: Id : 3, {_}:
29958 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
29959 [8, 7] by w_definition ?7 ?8
29961 32008: Id : 1, {_}:
29962 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
29963 [1] by prove_strong_fixed_point ?1
29969 32008: f 3 1 3 0,2,2
29970 32008: apply 12 2 3 0,2
29971 CLASH, statistics insufficient
29973 32009: Id : 2, {_}:
29974 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
29975 [5, 4, 3] by b_definition ?3 ?4 ?5
29976 32009: Id : 3, {_}:
29977 apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8
29978 [8, 7] by w_definition ?7 ?8
29980 32009: Id : 1, {_}:
29981 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
29982 [1] by prove_strong_fixed_point ?1
29988 32009: f 3 1 3 0,2,2
29989 32009: apply 12 2 3 0,2
29990 % SZS status Timeout for COL003-1.p
29991 CLASH, statistics insufficient
29993 32036: Id : 2, {_}:
29994 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
29995 [5, 4, 3] by b_definition ?3 ?4 ?5
29996 CLASH, statistics insufficient
29998 32037: Id : 2, {_}:
29999 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
30000 [5, 4, 3] by b_definition ?3 ?4 ?5
30001 32037: Id : 3, {_}:
30002 apply (apply w1 ?7) ?8 =?= apply (apply ?8 ?7) ?7
30003 [8, 7] by w1_definition ?7 ?8
30005 32037: Id : 1, {_}:
30006 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
30007 [1] by prove_fixed_point ?1
30013 32037: f 3 1 3 0,2,2
30014 32037: apply 12 2 3 0,2
30015 32036: Id : 3, {_}:
30016 apply (apply w1 ?7) ?8 =?= apply (apply ?8 ?7) ?7
30017 [8, 7] by w1_definition ?7 ?8
30019 32036: Id : 1, {_}:
30020 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
30021 [1] by prove_fixed_point ?1
30027 32036: f 3 1 3 0,2,2
30028 32036: apply 12 2 3 0,2
30029 CLASH, statistics insufficient
30031 32038: Id : 2, {_}:
30032 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
30033 [5, 4, 3] by b_definition ?3 ?4 ?5
30034 32038: Id : 3, {_}:
30035 apply (apply w1 ?7) ?8 =?= apply (apply ?8 ?7) ?7
30036 [8, 7] by w1_definition ?7 ?8
30038 32038: Id : 1, {_}:
30039 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
30040 [1] by prove_fixed_point ?1
30046 32038: f 3 1 3 0,2,2
30047 32038: apply 12 2 3 0,2
30048 % SZS status Timeout for COL042-1.p
30049 NO CLASH, using fixed ground order
30051 32071: Id : 2, {_}:
30052 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30053 [4, 3, 2] by b_definition ?2 ?3 ?4
30054 32071: Id : 3, {_}:
30055 apply (apply (apply h ?6) ?7) ?8
30057 apply (apply (apply ?6 ?7) ?8) ?7
30058 [8, 7, 6] by h_definition ?6 ?7 ?8
30059 32071: Id : 4, {_}:
30068 (apply (apply b (apply (apply b h) (apply b b)))
30069 (apply h (apply (apply b h) (apply b b))))) h)) b)) b
30070 [] by strong_fixed_point
30072 32071: Id : 1, {_}:
30073 apply strong_fixed_point fixed_pt
30075 apply fixed_pt (apply strong_fixed_point fixed_pt)
30076 [] by prove_strong_fixed_point
30080 32071: strong_fixed_point 3 0 2 1,2
30081 32071: fixed_pt 3 0 3 2,2
30084 32071: apply 29 2 3 0,2
30085 NO CLASH, using fixed ground order
30087 32072: Id : 2, {_}:
30088 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30089 [4, 3, 2] by b_definition ?2 ?3 ?4
30090 32072: Id : 3, {_}:
30091 apply (apply (apply h ?6) ?7) ?8
30093 apply (apply (apply ?6 ?7) ?8) ?7
30094 [8, 7, 6] by h_definition ?6 ?7 ?8
30095 32072: Id : 4, {_}:
30104 (apply (apply b (apply (apply b h) (apply b b)))
30105 (apply h (apply (apply b h) (apply b b))))) h)) b)) b
30106 [] by strong_fixed_point
30108 32072: Id : 1, {_}:
30109 apply strong_fixed_point fixed_pt
30111 apply fixed_pt (apply strong_fixed_point fixed_pt)
30112 [] by prove_strong_fixed_point
30116 32072: strong_fixed_point 3 0 2 1,2
30117 32072: fixed_pt 3 0 3 2,2
30120 32072: apply 29 2 3 0,2
30121 NO CLASH, using fixed ground order
30123 32073: Id : 2, {_}:
30124 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30125 [4, 3, 2] by b_definition ?2 ?3 ?4
30126 32073: Id : 3, {_}:
30127 apply (apply (apply h ?6) ?7) ?8
30129 apply (apply (apply ?6 ?7) ?8) ?7
30130 [8, 7, 6] by h_definition ?6 ?7 ?8
30131 32073: Id : 4, {_}:
30140 (apply (apply b (apply (apply b h) (apply b b)))
30141 (apply h (apply (apply b h) (apply b b))))) h)) b)) b
30142 [] by strong_fixed_point
30144 32073: Id : 1, {_}:
30145 apply strong_fixed_point fixed_pt
30147 apply fixed_pt (apply strong_fixed_point fixed_pt)
30148 [] by prove_strong_fixed_point
30152 32073: strong_fixed_point 3 0 2 1,2
30153 32073: fixed_pt 3 0 3 2,2
30156 32073: apply 29 2 3 0,2
30157 % SZS status Timeout for COL043-3.p
30158 NO CLASH, using fixed ground order
30160 NO CLASH, using fixed ground order
30162 32096: Id : 2, {_}:
30163 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30164 [4, 3, 2] by b_definition ?2 ?3 ?4
30165 32096: Id : 3, {_}:
30166 apply (apply (apply n ?6) ?7) ?8
30168 apply (apply (apply ?6 ?8) ?7) ?8
30169 [8, 7, 6] by n_definition ?6 ?7 ?8
30170 32096: Id : 4, {_}:
30180 (apply (apply b (apply b b))
30181 (apply n (apply (apply b b) n))))) n)) b)) b
30182 [] by strong_fixed_point
30184 32096: Id : 1, {_}:
30185 apply strong_fixed_point fixed_pt
30187 apply fixed_pt (apply strong_fixed_point fixed_pt)
30188 [] by prove_strong_fixed_point
30192 32096: strong_fixed_point 3 0 2 1,2
30193 32096: fixed_pt 3 0 3 2,2
30196 32096: apply 27 2 3 0,2
30197 NO CLASH, using fixed ground order
30199 32097: Id : 2, {_}:
30200 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30201 [4, 3, 2] by b_definition ?2 ?3 ?4
30202 32097: Id : 3, {_}:
30203 apply (apply (apply n ?6) ?7) ?8
30205 apply (apply (apply ?6 ?8) ?7) ?8
30206 [8, 7, 6] by n_definition ?6 ?7 ?8
30207 32097: Id : 4, {_}:
30217 (apply (apply b (apply b b))
30218 (apply n (apply (apply b b) n))))) n)) b)) b
30219 [] by strong_fixed_point
30221 32097: Id : 1, {_}:
30222 apply strong_fixed_point fixed_pt
30224 apply fixed_pt (apply strong_fixed_point fixed_pt)
30225 [] by prove_strong_fixed_point
30229 32097: strong_fixed_point 3 0 2 1,2
30230 32097: fixed_pt 3 0 3 2,2
30233 32097: apply 27 2 3 0,2
30234 32095: Id : 2, {_}:
30235 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30236 [4, 3, 2] by b_definition ?2 ?3 ?4
30237 32095: Id : 3, {_}:
30238 apply (apply (apply n ?6) ?7) ?8
30240 apply (apply (apply ?6 ?8) ?7) ?8
30241 [8, 7, 6] by n_definition ?6 ?7 ?8
30242 32095: Id : 4, {_}:
30252 (apply (apply b (apply b b))
30253 (apply n (apply (apply b b) n))))) n)) b)) b
30254 [] by strong_fixed_point
30256 32095: Id : 1, {_}:
30257 apply strong_fixed_point fixed_pt
30259 apply fixed_pt (apply strong_fixed_point fixed_pt)
30260 [] by prove_strong_fixed_point
30264 32095: strong_fixed_point 3 0 2 1,2
30265 32095: fixed_pt 3 0 3 2,2
30268 32095: apply 27 2 3 0,2
30269 % SZS status Timeout for COL044-8.p
30270 NO CLASH, using fixed ground order
30272 32149: Id : 2, {_}:
30273 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30274 [4, 3, 2] by b_definition ?2 ?3 ?4
30275 32149: Id : 3, {_}:
30276 apply (apply (apply n ?6) ?7) ?8
30278 apply (apply (apply ?6 ?8) ?7) ?8
30279 [8, 7, 6] by n_definition ?6 ?7 ?8
30280 32149: Id : 4, {_}:
30290 (apply (apply b (apply b b))
30291 (apply n (apply n (apply b b)))))) n)) b)) b
30292 [] by strong_fixed_point
30294 32149: Id : 1, {_}:
30295 apply strong_fixed_point fixed_pt
30297 apply fixed_pt (apply strong_fixed_point fixed_pt)
30298 [] by prove_strong_fixed_point
30302 32149: strong_fixed_point 3 0 2 1,2
30303 32149: fixed_pt 3 0 3 2,2
30306 32149: apply 27 2 3 0,2
30307 NO CLASH, using fixed ground order
30309 32150: Id : 2, {_}:
30310 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30311 [4, 3, 2] by b_definition ?2 ?3 ?4
30312 32150: Id : 3, {_}:
30313 apply (apply (apply n ?6) ?7) ?8
30315 apply (apply (apply ?6 ?8) ?7) ?8
30316 [8, 7, 6] by n_definition ?6 ?7 ?8
30317 32150: Id : 4, {_}:
30327 (apply (apply b (apply b b))
30328 (apply n (apply n (apply b b)))))) n)) b)) b
30329 [] by strong_fixed_point
30331 32150: Id : 1, {_}:
30332 apply strong_fixed_point fixed_pt
30334 apply fixed_pt (apply strong_fixed_point fixed_pt)
30335 [] by prove_strong_fixed_point
30339 32150: strong_fixed_point 3 0 2 1,2
30340 32150: fixed_pt 3 0 3 2,2
30343 32150: apply 27 2 3 0,2
30344 NO CLASH, using fixed ground order
30346 32151: Id : 2, {_}:
30347 apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4)
30348 [4, 3, 2] by b_definition ?2 ?3 ?4
30349 32151: Id : 3, {_}:
30350 apply (apply (apply n ?6) ?7) ?8
30352 apply (apply (apply ?6 ?8) ?7) ?8
30353 [8, 7, 6] by n_definition ?6 ?7 ?8
30354 32151: Id : 4, {_}:
30364 (apply (apply b (apply b b))
30365 (apply n (apply n (apply b b)))))) n)) b)) b
30366 [] by strong_fixed_point
30368 32151: Id : 1, {_}:
30369 apply strong_fixed_point fixed_pt
30371 apply fixed_pt (apply strong_fixed_point fixed_pt)
30372 [] by prove_strong_fixed_point
30376 32151: strong_fixed_point 3 0 2 1,2
30377 32151: fixed_pt 3 0 3 2,2
30380 32151: apply 27 2 3 0,2
30381 % SZS status Timeout for COL044-9.p
30382 NO CLASH, using fixed ground order
30384 32174: Id : 2, {_}:
30389 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
30390 (multiply (inverse (multiply ?4 ?5))
30393 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
30397 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
30399 32174: Id : 1, {_}:
30400 multiply (multiply (inverse b2) b2) a2 =>= a2
30401 [] by prove_these_axioms_2
30405 32174: b2 2 0 2 1,1,1,2
30406 32174: a2 2 0 2 2,2
30407 32174: inverse 8 1 1 0,1,1,2
30408 32174: multiply 12 2 2 0,2
30409 NO CLASH, using fixed ground order
30411 32175: Id : 2, {_}:
30416 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
30417 (multiply (inverse (multiply ?4 ?5))
30420 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
30424 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
30426 32175: Id : 1, {_}:
30427 multiply (multiply (inverse b2) b2) a2 =>= a2
30428 [] by prove_these_axioms_2
30432 32175: b2 2 0 2 1,1,1,2
30433 32175: a2 2 0 2 2,2
30434 32175: inverse 8 1 1 0,1,1,2
30435 32175: multiply 12 2 2 0,2
30436 NO CLASH, using fixed ground order
30438 32176: Id : 2, {_}:
30443 (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2)))
30444 (multiply (inverse (multiply ?4 ?5))
30447 (multiply (multiply ?6 (inverse ?7)) (inverse ?5)))))))
30451 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7
30453 32176: Id : 1, {_}:
30454 multiply (multiply (inverse b2) b2) a2 =>= a2
30455 [] by prove_these_axioms_2
30459 32176: b2 2 0 2 1,1,1,2
30460 32176: a2 2 0 2 2,2
30461 32176: inverse 8 1 1 0,1,1,2
30462 32176: multiply 12 2 2 0,2
30463 % SZS status Timeout for GRP506-1.p
30464 NO CLASH, using fixed ground order
30466 32197: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
30467 32197: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
30468 NO CLASH, using fixed ground order
30470 32198: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
30471 32198: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
30472 32198: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
30473 32198: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
30474 32198: Id : 6, {_}:
30475 meet ?12 ?13 =?= meet ?13 ?12
30476 [13, 12] by commutativity_of_meet ?12 ?13
30477 32198: Id : 7, {_}:
30478 join ?15 ?16 =?= join ?16 ?15
30479 [16, 15] by commutativity_of_join ?15 ?16
30480 32198: Id : 8, {_}:
30481 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
30482 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
30483 32198: Id : 9, {_}:
30484 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
30485 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
30486 32198: Id : 10, {_}:
30487 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
30488 [27, 26] by compatibility1 ?26 ?27
30489 32198: Id : 11, {_}:
30490 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
30491 [30, 29] by compatibility2 ?29 ?30
30492 32198: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
30493 32198: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
30494 32198: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
30495 32197: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
30496 32197: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
30497 32197: Id : 6, {_}:
30498 meet ?12 ?13 =?= meet ?13 ?12
30499 [13, 12] by commutativity_of_meet ?12 ?13
30500 32197: Id : 7, {_}:
30501 join ?15 ?16 =?= join ?16 ?15
30502 [16, 15] by commutativity_of_join ?15 ?16
30503 32197: Id : 8, {_}:
30504 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
30505 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
30506 32197: Id : 9, {_}:
30507 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
30508 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
30509 32197: Id : 10, {_}:
30510 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
30511 [27, 26] by compatibility1 ?26 ?27
30512 NO CLASH, using fixed ground order
30513 32197: Id : 11, {_}:
30514 complement (meet ?29 ?30) =<= join (complement ?29) (complement ?30)
30515 [30, 29] by compatibility2 ?29 ?30
30516 32197: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
30517 32197: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
30518 32197: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
30519 32197: Id : 15, {_}:
30520 join (meet (complement ?38) (join ?38 ?39))
30521 (join (complement ?39) (meet ?38 ?39))
30524 [39, 38] by megill ?38 ?39
30526 32197: Id : 1, {_}:
30527 meet a (join b (meet a (join (complement a) (meet a b))))
30529 meet a (join (complement a) (meet a b))
30536 32197: b 3 0 3 1,2,2
30538 32197: complement 14 1 2 0,1,2,2,2,2
30539 32197: join 18 2 3 0,2,2
30540 32197: meet 19 2 5 0,2
30542 32199: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
30543 32199: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
30544 32199: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
30545 32199: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
30546 32199: Id : 6, {_}:
30547 meet ?12 ?13 =?= meet ?13 ?12
30548 [13, 12] by commutativity_of_meet ?12 ?13
30549 32199: Id : 7, {_}:
30550 join ?15 ?16 =?= join ?16 ?15
30551 [16, 15] by commutativity_of_join ?15 ?16
30552 32199: Id : 8, {_}:
30553 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
30554 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
30555 32199: Id : 9, {_}:
30556 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
30557 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
30558 32199: Id : 10, {_}:
30559 complement (join ?26 ?27) =<= meet (complement ?26) (complement ?27)
30560 [27, 26] by compatibility1 ?26 ?27
30561 32199: Id : 11, {_}:
30562 complement (meet ?29 ?30) =>= join (complement ?29) (complement ?30)
30563 [30, 29] by compatibility2 ?29 ?30
30564 32199: Id : 12, {_}: join (complement ?32) ?32 =>= n1 [32] by invertability1 ?32
30565 32199: Id : 13, {_}: meet (complement ?34) ?34 =>= n0 [34] by invertability2 ?34
30566 32199: Id : 14, {_}: complement (complement ?36) =>= ?36 [36] by invertability3 ?36
30567 32199: Id : 15, {_}:
30568 join (meet (complement ?38) (join ?38 ?39))
30569 (join (complement ?39) (meet ?38 ?39))
30572 [39, 38] by megill ?38 ?39
30574 32199: Id : 1, {_}:
30575 meet a (join b (meet a (join (complement a) (meet a b))))
30577 meet a (join (complement a) (meet a b))
30584 32199: b 3 0 3 1,2,2
30586 32199: complement 14 1 2 0,1,2,2,2,2
30587 32199: join 18 2 3 0,2,2
30588 32199: meet 19 2 5 0,2
30589 32198: Id : 15, {_}:
30590 join (meet (complement ?38) (join ?38 ?39))
30591 (join (complement ?39) (meet ?38 ?39))
30594 [39, 38] by megill ?38 ?39
30596 32198: Id : 1, {_}:
30597 meet a (join b (meet a (join (complement a) (meet a b))))
30599 meet a (join (complement a) (meet a b))
30606 32198: b 3 0 3 1,2,2
30608 32198: complement 14 1 2 0,1,2,2,2,2
30609 32198: join 18 2 3 0,2,2
30610 32198: meet 19 2 5 0,2
30611 % SZS status Timeout for LAT053-1.p
30612 NO CLASH, using fixed ground order
30614 32222: Id : 2, {_}:
30615 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30617 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30621 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30624 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30625 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30626 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30629 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30631 32222: Id : 1, {_}: meet a b =<= meet b a [] by prove_normal_axioms_2
30638 32222: meet 20 2 2 0,2
30639 NO CLASH, using fixed ground order
30641 32223: Id : 2, {_}:
30642 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30644 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30648 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30651 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30652 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30653 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30656 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30658 32223: Id : 1, {_}: meet a b =<= meet b a [] by prove_normal_axioms_2
30665 32223: meet 20 2 2 0,2
30666 NO CLASH, using fixed ground order
30668 32224: Id : 2, {_}:
30669 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30671 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30675 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30678 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30679 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30680 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30683 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30685 32224: Id : 1, {_}: meet a b =<= meet b a [] by prove_normal_axioms_2
30692 32224: meet 20 2 2 0,2
30693 % SZS status Timeout for LAT081-1.p
30694 NO CLASH, using fixed ground order
30696 32257: Id : 2, {_}:
30697 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30699 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30703 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30706 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30707 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30708 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30711 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30713 32257: Id : 1, {_}: join a b =<= join b a [] by prove_normal_axioms_5
30720 32257: join 22 2 2 0,2
30721 NO CLASH, using fixed ground order
30723 32258: Id : 2, {_}:
30724 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30726 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30730 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30733 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30734 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30735 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30738 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30740 32258: Id : 1, {_}: join a b =<= join b a [] by prove_normal_axioms_5
30747 32258: join 22 2 2 0,2
30748 NO CLASH, using fixed ground order
30750 32259: Id : 2, {_}:
30751 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30753 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30757 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30760 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30761 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30762 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30765 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30767 32259: Id : 1, {_}: join a b =<= join b a [] by prove_normal_axioms_5
30774 32259: join 22 2 2 0,2
30775 % SZS status Timeout for LAT084-1.p
30776 NO CLASH, using fixed ground order
30778 32283: Id : 2, {_}:
30779 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30781 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30785 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30788 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30789 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30790 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30793 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30795 32283: Id : 1, {_}: meet a (join a b) =>= a [] by prove_normal_axioms_7
30799 32283: b 1 0 1 2,2,2
30801 32283: meet 19 2 1 0,2
30802 32283: join 21 2 1 0,2,2
30803 NO CLASH, using fixed ground order
30805 32284: Id : 2, {_}:
30806 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30808 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30812 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30815 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30816 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30817 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30820 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30822 32284: Id : 1, {_}: meet a (join a b) =>= a [] by prove_normal_axioms_7
30826 32284: b 1 0 1 2,2,2
30828 32284: meet 19 2 1 0,2
30829 32284: join 21 2 1 0,2,2
30830 NO CLASH, using fixed ground order
30832 32285: Id : 2, {_}:
30833 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30835 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30839 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30842 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30843 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30844 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30847 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30849 32285: Id : 1, {_}: meet a (join a b) =>= a [] by prove_normal_axioms_7
30853 32285: b 1 0 1 2,2,2
30855 32285: meet 19 2 1 0,2
30856 32285: join 21 2 1 0,2,2
30857 % SZS status Timeout for LAT086-1.p
30858 NO CLASH, using fixed ground order
30860 32311: Id : 2, {_}:
30861 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30863 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30867 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30870 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30871 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30872 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30875 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30877 32311: Id : 1, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8
30881 32311: b 1 0 1 2,2,2
30883 32311: meet 19 2 1 0,2,2
30884 32311: join 21 2 1 0,2
30885 NO CLASH, using fixed ground order
30887 32312: Id : 2, {_}:
30888 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30890 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30894 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30897 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30898 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30899 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30902 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30904 32312: Id : 1, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8
30908 32312: b 1 0 1 2,2,2
30910 32312: meet 19 2 1 0,2,2
30911 32312: join 21 2 1 0,2
30912 NO CLASH, using fixed ground order
30914 32313: Id : 2, {_}:
30915 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
30917 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
30921 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
30924 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
30925 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
30926 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
30929 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
30931 32313: Id : 1, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8
30935 32313: b 1 0 1 2,2,2
30937 32313: meet 19 2 1 0,2,2
30938 32313: join 21 2 1 0,2
30939 % SZS status Timeout for LAT087-1.p
30940 NO CLASH, using fixed ground order
30942 32355: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
30943 32355: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
30944 32355: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
30945 32355: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
30946 32355: Id : 6, {_}:
30947 meet ?12 ?13 =?= meet ?13 ?12
30948 [13, 12] by commutativity_of_meet ?12 ?13
30949 32355: Id : 7, {_}:
30950 join ?15 ?16 =?= join ?16 ?15
30951 [16, 15] by commutativity_of_join ?15 ?16
30952 32355: Id : 8, {_}:
30953 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
30954 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
30955 32355: Id : 9, {_}:
30956 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
30957 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
30958 32355: Id : 10, {_}:
30959 meet ?26 (join ?27 (meet ?26 ?28))
30963 (meet ?28 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))))
30964 [28, 27, 26] by equation_H3 ?26 ?27 ?28
30966 32355: Id : 1, {_}:
30967 meet a (join b (meet a c))
30969 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
30975 32355: b 4 0 4 1,2,2
30976 32355: c 4 0 4 2,2,2,2
30977 32355: join 17 2 4 0,2,2
30978 32355: meet 21 2 6 0,2
30979 NO CLASH, using fixed ground order
30981 32356: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
30982 32356: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
30983 32356: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
30984 32356: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
30985 32356: Id : 6, {_}:
30986 meet ?12 ?13 =?= meet ?13 ?12
30987 [13, 12] by commutativity_of_meet ?12 ?13
30988 32356: Id : 7, {_}:
30989 join ?15 ?16 =?= join ?16 ?15
30990 [16, 15] by commutativity_of_join ?15 ?16
30991 32356: Id : 8, {_}:
30992 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
30993 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
30994 32356: Id : 9, {_}:
30995 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
30996 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
30997 32356: Id : 10, {_}:
30998 meet ?26 (join ?27 (meet ?26 ?28))
31002 (meet ?28 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))))
31003 [28, 27, 26] by equation_H3 ?26 ?27 ?28
31005 32356: Id : 1, {_}:
31006 meet a (join b (meet a c))
31008 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
31014 32356: b 4 0 4 1,2,2
31015 32356: c 4 0 4 2,2,2,2
31016 32356: join 17 2 4 0,2,2
31017 32356: meet 21 2 6 0,2
31018 NO CLASH, using fixed ground order
31020 32357: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31021 32357: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31022 32357: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31023 32357: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31024 32357: Id : 6, {_}:
31025 meet ?12 ?13 =?= meet ?13 ?12
31026 [13, 12] by commutativity_of_meet ?12 ?13
31027 32357: Id : 7, {_}:
31028 join ?15 ?16 =?= join ?16 ?15
31029 [16, 15] by commutativity_of_join ?15 ?16
31030 32357: Id : 8, {_}:
31031 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31032 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31033 32357: Id : 9, {_}:
31034 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31035 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31036 32357: Id : 10, {_}:
31037 meet ?26 (join ?27 (meet ?26 ?28))
31041 (meet ?28 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))))
31042 [28, 27, 26] by equation_H3 ?26 ?27 ?28
31044 32357: Id : 1, {_}:
31045 meet a (join b (meet a c))
31047 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
31053 32357: b 4 0 4 1,2,2
31054 32357: c 4 0 4 2,2,2,2
31055 32357: join 17 2 4 0,2,2
31056 32357: meet 21 2 6 0,2
31057 % SZS status Timeout for LAT099-1.p
31058 NO CLASH, using fixed ground order
31060 32378: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31061 32378: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31062 32378: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31063 32378: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31064 32378: Id : 6, {_}:
31065 meet ?12 ?13 =?= meet ?13 ?12
31066 [13, 12] by commutativity_of_meet ?12 ?13
31067 32378: Id : 7, {_}:
31068 join ?15 ?16 =?= join ?16 ?15
31069 [16, 15] by commutativity_of_join ?15 ?16
31070 32378: Id : 8, {_}:
31071 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
31072 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31073 32378: Id : 9, {_}:
31074 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
31075 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31076 32378: Id : 10, {_}:
31077 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
31079 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
31080 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
31082 32378: Id : 1, {_}:
31083 meet a (join b (meet c (join a d)))
31085 meet a (join b (meet c (join b (join d (meet a c)))))
31090 32378: d 2 0 2 2,2,2,2,2
31091 32378: b 3 0 3 1,2,2
31092 32378: c 3 0 3 1,2,2,2
31094 32378: meet 19 2 5 0,2
31095 32378: join 19 2 5 0,2,2
31096 NO CLASH, using fixed ground order
31098 32379: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31099 32379: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31100 32379: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31101 32379: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31102 32379: Id : 6, {_}:
31103 meet ?12 ?13 =?= meet ?13 ?12
31104 [13, 12] by commutativity_of_meet ?12 ?13
31105 32379: Id : 7, {_}:
31106 join ?15 ?16 =?= join ?16 ?15
31107 [16, 15] by commutativity_of_join ?15 ?16
31108 32379: Id : 8, {_}:
31109 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31110 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31111 32379: Id : 9, {_}:
31112 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31113 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31114 32379: Id : 10, {_}:
31115 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
31117 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
31118 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
31120 32379: Id : 1, {_}:
31121 meet a (join b (meet c (join a d)))
31123 meet a (join b (meet c (join b (join d (meet a c)))))
31128 32379: d 2 0 2 2,2,2,2,2
31129 32379: b 3 0 3 1,2,2
31130 32379: c 3 0 3 1,2,2,2
31132 32379: meet 19 2 5 0,2
31133 32379: join 19 2 5 0,2,2
31134 NO CLASH, using fixed ground order
31136 32380: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31137 32380: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31138 32380: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31139 32380: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31140 32380: Id : 6, {_}:
31141 meet ?12 ?13 =?= meet ?13 ?12
31142 [13, 12] by commutativity_of_meet ?12 ?13
31143 32380: Id : 7, {_}:
31144 join ?15 ?16 =?= join ?16 ?15
31145 [16, 15] by commutativity_of_join ?15 ?16
31146 32380: Id : 8, {_}:
31147 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31148 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31149 32380: Id : 9, {_}:
31150 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31151 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31152 32380: Id : 10, {_}:
31153 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
31155 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
31156 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
31158 32380: Id : 1, {_}:
31159 meet a (join b (meet c (join a d)))
31161 meet a (join b (meet c (join b (join d (meet a c)))))
31166 32380: d 2 0 2 2,2,2,2,2
31167 32380: b 3 0 3 1,2,2
31168 32380: c 3 0 3 1,2,2,2
31170 32380: meet 19 2 5 0,2
31171 32380: join 19 2 5 0,2,2
31172 % SZS status Timeout for LAT110-1.p
31173 NO CLASH, using fixed ground order
31175 32414: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31176 32414: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31177 32414: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31178 32414: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31179 32414: Id : 6, {_}:
31180 meet ?12 ?13 =?= meet ?13 ?12
31181 [13, 12] by commutativity_of_meet ?12 ?13
31182 32414: Id : 7, {_}:
31183 join ?15 ?16 =?= join ?16 ?15
31184 [16, 15] by commutativity_of_join ?15 ?16
31185 32414: Id : 8, {_}:
31186 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
31187 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31188 32414: Id : 9, {_}:
31189 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
31190 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31191 32414: Id : 10, {_}:
31192 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31194 meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 ?29))
31195 [29, 28, 27, 26] by equation_H79 ?26 ?27 ?28 ?29
31197 32414: Id : 1, {_}:
31200 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
31205 32414: b 3 0 3 1,2,2
31206 32414: c 3 0 3 2,2,2
31208 32414: join 17 2 4 0,2,2
31209 32414: meet 20 2 5 0,2
31210 NO CLASH, using fixed ground order
31212 32415: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31213 32415: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31214 32415: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31215 32415: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31216 32415: Id : 6, {_}:
31217 meet ?12 ?13 =?= meet ?13 ?12
31218 [13, 12] by commutativity_of_meet ?12 ?13
31219 32415: Id : 7, {_}:
31220 join ?15 ?16 =?= join ?16 ?15
31221 [16, 15] by commutativity_of_join ?15 ?16
31222 32415: Id : 8, {_}:
31223 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31224 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31225 32415: Id : 9, {_}:
31226 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31227 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31228 32415: Id : 10, {_}:
31229 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31231 meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 ?29))
31232 [29, 28, 27, 26] by equation_H79 ?26 ?27 ?28 ?29
31234 32415: Id : 1, {_}:
31237 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
31242 32415: b 3 0 3 1,2,2
31243 32415: c 3 0 3 2,2,2
31245 32415: join 17 2 4 0,2,2
31246 32415: meet 20 2 5 0,2
31247 NO CLASH, using fixed ground order
31249 32416: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31250 32416: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31251 32416: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31252 32416: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31253 32416: Id : 6, {_}:
31254 meet ?12 ?13 =?= meet ?13 ?12
31255 [13, 12] by commutativity_of_meet ?12 ?13
31256 32416: Id : 7, {_}:
31257 join ?15 ?16 =?= join ?16 ?15
31258 [16, 15] by commutativity_of_join ?15 ?16
31259 32416: Id : 8, {_}:
31260 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31261 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31262 32416: Id : 9, {_}:
31263 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31264 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31265 32416: Id : 10, {_}:
31266 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31268 meet ?26 (join (meet ?26 (join ?27 (meet ?26 ?28))) (meet ?28 ?29))
31269 [29, 28, 27, 26] by equation_H79 ?26 ?27 ?28 ?29
31271 32416: Id : 1, {_}:
31274 join (meet a (join c (meet a b))) (meet a (join b (meet a c)))
31279 32416: b 3 0 3 1,2,2
31280 32416: c 3 0 3 2,2,2
31282 32416: join 17 2 4 0,2,2
31283 32416: meet 20 2 5 0,2
31284 % SZS status Timeout for LAT118-1.p
31285 NO CLASH, using fixed ground order
31286 NO CLASH, using fixed ground order
31288 32445: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31289 32445: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31290 32445: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31291 32445: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31292 32445: Id : 6, {_}:
31293 meet ?12 ?13 =?= meet ?13 ?12
31294 [13, 12] by commutativity_of_meet ?12 ?13
31295 32445: Id : 7, {_}:
31296 join ?15 ?16 =?= join ?16 ?15
31297 [16, 15] by commutativity_of_join ?15 ?16
31298 32445: Id : 8, {_}:
31299 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31300 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31301 32445: Id : 9, {_}:
31302 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31303 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31304 32445: Id : 10, {_}:
31305 join (meet ?26 ?27) (meet ?26 ?28)
31308 (join (meet ?27 (join ?28 (meet ?26 ?27)))
31309 (meet ?28 (join ?26 ?27)))
31310 [28, 27, 26] by equation_H22 ?26 ?27 ?28
31312 32445: Id : 1, {_}:
31313 meet a (join b (meet a c))
31315 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
31320 32445: b 3 0 3 1,2,2
31321 32445: c 3 0 3 2,2,2,2
31323 32445: join 17 2 4 0,2,2
31324 32445: meet 21 2 6 0,2
31325 NO CLASH, using fixed ground order
31327 32446: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31328 32446: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31329 32446: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31330 32446: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31331 32446: Id : 6, {_}:
31332 meet ?12 ?13 =?= meet ?13 ?12
31333 [13, 12] by commutativity_of_meet ?12 ?13
31334 32446: Id : 7, {_}:
31335 join ?15 ?16 =?= join ?16 ?15
31336 [16, 15] by commutativity_of_join ?15 ?16
31337 32446: Id : 8, {_}:
31338 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31339 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31340 32446: Id : 9, {_}:
31341 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31342 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31343 32446: Id : 10, {_}:
31344 join (meet ?26 ?27) (meet ?26 ?28)
31347 (join (meet ?27 (join ?28 (meet ?26 ?27)))
31348 (meet ?28 (join ?26 ?27)))
31349 [28, 27, 26] by equation_H22 ?26 ?27 ?28
31351 32446: Id : 1, {_}:
31352 meet a (join b (meet a c))
31354 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
31359 32446: b 3 0 3 1,2,2
31360 32446: c 3 0 3 2,2,2,2
31362 32446: join 17 2 4 0,2,2
31363 32446: meet 21 2 6 0,2
31365 32444: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31366 32444: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31367 32444: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31368 32444: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31369 32444: Id : 6, {_}:
31370 meet ?12 ?13 =?= meet ?13 ?12
31371 [13, 12] by commutativity_of_meet ?12 ?13
31372 32444: Id : 7, {_}:
31373 join ?15 ?16 =?= join ?16 ?15
31374 [16, 15] by commutativity_of_join ?15 ?16
31375 32444: Id : 8, {_}:
31376 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
31377 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31378 32444: Id : 9, {_}:
31379 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
31380 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31381 32444: Id : 10, {_}:
31382 join (meet ?26 ?27) (meet ?26 ?28)
31385 (join (meet ?27 (join ?28 (meet ?26 ?27)))
31386 (meet ?28 (join ?26 ?27)))
31387 [28, 27, 26] by equation_H22 ?26 ?27 ?28
31389 32444: Id : 1, {_}:
31390 meet a (join b (meet a c))
31392 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
31397 32444: b 3 0 3 1,2,2
31398 32444: c 3 0 3 2,2,2,2
31400 32444: join 17 2 4 0,2,2
31401 32444: meet 21 2 6 0,2
31402 % SZS status Timeout for LAT142-1.p
31403 NO CLASH, using fixed ground order
31405 32541: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31406 32541: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31407 32541: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31408 32541: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31409 32541: Id : 6, {_}:
31410 meet ?12 ?13 =?= meet ?13 ?12
31411 [13, 12] by commutativity_of_meet ?12 ?13
31412 32541: Id : 7, {_}:
31413 join ?15 ?16 =?= join ?16 ?15
31414 [16, 15] by commutativity_of_join ?15 ?16
31415 32541: Id : 8, {_}:
31416 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
31417 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31418 32541: Id : 9, {_}:
31419 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
31420 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31421 32541: Id : 10, {_}:
31422 meet ?26 (join ?27 (meet ?28 ?29))
31424 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
31425 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
31427 32541: Id : 1, {_}:
31428 meet a (meet b (join c (meet a d)))
31430 meet a (meet b (join c (meet d (join a (meet b c)))))
31435 32541: d 2 0 2 2,2,2,2,2
31436 32541: b 3 0 3 1,2,2
31437 32541: c 3 0 3 1,2,2,2
31439 32541: join 16 2 3 0,2,2,2
31440 32541: meet 21 2 7 0,2
31441 NO CLASH, using fixed ground order
31443 32542: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31444 32542: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31445 32542: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31446 32542: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31447 32542: Id : 6, {_}:
31448 meet ?12 ?13 =?= meet ?13 ?12
31449 [13, 12] by commutativity_of_meet ?12 ?13
31450 32542: Id : 7, {_}:
31451 join ?15 ?16 =?= join ?16 ?15
31452 [16, 15] by commutativity_of_join ?15 ?16
31453 32542: Id : 8, {_}:
31454 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31455 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31456 32542: Id : 9, {_}:
31457 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31458 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31459 32542: Id : 10, {_}:
31460 meet ?26 (join ?27 (meet ?28 ?29))
31462 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
31463 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
31465 32542: Id : 1, {_}:
31466 meet a (meet b (join c (meet a d)))
31468 meet a (meet b (join c (meet d (join a (meet b c)))))
31473 32542: d 2 0 2 2,2,2,2,2
31474 32542: b 3 0 3 1,2,2
31475 32542: c 3 0 3 1,2,2,2
31477 32542: join 16 2 3 0,2,2,2
31478 32542: meet 21 2 7 0,2
31479 NO CLASH, using fixed ground order
31481 32543: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31482 32543: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31483 32543: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31484 32543: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31485 32543: Id : 6, {_}:
31486 meet ?12 ?13 =?= meet ?13 ?12
31487 [13, 12] by commutativity_of_meet ?12 ?13
31488 32543: Id : 7, {_}:
31489 join ?15 ?16 =?= join ?16 ?15
31490 [16, 15] by commutativity_of_join ?15 ?16
31491 32543: Id : 8, {_}:
31492 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31493 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31494 32543: Id : 9, {_}:
31495 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31496 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31497 32543: Id : 10, {_}:
31498 meet ?26 (join ?27 (meet ?28 ?29))
31500 meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28)))))
31501 [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29
31503 32543: Id : 1, {_}:
31504 meet a (meet b (join c (meet a d)))
31506 meet a (meet b (join c (meet d (join a (meet b c)))))
31511 32543: d 2 0 2 2,2,2,2,2
31512 32543: b 3 0 3 1,2,2
31513 32543: c 3 0 3 1,2,2,2
31515 32543: join 16 2 3 0,2,2,2
31516 32543: meet 21 2 7 0,2
31517 % SZS status Timeout for LAT147-1.p
31518 NO CLASH, using fixed ground order
31520 32564: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31521 32564: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31522 32564: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31523 32564: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31524 32564: Id : 6, {_}:
31525 meet ?12 ?13 =?= meet ?13 ?12
31526 [13, 12] by commutativity_of_meet ?12 ?13
31527 32564: Id : 7, {_}:
31528 join ?15 ?16 =?= join ?16 ?15
31529 [16, 15] by commutativity_of_join ?15 ?16
31530 32564: Id : 8, {_}:
31531 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
31532 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31533 32564: Id : 9, {_}:
31534 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
31535 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31536 32564: Id : 10, {_}:
31537 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31539 meet ?26 (join ?27 (meet ?28 (join ?27 (join ?29 (meet ?26 ?28)))))
31540 [29, 28, 27, 26] by equation_H42 ?26 ?27 ?28 ?29
31542 32564: Id : 1, {_}:
31543 meet a (join b (meet a c))
31545 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
31550 32564: b 3 0 3 1,2,2
31551 32564: c 3 0 3 2,2,2,2
31553 32564: join 18 2 4 0,2,2
31554 32564: meet 20 2 6 0,2
31555 NO CLASH, using fixed ground order
31557 32565: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31558 32565: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31559 32565: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31560 32565: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31561 32565: Id : 6, {_}:
31562 meet ?12 ?13 =?= meet ?13 ?12
31563 [13, 12] by commutativity_of_meet ?12 ?13
31564 32565: Id : 7, {_}:
31565 join ?15 ?16 =?= join ?16 ?15
31566 [16, 15] by commutativity_of_join ?15 ?16
31567 32565: Id : 8, {_}:
31568 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31569 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31570 32565: Id : 9, {_}:
31571 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31572 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31573 32565: Id : 10, {_}:
31574 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31576 meet ?26 (join ?27 (meet ?28 (join ?27 (join ?29 (meet ?26 ?28)))))
31577 [29, 28, 27, 26] by equation_H42 ?26 ?27 ?28 ?29
31579 32565: Id : 1, {_}:
31580 meet a (join b (meet a c))
31582 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
31587 32565: b 3 0 3 1,2,2
31588 32565: c 3 0 3 2,2,2,2
31590 32565: join 18 2 4 0,2,2
31591 32565: meet 20 2 6 0,2
31592 NO CLASH, using fixed ground order
31594 32566: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31595 32566: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31596 32566: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31597 32566: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31598 32566: Id : 6, {_}:
31599 meet ?12 ?13 =?= meet ?13 ?12
31600 [13, 12] by commutativity_of_meet ?12 ?13
31601 32566: Id : 7, {_}:
31602 join ?15 ?16 =?= join ?16 ?15
31603 [16, 15] by commutativity_of_join ?15 ?16
31604 32566: Id : 8, {_}:
31605 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31606 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31607 32566: Id : 9, {_}:
31608 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31609 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31610 32566: Id : 10, {_}:
31611 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31613 meet ?26 (join ?27 (meet ?28 (join ?27 (join ?29 (meet ?26 ?28)))))
31614 [29, 28, 27, 26] by equation_H42 ?26 ?27 ?28 ?29
31616 32566: Id : 1, {_}:
31617 meet a (join b (meet a c))
31619 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
31624 32566: b 3 0 3 1,2,2
31625 32566: c 3 0 3 2,2,2,2
31627 32566: join 18 2 4 0,2,2
31628 32566: meet 20 2 6 0,2
31629 % SZS status Timeout for LAT154-1.p
31630 NO CLASH, using fixed ground order
31631 NO CLASH, using fixed ground order
31633 32589: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31634 32589: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31635 32589: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31636 32589: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31637 32589: Id : 6, {_}:
31638 meet ?12 ?13 =?= meet ?13 ?12
31639 [13, 12] by commutativity_of_meet ?12 ?13
31640 32589: Id : 7, {_}:
31641 join ?15 ?16 =?= join ?16 ?15
31642 [16, 15] by commutativity_of_join ?15 ?16
31643 32589: Id : 8, {_}:
31644 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31645 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31646 32589: Id : 9, {_}:
31647 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31648 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31649 32589: Id : 10, {_}:
31650 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31652 meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29))))
31653 [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29
31655 32589: Id : 1, {_}:
31656 meet a (join b (meet a c))
31658 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
31664 32589: b 4 0 4 1,2,2
31665 32589: c 4 0 4 2,2,2,2
31666 32589: join 18 2 4 0,2,2
31667 32589: meet 20 2 6 0,2
31669 32588: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31670 32588: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31671 32588: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31672 32588: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31673 32588: Id : 6, {_}:
31674 meet ?12 ?13 =?= meet ?13 ?12
31675 [13, 12] by commutativity_of_meet ?12 ?13
31676 32588: Id : 7, {_}:
31677 join ?15 ?16 =?= join ?16 ?15
31678 [16, 15] by commutativity_of_join ?15 ?16
31679 32588: Id : 8, {_}:
31680 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
31681 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31682 32588: Id : 9, {_}:
31683 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
31684 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31685 32588: Id : 10, {_}:
31686 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31688 meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29))))
31689 [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29
31691 32588: Id : 1, {_}:
31692 meet a (join b (meet a c))
31694 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
31700 32588: b 4 0 4 1,2,2
31701 32588: c 4 0 4 2,2,2,2
31702 32588: join 18 2 4 0,2,2
31703 32588: meet 20 2 6 0,2
31704 NO CLASH, using fixed ground order
31706 32590: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31707 32590: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31708 32590: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31709 32590: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31710 32590: Id : 6, {_}:
31711 meet ?12 ?13 =?= meet ?13 ?12
31712 [13, 12] by commutativity_of_meet ?12 ?13
31713 32590: Id : 7, {_}:
31714 join ?15 ?16 =?= join ?16 ?15
31715 [16, 15] by commutativity_of_join ?15 ?16
31716 32590: Id : 8, {_}:
31717 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31718 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31719 32590: Id : 9, {_}:
31720 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31721 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31722 32590: Id : 10, {_}:
31723 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
31725 meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29))))
31726 [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29
31728 32590: Id : 1, {_}:
31729 meet a (join b (meet a c))
31731 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
31737 32590: b 4 0 4 1,2,2
31738 32590: c 4 0 4 2,2,2,2
31739 32590: join 18 2 4 0,2,2
31740 32590: meet 20 2 6 0,2
31741 % SZS status Timeout for LAT155-1.p
31742 NO CLASH, using fixed ground order
31744 32615: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31745 32615: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31746 32615: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31747 32615: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31748 32615: Id : 6, {_}:
31749 meet ?12 ?13 =?= meet ?13 ?12
31750 [13, 12] by commutativity_of_meet ?12 ?13
31751 32615: Id : 7, {_}:
31752 join ?15 ?16 =?= join ?16 ?15
31753 [16, 15] by commutativity_of_join ?15 ?16
31754 32615: Id : 8, {_}:
31755 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
31756 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31757 32615: Id : 9, {_}:
31758 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
31759 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31760 32615: Id : 10, {_}:
31761 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
31763 join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29))))
31764 [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29
31766 32615: Id : 1, {_}:
31769 meet a (join b (meet (join a b) (join c (meet a b))))
31774 32615: c 2 0 2 2,2,2
31776 32615: b 4 0 4 1,2,2
31777 32615: meet 18 2 4 0,2
31778 32615: join 18 2 4 0,2,2
31779 NO CLASH, using fixed ground order
31781 32616: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31782 32616: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31783 32616: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31784 32616: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31785 32616: Id : 6, {_}:
31786 meet ?12 ?13 =?= meet ?13 ?12
31787 [13, 12] by commutativity_of_meet ?12 ?13
31788 32616: Id : 7, {_}:
31789 join ?15 ?16 =?= join ?16 ?15
31790 [16, 15] by commutativity_of_join ?15 ?16
31791 32616: Id : 8, {_}:
31792 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31793 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31794 32616: Id : 9, {_}:
31795 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31796 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31797 32616: Id : 10, {_}:
31798 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
31800 join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29))))
31801 [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29
31803 32616: Id : 1, {_}:
31806 meet a (join b (meet (join a b) (join c (meet a b))))
31811 32616: c 2 0 2 2,2,2
31813 32616: b 4 0 4 1,2,2
31814 32616: meet 18 2 4 0,2
31815 32616: join 18 2 4 0,2,2
31816 NO CLASH, using fixed ground order
31818 32617: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
31819 32617: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
31820 32617: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
31821 32617: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
31822 32617: Id : 6, {_}:
31823 meet ?12 ?13 =?= meet ?13 ?12
31824 [13, 12] by commutativity_of_meet ?12 ?13
31825 32617: Id : 7, {_}:
31826 join ?15 ?16 =?= join ?16 ?15
31827 [16, 15] by commutativity_of_join ?15 ?16
31828 32617: Id : 8, {_}:
31829 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
31830 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
31831 32617: Id : 9, {_}:
31832 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
31833 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
31834 32617: Id : 10, {_}:
31835 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
31837 join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29))))
31838 [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29
31840 32617: Id : 1, {_}:
31843 meet a (join b (meet (join a b) (join c (meet a b))))
31848 32617: c 2 0 2 2,2,2
31850 32617: b 4 0 4 1,2,2
31851 32617: meet 18 2 4 0,2
31852 32617: join 18 2 4 0,2,2
31853 % SZS status Timeout for LAT170-1.p
31854 NO CLASH, using fixed ground order
31855 NO CLASH, using fixed ground order
31857 32640: Id : 2, {_}:
31858 add ?2 ?3 =?= add ?3 ?2
31859 [3, 2] by commutativity_for_addition ?2 ?3
31860 32640: Id : 3, {_}:
31861 add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7
31862 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
31863 32640: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
31864 32640: Id : 5, {_}:
31865 add ?11 additive_identity =>= ?11
31866 [11] by right_additive_identity ?11
31867 32640: Id : 6, {_}:
31868 multiply additive_identity ?13 =>= additive_identity
31869 [13] by left_multiplicative_zero ?13
31870 32640: Id : 7, {_}:
31871 multiply ?15 additive_identity =>= additive_identity
31872 [15] by right_multiplicative_zero ?15
31873 32640: Id : 8, {_}:
31874 add (additive_inverse ?17) ?17 =>= additive_identity
31875 [17] by left_additive_inverse ?17
31876 32640: Id : 9, {_}:
31877 add ?19 (additive_inverse ?19) =>= additive_identity
31878 [19] by right_additive_inverse ?19
31879 32640: Id : 10, {_}:
31880 multiply ?21 (add ?22 ?23)
31882 add (multiply ?21 ?22) (multiply ?21 ?23)
31883 [23, 22, 21] by distribute1 ?21 ?22 ?23
31884 32640: Id : 11, {_}:
31885 multiply (add ?25 ?26) ?27
31887 add (multiply ?25 ?27) (multiply ?26 ?27)
31888 [27, 26, 25] by distribute2 ?25 ?26 ?27
31889 32640: Id : 12, {_}:
31890 additive_inverse (additive_inverse ?29) =>= ?29
31891 [29] by additive_inverse_additive_inverse ?29
31892 32640: Id : 13, {_}:
31893 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
31894 [32, 31] by right_alternative ?31 ?32
31895 32640: Id : 14, {_}:
31896 associator ?34 ?35 ?36
31898 add (multiply (multiply ?34 ?35) ?36)
31899 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
31900 [36, 35, 34] by associator ?34 ?35 ?36
31901 NO CLASH, using fixed ground order
31903 32641: Id : 2, {_}:
31904 add ?2 ?3 =?= add ?3 ?2
31905 [3, 2] by commutativity_for_addition ?2 ?3
31906 32641: Id : 3, {_}:
31907 add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7
31908 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
31909 32641: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
31910 32641: Id : 5, {_}:
31911 add ?11 additive_identity =>= ?11
31912 [11] by right_additive_identity ?11
31913 32641: Id : 6, {_}:
31914 multiply additive_identity ?13 =>= additive_identity
31915 [13] by left_multiplicative_zero ?13
31916 32641: Id : 7, {_}:
31917 multiply ?15 additive_identity =>= additive_identity
31918 [15] by right_multiplicative_zero ?15
31919 32641: Id : 8, {_}:
31920 add (additive_inverse ?17) ?17 =>= additive_identity
31921 [17] by left_additive_inverse ?17
31922 32641: Id : 9, {_}:
31923 add ?19 (additive_inverse ?19) =>= additive_identity
31924 [19] by right_additive_inverse ?19
31925 32641: Id : 10, {_}:
31926 multiply ?21 (add ?22 ?23)
31928 add (multiply ?21 ?22) (multiply ?21 ?23)
31929 [23, 22, 21] by distribute1 ?21 ?22 ?23
31930 32641: Id : 11, {_}:
31931 multiply (add ?25 ?26) ?27
31933 add (multiply ?25 ?27) (multiply ?26 ?27)
31934 [27, 26, 25] by distribute2 ?25 ?26 ?27
31935 32641: Id : 12, {_}:
31936 additive_inverse (additive_inverse ?29) =>= ?29
31937 [29] by additive_inverse_additive_inverse ?29
31938 32641: Id : 13, {_}:
31939 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
31940 [32, 31] by right_alternative ?31 ?32
31941 32641: Id : 14, {_}:
31942 associator ?34 ?35 ?36
31944 add (multiply (multiply ?34 ?35) ?36)
31945 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
31946 [36, 35, 34] by associator ?34 ?35 ?36
31947 32641: Id : 15, {_}:
31950 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
31951 [39, 38] by commutator ?38 ?39
31953 32641: Id : 1, {_}:
31955 (multiply (multiply (associator x x y) (associator x x y)) x)
31956 (multiply (associator x x y) (associator x x y))
31959 [] by prove_conjecture_2
31963 32641: y 4 0 4 3,1,1,1,2
31964 32641: additive_identity 9 0 1 3
31965 32641: x 9 0 9 1,1,1,1,2
31966 32641: additive_inverse 6 1 0
31967 32641: commutator 1 2 0
31969 32641: multiply 22 2 4 0,2
31970 32641: associator 5 3 4 0,1,1,1,2
31972 32639: Id : 2, {_}:
31973 add ?2 ?3 =?= add ?3 ?2
31974 [3, 2] by commutativity_for_addition ?2 ?3
31975 32639: Id : 3, {_}:
31976 add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7
31977 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
31978 32639: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
31979 32639: Id : 5, {_}:
31980 add ?11 additive_identity =>= ?11
31981 [11] by right_additive_identity ?11
31982 32639: Id : 6, {_}:
31983 multiply additive_identity ?13 =>= additive_identity
31984 [13] by left_multiplicative_zero ?13
31985 32639: Id : 7, {_}:
31986 multiply ?15 additive_identity =>= additive_identity
31987 [15] by right_multiplicative_zero ?15
31988 32639: Id : 8, {_}:
31989 add (additive_inverse ?17) ?17 =>= additive_identity
31990 [17] by left_additive_inverse ?17
31991 32639: Id : 9, {_}:
31992 add ?19 (additive_inverse ?19) =>= additive_identity
31993 [19] by right_additive_inverse ?19
31994 32639: Id : 10, {_}:
31995 multiply ?21 (add ?22 ?23)
31997 add (multiply ?21 ?22) (multiply ?21 ?23)
31998 [23, 22, 21] by distribute1 ?21 ?22 ?23
31999 32639: Id : 11, {_}:
32000 multiply (add ?25 ?26) ?27
32002 add (multiply ?25 ?27) (multiply ?26 ?27)
32003 [27, 26, 25] by distribute2 ?25 ?26 ?27
32004 32639: Id : 12, {_}:
32005 additive_inverse (additive_inverse ?29) =>= ?29
32006 [29] by additive_inverse_additive_inverse ?29
32007 32639: Id : 13, {_}:
32008 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
32009 [32, 31] by right_alternative ?31 ?32
32010 32639: Id : 14, {_}:
32011 associator ?34 ?35 ?36
32013 add (multiply (multiply ?34 ?35) ?36)
32014 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
32015 [36, 35, 34] by associator ?34 ?35 ?36
32016 32639: Id : 15, {_}:
32019 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
32020 [39, 38] by commutator ?38 ?39
32022 32639: Id : 1, {_}:
32024 (multiply (multiply (associator x x y) (associator x x y)) x)
32025 (multiply (associator x x y) (associator x x y))
32028 [] by prove_conjecture_2
32032 32639: y 4 0 4 3,1,1,1,2
32033 32639: additive_identity 9 0 1 3
32034 32639: x 9 0 9 1,1,1,1,2
32035 32639: additive_inverse 6 1 0
32036 32639: commutator 1 2 0
32038 32639: multiply 22 2 4 0,2
32039 32639: associator 5 3 4 0,1,1,1,2
32040 32640: Id : 15, {_}:
32043 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
32044 [39, 38] by commutator ?38 ?39
32046 32640: Id : 1, {_}:
32048 (multiply (multiply (associator x x y) (associator x x y)) x)
32049 (multiply (associator x x y) (associator x x y))
32052 [] by prove_conjecture_2
32056 32640: y 4 0 4 3,1,1,1,2
32057 32640: additive_identity 9 0 1 3
32058 32640: x 9 0 9 1,1,1,1,2
32059 32640: additive_inverse 6 1 0
32060 32640: commutator 1 2 0
32062 32640: multiply 22 2 4 0,2
32063 32640: associator 5 3 4 0,1,1,1,2
32064 % SZS status Timeout for RNG031-6.p
32065 NO CLASH, using fixed ground order
32067 32666: Id : 2, {_}:
32068 multiply (additive_inverse ?2) (additive_inverse ?3)
32071 [3, 2] by product_of_inverses ?2 ?3
32072 32666: Id : 3, {_}:
32073 multiply (additive_inverse ?5) ?6
32075 additive_inverse (multiply ?5 ?6)
32076 [6, 5] by inverse_product1 ?5 ?6
32077 32666: Id : 4, {_}:
32078 multiply ?8 (additive_inverse ?9)
32080 additive_inverse (multiply ?8 ?9)
32081 [9, 8] by inverse_product2 ?8 ?9
32082 32666: Id : 5, {_}:
32083 multiply ?11 (add ?12 (additive_inverse ?13))
32085 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
32086 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
32087 32666: Id : 6, {_}:
32088 multiply (add ?15 (additive_inverse ?16)) ?17
32090 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
32091 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
32092 32666: Id : 7, {_}:
32093 multiply (additive_inverse ?19) (add ?20 ?21)
32095 add (additive_inverse (multiply ?19 ?20))
32096 (additive_inverse (multiply ?19 ?21))
32097 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
32098 32666: Id : 8, {_}:
32099 multiply (add ?23 ?24) (additive_inverse ?25)
32101 add (additive_inverse (multiply ?23 ?25))
32102 (additive_inverse (multiply ?24 ?25))
32103 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
32104 32666: Id : 9, {_}:
32105 add ?27 ?28 =?= add ?28 ?27
32106 [28, 27] by commutativity_for_addition ?27 ?28
32107 32666: Id : 10, {_}:
32108 add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32
32109 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
32110 32666: Id : 11, {_}:
32111 add additive_identity ?34 =>= ?34
32112 [34] by left_additive_identity ?34
32113 32666: Id : 12, {_}:
32114 add ?36 additive_identity =>= ?36
32115 [36] by right_additive_identity ?36
32116 32666: Id : 13, {_}:
32117 multiply additive_identity ?38 =>= additive_identity
32118 [38] by left_multiplicative_zero ?38
32119 32666: Id : 14, {_}:
32120 multiply ?40 additive_identity =>= additive_identity
32121 [40] by right_multiplicative_zero ?40
32122 32666: Id : 15, {_}:
32123 add (additive_inverse ?42) ?42 =>= additive_identity
32124 [42] by left_additive_inverse ?42
32125 32666: Id : 16, {_}:
32126 add ?44 (additive_inverse ?44) =>= additive_identity
32127 [44] by right_additive_inverse ?44
32128 32666: Id : 17, {_}:
32129 multiply ?46 (add ?47 ?48)
32131 add (multiply ?46 ?47) (multiply ?46 ?48)
32132 [48, 47, 46] by distribute1 ?46 ?47 ?48
32133 32666: Id : 18, {_}:
32134 multiply (add ?50 ?51) ?52
32136 add (multiply ?50 ?52) (multiply ?51 ?52)
32137 [52, 51, 50] by distribute2 ?50 ?51 ?52
32138 32666: Id : 19, {_}:
32139 additive_inverse (additive_inverse ?54) =>= ?54
32140 [54] by additive_inverse_additive_inverse ?54
32141 32666: Id : 20, {_}:
32142 multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57)
32143 [57, 56] by right_alternative ?56 ?57
32144 32666: Id : 21, {_}:
32145 associator ?59 ?60 ?61
32147 add (multiply (multiply ?59 ?60) ?61)
32148 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
32149 [61, 60, 59] by associator ?59 ?60 ?61
32150 32666: Id : 22, {_}:
32153 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
32154 [64, 63] by commutator ?63 ?64
32156 32666: Id : 1, {_}:
32158 (multiply (multiply (associator x x y) (associator x x y)) x)
32159 (multiply (associator x x y) (associator x x y))
32162 [] by prove_conjecture_2
32166 32666: y 4 0 4 3,1,1,1,2
32167 32666: additive_identity 9 0 1 3
32168 32666: x 9 0 9 1,1,1,1,2
32169 32666: additive_inverse 22 1 0
32170 32666: commutator 1 2 0
32172 32666: multiply 40 2 4 0,2add
32173 32666: associator 5 3 4 0,1,1,1,2
32174 NO CLASH, using fixed ground order
32176 32667: Id : 2, {_}:
32177 multiply (additive_inverse ?2) (additive_inverse ?3)
32180 [3, 2] by product_of_inverses ?2 ?3
32181 32667: Id : 3, {_}:
32182 multiply (additive_inverse ?5) ?6
32184 additive_inverse (multiply ?5 ?6)
32185 [6, 5] by inverse_product1 ?5 ?6
32186 32667: Id : 4, {_}:
32187 multiply ?8 (additive_inverse ?9)
32189 additive_inverse (multiply ?8 ?9)
32190 [9, 8] by inverse_product2 ?8 ?9
32191 32667: Id : 5, {_}:
32192 multiply ?11 (add ?12 (additive_inverse ?13))
32194 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
32195 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
32196 32667: Id : 6, {_}:
32197 multiply (add ?15 (additive_inverse ?16)) ?17
32199 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
32200 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
32201 32667: Id : 7, {_}:
32202 multiply (additive_inverse ?19) (add ?20 ?21)
32204 add (additive_inverse (multiply ?19 ?20))
32205 (additive_inverse (multiply ?19 ?21))
32206 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
32207 32667: Id : 8, {_}:
32208 multiply (add ?23 ?24) (additive_inverse ?25)
32210 add (additive_inverse (multiply ?23 ?25))
32211 (additive_inverse (multiply ?24 ?25))
32212 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
32213 32667: Id : 9, {_}:
32214 add ?27 ?28 =?= add ?28 ?27
32215 [28, 27] by commutativity_for_addition ?27 ?28
32216 32667: Id : 10, {_}:
32217 add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32
32218 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
32219 32667: Id : 11, {_}:
32220 add additive_identity ?34 =>= ?34
32221 [34] by left_additive_identity ?34
32222 32667: Id : 12, {_}:
32223 add ?36 additive_identity =>= ?36
32224 [36] by right_additive_identity ?36
32225 32667: Id : 13, {_}:
32226 multiply additive_identity ?38 =>= additive_identity
32227 [38] by left_multiplicative_zero ?38
32228 32667: Id : 14, {_}:
32229 multiply ?40 additive_identity =>= additive_identity
32230 [40] by right_multiplicative_zero ?40
32231 32667: Id : 15, {_}:
32232 add (additive_inverse ?42) ?42 =>= additive_identity
32233 [42] by left_additive_inverse ?42
32234 32667: Id : 16, {_}:
32235 add ?44 (additive_inverse ?44) =>= additive_identity
32236 [44] by right_additive_inverse ?44
32237 32667: Id : 17, {_}:
32238 multiply ?46 (add ?47 ?48)
32240 add (multiply ?46 ?47) (multiply ?46 ?48)
32241 [48, 47, 46] by distribute1 ?46 ?47 ?48
32242 32667: Id : 18, {_}:
32243 multiply (add ?50 ?51) ?52
32245 add (multiply ?50 ?52) (multiply ?51 ?52)
32246 [52, 51, 50] by distribute2 ?50 ?51 ?52
32247 32667: Id : 19, {_}:
32248 additive_inverse (additive_inverse ?54) =>= ?54
32249 [54] by additive_inverse_additive_inverse ?54
32250 32667: Id : 20, {_}:
32251 multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57)
32252 [57, 56] by right_alternative ?56 ?57
32253 32667: Id : 21, {_}:
32254 associator ?59 ?60 ?61
32256 add (multiply (multiply ?59 ?60) ?61)
32257 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
32258 [61, 60, 59] by associator ?59 ?60 ?61
32259 32667: Id : 22, {_}:
32262 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
32263 [64, 63] by commutator ?63 ?64
32265 32667: Id : 1, {_}:
32267 (multiply (multiply (associator x x y) (associator x x y)) x)
32268 (multiply (associator x x y) (associator x x y))
32271 [] by prove_conjecture_2
32275 32667: y 4 0 4 3,1,1,1,2
32276 32667: additive_identity 9 0 1 3
32277 32667: x 9 0 9 1,1,1,1,2
32278 32667: additive_inverse 22 1 0
32279 32667: commutator 1 2 0
32281 32667: multiply 40 2 4 0,2add
32282 32667: associator 5 3 4 0,1,1,1,2
32283 NO CLASH, using fixed ground order
32285 32668: Id : 2, {_}:
32286 multiply (additive_inverse ?2) (additive_inverse ?3)
32289 [3, 2] by product_of_inverses ?2 ?3
32290 32668: Id : 3, {_}:
32291 multiply (additive_inverse ?5) ?6
32293 additive_inverse (multiply ?5 ?6)
32294 [6, 5] by inverse_product1 ?5 ?6
32295 32668: Id : 4, {_}:
32296 multiply ?8 (additive_inverse ?9)
32298 additive_inverse (multiply ?8 ?9)
32299 [9, 8] by inverse_product2 ?8 ?9
32300 32668: Id : 5, {_}:
32301 multiply ?11 (add ?12 (additive_inverse ?13))
32303 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
32304 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
32305 32668: Id : 6, {_}:
32306 multiply (add ?15 (additive_inverse ?16)) ?17
32308 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
32309 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
32310 32668: Id : 7, {_}:
32311 multiply (additive_inverse ?19) (add ?20 ?21)
32313 add (additive_inverse (multiply ?19 ?20))
32314 (additive_inverse (multiply ?19 ?21))
32315 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
32316 32668: Id : 8, {_}:
32317 multiply (add ?23 ?24) (additive_inverse ?25)
32319 add (additive_inverse (multiply ?23 ?25))
32320 (additive_inverse (multiply ?24 ?25))
32321 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
32322 32668: Id : 9, {_}:
32323 add ?27 ?28 =?= add ?28 ?27
32324 [28, 27] by commutativity_for_addition ?27 ?28
32325 32668: Id : 10, {_}:
32326 add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32
32327 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
32328 32668: Id : 11, {_}:
32329 add additive_identity ?34 =>= ?34
32330 [34] by left_additive_identity ?34
32331 32668: Id : 12, {_}:
32332 add ?36 additive_identity =>= ?36
32333 [36] by right_additive_identity ?36
32334 32668: Id : 13, {_}:
32335 multiply additive_identity ?38 =>= additive_identity
32336 [38] by left_multiplicative_zero ?38
32337 32668: Id : 14, {_}:
32338 multiply ?40 additive_identity =>= additive_identity
32339 [40] by right_multiplicative_zero ?40
32340 32668: Id : 15, {_}:
32341 add (additive_inverse ?42) ?42 =>= additive_identity
32342 [42] by left_additive_inverse ?42
32343 32668: Id : 16, {_}:
32344 add ?44 (additive_inverse ?44) =>= additive_identity
32345 [44] by right_additive_inverse ?44
32346 32668: Id : 17, {_}:
32347 multiply ?46 (add ?47 ?48)
32349 add (multiply ?46 ?47) (multiply ?46 ?48)
32350 [48, 47, 46] by distribute1 ?46 ?47 ?48
32351 32668: Id : 18, {_}:
32352 multiply (add ?50 ?51) ?52
32354 add (multiply ?50 ?52) (multiply ?51 ?52)
32355 [52, 51, 50] by distribute2 ?50 ?51 ?52
32356 32668: Id : 19, {_}:
32357 additive_inverse (additive_inverse ?54) =>= ?54
32358 [54] by additive_inverse_additive_inverse ?54
32359 32668: Id : 20, {_}:
32360 multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57)
32361 [57, 56] by right_alternative ?56 ?57
32362 32668: Id : 21, {_}:
32363 associator ?59 ?60 ?61
32365 add (multiply (multiply ?59 ?60) ?61)
32366 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
32367 [61, 60, 59] by associator ?59 ?60 ?61
32368 32668: Id : 22, {_}:
32371 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
32372 [64, 63] by commutator ?63 ?64
32374 32668: Id : 1, {_}:
32376 (multiply (multiply (associator x x y) (associator x x y)) x)
32377 (multiply (associator x x y) (associator x x y))
32380 [] by prove_conjecture_2
32384 32668: y 4 0 4 3,1,1,1,2
32385 32668: additive_identity 9 0 1 3
32386 32668: x 9 0 9 1,1,1,1,2
32387 32668: additive_inverse 22 1 0
32388 32668: commutator 1 2 0
32390 32668: multiply 40 2 4 0,2add
32391 32668: associator 5 3 4 0,1,1,1,2
32392 % SZS status Timeout for RNG031-7.p
32393 NO CLASH, using fixed ground order
32395 32691: Id : 2, {_}: f (g1 ?3) =>= ?3 [3] by clause1 ?3
32396 32691: Id : 3, {_}: f (g2 ?5) =>= ?5 [5] by clause2 ?5
32398 32691: Id : 1, {_}: g1 ?1 =<= g2 ?1 [1] by clause3 ?1
32403 32691: g1 2 1 1 0,2
32404 32691: g2 2 1 1 0,3
32405 NO CLASH, using fixed ground order
32407 32692: Id : 2, {_}: f (g1 ?3) =>= ?3 [3] by clause1 ?3
32408 32692: Id : 3, {_}: f (g2 ?5) =>= ?5 [5] by clause2 ?5
32410 32692: Id : 1, {_}: g1 ?1 =<= g2 ?1 [1] by clause3 ?1
32415 32692: g1 2 1 1 0,2
32416 32692: g2 2 1 1 0,3
32417 NO CLASH, using fixed ground order
32419 32693: Id : 2, {_}: f (g1 ?3) =>= ?3 [3] by clause1 ?3
32420 32693: Id : 3, {_}: f (g2 ?5) =>= ?5 [5] by clause2 ?5
32422 32693: Id : 1, {_}: g1 ?1 =<= g2 ?1 [1] by clause3 ?1
32427 32693: g1 2 1 1 0,2
32428 32693: g2 2 1 1 0,3
32429 32691: status GaveUp for SYN305-1.p
32430 32693: status GaveUp for SYN305-1.p
32431 32692: status GaveUp for SYN305-1.p
32432 % SZS status Timeout for SYN305-1.p
32433 CLASH, statistics insufficient
32435 32698: Id : 2, {_}:
32436 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
32437 [5, 4, 3] by b_definition ?3 ?4 ?5
32438 32698: Id : 3, {_}:
32439 apply (apply (apply h ?7) ?8) ?9
32441 apply (apply (apply ?7 ?8) ?9) ?8
32442 [9, 8, 7] by h_definition ?7 ?8 ?9
32444 32698: Id : 1, {_}:
32445 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
32446 [1] by prove_fixed_point ?1
32452 32698: f 3 1 3 0,2,2
32453 32698: apply 14 2 3 0,2
32454 CLASH, statistics insufficient
32456 32699: Id : 2, {_}:
32457 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
32458 [5, 4, 3] by b_definition ?3 ?4 ?5
32459 32699: Id : 3, {_}:
32460 apply (apply (apply h ?7) ?8) ?9
32462 apply (apply (apply ?7 ?8) ?9) ?8
32463 [9, 8, 7] by h_definition ?7 ?8 ?9
32465 32699: Id : 1, {_}:
32466 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
32467 [1] by prove_fixed_point ?1
32473 32699: f 3 1 3 0,2,2
32474 32699: apply 14 2 3 0,2
32475 CLASH, statistics insufficient
32477 32700: Id : 2, {_}:
32478 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
32479 [5, 4, 3] by b_definition ?3 ?4 ?5
32480 32700: Id : 3, {_}:
32481 apply (apply (apply h ?7) ?8) ?9
32483 apply (apply (apply ?7 ?8) ?9) ?8
32484 [9, 8, 7] by h_definition ?7 ?8 ?9
32486 32700: Id : 1, {_}:
32487 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
32488 [1] by prove_fixed_point ?1
32494 32700: f 3 1 3 0,2,2
32495 32700: apply 14 2 3 0,2
32496 % SZS status Timeout for COL043-1.p
32497 CLASH, statistics insufficient
32499 32721: Id : 2, {_}:
32500 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
32501 [5, 4, 3] by b_definition ?3 ?4 ?5
32502 32721: Id : 3, {_}:
32503 apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9)
32504 [9, 8, 7] by q_definition ?7 ?8 ?9
32505 32721: Id : 4, {_}:
32506 apply (apply w ?11) ?12 =?= apply (apply ?11 ?12) ?12
32507 [12, 11] by w_definition ?11 ?12
32509 32721: Id : 1, {_}:
32510 apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (g ?1)) (h ?1)
32512 apply (apply (f ?1) (g ?1)) (apply (apply (f ?1) (g ?1)) (h ?1))
32513 [1] by prove_p_combinator ?1
32520 32721: h 2 1 2 0,2,2
32521 32721: f 3 1 3 0,2,1,1,1,2
32522 32721: g 4 1 4 0,2,1,1,2
32523 32721: apply 22 2 8 0,2
32524 CLASH, statistics insufficient
32526 32722: Id : 2, {_}:
32527 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
32528 [5, 4, 3] by b_definition ?3 ?4 ?5
32529 32722: Id : 3, {_}:
32530 apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9)
32531 [9, 8, 7] by q_definition ?7 ?8 ?9
32532 32722: Id : 4, {_}:
32533 apply (apply w ?11) ?12 =?= apply (apply ?11 ?12) ?12
32534 [12, 11] by w_definition ?11 ?12
32536 32722: Id : 1, {_}:
32537 apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (g ?1)) (h ?1)
32539 apply (apply (f ?1) (g ?1)) (apply (apply (f ?1) (g ?1)) (h ?1))
32540 [1] by prove_p_combinator ?1
32547 32722: h 2 1 2 0,2,2
32548 32722: f 3 1 3 0,2,1,1,1,2
32549 32722: g 4 1 4 0,2,1,1,2
32550 32722: apply 22 2 8 0,2
32551 CLASH, statistics insufficient
32553 32723: Id : 2, {_}:
32554 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
32555 [5, 4, 3] by b_definition ?3 ?4 ?5
32556 32723: Id : 3, {_}:
32557 apply (apply (apply q ?7) ?8) ?9 =>= apply ?8 (apply ?7 ?9)
32558 [9, 8, 7] by q_definition ?7 ?8 ?9
32559 32723: Id : 4, {_}:
32560 apply (apply w ?11) ?12 =?= apply (apply ?11 ?12) ?12
32561 [12, 11] by w_definition ?11 ?12
32563 32723: Id : 1, {_}:
32564 apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (g ?1)) (h ?1)
32566 apply (apply (f ?1) (g ?1)) (apply (apply (f ?1) (g ?1)) (h ?1))
32567 [1] by prove_p_combinator ?1
32574 32723: h 2 1 2 0,2,2
32575 32723: f 3 1 3 0,2,1,1,1,2
32576 32723: g 4 1 4 0,2,1,1,2
32577 32723: apply 22 2 8 0,2
32578 % SZS status Timeout for COL066-1.p
32579 NO CLASH, using fixed ground order
32581 32745: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
32582 32745: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
32583 32745: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
32584 32745: Id : 5, {_}:
32585 meet ?9 ?10 =?= meet ?10 ?9
32586 [10, 9] by commutativity_of_meet ?9 ?10
32587 32745: Id : 6, {_}:
32588 join ?12 ?13 =?= join ?13 ?12
32589 [13, 12] by commutativity_of_join ?12 ?13
32590 32745: Id : 7, {_}:
32591 meet (meet ?15 ?16) ?17 =?= meet ?15 (meet ?16 ?17)
32592 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
32593 32745: Id : 8, {_}:
32594 join (join ?19 ?20) ?21 =?= join ?19 (join ?20 ?21)
32595 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
32596 32745: Id : 9, {_}:
32597 complement (complement ?23) =>= ?23
32598 [23] by complement_involution ?23
32599 32745: Id : 10, {_}:
32600 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
32601 [26, 25] by join_complement ?25 ?26
32602 32745: Id : 11, {_}:
32603 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
32604 [29, 28] by meet_complement ?28 ?29
32606 32745: Id : 1, {_}:
32610 (join (meet (complement a) b)
32611 (meet (complement a) (complement b)))
32612 (meet a (join (complement a) b)))) (join (complement a) b)
32621 32745: b 4 0 4 2,1,1,1,1,2
32622 32745: a 5 0 5 1,1,1,1,1,1,2
32623 32745: complement 15 1 6 0,1,2
32624 32745: meet 12 2 3 0,1,1,1,1,2
32625 32745: join 17 2 5 0,2
32626 NO CLASH, using fixed ground order
32628 32746: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
32629 32746: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
32630 32746: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
32631 32746: Id : 5, {_}:
32632 meet ?9 ?10 =?= meet ?10 ?9
32633 [10, 9] by commutativity_of_meet ?9 ?10
32634 32746: Id : 6, {_}:
32635 join ?12 ?13 =?= join ?13 ?12
32636 [13, 12] by commutativity_of_join ?12 ?13
32637 32746: Id : 7, {_}:
32638 meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17)
32639 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
32640 32746: Id : 8, {_}:
32641 join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21)
32642 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
32643 32746: Id : 9, {_}:
32644 complement (complement ?23) =>= ?23
32645 [23] by complement_involution ?23
32646 32746: Id : 10, {_}:
32647 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
32648 [26, 25] by join_complement ?25 ?26
32649 NO CLASH, using fixed ground order
32651 32747: Id : 2, {_}: join (complement ?2) ?2 =>= n1 [2] by top ?2
32652 32747: Id : 3, {_}: meet (complement ?4) ?4 =>= n0 [4] by bottom ?4
32653 32747: Id : 4, {_}: join ?6 (meet ?6 ?7) =>= ?6 [7, 6] by absorption2 ?6 ?7
32654 32747: Id : 5, {_}:
32655 meet ?9 ?10 =?= meet ?10 ?9
32656 [10, 9] by commutativity_of_meet ?9 ?10
32657 32747: Id : 6, {_}:
32658 join ?12 ?13 =?= join ?13 ?12
32659 [13, 12] by commutativity_of_join ?12 ?13
32660 32747: Id : 7, {_}:
32661 meet (meet ?15 ?16) ?17 =>= meet ?15 (meet ?16 ?17)
32662 [17, 16, 15] by associativity_of_meet ?15 ?16 ?17
32663 32747: Id : 8, {_}:
32664 join (join ?19 ?20) ?21 =>= join ?19 (join ?20 ?21)
32665 [21, 20, 19] by associativity_of_join ?19 ?20 ?21
32666 32747: Id : 9, {_}:
32667 complement (complement ?23) =>= ?23
32668 [23] by complement_involution ?23
32669 32747: Id : 10, {_}:
32670 join ?25 (join ?26 (complement ?26)) =>= join ?26 (complement ?26)
32671 [26, 25] by join_complement ?25 ?26
32672 32747: Id : 11, {_}:
32673 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
32674 [29, 28] by meet_complement ?28 ?29
32676 32747: Id : 1, {_}:
32680 (join (meet (complement a) b)
32681 (meet (complement a) (complement b)))
32682 (meet a (join (complement a) b)))) (join (complement a) b)
32691 32747: b 4 0 4 2,1,1,1,1,2
32692 32747: a 5 0 5 1,1,1,1,1,1,2
32693 32747: complement 15 1 6 0,1,2
32694 32747: meet 12 2 3 0,1,1,1,1,2
32695 32747: join 17 2 5 0,2
32696 32746: Id : 11, {_}:
32697 meet ?28 ?29 =<= complement (join (complement ?28) (complement ?29))
32698 [29, 28] by meet_complement ?28 ?29
32700 32746: Id : 1, {_}:
32704 (join (meet (complement a) b)
32705 (meet (complement a) (complement b)))
32706 (meet a (join (complement a) b)))) (join (complement a) b)
32715 32746: b 4 0 4 2,1,1,1,1,2
32716 32746: a 5 0 5 1,1,1,1,1,1,2
32717 32746: complement 15 1 6 0,1,2
32718 32746: meet 12 2 3 0,1,1,1,1,2
32719 32746: join 17 2 5 0,2
32720 % SZS status Timeout for LAT018-1.p
32721 NO CLASH, using fixed ground order
32724 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
32726 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
32730 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
32733 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
32734 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
32735 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
32738 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
32741 meet (meet a b) c =>= meet a (meet b c)
32742 [] by prove_normal_axioms_3
32750 301: meet 22 2 4 0,2
32751 NO CLASH, using fixed ground order
32754 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
32756 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
32760 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
32763 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
32764 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
32765 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
32768 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
32771 meet (meet a b) c =>= meet a (meet b c)
32772 [] by prove_normal_axioms_3
32780 302: meet 22 2 4 0,2
32781 NO CLASH, using fixed ground order
32784 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
32786 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
32790 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
32793 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
32794 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
32795 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
32798 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
32801 meet (meet a b) c =>= meet a (meet b c)
32802 [] by prove_normal_axioms_3
32810 303: meet 22 2 4 0,2
32811 % SZS status Timeout for LAT082-1.p
32812 NO CLASH, using fixed ground order
32815 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
32817 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
32821 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
32824 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
32825 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
32826 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
32829 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
32832 join (join a b) c =>= join a (join b c)
32833 [] by prove_normal_axioms_6
32841 337: join 24 2 4 0,2
32842 NO CLASH, using fixed ground order
32845 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
32847 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
32851 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
32854 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
32855 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
32856 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
32859 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
32862 join (join a b) c =>= join a (join b c)
32863 [] by prove_normal_axioms_6
32871 338: join 24 2 4 0,2
32872 NO CLASH, using fixed ground order
32875 join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)
32877 (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))
32881 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))
32884 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3))))
32885 (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3))))
32886 (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4))
32889 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8
32892 join (join a b) c =>= join a (join b c)
32893 [] by prove_normal_axioms_6
32901 339: join 24 2 4 0,2
32902 % SZS status Timeout for LAT085-1.p
32903 NO CLASH, using fixed ground order
32905 1422: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
32906 1422: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
32907 1422: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
32908 1422: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
32910 meet ?12 ?13 =?= meet ?13 ?12
32911 [13, 12] by commutativity_of_meet ?12 ?13
32913 join ?15 ?16 =?= join ?16 ?15
32914 [16, 15] by commutativity_of_join ?15 ?16
32916 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
32917 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
32919 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
32920 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
32921 1422: Id : 10, {_}:
32922 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
32924 meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29))))
32925 [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29
32928 meet a (join b (meet a c))
32930 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
32936 1422: b 4 0 4 1,2,2
32937 1422: c 4 0 4 2,2,2,2
32938 1422: join 16 2 4 0,2,2
32939 1422: meet 22 2 6 0,2
32940 NO CLASH, using fixed ground order
32942 1423: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
32943 1423: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
32944 1423: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
32945 1423: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
32947 meet ?12 ?13 =?= meet ?13 ?12
32948 [13, 12] by commutativity_of_meet ?12 ?13
32950 join ?15 ?16 =?= join ?16 ?15
32951 [16, 15] by commutativity_of_join ?15 ?16
32953 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
32954 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
32956 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
32957 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
32958 1423: Id : 10, {_}:
32959 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
32961 meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29))))
32962 [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29
32965 meet a (join b (meet a c))
32967 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
32973 1423: b 4 0 4 1,2,2
32974 1423: c 4 0 4 2,2,2,2
32975 1423: join 16 2 4 0,2,2
32976 1423: meet 22 2 6 0,2
32977 NO CLASH, using fixed ground order
32979 1424: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
32980 1424: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
32981 1424: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
32982 1424: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
32984 meet ?12 ?13 =?= meet ?13 ?12
32985 [13, 12] by commutativity_of_meet ?12 ?13
32987 join ?15 ?16 =?= join ?16 ?15
32988 [16, 15] by commutativity_of_join ?15 ?16
32990 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
32991 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
32993 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
32994 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
32995 1424: Id : 10, {_}:
32996 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
32998 meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29))))
32999 [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29
33002 meet a (join b (meet a c))
33004 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
33010 1424: b 4 0 4 1,2,2
33011 1424: c 4 0 4 2,2,2,2
33012 1424: join 16 2 4 0,2,2
33013 1424: meet 22 2 6 0,2
33014 % SZS status Timeout for LAT144-1.p
33015 NO CLASH, using fixed ground order
33017 1797: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33018 1797: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33019 1797: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33020 1797: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33022 meet ?12 ?13 =?= meet ?13 ?12
33023 [13, 12] by commutativity_of_meet ?12 ?13
33025 join ?15 ?16 =?= join ?16 ?15
33026 [16, 15] by commutativity_of_join ?15 ?16
33028 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
33029 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33031 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
33032 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33033 1797: Id : 10, {_}:
33034 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33036 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28))))
33037 [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29
33040 meet a (join b (meet c (join a d)))
33042 meet a (join b (meet c (join d (meet c (join a b)))))
33047 1797: d 2 0 2 2,2,2,2,2
33048 1797: b 3 0 3 1,2,2
33049 1797: c 3 0 3 1,2,2,2
33051 1797: join 18 2 5 0,2,2
33052 1797: meet 19 2 5 0,2
33053 NO CLASH, using fixed ground order
33055 1798: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33056 1798: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33057 1798: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33058 1798: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33060 meet ?12 ?13 =?= meet ?13 ?12
33061 [13, 12] by commutativity_of_meet ?12 ?13
33063 join ?15 ?16 =?= join ?16 ?15
33064 [16, 15] by commutativity_of_join ?15 ?16
33066 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33067 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33069 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33070 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33071 1798: Id : 10, {_}:
33072 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33074 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28))))
33075 [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29
33078 meet a (join b (meet c (join a d)))
33080 meet a (join b (meet c (join d (meet c (join a b)))))
33085 1798: d 2 0 2 2,2,2,2,2
33086 1798: b 3 0 3 1,2,2
33087 1798: c 3 0 3 1,2,2,2
33089 1798: join 18 2 5 0,2,2
33090 1798: meet 19 2 5 0,2
33091 NO CLASH, using fixed ground order
33093 1799: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33094 1799: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33095 1799: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33096 1799: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33098 meet ?12 ?13 =?= meet ?13 ?12
33099 [13, 12] by commutativity_of_meet ?12 ?13
33101 join ?15 ?16 =?= join ?16 ?15
33102 [16, 15] by commutativity_of_join ?15 ?16
33104 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33105 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33107 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33108 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33109 1799: Id : 10, {_}:
33110 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33112 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28))))
33113 [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29
33116 meet a (join b (meet c (join a d)))
33118 meet a (join b (meet c (join d (meet c (join a b)))))
33123 1799: d 2 0 2 2,2,2,2,2
33124 1799: b 3 0 3 1,2,2
33125 1799: c 3 0 3 1,2,2,2
33127 1799: join 18 2 5 0,2,2
33128 1799: meet 19 2 5 0,2
33129 % SZS status Timeout for LAT150-1.p
33130 NO CLASH, using fixed ground order
33132 3353: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33133 3353: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33134 3353: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33135 3353: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33137 meet ?12 ?13 =?= meet ?13 ?12
33138 [13, 12] by commutativity_of_meet ?12 ?13
33140 join ?15 ?16 =?= join ?16 ?15
33141 [16, 15] by commutativity_of_join ?15 ?16
33143 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
33144 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33146 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
33147 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33148 3353: Id : 10, {_}:
33149 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33151 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28))))
33152 [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29
33155 meet a (join b (meet c (join a d)))
33157 meet a (join b (meet c (join b (join d (meet a c)))))
33162 3353: d 2 0 2 2,2,2,2,2
33163 3353: b 3 0 3 1,2,2
33164 3353: c 3 0 3 1,2,2,2
33166 3353: join 18 2 5 0,2,2
33167 3353: meet 19 2 5 0,2
33168 NO CLASH, using fixed ground order
33170 3358: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33171 3358: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33172 3358: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33173 3358: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33175 meet ?12 ?13 =?= meet ?13 ?12
33176 [13, 12] by commutativity_of_meet ?12 ?13
33178 join ?15 ?16 =?= join ?16 ?15
33179 [16, 15] by commutativity_of_join ?15 ?16
33181 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33182 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33184 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33185 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33186 3358: Id : 10, {_}:
33187 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33189 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28))))
33190 [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29
33193 meet a (join b (meet c (join a d)))
33195 meet a (join b (meet c (join b (join d (meet a c)))))
33200 3358: d 2 0 2 2,2,2,2,2
33201 3358: b 3 0 3 1,2,2
33202 3358: c 3 0 3 1,2,2,2
33204 3358: join 18 2 5 0,2,2
33205 3358: meet 19 2 5 0,2
33206 NO CLASH, using fixed ground order
33208 3361: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33209 3361: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33210 3361: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33211 3361: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33213 meet ?12 ?13 =?= meet ?13 ?12
33214 [13, 12] by commutativity_of_meet ?12 ?13
33216 join ?15 ?16 =?= join ?16 ?15
33217 [16, 15] by commutativity_of_join ?15 ?16
33219 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33220 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33222 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33223 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33224 3361: Id : 10, {_}:
33225 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33227 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?28))))
33228 [29, 28, 27, 26] by equation_H39 ?26 ?27 ?28 ?29
33231 meet a (join b (meet c (join a d)))
33233 meet a (join b (meet c (join b (join d (meet a c)))))
33238 3361: d 2 0 2 2,2,2,2,2
33239 3361: b 3 0 3 1,2,2
33240 3361: c 3 0 3 1,2,2,2
33242 3361: join 18 2 5 0,2,2
33243 3361: meet 19 2 5 0,2
33244 % SZS status Timeout for LAT151-1.p
33245 NO CLASH, using fixed ground order
33246 NO CLASH, using fixed ground order
33248 4534: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33249 4534: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33250 4534: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33251 4534: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33253 meet ?12 ?13 =?= meet ?13 ?12
33254 [13, 12] by commutativity_of_meet ?12 ?13
33256 join ?15 ?16 =?= join ?16 ?15
33257 [16, 15] by commutativity_of_join ?15 ?16
33259 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33260 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33262 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33263 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33264 4534: Id : 10, {_}:
33265 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33267 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27)))))
33268 [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29
33271 meet a (join b (meet a c))
33273 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33278 4534: b 3 0 3 1,2,2
33279 4534: c 3 0 3 2,2,2,2
33281 4534: join 18 2 4 0,2,2
33282 4534: meet 20 2 6 0,2
33283 NO CLASH, using fixed ground order
33285 4537: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33286 4537: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33287 4537: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33288 4537: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33290 meet ?12 ?13 =?= meet ?13 ?12
33291 [13, 12] by commutativity_of_meet ?12 ?13
33293 join ?15 ?16 =?= join ?16 ?15
33294 [16, 15] by commutativity_of_join ?15 ?16
33296 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33297 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33299 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33300 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33301 4537: Id : 10, {_}:
33302 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33304 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27)))))
33305 [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29
33308 meet a (join b (meet a c))
33310 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33315 4537: b 3 0 3 1,2,2
33316 4537: c 3 0 3 2,2,2,2
33318 4537: join 18 2 4 0,2,2
33319 4537: meet 20 2 6 0,2
33321 4533: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33322 4533: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33323 4533: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33324 4533: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33326 meet ?12 ?13 =?= meet ?13 ?12
33327 [13, 12] by commutativity_of_meet ?12 ?13
33329 join ?15 ?16 =?= join ?16 ?15
33330 [16, 15] by commutativity_of_join ?15 ?16
33332 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
33333 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33335 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
33336 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33337 4533: Id : 10, {_}:
33338 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33340 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27)))))
33341 [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29
33344 meet a (join b (meet a c))
33346 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33351 4533: b 3 0 3 1,2,2
33352 4533: c 3 0 3 2,2,2,2
33354 4533: join 18 2 4 0,2,2
33355 4533: meet 20 2 6 0,2
33356 % SZS status Timeout for LAT152-1.p
33357 NO CLASH, using fixed ground order
33359 5952: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33360 5952: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33361 5952: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33362 5952: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33364 meet ?12 ?13 =?= meet ?13 ?12
33365 [13, 12] by commutativity_of_meet ?12 ?13
33367 join ?15 ?16 =?= join ?16 ?15
33368 [16, 15] by commutativity_of_join ?15 ?16
33370 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
33371 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33373 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
33374 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33375 5952: Id : 10, {_}:
33376 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33378 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
33379 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
33382 meet a (join b (meet a c))
33384 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
33389 5952: c 2 0 2 2,2,2,2
33390 5952: b 4 0 4 1,2,2
33392 5952: join 18 2 4 0,2,2
33393 5952: meet 20 2 6 0,2
33394 NO CLASH, using fixed ground order
33396 5958: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33397 5958: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33398 5958: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33399 5958: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33401 meet ?12 ?13 =?= meet ?13 ?12
33402 [13, 12] by commutativity_of_meet ?12 ?13
33404 join ?15 ?16 =?= join ?16 ?15
33405 [16, 15] by commutativity_of_join ?15 ?16
33407 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33408 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33410 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33411 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33412 5958: Id : 10, {_}:
33413 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33415 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
33416 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
33419 meet a (join b (meet a c))
33421 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
33426 5958: c 2 0 2 2,2,2,2
33427 5958: b 4 0 4 1,2,2
33429 5958: join 18 2 4 0,2,2
33430 5958: meet 20 2 6 0,2
33431 NO CLASH, using fixed ground order
33433 5959: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33434 5959: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33435 5959: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33436 5959: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33438 meet ?12 ?13 =?= meet ?13 ?12
33439 [13, 12] by commutativity_of_meet ?12 ?13
33441 join ?15 ?16 =?= join ?16 ?15
33442 [16, 15] by commutativity_of_join ?15 ?16
33444 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33445 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33447 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33448 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33449 5959: Id : 10, {_}:
33450 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
33452 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
33453 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
33456 meet a (join b (meet a c))
33458 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
33463 5959: c 2 0 2 2,2,2,2
33464 5959: b 4 0 4 1,2,2
33466 5959: join 18 2 4 0,2,2
33467 5959: meet 20 2 6 0,2
33468 % SZS status Timeout for LAT159-1.p
33469 NO CLASH, using fixed ground order
33471 7548: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33472 7548: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33473 7548: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33474 7548: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33476 meet ?12 ?13 =?= meet ?13 ?12
33477 [13, 12] by commutativity_of_meet ?12 ?13
33479 join ?15 ?16 =?= join ?16 ?15
33480 [16, 15] by commutativity_of_join ?15 ?16
33482 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
33483 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33485 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
33486 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33487 7548: Id : 10, {_}:
33488 meet ?26 (join ?27 ?28)
33490 meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))
33491 [28, 27, 26] by equation_H68 ?26 ?27 ?28
33494 meet a (meet b (join c d))
33496 meet a (meet b (join c (meet a (join d (meet b c)))))
33501 7548: d 2 0 2 2,2,2,2
33503 7548: b 3 0 3 1,2,2
33504 7548: c 3 0 3 1,2,2,2
33505 7548: join 15 2 3 0,2,2,2
33506 7548: meet 19 2 6 0,2
33507 NO CLASH, using fixed ground order
33509 7549: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33510 7549: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33511 7549: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33512 7549: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33514 meet ?12 ?13 =?= meet ?13 ?12
33515 [13, 12] by commutativity_of_meet ?12 ?13
33517 join ?15 ?16 =?= join ?16 ?15
33518 [16, 15] by commutativity_of_join ?15 ?16
33520 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33521 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33523 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33524 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33525 7549: Id : 10, {_}:
33526 meet ?26 (join ?27 ?28)
33528 meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))
33529 [28, 27, 26] by equation_H68 ?26 ?27 ?28
33532 meet a (meet b (join c d))
33534 meet a (meet b (join c (meet a (join d (meet b c)))))
33539 7549: d 2 0 2 2,2,2,2
33541 7549: b 3 0 3 1,2,2
33542 7549: c 3 0 3 1,2,2,2
33543 7549: join 15 2 3 0,2,2,2
33544 7549: meet 19 2 6 0,2
33545 NO CLASH, using fixed ground order
33547 7552: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33548 7552: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33549 7552: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33550 7552: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33552 meet ?12 ?13 =?= meet ?13 ?12
33553 [13, 12] by commutativity_of_meet ?12 ?13
33555 join ?15 ?16 =?= join ?16 ?15
33556 [16, 15] by commutativity_of_join ?15 ?16
33558 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33559 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33561 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33562 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33563 7552: Id : 10, {_}:
33564 meet ?26 (join ?27 ?28)
33566 meet ?26 (join ?27 (meet ?26 (join ?28 (meet ?26 ?27))))
33567 [28, 27, 26] by equation_H68 ?26 ?27 ?28
33570 meet a (meet b (join c d))
33572 meet a (meet b (join c (meet a (join d (meet b c)))))
33577 7552: d 2 0 2 2,2,2,2
33579 7552: b 3 0 3 1,2,2
33580 7552: c 3 0 3 1,2,2,2
33581 7552: join 15 2 3 0,2,2,2
33582 7552: meet 19 2 6 0,2
33583 % SZS status Timeout for LAT162-1.p
33584 NO CLASH, using fixed ground order
33585 NO CLASH, using fixed ground order
33587 8627: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33588 8627: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33589 8627: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33590 8627: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33592 meet ?12 ?13 =?= meet ?13 ?12
33593 [13, 12] by commutativity_of_meet ?12 ?13
33595 join ?15 ?16 =?= join ?16 ?15
33596 [16, 15] by commutativity_of_join ?15 ?16
33598 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33599 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33601 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33602 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33603 8627: Id : 10, {_}:
33604 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
33606 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
33607 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
33610 meet a (join b (meet a c))
33612 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33617 8627: b 3 0 3 1,2,2
33618 8627: c 3 0 3 2,2,2,2
33620 8627: join 17 2 4 0,2,2
33621 8627: meet 20 2 6 0,2
33622 NO CLASH, using fixed ground order
33624 8628: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33625 8628: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33626 8628: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33627 8628: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33629 meet ?12 ?13 =?= meet ?13 ?12
33630 [13, 12] by commutativity_of_meet ?12 ?13
33632 join ?15 ?16 =?= join ?16 ?15
33633 [16, 15] by commutativity_of_join ?15 ?16
33635 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33636 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33638 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33639 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33640 8628: Id : 10, {_}:
33641 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
33643 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
33644 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
33647 meet a (join b (meet a c))
33649 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33654 8628: b 3 0 3 1,2,2
33655 8628: c 3 0 3 2,2,2,2
33657 8628: join 17 2 4 0,2,2
33658 8628: meet 20 2 6 0,2
33660 8626: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33661 8626: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33662 8626: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33663 8626: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33665 meet ?12 ?13 =?= meet ?13 ?12
33666 [13, 12] by commutativity_of_meet ?12 ?13
33668 join ?15 ?16 =?= join ?16 ?15
33669 [16, 15] by commutativity_of_join ?15 ?16
33671 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
33672 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33674 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
33675 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33676 8626: Id : 10, {_}:
33677 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
33679 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
33680 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
33683 meet a (join b (meet a c))
33685 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33690 8626: b 3 0 3 1,2,2
33691 8626: c 3 0 3 2,2,2,2
33693 8626: join 17 2 4 0,2,2
33694 8626: meet 20 2 6 0,2
33695 % SZS status Timeout for LAT164-1.p
33696 NO CLASH, using fixed ground order
33698 10913: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33699 10913: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33700 10913: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33701 10913: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33702 10913: Id : 6, {_}:
33703 meet ?12 ?13 =?= meet ?13 ?12
33704 [13, 12] by commutativity_of_meet ?12 ?13
33705 10913: Id : 7, {_}:
33706 join ?15 ?16 =?= join ?16 ?15
33707 [16, 15] by commutativity_of_join ?15 ?16
33708 10913: Id : 8, {_}:
33709 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
33710 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33711 10913: Id : 9, {_}:
33712 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
33713 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33714 10913: Id : 10, {_}:
33715 meet (join ?26 ?27) (join ?26 ?28)
33718 (meet (join ?27 (meet ?26 (join ?27 ?28)))
33719 (join ?28 (meet ?26 ?27)))
33720 [28, 27, 26] by equation_H21_dual ?26 ?27 ?28
33722 10913: Id : 1, {_}:
33725 meet a (join b (meet (join a b) (join c (meet a b))))
33730 10913: c 2 0 2 2,2,2
33732 10913: b 4 0 4 1,2,2
33733 10913: meet 17 2 4 0,2
33734 10913: join 19 2 4 0,2,2
33735 NO CLASH, using fixed ground order
33737 10920: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33738 10920: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33739 10920: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33740 10920: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33741 10920: Id : 6, {_}:
33742 meet ?12 ?13 =?= meet ?13 ?12
33743 [13, 12] by commutativity_of_meet ?12 ?13
33744 10920: Id : 7, {_}:
33745 join ?15 ?16 =?= join ?16 ?15
33746 [16, 15] by commutativity_of_join ?15 ?16
33747 10920: Id : 8, {_}:
33748 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33749 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33750 10920: Id : 9, {_}:
33751 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33752 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33753 10920: Id : 10, {_}:
33754 meet (join ?26 ?27) (join ?26 ?28)
33757 (meet (join ?27 (meet ?26 (join ?27 ?28)))
33758 (join ?28 (meet ?26 ?27)))
33759 [28, 27, 26] by equation_H21_dual ?26 ?27 ?28
33761 10920: Id : 1, {_}:
33764 meet a (join b (meet (join a b) (join c (meet a b))))
33769 10920: c 2 0 2 2,2,2
33771 10920: b 4 0 4 1,2,2
33772 10920: meet 17 2 4 0,2
33773 10920: join 19 2 4 0,2,2
33774 NO CLASH, using fixed ground order
33776 10926: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33777 10926: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33778 10926: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33779 10926: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33780 10926: Id : 6, {_}:
33781 meet ?12 ?13 =?= meet ?13 ?12
33782 [13, 12] by commutativity_of_meet ?12 ?13
33783 10926: Id : 7, {_}:
33784 join ?15 ?16 =?= join ?16 ?15
33785 [16, 15] by commutativity_of_join ?15 ?16
33786 10926: Id : 8, {_}:
33787 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33788 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33789 10926: Id : 9, {_}:
33790 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33791 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33792 10926: Id : 10, {_}:
33793 meet (join ?26 ?27) (join ?26 ?28)
33796 (meet (join ?27 (meet ?26 (join ?27 ?28)))
33797 (join ?28 (meet ?26 ?27)))
33798 [28, 27, 26] by equation_H21_dual ?26 ?27 ?28
33800 10926: Id : 1, {_}:
33803 meet a (join b (meet (join a b) (join c (meet a b))))
33808 10926: c 2 0 2 2,2,2
33810 10926: b 4 0 4 1,2,2
33811 10926: meet 17 2 4 0,2
33812 10926: join 19 2 4 0,2,2
33813 % SZS status Timeout for LAT169-1.p
33814 NO CLASH, using fixed ground order
33815 NO CLASH, using fixed ground order
33817 11323: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33818 11323: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33819 11323: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33820 11323: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33821 11323: Id : 6, {_}:
33822 meet ?12 ?13 =?= meet ?13 ?12
33823 [13, 12] by commutativity_of_meet ?12 ?13
33824 11323: Id : 7, {_}:
33825 join ?15 ?16 =?= join ?16 ?15
33826 [16, 15] by commutativity_of_join ?15 ?16
33827 11323: Id : 8, {_}:
33828 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33829 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33830 11323: Id : 9, {_}:
33831 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33832 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33833 11323: Id : 10, {_}:
33834 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
33836 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
33837 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
33839 11323: Id : 1, {_}:
33840 meet a (join b (meet a c))
33842 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33847 11323: b 3 0 3 1,2,2
33848 11323: c 3 0 3 2,2,2,2
33850 11323: join 18 2 4 0,2,2
33851 11323: meet 19 2 6 0,2
33852 NO CLASH, using fixed ground order
33854 11324: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33855 11324: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33856 11324: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33857 11324: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33858 11324: Id : 6, {_}:
33859 meet ?12 ?13 =?= meet ?13 ?12
33860 [13, 12] by commutativity_of_meet ?12 ?13
33861 11324: Id : 7, {_}:
33862 join ?15 ?16 =?= join ?16 ?15
33863 [16, 15] by commutativity_of_join ?15 ?16
33864 11324: Id : 8, {_}:
33865 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
33866 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33867 11324: Id : 9, {_}:
33868 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
33869 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33870 11324: Id : 10, {_}:
33871 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
33873 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
33874 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
33876 11324: Id : 1, {_}:
33877 meet a (join b (meet a c))
33879 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33884 11324: b 3 0 3 1,2,2
33885 11324: c 3 0 3 2,2,2,2
33887 11324: join 18 2 4 0,2,2
33888 11324: meet 19 2 6 0,2
33890 11322: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
33891 11322: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
33892 11322: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
33893 11322: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
33894 11322: Id : 6, {_}:
33895 meet ?12 ?13 =?= meet ?13 ?12
33896 [13, 12] by commutativity_of_meet ?12 ?13
33897 11322: Id : 7, {_}:
33898 join ?15 ?16 =?= join ?16 ?15
33899 [16, 15] by commutativity_of_join ?15 ?16
33900 11322: Id : 8, {_}:
33901 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
33902 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
33903 11322: Id : 9, {_}:
33904 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
33905 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
33906 11322: Id : 10, {_}:
33907 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
33909 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
33910 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
33912 11322: Id : 1, {_}:
33913 meet a (join b (meet a c))
33915 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
33920 11322: b 3 0 3 1,2,2
33921 11322: c 3 0 3 2,2,2,2
33923 11322: join 18 2 4 0,2,2
33924 11322: meet 19 2 6 0,2
33925 % SZS status Timeout for LAT174-1.p
33926 NO CLASH, using fixed ground order
33927 NO CLASH, using fixed ground order
33929 11474: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
33930 11474: Id : 3, {_}:
33931 add ?4 additive_identity =>= ?4
33932 [4] by right_additive_identity ?4
33933 11474: Id : 4, {_}:
33934 multiply additive_identity ?6 =>= additive_identity
33935 [6] by left_multiplicative_zero ?6
33936 11474: Id : 5, {_}:
33937 multiply ?8 additive_identity =>= additive_identity
33938 [8] by right_multiplicative_zero ?8
33939 11474: Id : 6, {_}:
33940 add (additive_inverse ?10) ?10 =>= additive_identity
33941 [10] by left_additive_inverse ?10
33942 11474: Id : 7, {_}:
33943 add ?12 (additive_inverse ?12) =>= additive_identity
33944 [12] by right_additive_inverse ?12
33945 11474: Id : 8, {_}:
33946 additive_inverse (additive_inverse ?14) =>= ?14
33947 [14] by additive_inverse_additive_inverse ?14
33948 11474: Id : 9, {_}:
33949 multiply ?16 (add ?17 ?18)
33951 add (multiply ?16 ?17) (multiply ?16 ?18)
33952 [18, 17, 16] by distribute1 ?16 ?17 ?18
33953 11474: Id : 10, {_}:
33954 multiply (add ?20 ?21) ?22
33956 add (multiply ?20 ?22) (multiply ?21 ?22)
33957 [22, 21, 20] by distribute2 ?20 ?21 ?22
33958 11474: Id : 11, {_}:
33959 add ?24 ?25 =?= add ?25 ?24
33960 [25, 24] by commutativity_for_addition ?24 ?25
33961 11474: Id : 12, {_}:
33962 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
33963 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
33964 11474: Id : 13, {_}:
33965 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
33966 [32, 31] by right_alternative ?31 ?32
33967 11474: Id : 14, {_}:
33968 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
33969 [35, 34] by left_alternative ?34 ?35
33970 11474: Id : 15, {_}:
33971 associator ?37 ?38 ?39
33973 add (multiply (multiply ?37 ?38) ?39)
33974 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
33975 [39, 38, 37] by associator ?37 ?38 ?39
33976 11474: Id : 16, {_}:
33979 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
33980 [42, 41] by commutator ?41 ?42
33982 11474: Id : 1, {_}:
33983 multiply cz (multiply cx (multiply cy cx))
33985 multiply (multiply (multiply cz cx) cy) cx
33986 [] by prove_right_moufang
33990 11474: cz 2 0 2 1,2
33991 11474: cy 2 0 2 1,2,2,2
33992 11474: cx 4 0 4 1,2,2
33993 11474: additive_identity 8 0 0
33994 11474: additive_inverse 6 1 0
33995 11474: commutator 1 2 0
33997 11474: multiply 28 2 6 0,2
33998 11474: associator 1 3 0
33999 NO CLASH, using fixed ground order
34001 11475: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34002 11475: Id : 3, {_}:
34003 add ?4 additive_identity =>= ?4
34004 [4] by right_additive_identity ?4
34005 11475: Id : 4, {_}:
34006 multiply additive_identity ?6 =>= additive_identity
34007 [6] by left_multiplicative_zero ?6
34008 11475: Id : 5, {_}:
34009 multiply ?8 additive_identity =>= additive_identity
34010 [8] by right_multiplicative_zero ?8
34011 11475: Id : 6, {_}:
34012 add (additive_inverse ?10) ?10 =>= additive_identity
34013 [10] by left_additive_inverse ?10
34014 11475: Id : 7, {_}:
34015 add ?12 (additive_inverse ?12) =>= additive_identity
34016 [12] by right_additive_inverse ?12
34017 11475: Id : 8, {_}:
34018 additive_inverse (additive_inverse ?14) =>= ?14
34019 [14] by additive_inverse_additive_inverse ?14
34020 11475: Id : 9, {_}:
34021 multiply ?16 (add ?17 ?18)
34023 add (multiply ?16 ?17) (multiply ?16 ?18)
34024 [18, 17, 16] by distribute1 ?16 ?17 ?18
34025 11475: Id : 10, {_}:
34026 multiply (add ?20 ?21) ?22
34028 add (multiply ?20 ?22) (multiply ?21 ?22)
34029 [22, 21, 20] by distribute2 ?20 ?21 ?22
34030 11475: Id : 11, {_}:
34031 add ?24 ?25 =?= add ?25 ?24
34032 [25, 24] by commutativity_for_addition ?24 ?25
34033 11475: Id : 12, {_}:
34034 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
34035 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34036 11475: Id : 13, {_}:
34037 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
34038 [32, 31] by right_alternative ?31 ?32
34039 11475: Id : 14, {_}:
34040 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
34041 [35, 34] by left_alternative ?34 ?35
34042 11475: Id : 15, {_}:
34043 associator ?37 ?38 ?39
34045 add (multiply (multiply ?37 ?38) ?39)
34046 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34047 [39, 38, 37] by associator ?37 ?38 ?39
34048 11475: Id : 16, {_}:
34051 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34052 [42, 41] by commutator ?41 ?42
34054 11475: Id : 1, {_}:
34055 multiply cz (multiply cx (multiply cy cx))
34057 multiply (multiply (multiply cz cx) cy) cx
34058 [] by prove_right_moufang
34062 11475: cz 2 0 2 1,2
34063 11475: cy 2 0 2 1,2,2,2
34064 11475: cx 4 0 4 1,2,2
34065 11475: additive_identity 8 0 0
34066 11475: additive_inverse 6 1 0
34067 11475: commutator 1 2 0
34069 11475: multiply 28 2 6 0,2
34070 11475: associator 1 3 0
34072 11473: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34073 11473: Id : 3, {_}:
34074 add ?4 additive_identity =>= ?4
34075 [4] by right_additive_identity ?4
34076 11473: Id : 4, {_}:
34077 multiply additive_identity ?6 =>= additive_identity
34078 [6] by left_multiplicative_zero ?6
34079 11473: Id : 5, {_}:
34080 multiply ?8 additive_identity =>= additive_identity
34081 [8] by right_multiplicative_zero ?8
34082 11473: Id : 6, {_}:
34083 add (additive_inverse ?10) ?10 =>= additive_identity
34084 [10] by left_additive_inverse ?10
34085 11473: Id : 7, {_}:
34086 add ?12 (additive_inverse ?12) =>= additive_identity
34087 [12] by right_additive_inverse ?12
34088 11473: Id : 8, {_}:
34089 additive_inverse (additive_inverse ?14) =>= ?14
34090 [14] by additive_inverse_additive_inverse ?14
34091 11473: Id : 9, {_}:
34092 multiply ?16 (add ?17 ?18)
34094 add (multiply ?16 ?17) (multiply ?16 ?18)
34095 [18, 17, 16] by distribute1 ?16 ?17 ?18
34096 11473: Id : 10, {_}:
34097 multiply (add ?20 ?21) ?22
34099 add (multiply ?20 ?22) (multiply ?21 ?22)
34100 [22, 21, 20] by distribute2 ?20 ?21 ?22
34101 11473: Id : 11, {_}:
34102 add ?24 ?25 =?= add ?25 ?24
34103 [25, 24] by commutativity_for_addition ?24 ?25
34104 11473: Id : 12, {_}:
34105 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
34106 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34107 11473: Id : 13, {_}:
34108 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
34109 [32, 31] by right_alternative ?31 ?32
34110 11473: Id : 14, {_}:
34111 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
34112 [35, 34] by left_alternative ?34 ?35
34113 11473: Id : 15, {_}:
34114 associator ?37 ?38 ?39
34116 add (multiply (multiply ?37 ?38) ?39)
34117 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34118 [39, 38, 37] by associator ?37 ?38 ?39
34119 11473: Id : 16, {_}:
34122 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34123 [42, 41] by commutator ?41 ?42
34125 11473: Id : 1, {_}:
34126 multiply cz (multiply cx (multiply cy cx))
34128 multiply (multiply (multiply cz cx) cy) cx
34129 [] by prove_right_moufang
34133 11473: cz 2 0 2 1,2
34134 11473: cy 2 0 2 1,2,2,2
34135 11473: cx 4 0 4 1,2,2
34136 11473: additive_identity 8 0 0
34137 11473: additive_inverse 6 1 0
34138 11473: commutator 1 2 0
34140 11473: multiply 28 2 6 0,2
34141 11473: associator 1 3 0
34142 % SZS status Timeout for RNG027-5.p
34143 NO CLASH, using fixed ground order
34145 12546: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34146 12546: Id : 3, {_}:
34147 add ?4 additive_identity =>= ?4
34148 [4] by right_additive_identity ?4
34149 12546: Id : 4, {_}:
34150 multiply additive_identity ?6 =>= additive_identity
34151 [6] by left_multiplicative_zero ?6
34152 12546: Id : 5, {_}:
34153 multiply ?8 additive_identity =>= additive_identity
34154 [8] by right_multiplicative_zero ?8
34155 12546: Id : 6, {_}:
34156 add (additive_inverse ?10) ?10 =>= additive_identity
34157 [10] by left_additive_inverse ?10
34158 12546: Id : 7, {_}:
34159 add ?12 (additive_inverse ?12) =>= additive_identity
34160 [12] by right_additive_inverse ?12
34161 12546: Id : 8, {_}:
34162 additive_inverse (additive_inverse ?14) =>= ?14
34163 [14] by additive_inverse_additive_inverse ?14
34164 12546: Id : 9, {_}:
34165 multiply ?16 (add ?17 ?18)
34167 add (multiply ?16 ?17) (multiply ?16 ?18)
34168 [18, 17, 16] by distribute1 ?16 ?17 ?18
34169 12546: Id : 10, {_}:
34170 multiply (add ?20 ?21) ?22
34172 add (multiply ?20 ?22) (multiply ?21 ?22)
34173 [22, 21, 20] by distribute2 ?20 ?21 ?22
34174 12546: Id : 11, {_}:
34175 add ?24 ?25 =?= add ?25 ?24
34176 [25, 24] by commutativity_for_addition ?24 ?25
34177 12546: Id : 12, {_}:
34178 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
34179 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34180 12546: Id : 13, {_}:
34181 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
34182 [32, 31] by right_alternative ?31 ?32
34183 12546: Id : 14, {_}:
34184 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
34185 [35, 34] by left_alternative ?34 ?35
34186 12546: Id : 15, {_}:
34187 associator ?37 ?38 ?39
34189 add (multiply (multiply ?37 ?38) ?39)
34190 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34191 [39, 38, 37] by associator ?37 ?38 ?39
34192 NO CLASH, using fixed ground order
34193 12546: Id : 16, {_}:
34196 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34197 [42, 41] by commutator ?41 ?42
34198 12546: Id : 17, {_}:
34199 multiply (additive_inverse ?44) (additive_inverse ?45)
34202 [45, 44] by product_of_inverses ?44 ?45
34203 12546: Id : 18, {_}:
34204 multiply (additive_inverse ?47) ?48
34206 additive_inverse (multiply ?47 ?48)
34207 [48, 47] by inverse_product1 ?47 ?48
34208 12546: Id : 19, {_}:
34209 multiply ?50 (additive_inverse ?51)
34211 additive_inverse (multiply ?50 ?51)
34212 [51, 50] by inverse_product2 ?50 ?51
34213 12546: Id : 20, {_}:
34214 multiply ?53 (add ?54 (additive_inverse ?55))
34216 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
34217 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
34218 12546: Id : 21, {_}:
34219 multiply (add ?57 (additive_inverse ?58)) ?59
34221 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
34222 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
34224 12546: Id : 22, {_}:
34225 multiply (additive_inverse ?61) (add ?62 ?63)
34227 add (additive_inverse (multiply ?61 ?62))
34228 (additive_inverse (multiply ?61 ?63))
34229 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
34230 12546: Id : 23, {_}:
34231 multiply (add ?65 ?66) (additive_inverse ?67)
34233 add (additive_inverse (multiply ?65 ?67))
34234 (additive_inverse (multiply ?66 ?67))
34235 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
34237 12546: Id : 1, {_}:
34238 multiply cz (multiply cx (multiply cy cx))
34240 multiply (multiply (multiply cz cx) cy) cx
34241 [] by prove_right_moufang
34245 12546: cz 2 0 2 1,2
34246 12546: cy 2 0 2 1,2,2,2
34247 12546: cx 4 0 4 1,2,2
34248 12546: additive_identity 8 0 0
34249 12546: additive_inverse 22 1 0
34250 12546: commutator 1 2 0
34252 12546: multiply 46 2 6 0,2
34253 12547: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34254 12547: Id : 3, {_}:
34255 add ?4 additive_identity =>= ?4
34256 [4] by right_additive_identity ?4
34257 12547: Id : 4, {_}:
34258 multiply additive_identity ?6 =>= additive_identity
34259 [6] by left_multiplicative_zero ?6
34260 12547: Id : 5, {_}:
34261 multiply ?8 additive_identity =>= additive_identity
34262 [8] by right_multiplicative_zero ?8
34263 12547: Id : 6, {_}:
34264 add (additive_inverse ?10) ?10 =>= additive_identity
34265 [10] by left_additive_inverse ?10
34266 12547: Id : 7, {_}:
34267 add ?12 (additive_inverse ?12) =>= additive_identity
34268 [12] by right_additive_inverse ?12
34269 12547: Id : 8, {_}:
34270 additive_inverse (additive_inverse ?14) =>= ?14
34271 [14] by additive_inverse_additive_inverse ?14
34272 12546: associator 1 3 0
34273 12547: Id : 9, {_}:
34274 multiply ?16 (add ?17 ?18)
34276 add (multiply ?16 ?17) (multiply ?16 ?18)
34277 [18, 17, 16] by distribute1 ?16 ?17 ?18
34278 12547: Id : 10, {_}:
34279 multiply (add ?20 ?21) ?22
34281 add (multiply ?20 ?22) (multiply ?21 ?22)
34282 [22, 21, 20] by distribute2 ?20 ?21 ?22
34283 12547: Id : 11, {_}:
34284 add ?24 ?25 =?= add ?25 ?24
34285 [25, 24] by commutativity_for_addition ?24 ?25
34286 12547: Id : 12, {_}:
34287 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
34288 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34289 12547: Id : 13, {_}:
34290 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
34291 [32, 31] by right_alternative ?31 ?32
34292 12547: Id : 14, {_}:
34293 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
34294 [35, 34] by left_alternative ?34 ?35
34295 12547: Id : 15, {_}:
34296 associator ?37 ?38 ?39
34298 add (multiply (multiply ?37 ?38) ?39)
34299 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34300 [39, 38, 37] by associator ?37 ?38 ?39
34301 12547: Id : 16, {_}:
34304 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34305 [42, 41] by commutator ?41 ?42
34306 12547: Id : 17, {_}:
34307 multiply (additive_inverse ?44) (additive_inverse ?45)
34310 [45, 44] by product_of_inverses ?44 ?45
34311 12547: Id : 18, {_}:
34312 multiply (additive_inverse ?47) ?48
34314 additive_inverse (multiply ?47 ?48)
34315 [48, 47] by inverse_product1 ?47 ?48
34316 12547: Id : 19, {_}:
34317 multiply ?50 (additive_inverse ?51)
34319 additive_inverse (multiply ?50 ?51)
34320 [51, 50] by inverse_product2 ?50 ?51
34321 12547: Id : 20, {_}:
34322 multiply ?53 (add ?54 (additive_inverse ?55))
34324 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
34325 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
34326 12547: Id : 21, {_}:
34327 multiply (add ?57 (additive_inverse ?58)) ?59
34329 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
34330 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
34331 12547: Id : 22, {_}:
34332 multiply (additive_inverse ?61) (add ?62 ?63)
34334 add (additive_inverse (multiply ?61 ?62))
34335 (additive_inverse (multiply ?61 ?63))
34336 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
34337 12547: Id : 23, {_}:
34338 multiply (add ?65 ?66) (additive_inverse ?67)
34340 add (additive_inverse (multiply ?65 ?67))
34341 (additive_inverse (multiply ?66 ?67))
34342 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
34344 12547: Id : 1, {_}:
34345 multiply cz (multiply cx (multiply cy cx))
34347 multiply (multiply (multiply cz cx) cy) cx
34348 [] by prove_right_moufang
34352 12547: cz 2 0 2 1,2
34353 12547: cy 2 0 2 1,2,2,2
34354 12547: cx 4 0 4 1,2,2
34355 12547: additive_identity 8 0 0
34356 12547: additive_inverse 22 1 0
34357 12547: commutator 1 2 0
34359 12547: multiply 46 2 6 0,2
34360 12547: associator 1 3 0
34361 NO CLASH, using fixed ground order
34363 12548: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34364 12548: Id : 3, {_}:
34365 add ?4 additive_identity =>= ?4
34366 [4] by right_additive_identity ?4
34367 12548: Id : 4, {_}:
34368 multiply additive_identity ?6 =>= additive_identity
34369 [6] by left_multiplicative_zero ?6
34370 12548: Id : 5, {_}:
34371 multiply ?8 additive_identity =>= additive_identity
34372 [8] by right_multiplicative_zero ?8
34373 12548: Id : 6, {_}:
34374 add (additive_inverse ?10) ?10 =>= additive_identity
34375 [10] by left_additive_inverse ?10
34376 12548: Id : 7, {_}:
34377 add ?12 (additive_inverse ?12) =>= additive_identity
34378 [12] by right_additive_inverse ?12
34379 12548: Id : 8, {_}:
34380 additive_inverse (additive_inverse ?14) =>= ?14
34381 [14] by additive_inverse_additive_inverse ?14
34382 12548: Id : 9, {_}:
34383 multiply ?16 (add ?17 ?18)
34385 add (multiply ?16 ?17) (multiply ?16 ?18)
34386 [18, 17, 16] by distribute1 ?16 ?17 ?18
34387 12548: Id : 10, {_}:
34388 multiply (add ?20 ?21) ?22
34390 add (multiply ?20 ?22) (multiply ?21 ?22)
34391 [22, 21, 20] by distribute2 ?20 ?21 ?22
34392 12548: Id : 11, {_}:
34393 add ?24 ?25 =?= add ?25 ?24
34394 [25, 24] by commutativity_for_addition ?24 ?25
34395 12548: Id : 12, {_}:
34396 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
34397 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34398 12548: Id : 13, {_}:
34399 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
34400 [32, 31] by right_alternative ?31 ?32
34401 12548: Id : 14, {_}:
34402 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
34403 [35, 34] by left_alternative ?34 ?35
34404 12548: Id : 15, {_}:
34405 associator ?37 ?38 ?39
34407 add (multiply (multiply ?37 ?38) ?39)
34408 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34409 [39, 38, 37] by associator ?37 ?38 ?39
34410 12548: Id : 16, {_}:
34413 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34414 [42, 41] by commutator ?41 ?42
34415 12548: Id : 17, {_}:
34416 multiply (additive_inverse ?44) (additive_inverse ?45)
34419 [45, 44] by product_of_inverses ?44 ?45
34420 12548: Id : 18, {_}:
34421 multiply (additive_inverse ?47) ?48
34423 additive_inverse (multiply ?47 ?48)
34424 [48, 47] by inverse_product1 ?47 ?48
34425 12548: Id : 19, {_}:
34426 multiply ?50 (additive_inverse ?51)
34428 additive_inverse (multiply ?50 ?51)
34429 [51, 50] by inverse_product2 ?50 ?51
34430 12548: Id : 20, {_}:
34431 multiply ?53 (add ?54 (additive_inverse ?55))
34433 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
34434 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
34435 12548: Id : 21, {_}:
34436 multiply (add ?57 (additive_inverse ?58)) ?59
34438 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
34439 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
34440 12548: Id : 22, {_}:
34441 multiply (additive_inverse ?61) (add ?62 ?63)
34443 add (additive_inverse (multiply ?61 ?62))
34444 (additive_inverse (multiply ?61 ?63))
34445 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
34446 12548: Id : 23, {_}:
34447 multiply (add ?65 ?66) (additive_inverse ?67)
34449 add (additive_inverse (multiply ?65 ?67))
34450 (additive_inverse (multiply ?66 ?67))
34451 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
34453 12548: Id : 1, {_}:
34454 multiply cz (multiply cx (multiply cy cx))
34456 multiply (multiply (multiply cz cx) cy) cx
34457 [] by prove_right_moufang
34461 12548: cz 2 0 2 1,2
34462 12548: cy 2 0 2 1,2,2,2
34463 12548: cx 4 0 4 1,2,2
34464 12548: additive_identity 8 0 0
34465 12548: additive_inverse 22 1 0
34466 12548: commutator 1 2 0
34468 12548: multiply 46 2 6 0,2
34469 12548: associator 1 3 0
34470 % SZS status Timeout for RNG027-7.p
34471 NO CLASH, using fixed ground order
34473 14022: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34474 14022: Id : 3, {_}:
34475 add ?4 additive_identity =>= ?4
34476 [4] by right_additive_identity ?4
34477 14022: Id : 4, {_}:
34478 multiply additive_identity ?6 =>= additive_identity
34479 [6] by left_multiplicative_zero ?6
34480 14022: Id : 5, {_}:
34481 multiply ?8 additive_identity =>= additive_identity
34482 [8] by right_multiplicative_zero ?8
34483 14022: Id : 6, {_}:
34484 add (additive_inverse ?10) ?10 =>= additive_identity
34485 [10] by left_additive_inverse ?10
34486 14022: Id : 7, {_}:
34487 add ?12 (additive_inverse ?12) =>= additive_identity
34488 [12] by right_additive_inverse ?12
34489 14022: Id : 8, {_}:
34490 additive_inverse (additive_inverse ?14) =>= ?14
34491 [14] by additive_inverse_additive_inverse ?14
34492 14022: Id : 9, {_}:
34493 multiply ?16 (add ?17 ?18)
34495 add (multiply ?16 ?17) (multiply ?16 ?18)
34496 [18, 17, 16] by distribute1 ?16 ?17 ?18
34497 NO CLASH, using fixed ground order
34498 14022: Id : 10, {_}:
34499 multiply (add ?20 ?21) ?22
34501 add (multiply ?20 ?22) (multiply ?21 ?22)
34502 [22, 21, 20] by distribute2 ?20 ?21 ?22
34503 14022: Id : 11, {_}:
34504 add ?24 ?25 =?= add ?25 ?24
34505 [25, 24] by commutativity_for_addition ?24 ?25
34506 14022: Id : 12, {_}:
34507 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
34508 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34509 14022: Id : 13, {_}:
34510 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
34511 [32, 31] by right_alternative ?31 ?32
34512 14022: Id : 14, {_}:
34513 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
34514 [35, 34] by left_alternative ?34 ?35
34515 14022: Id : 15, {_}:
34516 associator ?37 ?38 ?39
34518 add (multiply (multiply ?37 ?38) ?39)
34519 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34520 [39, 38, 37] by associator ?37 ?38 ?39
34521 14022: Id : 16, {_}:
34524 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34525 [42, 41] by commutator ?41 ?42
34527 14022: Id : 1, {_}:
34528 associator x (multiply x y) z =>= multiply (associator x y z) x
34529 [] by prove_right_moufang
34533 14022: y 2 0 2 2,2,2
34536 14022: additive_identity 8 0 0
34537 14022: additive_inverse 6 1 0
34538 14022: commutator 1 2 0
34540 14022: multiply 24 2 2 0,2,2
34541 14022: associator 3 3 2 0,2
34543 14023: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34544 14023: Id : 3, {_}:
34545 add ?4 additive_identity =>= ?4
34546 [4] by right_additive_identity ?4
34547 14023: Id : 4, {_}:
34548 multiply additive_identity ?6 =>= additive_identity
34549 [6] by left_multiplicative_zero ?6
34550 14023: Id : 5, {_}:
34551 multiply ?8 additive_identity =>= additive_identity
34552 [8] by right_multiplicative_zero ?8
34553 14023: Id : 6, {_}:
34554 add (additive_inverse ?10) ?10 =>= additive_identity
34555 [10] by left_additive_inverse ?10
34556 14023: Id : 7, {_}:
34557 add ?12 (additive_inverse ?12) =>= additive_identity
34558 [12] by right_additive_inverse ?12
34559 14023: Id : 8, {_}:
34560 additive_inverse (additive_inverse ?14) =>= ?14
34561 [14] by additive_inverse_additive_inverse ?14
34562 14023: Id : 9, {_}:
34563 multiply ?16 (add ?17 ?18)
34565 add (multiply ?16 ?17) (multiply ?16 ?18)
34566 [18, 17, 16] by distribute1 ?16 ?17 ?18
34567 14023: Id : 10, {_}:
34568 multiply (add ?20 ?21) ?22
34570 add (multiply ?20 ?22) (multiply ?21 ?22)
34571 [22, 21, 20] by distribute2 ?20 ?21 ?22
34572 14023: Id : 11, {_}:
34573 add ?24 ?25 =?= add ?25 ?24
34574 [25, 24] by commutativity_for_addition ?24 ?25
34575 14023: Id : 12, {_}:
34576 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
34577 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34578 14023: Id : 13, {_}:
34579 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
34580 [32, 31] by right_alternative ?31 ?32
34581 14023: Id : 14, {_}:
34582 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
34583 [35, 34] by left_alternative ?34 ?35
34584 14023: Id : 15, {_}:
34585 associator ?37 ?38 ?39
34587 add (multiply (multiply ?37 ?38) ?39)
34588 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34589 [39, 38, 37] by associator ?37 ?38 ?39
34590 14023: Id : 16, {_}:
34593 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34594 [42, 41] by commutator ?41 ?42
34596 14023: Id : 1, {_}:
34597 associator x (multiply x y) z =>= multiply (associator x y z) x
34598 [] by prove_right_moufang
34602 14023: y 2 0 2 2,2,2
34605 14023: additive_identity 8 0 0
34606 14023: additive_inverse 6 1 0
34607 14023: commutator 1 2 0
34609 14023: multiply 24 2 2 0,2,2
34610 14023: associator 3 3 2 0,2
34611 NO CLASH, using fixed ground order
34613 14025: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34614 14025: Id : 3, {_}:
34615 add ?4 additive_identity =>= ?4
34616 [4] by right_additive_identity ?4
34617 14025: Id : 4, {_}:
34618 multiply additive_identity ?6 =>= additive_identity
34619 [6] by left_multiplicative_zero ?6
34620 14025: Id : 5, {_}:
34621 multiply ?8 additive_identity =>= additive_identity
34622 [8] by right_multiplicative_zero ?8
34623 14025: Id : 6, {_}:
34624 add (additive_inverse ?10) ?10 =>= additive_identity
34625 [10] by left_additive_inverse ?10
34626 14025: Id : 7, {_}:
34627 add ?12 (additive_inverse ?12) =>= additive_identity
34628 [12] by right_additive_inverse ?12
34629 14025: Id : 8, {_}:
34630 additive_inverse (additive_inverse ?14) =>= ?14
34631 [14] by additive_inverse_additive_inverse ?14
34632 14025: Id : 9, {_}:
34633 multiply ?16 (add ?17 ?18)
34635 add (multiply ?16 ?17) (multiply ?16 ?18)
34636 [18, 17, 16] by distribute1 ?16 ?17 ?18
34637 14025: Id : 10, {_}:
34638 multiply (add ?20 ?21) ?22
34640 add (multiply ?20 ?22) (multiply ?21 ?22)
34641 [22, 21, 20] by distribute2 ?20 ?21 ?22
34642 14025: Id : 11, {_}:
34643 add ?24 ?25 =?= add ?25 ?24
34644 [25, 24] by commutativity_for_addition ?24 ?25
34645 14025: Id : 12, {_}:
34646 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
34647 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34648 14025: Id : 13, {_}:
34649 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
34650 [32, 31] by right_alternative ?31 ?32
34651 14025: Id : 14, {_}:
34652 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
34653 [35, 34] by left_alternative ?34 ?35
34654 14025: Id : 15, {_}:
34655 associator ?37 ?38 ?39
34657 add (multiply (multiply ?37 ?38) ?39)
34658 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34659 [39, 38, 37] by associator ?37 ?38 ?39
34660 14025: Id : 16, {_}:
34663 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34664 [42, 41] by commutator ?41 ?42
34666 14025: Id : 1, {_}:
34667 associator x (multiply x y) z =>= multiply (associator x y z) x
34668 [] by prove_right_moufang
34672 14025: y 2 0 2 2,2,2
34675 14025: additive_identity 8 0 0
34676 14025: additive_inverse 6 1 0
34677 14025: commutator 1 2 0
34679 14025: multiply 24 2 2 0,2,2
34680 14025: associator 3 3 2 0,2
34681 % SZS status Timeout for RNG027-8.p
34682 NO CLASH, using fixed ground order
34684 15720: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34685 15720: Id : 3, {_}:
34686 add ?4 additive_identity =>= ?4
34687 [4] by right_additive_identity ?4
34688 15720: Id : 4, {_}:
34689 multiply additive_identity ?6 =>= additive_identity
34690 [6] by left_multiplicative_zero ?6
34691 15720: Id : 5, {_}:
34692 multiply ?8 additive_identity =>= additive_identity
34693 [8] by right_multiplicative_zero ?8
34694 15720: Id : 6, {_}:
34695 add (additive_inverse ?10) ?10 =>= additive_identity
34696 [10] by left_additive_inverse ?10
34697 15720: Id : 7, {_}:
34698 add ?12 (additive_inverse ?12) =>= additive_identity
34699 [12] by right_additive_inverse ?12
34700 15720: Id : 8, {_}:
34701 additive_inverse (additive_inverse ?14) =>= ?14
34702 [14] by additive_inverse_additive_inverse ?14
34703 15720: Id : 9, {_}:
34704 multiply ?16 (add ?17 ?18)
34706 add (multiply ?16 ?17) (multiply ?16 ?18)
34707 [18, 17, 16] by distribute1 ?16 ?17 ?18
34708 15720: Id : 10, {_}:
34709 multiply (add ?20 ?21) ?22
34711 add (multiply ?20 ?22) (multiply ?21 ?22)
34712 [22, 21, 20] by distribute2 ?20 ?21 ?22
34713 15720: Id : 11, {_}:
34714 add ?24 ?25 =?= add ?25 ?24
34715 [25, 24] by commutativity_for_addition ?24 ?25
34716 15720: Id : 12, {_}:
34717 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
34718 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34719 15720: Id : 13, {_}:
34720 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
34721 [32, 31] by right_alternative ?31 ?32
34722 15720: Id : 14, {_}:
34723 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
34724 [35, 34] by left_alternative ?34 ?35
34725 15720: Id : 15, {_}:
34726 associator ?37 ?38 ?39
34728 add (multiply (multiply ?37 ?38) ?39)
34729 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34730 [39, 38, 37] by associator ?37 ?38 ?39
34731 15720: Id : 16, {_}:
34734 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34735 [42, 41] by commutator ?41 ?42
34736 15720: Id : 17, {_}:
34737 multiply (additive_inverse ?44) (additive_inverse ?45)
34740 [45, 44] by product_of_inverses ?44 ?45
34741 15720: Id : 18, {_}:
34742 multiply (additive_inverse ?47) ?48
34744 additive_inverse (multiply ?47 ?48)
34745 [48, 47] by inverse_product1 ?47 ?48
34746 15720: Id : 19, {_}:
34747 multiply ?50 (additive_inverse ?51)
34749 additive_inverse (multiply ?50 ?51)
34750 [51, 50] by inverse_product2 ?50 ?51
34751 15720: Id : 20, {_}:
34752 multiply ?53 (add ?54 (additive_inverse ?55))
34754 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
34755 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
34756 15720: Id : 21, {_}:
34757 multiply (add ?57 (additive_inverse ?58)) ?59
34759 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
34760 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
34761 15720: Id : 22, {_}:
34762 multiply (additive_inverse ?61) (add ?62 ?63)
34764 add (additive_inverse (multiply ?61 ?62))
34765 (additive_inverse (multiply ?61 ?63))
34766 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
34767 15720: Id : 23, {_}:
34768 multiply (add ?65 ?66) (additive_inverse ?67)
34770 add (additive_inverse (multiply ?65 ?67))
34771 (additive_inverse (multiply ?66 ?67))
34772 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
34774 15720: Id : 1, {_}:
34775 associator x (multiply x y) z =>= multiply (associator x y z) x
34776 [] by prove_right_moufang
34780 15720: y 2 0 2 2,2,2
34783 15720: additive_identity 8 0 0
34784 15720: additive_inverse 22 1 0
34785 15720: commutator 1 2 0
34787 15720: multiply 42 2 2 0,2,2
34788 15720: associator 3 3 2 0,2
34789 NO CLASH, using fixed ground order
34791 15721: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34792 15721: Id : 3, {_}:
34793 add ?4 additive_identity =>= ?4
34794 [4] by right_additive_identity ?4
34795 15721: Id : 4, {_}:
34796 multiply additive_identity ?6 =>= additive_identity
34797 [6] by left_multiplicative_zero ?6
34798 15721: Id : 5, {_}:
34799 multiply ?8 additive_identity =>= additive_identity
34800 [8] by right_multiplicative_zero ?8
34801 15721: Id : 6, {_}:
34802 add (additive_inverse ?10) ?10 =>= additive_identity
34803 [10] by left_additive_inverse ?10
34804 15721: Id : 7, {_}:
34805 add ?12 (additive_inverse ?12) =>= additive_identity
34806 [12] by right_additive_inverse ?12
34807 15721: Id : 8, {_}:
34808 additive_inverse (additive_inverse ?14) =>= ?14
34809 [14] by additive_inverse_additive_inverse ?14
34810 15721: Id : 9, {_}:
34811 multiply ?16 (add ?17 ?18)
34813 add (multiply ?16 ?17) (multiply ?16 ?18)
34814 [18, 17, 16] by distribute1 ?16 ?17 ?18
34815 15721: Id : 10, {_}:
34816 multiply (add ?20 ?21) ?22
34818 add (multiply ?20 ?22) (multiply ?21 ?22)
34819 [22, 21, 20] by distribute2 ?20 ?21 ?22
34820 15721: Id : 11, {_}:
34821 add ?24 ?25 =?= add ?25 ?24
34822 [25, 24] by commutativity_for_addition ?24 ?25
34823 15721: Id : 12, {_}:
34824 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
34825 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34826 15721: Id : 13, {_}:
34827 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
34828 [32, 31] by right_alternative ?31 ?32
34829 15721: Id : 14, {_}:
34830 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
34831 [35, 34] by left_alternative ?34 ?35
34832 15721: Id : 15, {_}:
34833 associator ?37 ?38 ?39
34835 add (multiply (multiply ?37 ?38) ?39)
34836 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34837 [39, 38, 37] by associator ?37 ?38 ?39
34838 15721: Id : 16, {_}:
34841 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34842 [42, 41] by commutator ?41 ?42
34843 15721: Id : 17, {_}:
34844 multiply (additive_inverse ?44) (additive_inverse ?45)
34847 [45, 44] by product_of_inverses ?44 ?45
34848 15721: Id : 18, {_}:
34849 multiply (additive_inverse ?47) ?48
34851 additive_inverse (multiply ?47 ?48)
34852 [48, 47] by inverse_product1 ?47 ?48
34853 15721: Id : 19, {_}:
34854 multiply ?50 (additive_inverse ?51)
34856 additive_inverse (multiply ?50 ?51)
34857 [51, 50] by inverse_product2 ?50 ?51
34858 15721: Id : 20, {_}:
34859 multiply ?53 (add ?54 (additive_inverse ?55))
34861 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
34862 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
34863 15721: Id : 21, {_}:
34864 multiply (add ?57 (additive_inverse ?58)) ?59
34866 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
34867 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
34868 15721: Id : 22, {_}:
34869 multiply (additive_inverse ?61) (add ?62 ?63)
34871 add (additive_inverse (multiply ?61 ?62))
34872 (additive_inverse (multiply ?61 ?63))
34873 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
34874 15721: Id : 23, {_}:
34875 multiply (add ?65 ?66) (additive_inverse ?67)
34877 add (additive_inverse (multiply ?65 ?67))
34878 (additive_inverse (multiply ?66 ?67))
34879 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
34881 15721: Id : 1, {_}:
34882 associator x (multiply x y) z =>= multiply (associator x y z) x
34883 [] by prove_right_moufang
34887 15721: y 2 0 2 2,2,2
34890 15721: additive_identity 8 0 0
34891 15721: additive_inverse 22 1 0
34892 15721: commutator 1 2 0
34894 15721: multiply 42 2 2 0,2,2
34895 15721: associator 3 3 2 0,2
34896 NO CLASH, using fixed ground order
34898 15722: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
34899 15722: Id : 3, {_}:
34900 add ?4 additive_identity =>= ?4
34901 [4] by right_additive_identity ?4
34902 15722: Id : 4, {_}:
34903 multiply additive_identity ?6 =>= additive_identity
34904 [6] by left_multiplicative_zero ?6
34905 15722: Id : 5, {_}:
34906 multiply ?8 additive_identity =>= additive_identity
34907 [8] by right_multiplicative_zero ?8
34908 15722: Id : 6, {_}:
34909 add (additive_inverse ?10) ?10 =>= additive_identity
34910 [10] by left_additive_inverse ?10
34911 15722: Id : 7, {_}:
34912 add ?12 (additive_inverse ?12) =>= additive_identity
34913 [12] by right_additive_inverse ?12
34914 15722: Id : 8, {_}:
34915 additive_inverse (additive_inverse ?14) =>= ?14
34916 [14] by additive_inverse_additive_inverse ?14
34917 15722: Id : 9, {_}:
34918 multiply ?16 (add ?17 ?18)
34920 add (multiply ?16 ?17) (multiply ?16 ?18)
34921 [18, 17, 16] by distribute1 ?16 ?17 ?18
34922 15722: Id : 10, {_}:
34923 multiply (add ?20 ?21) ?22
34925 add (multiply ?20 ?22) (multiply ?21 ?22)
34926 [22, 21, 20] by distribute2 ?20 ?21 ?22
34927 15722: Id : 11, {_}:
34928 add ?24 ?25 =?= add ?25 ?24
34929 [25, 24] by commutativity_for_addition ?24 ?25
34930 15722: Id : 12, {_}:
34931 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
34932 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
34933 15722: Id : 13, {_}:
34934 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
34935 [32, 31] by right_alternative ?31 ?32
34936 15722: Id : 14, {_}:
34937 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
34938 [35, 34] by left_alternative ?34 ?35
34939 15722: Id : 15, {_}:
34940 associator ?37 ?38 ?39
34942 add (multiply (multiply ?37 ?38) ?39)
34943 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
34944 [39, 38, 37] by associator ?37 ?38 ?39
34945 15722: Id : 16, {_}:
34948 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
34949 [42, 41] by commutator ?41 ?42
34950 15722: Id : 17, {_}:
34951 multiply (additive_inverse ?44) (additive_inverse ?45)
34954 [45, 44] by product_of_inverses ?44 ?45
34955 15722: Id : 18, {_}:
34956 multiply (additive_inverse ?47) ?48
34958 additive_inverse (multiply ?47 ?48)
34959 [48, 47] by inverse_product1 ?47 ?48
34960 15722: Id : 19, {_}:
34961 multiply ?50 (additive_inverse ?51)
34963 additive_inverse (multiply ?50 ?51)
34964 [51, 50] by inverse_product2 ?50 ?51
34965 15722: Id : 20, {_}:
34966 multiply ?53 (add ?54 (additive_inverse ?55))
34968 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
34969 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
34970 15722: Id : 21, {_}:
34971 multiply (add ?57 (additive_inverse ?58)) ?59
34973 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
34974 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
34975 15722: Id : 22, {_}:
34976 multiply (additive_inverse ?61) (add ?62 ?63)
34978 add (additive_inverse (multiply ?61 ?62))
34979 (additive_inverse (multiply ?61 ?63))
34980 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
34981 15722: Id : 23, {_}:
34982 multiply (add ?65 ?66) (additive_inverse ?67)
34984 add (additive_inverse (multiply ?65 ?67))
34985 (additive_inverse (multiply ?66 ?67))
34986 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
34988 15722: Id : 1, {_}:
34989 associator x (multiply x y) z =>= multiply (associator x y z) x
34990 [] by prove_right_moufang
34994 15722: y 2 0 2 2,2,2
34997 15722: additive_identity 8 0 0
34998 15722: additive_inverse 22 1 0
34999 15722: commutator 1 2 0
35001 15722: multiply 42 2 2 0,2,2
35002 15722: associator 3 3 2 0,2
35003 % SZS status Timeout for RNG027-9.p
35004 NO CLASH, using fixed ground order
35006 16372: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35007 16372: Id : 3, {_}:
35008 add ?4 additive_identity =>= ?4
35009 [4] by right_additive_identity ?4
35010 16372: Id : 4, {_}:
35011 multiply additive_identity ?6 =>= additive_identity
35012 [6] by left_multiplicative_zero ?6
35013 16372: Id : 5, {_}:
35014 multiply ?8 additive_identity =>= additive_identity
35015 [8] by right_multiplicative_zero ?8
35016 16372: Id : 6, {_}:
35017 add (additive_inverse ?10) ?10 =>= additive_identity
35018 [10] by left_additive_inverse ?10
35019 16372: Id : 7, {_}:
35020 add ?12 (additive_inverse ?12) =>= additive_identity
35021 [12] by right_additive_inverse ?12
35022 16372: Id : 8, {_}:
35023 additive_inverse (additive_inverse ?14) =>= ?14
35024 [14] by additive_inverse_additive_inverse ?14
35025 16372: Id : 9, {_}:
35026 multiply ?16 (add ?17 ?18)
35028 add (multiply ?16 ?17) (multiply ?16 ?18)
35029 [18, 17, 16] by distribute1 ?16 ?17 ?18
35030 16372: Id : 10, {_}:
35031 multiply (add ?20 ?21) ?22
35033 add (multiply ?20 ?22) (multiply ?21 ?22)
35034 [22, 21, 20] by distribute2 ?20 ?21 ?22
35035 16372: Id : 11, {_}:
35036 add ?24 ?25 =?= add ?25 ?24
35037 [25, 24] by commutativity_for_addition ?24 ?25
35038 16372: Id : 12, {_}:
35039 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
35040 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35041 16372: Id : 13, {_}:
35042 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
35043 [32, 31] by right_alternative ?31 ?32
35044 16372: Id : 14, {_}:
35045 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
35046 [35, 34] by left_alternative ?34 ?35
35047 16372: Id : 15, {_}:
35048 associator ?37 ?38 ?39
35050 add (multiply (multiply ?37 ?38) ?39)
35051 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35052 [39, 38, 37] by associator ?37 ?38 ?39
35053 16372: Id : 16, {_}:
35056 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35057 [42, 41] by commutator ?41 ?42
35059 16372: Id : 1, {_}:
35060 multiply (multiply cx (multiply cy cx)) cz
35062 multiply cx (multiply cy (multiply cx cz))
35063 [] by prove_left_moufang
35067 16372: cy 2 0 2 1,2,1,2
35068 16372: cz 2 0 2 2,2
35069 16372: cx 4 0 4 1,1,2
35070 16372: additive_identity 8 0 0
35071 16372: additive_inverse 6 1 0
35072 16372: commutator 1 2 0
35074 16372: multiply 28 2 6 0,2
35075 16372: associator 1 3 0
35076 NO CLASH, using fixed ground order
35078 16373: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35079 16373: Id : 3, {_}:
35080 add ?4 additive_identity =>= ?4
35081 [4] by right_additive_identity ?4
35082 16373: Id : 4, {_}:
35083 multiply additive_identity ?6 =>= additive_identity
35084 [6] by left_multiplicative_zero ?6
35085 16373: Id : 5, {_}:
35086 multiply ?8 additive_identity =>= additive_identity
35087 [8] by right_multiplicative_zero ?8
35088 16373: Id : 6, {_}:
35089 add (additive_inverse ?10) ?10 =>= additive_identity
35090 [10] by left_additive_inverse ?10
35091 16373: Id : 7, {_}:
35092 add ?12 (additive_inverse ?12) =>= additive_identity
35093 [12] by right_additive_inverse ?12
35094 16373: Id : 8, {_}:
35095 additive_inverse (additive_inverse ?14) =>= ?14
35096 [14] by additive_inverse_additive_inverse ?14
35097 16373: Id : 9, {_}:
35098 multiply ?16 (add ?17 ?18)
35100 add (multiply ?16 ?17) (multiply ?16 ?18)
35101 [18, 17, 16] by distribute1 ?16 ?17 ?18
35102 16373: Id : 10, {_}:
35103 multiply (add ?20 ?21) ?22
35105 add (multiply ?20 ?22) (multiply ?21 ?22)
35106 [22, 21, 20] by distribute2 ?20 ?21 ?22
35107 NO CLASH, using fixed ground order
35109 16374: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35110 16374: Id : 3, {_}:
35111 add ?4 additive_identity =>= ?4
35112 [4] by right_additive_identity ?4
35113 16374: Id : 4, {_}:
35114 multiply additive_identity ?6 =>= additive_identity
35115 [6] by left_multiplicative_zero ?6
35116 16374: Id : 5, {_}:
35117 multiply ?8 additive_identity =>= additive_identity
35118 [8] by right_multiplicative_zero ?8
35119 16374: Id : 6, {_}:
35120 add (additive_inverse ?10) ?10 =>= additive_identity
35121 [10] by left_additive_inverse ?10
35122 16374: Id : 7, {_}:
35123 add ?12 (additive_inverse ?12) =>= additive_identity
35124 [12] by right_additive_inverse ?12
35125 16374: Id : 8, {_}:
35126 additive_inverse (additive_inverse ?14) =>= ?14
35127 [14] by additive_inverse_additive_inverse ?14
35128 16374: Id : 9, {_}:
35129 multiply ?16 (add ?17 ?18)
35131 add (multiply ?16 ?17) (multiply ?16 ?18)
35132 [18, 17, 16] by distribute1 ?16 ?17 ?18
35133 16374: Id : 10, {_}:
35134 multiply (add ?20 ?21) ?22
35136 add (multiply ?20 ?22) (multiply ?21 ?22)
35137 [22, 21, 20] by distribute2 ?20 ?21 ?22
35138 16373: Id : 11, {_}:
35139 add ?24 ?25 =?= add ?25 ?24
35140 [25, 24] by commutativity_for_addition ?24 ?25
35141 16373: Id : 12, {_}:
35142 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
35143 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35144 16373: Id : 13, {_}:
35145 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
35146 [32, 31] by right_alternative ?31 ?32
35147 16373: Id : 14, {_}:
35148 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
35149 [35, 34] by left_alternative ?34 ?35
35150 16373: Id : 15, {_}:
35151 associator ?37 ?38 ?39
35153 add (multiply (multiply ?37 ?38) ?39)
35154 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35155 [39, 38, 37] by associator ?37 ?38 ?39
35156 16373: Id : 16, {_}:
35159 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35160 [42, 41] by commutator ?41 ?42
35162 16373: Id : 1, {_}:
35163 multiply (multiply cx (multiply cy cx)) cz
35165 multiply cx (multiply cy (multiply cx cz))
35166 [] by prove_left_moufang
35170 16373: cy 2 0 2 1,2,1,2
35171 16373: cz 2 0 2 2,2
35172 16373: cx 4 0 4 1,1,2
35173 16373: additive_identity 8 0 0
35174 16373: additive_inverse 6 1 0
35175 16373: commutator 1 2 0
35177 16373: multiply 28 2 6 0,2
35178 16373: associator 1 3 0
35179 16374: Id : 11, {_}:
35180 add ?24 ?25 =?= add ?25 ?24
35181 [25, 24] by commutativity_for_addition ?24 ?25
35182 16374: Id : 12, {_}:
35183 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
35184 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35185 16374: Id : 13, {_}:
35186 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
35187 [32, 31] by right_alternative ?31 ?32
35188 16374: Id : 14, {_}:
35189 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
35190 [35, 34] by left_alternative ?34 ?35
35191 16374: Id : 15, {_}:
35192 associator ?37 ?38 ?39
35194 add (multiply (multiply ?37 ?38) ?39)
35195 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35196 [39, 38, 37] by associator ?37 ?38 ?39
35197 16374: Id : 16, {_}:
35200 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35201 [42, 41] by commutator ?41 ?42
35203 16374: Id : 1, {_}:
35204 multiply (multiply cx (multiply cy cx)) cz
35206 multiply cx (multiply cy (multiply cx cz))
35207 [] by prove_left_moufang
35211 16374: cy 2 0 2 1,2,1,2
35212 16374: cz 2 0 2 2,2
35213 16374: cx 4 0 4 1,1,2
35214 16374: additive_identity 8 0 0
35215 16374: additive_inverse 6 1 0
35216 16374: commutator 1 2 0
35218 16374: multiply 28 2 6 0,2
35219 16374: associator 1 3 0
35220 % SZS status Timeout for RNG028-5.p
35221 NO CLASH, using fixed ground order
35223 18637: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35224 18637: Id : 3, {_}:
35225 add ?4 additive_identity =>= ?4
35226 [4] by right_additive_identity ?4
35227 18637: Id : 4, {_}:
35228 multiply additive_identity ?6 =>= additive_identity
35229 [6] by left_multiplicative_zero ?6
35230 18637: Id : 5, {_}:
35231 multiply ?8 additive_identity =>= additive_identity
35232 [8] by right_multiplicative_zero ?8
35233 18637: Id : 6, {_}:
35234 add (additive_inverse ?10) ?10 =>= additive_identity
35235 [10] by left_additive_inverse ?10
35236 18637: Id : 7, {_}:
35237 add ?12 (additive_inverse ?12) =>= additive_identity
35238 [12] by right_additive_inverse ?12
35239 18637: Id : 8, {_}:
35240 additive_inverse (additive_inverse ?14) =>= ?14
35241 [14] by additive_inverse_additive_inverse ?14
35242 18637: Id : 9, {_}:
35243 multiply ?16 (add ?17 ?18)
35245 add (multiply ?16 ?17) (multiply ?16 ?18)
35246 [18, 17, 16] by distribute1 ?16 ?17 ?18
35247 18637: Id : 10, {_}:
35248 multiply (add ?20 ?21) ?22
35250 add (multiply ?20 ?22) (multiply ?21 ?22)
35251 [22, 21, 20] by distribute2 ?20 ?21 ?22
35252 18637: Id : 11, {_}:
35253 add ?24 ?25 =?= add ?25 ?24
35254 [25, 24] by commutativity_for_addition ?24 ?25
35255 18637: Id : 12, {_}:
35256 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
35257 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35258 18637: Id : 13, {_}:
35259 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
35260 [32, 31] by right_alternative ?31 ?32
35261 18637: Id : 14, {_}:
35262 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
35263 [35, 34] by left_alternative ?34 ?35
35264 18637: Id : 15, {_}:
35265 associator ?37 ?38 ?39
35267 add (multiply (multiply ?37 ?38) ?39)
35268 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35269 [39, 38, 37] by associator ?37 ?38 ?39
35270 18637: Id : 16, {_}:
35273 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35274 [42, 41] by commutator ?41 ?42
35275 18637: Id : 17, {_}:
35276 multiply (additive_inverse ?44) (additive_inverse ?45)
35279 [45, 44] by product_of_inverses ?44 ?45
35280 18637: Id : 18, {_}:
35281 multiply (additive_inverse ?47) ?48
35283 additive_inverse (multiply ?47 ?48)
35284 [48, 47] by inverse_product1 ?47 ?48
35285 18637: Id : 19, {_}:
35286 multiply ?50 (additive_inverse ?51)
35288 additive_inverse (multiply ?50 ?51)
35289 [51, 50] by inverse_product2 ?50 ?51
35290 18637: Id : 20, {_}:
35291 multiply ?53 (add ?54 (additive_inverse ?55))
35293 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
35294 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
35295 18637: Id : 21, {_}:
35296 multiply (add ?57 (additive_inverse ?58)) ?59
35298 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
35299 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
35300 18637: Id : 22, {_}:
35301 multiply (additive_inverse ?61) (add ?62 ?63)
35303 add (additive_inverse (multiply ?61 ?62))
35304 (additive_inverse (multiply ?61 ?63))
35305 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
35306 18637: Id : 23, {_}:
35307 multiply (add ?65 ?66) (additive_inverse ?67)
35309 add (additive_inverse (multiply ?65 ?67))
35310 (additive_inverse (multiply ?66 ?67))
35311 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
35313 18637: Id : 1, {_}:
35314 multiply (multiply cx (multiply cy cx)) cz
35316 multiply cx (multiply cy (multiply cx cz))
35317 [] by prove_left_moufang
35321 18637: cy 2 0 2 1,2,1,2
35322 18637: cz 2 0 2 2,2
35323 18637: cx 4 0 4 1,1,2
35324 18637: additive_identity 8 0 0
35325 18637: additive_inverse 22 1 0
35326 18637: commutator 1 2 0
35328 18637: multiply 46 2 6 0,2
35329 18637: associator 1 3 0
35330 NO CLASH, using fixed ground order
35332 18660: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35333 18660: Id : 3, {_}:
35334 add ?4 additive_identity =>= ?4
35335 [4] by right_additive_identity ?4
35336 18660: Id : 4, {_}:
35337 multiply additive_identity ?6 =>= additive_identity
35338 [6] by left_multiplicative_zero ?6
35339 18660: Id : 5, {_}:
35340 multiply ?8 additive_identity =>= additive_identity
35341 [8] by right_multiplicative_zero ?8
35342 18660: Id : 6, {_}:
35343 add (additive_inverse ?10) ?10 =>= additive_identity
35344 [10] by left_additive_inverse ?10
35345 18660: Id : 7, {_}:
35346 add ?12 (additive_inverse ?12) =>= additive_identity
35347 [12] by right_additive_inverse ?12
35348 18660: Id : 8, {_}:
35349 additive_inverse (additive_inverse ?14) =>= ?14
35350 [14] by additive_inverse_additive_inverse ?14
35351 18660: Id : 9, {_}:
35352 multiply ?16 (add ?17 ?18)
35354 add (multiply ?16 ?17) (multiply ?16 ?18)
35355 [18, 17, 16] by distribute1 ?16 ?17 ?18
35356 18660: Id : 10, {_}:
35357 multiply (add ?20 ?21) ?22
35359 add (multiply ?20 ?22) (multiply ?21 ?22)
35360 [22, 21, 20] by distribute2 ?20 ?21 ?22
35361 18660: Id : 11, {_}:
35362 add ?24 ?25 =?= add ?25 ?24
35363 [25, 24] by commutativity_for_addition ?24 ?25
35364 18660: Id : 12, {_}:
35365 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
35366 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35367 18660: Id : 13, {_}:
35368 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
35369 [32, 31] by right_alternative ?31 ?32
35370 18660: Id : 14, {_}:
35371 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
35372 [35, 34] by left_alternative ?34 ?35
35373 18660: Id : 15, {_}:
35374 associator ?37 ?38 ?39
35376 add (multiply (multiply ?37 ?38) ?39)
35377 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35378 [39, 38, 37] by associator ?37 ?38 ?39
35379 18660: Id : 16, {_}:
35382 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35383 [42, 41] by commutator ?41 ?42
35384 18660: Id : 17, {_}:
35385 multiply (additive_inverse ?44) (additive_inverse ?45)
35388 [45, 44] by product_of_inverses ?44 ?45
35389 18660: Id : 18, {_}:
35390 multiply (additive_inverse ?47) ?48
35392 additive_inverse (multiply ?47 ?48)
35393 [48, 47] by inverse_product1 ?47 ?48
35394 18660: Id : 19, {_}:
35395 multiply ?50 (additive_inverse ?51)
35397 additive_inverse (multiply ?50 ?51)
35398 [51, 50] by inverse_product2 ?50 ?51
35399 18660: Id : 20, {_}:
35400 multiply ?53 (add ?54 (additive_inverse ?55))
35402 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
35403 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
35404 18660: Id : 21, {_}:
35405 multiply (add ?57 (additive_inverse ?58)) ?59
35407 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
35408 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
35409 18660: Id : 22, {_}:
35410 multiply (additive_inverse ?61) (add ?62 ?63)
35412 add (additive_inverse (multiply ?61 ?62))
35413 (additive_inverse (multiply ?61 ?63))
35414 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
35415 18660: Id : 23, {_}:
35416 multiply (add ?65 ?66) (additive_inverse ?67)
35418 add (additive_inverse (multiply ?65 ?67))
35419 (additive_inverse (multiply ?66 ?67))
35420 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
35422 18660: Id : 1, {_}:
35423 multiply (multiply cx (multiply cy cx)) cz
35425 multiply cx (multiply cy (multiply cx cz))
35426 [] by prove_left_moufang
35430 18660: cy 2 0 2 1,2,1,2
35431 18660: cz 2 0 2 2,2
35432 18660: cx 4 0 4 1,1,2
35433 18660: additive_identity 8 0 0
35434 18660: additive_inverse 22 1 0
35435 18660: commutator 1 2 0
35437 18660: multiply 46 2 6 0,2
35438 18660: associator 1 3 0
35439 NO CLASH, using fixed ground order
35441 18670: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35442 18670: Id : 3, {_}:
35443 add ?4 additive_identity =>= ?4
35444 [4] by right_additive_identity ?4
35445 18670: Id : 4, {_}:
35446 multiply additive_identity ?6 =>= additive_identity
35447 [6] by left_multiplicative_zero ?6
35448 18670: Id : 5, {_}:
35449 multiply ?8 additive_identity =>= additive_identity
35450 [8] by right_multiplicative_zero ?8
35451 18670: Id : 6, {_}:
35452 add (additive_inverse ?10) ?10 =>= additive_identity
35453 [10] by left_additive_inverse ?10
35454 18670: Id : 7, {_}:
35455 add ?12 (additive_inverse ?12) =>= additive_identity
35456 [12] by right_additive_inverse ?12
35457 18670: Id : 8, {_}:
35458 additive_inverse (additive_inverse ?14) =>= ?14
35459 [14] by additive_inverse_additive_inverse ?14
35460 18670: Id : 9, {_}:
35461 multiply ?16 (add ?17 ?18)
35463 add (multiply ?16 ?17) (multiply ?16 ?18)
35464 [18, 17, 16] by distribute1 ?16 ?17 ?18
35465 18670: Id : 10, {_}:
35466 multiply (add ?20 ?21) ?22
35468 add (multiply ?20 ?22) (multiply ?21 ?22)
35469 [22, 21, 20] by distribute2 ?20 ?21 ?22
35470 18670: Id : 11, {_}:
35471 add ?24 ?25 =?= add ?25 ?24
35472 [25, 24] by commutativity_for_addition ?24 ?25
35473 18670: Id : 12, {_}:
35474 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
35475 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35476 18670: Id : 13, {_}:
35477 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
35478 [32, 31] by right_alternative ?31 ?32
35479 18670: Id : 14, {_}:
35480 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
35481 [35, 34] by left_alternative ?34 ?35
35482 18670: Id : 15, {_}:
35483 associator ?37 ?38 ?39
35485 add (multiply (multiply ?37 ?38) ?39)
35486 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35487 [39, 38, 37] by associator ?37 ?38 ?39
35488 18670: Id : 16, {_}:
35491 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35492 [42, 41] by commutator ?41 ?42
35493 18670: Id : 17, {_}:
35494 multiply (additive_inverse ?44) (additive_inverse ?45)
35497 [45, 44] by product_of_inverses ?44 ?45
35498 18670: Id : 18, {_}:
35499 multiply (additive_inverse ?47) ?48
35501 additive_inverse (multiply ?47 ?48)
35502 [48, 47] by inverse_product1 ?47 ?48
35503 18670: Id : 19, {_}:
35504 multiply ?50 (additive_inverse ?51)
35506 additive_inverse (multiply ?50 ?51)
35507 [51, 50] by inverse_product2 ?50 ?51
35508 18670: Id : 20, {_}:
35509 multiply ?53 (add ?54 (additive_inverse ?55))
35511 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
35512 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
35513 18670: Id : 21, {_}:
35514 multiply (add ?57 (additive_inverse ?58)) ?59
35516 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
35517 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
35518 18670: Id : 22, {_}:
35519 multiply (additive_inverse ?61) (add ?62 ?63)
35521 add (additive_inverse (multiply ?61 ?62))
35522 (additive_inverse (multiply ?61 ?63))
35523 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
35524 18670: Id : 23, {_}:
35525 multiply (add ?65 ?66) (additive_inverse ?67)
35527 add (additive_inverse (multiply ?65 ?67))
35528 (additive_inverse (multiply ?66 ?67))
35529 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
35531 18670: Id : 1, {_}:
35532 multiply (multiply cx (multiply cy cx)) cz
35534 multiply cx (multiply cy (multiply cx cz))
35535 [] by prove_left_moufang
35539 18670: cy 2 0 2 1,2,1,2
35540 18670: cz 2 0 2 2,2
35541 18670: cx 4 0 4 1,1,2
35542 18670: additive_identity 8 0 0
35543 18670: additive_inverse 22 1 0
35544 18670: commutator 1 2 0
35546 18670: multiply 46 2 6 0,2
35547 18670: associator 1 3 0
35548 % SZS status Timeout for RNG028-7.p
35549 NO CLASH, using fixed ground order
35551 20636: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35552 20636: Id : 3, {_}:
35553 add ?4 additive_identity =>= ?4
35554 [4] by right_additive_identity ?4
35555 20636: Id : 4, {_}:
35556 multiply additive_identity ?6 =>= additive_identity
35557 [6] by left_multiplicative_zero ?6
35558 20636: Id : 5, {_}:
35559 multiply ?8 additive_identity =>= additive_identity
35560 [8] by right_multiplicative_zero ?8
35561 20636: Id : 6, {_}:
35562 add (additive_inverse ?10) ?10 =>= additive_identity
35563 [10] by left_additive_inverse ?10
35564 20636: Id : 7, {_}:
35565 add ?12 (additive_inverse ?12) =>= additive_identity
35566 [12] by right_additive_inverse ?12
35567 20636: Id : 8, {_}:
35568 additive_inverse (additive_inverse ?14) =>= ?14
35569 [14] by additive_inverse_additive_inverse ?14
35570 20636: Id : 9, {_}:
35571 multiply ?16 (add ?17 ?18)
35573 add (multiply ?16 ?17) (multiply ?16 ?18)
35574 [18, 17, 16] by distribute1 ?16 ?17 ?18
35575 20636: Id : 10, {_}:
35576 multiply (add ?20 ?21) ?22
35578 add (multiply ?20 ?22) (multiply ?21 ?22)
35579 [22, 21, 20] by distribute2 ?20 ?21 ?22
35580 20636: Id : 11, {_}:
35581 add ?24 ?25 =?= add ?25 ?24
35582 [25, 24] by commutativity_for_addition ?24 ?25
35583 20636: Id : 12, {_}:
35584 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
35585 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35586 20636: Id : 13, {_}:
35587 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
35588 [32, 31] by right_alternative ?31 ?32
35589 20636: Id : 14, {_}:
35590 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
35591 [35, 34] by left_alternative ?34 ?35
35592 20636: Id : 15, {_}:
35593 associator ?37 ?38 ?39
35595 add (multiply (multiply ?37 ?38) ?39)
35596 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35597 [39, 38, 37] by associator ?37 ?38 ?39
35598 20636: Id : 16, {_}:
35601 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35602 [42, 41] by commutator ?41 ?42
35604 20636: Id : 1, {_}:
35605 associator x (multiply y x) z =>= multiply x (associator x y z)
35606 [] by prove_left_moufang
35610 20636: y 2 0 2 1,2,2
35613 20636: additive_identity 8 0 0
35614 20636: additive_inverse 6 1 0
35615 20636: commutator 1 2 0
35617 20636: multiply 24 2 2 0,2,2
35618 20636: associator 3 3 2 0,2
35619 NO CLASH, using fixed ground order
35621 20637: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35622 20637: Id : 3, {_}:
35623 add ?4 additive_identity =>= ?4
35624 [4] by right_additive_identity ?4
35625 20637: Id : 4, {_}:
35626 multiply additive_identity ?6 =>= additive_identity
35627 [6] by left_multiplicative_zero ?6
35628 20637: Id : 5, {_}:
35629 multiply ?8 additive_identity =>= additive_identity
35630 [8] by right_multiplicative_zero ?8
35631 20637: Id : 6, {_}:
35632 add (additive_inverse ?10) ?10 =>= additive_identity
35633 [10] by left_additive_inverse ?10
35634 20637: Id : 7, {_}:
35635 add ?12 (additive_inverse ?12) =>= additive_identity
35636 [12] by right_additive_inverse ?12
35637 20637: Id : 8, {_}:
35638 additive_inverse (additive_inverse ?14) =>= ?14
35639 [14] by additive_inverse_additive_inverse ?14
35640 20637: Id : 9, {_}:
35641 multiply ?16 (add ?17 ?18)
35643 add (multiply ?16 ?17) (multiply ?16 ?18)
35644 [18, 17, 16] by distribute1 ?16 ?17 ?18
35645 20637: Id : 10, {_}:
35646 multiply (add ?20 ?21) ?22
35648 add (multiply ?20 ?22) (multiply ?21 ?22)
35649 [22, 21, 20] by distribute2 ?20 ?21 ?22
35650 20637: Id : 11, {_}:
35651 add ?24 ?25 =?= add ?25 ?24
35652 [25, 24] by commutativity_for_addition ?24 ?25
35653 20637: Id : 12, {_}:
35654 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
35655 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35656 20637: Id : 13, {_}:
35657 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
35658 [32, 31] by right_alternative ?31 ?32
35659 20637: Id : 14, {_}:
35660 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
35661 [35, 34] by left_alternative ?34 ?35
35662 20637: Id : 15, {_}:
35663 associator ?37 ?38 ?39
35665 add (multiply (multiply ?37 ?38) ?39)
35666 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35667 [39, 38, 37] by associator ?37 ?38 ?39
35668 20637: Id : 16, {_}:
35671 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35672 [42, 41] by commutator ?41 ?42
35674 20637: Id : 1, {_}:
35675 associator x (multiply y x) z =>= multiply x (associator x y z)
35676 [] by prove_left_moufang
35680 20637: y 2 0 2 1,2,2
35683 20637: additive_identity 8 0 0
35684 20637: additive_inverse 6 1 0
35685 20637: commutator 1 2 0
35687 20637: multiply 24 2 2 0,2,2
35688 20637: associator 3 3 2 0,2
35689 NO CLASH, using fixed ground order
35691 20638: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35692 20638: Id : 3, {_}:
35693 add ?4 additive_identity =>= ?4
35694 [4] by right_additive_identity ?4
35695 20638: Id : 4, {_}:
35696 multiply additive_identity ?6 =>= additive_identity
35697 [6] by left_multiplicative_zero ?6
35698 20638: Id : 5, {_}:
35699 multiply ?8 additive_identity =>= additive_identity
35700 [8] by right_multiplicative_zero ?8
35701 20638: Id : 6, {_}:
35702 add (additive_inverse ?10) ?10 =>= additive_identity
35703 [10] by left_additive_inverse ?10
35704 20638: Id : 7, {_}:
35705 add ?12 (additive_inverse ?12) =>= additive_identity
35706 [12] by right_additive_inverse ?12
35707 20638: Id : 8, {_}:
35708 additive_inverse (additive_inverse ?14) =>= ?14
35709 [14] by additive_inverse_additive_inverse ?14
35710 20638: Id : 9, {_}:
35711 multiply ?16 (add ?17 ?18)
35713 add (multiply ?16 ?17) (multiply ?16 ?18)
35714 [18, 17, 16] by distribute1 ?16 ?17 ?18
35715 20638: Id : 10, {_}:
35716 multiply (add ?20 ?21) ?22
35718 add (multiply ?20 ?22) (multiply ?21 ?22)
35719 [22, 21, 20] by distribute2 ?20 ?21 ?22
35720 20638: Id : 11, {_}:
35721 add ?24 ?25 =?= add ?25 ?24
35722 [25, 24] by commutativity_for_addition ?24 ?25
35723 20638: Id : 12, {_}:
35724 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
35725 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35726 20638: Id : 13, {_}:
35727 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
35728 [32, 31] by right_alternative ?31 ?32
35729 20638: Id : 14, {_}:
35730 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
35731 [35, 34] by left_alternative ?34 ?35
35732 20638: Id : 15, {_}:
35733 associator ?37 ?38 ?39
35735 add (multiply (multiply ?37 ?38) ?39)
35736 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35737 [39, 38, 37] by associator ?37 ?38 ?39
35738 20638: Id : 16, {_}:
35741 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35742 [42, 41] by commutator ?41 ?42
35744 20638: Id : 1, {_}:
35745 associator x (multiply y x) z =>= multiply x (associator x y z)
35746 [] by prove_left_moufang
35750 20638: y 2 0 2 1,2,2
35753 20638: additive_identity 8 0 0
35754 20638: additive_inverse 6 1 0
35755 20638: commutator 1 2 0
35757 20638: multiply 24 2 2 0,2,2
35758 20638: associator 3 3 2 0,2
35759 % SZS status Timeout for RNG028-8.p
35760 NO CLASH, using fixed ground order
35762 22095: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35763 22095: Id : 3, {_}:
35764 add ?4 additive_identity =>= ?4
35765 [4] by right_additive_identity ?4
35766 22095: Id : 4, {_}:
35767 multiply additive_identity ?6 =>= additive_identity
35768 [6] by left_multiplicative_zero ?6
35769 22095: Id : 5, {_}:
35770 multiply ?8 additive_identity =>= additive_identity
35771 [8] by right_multiplicative_zero ?8
35772 22095: Id : 6, {_}:
35773 add (additive_inverse ?10) ?10 =>= additive_identity
35774 [10] by left_additive_inverse ?10
35775 22095: Id : 7, {_}:
35776 add ?12 (additive_inverse ?12) =>= additive_identity
35777 [12] by right_additive_inverse ?12
35778 22095: Id : 8, {_}:
35779 additive_inverse (additive_inverse ?14) =>= ?14
35780 [14] by additive_inverse_additive_inverse ?14
35781 22095: Id : 9, {_}:
35782 multiply ?16 (add ?17 ?18)
35784 add (multiply ?16 ?17) (multiply ?16 ?18)
35785 [18, 17, 16] by distribute1 ?16 ?17 ?18
35786 22095: Id : 10, {_}:
35787 multiply (add ?20 ?21) ?22
35789 add (multiply ?20 ?22) (multiply ?21 ?22)
35790 [22, 21, 20] by distribute2 ?20 ?21 ?22
35791 22095: Id : 11, {_}:
35792 add ?24 ?25 =?= add ?25 ?24
35793 [25, 24] by commutativity_for_addition ?24 ?25
35794 22095: Id : 12, {_}:
35795 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
35796 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35797 22095: Id : 13, {_}:
35798 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
35799 [32, 31] by right_alternative ?31 ?32
35800 22095: Id : 14, {_}:
35801 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
35802 [35, 34] by left_alternative ?34 ?35
35803 22095: Id : 15, {_}:
35804 associator ?37 ?38 ?39
35806 add (multiply (multiply ?37 ?38) ?39)
35807 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35808 [39, 38, 37] by associator ?37 ?38 ?39
35809 22095: Id : 16, {_}:
35812 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35813 [42, 41] by commutator ?41 ?42
35814 22095: Id : 17, {_}:
35815 multiply (additive_inverse ?44) (additive_inverse ?45)
35818 [45, 44] by product_of_inverses ?44 ?45
35819 22095: Id : 18, {_}:
35820 multiply (additive_inverse ?47) ?48
35822 additive_inverse (multiply ?47 ?48)
35823 [48, 47] by inverse_product1 ?47 ?48
35824 22095: Id : 19, {_}:
35825 multiply ?50 (additive_inverse ?51)
35827 additive_inverse (multiply ?50 ?51)
35828 [51, 50] by inverse_product2 ?50 ?51
35829 22095: Id : 20, {_}:
35830 multiply ?53 (add ?54 (additive_inverse ?55))
35832 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
35833 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
35834 22095: Id : 21, {_}:
35835 multiply (add ?57 (additive_inverse ?58)) ?59
35837 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
35838 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
35839 22095: Id : 22, {_}:
35840 multiply (additive_inverse ?61) (add ?62 ?63)
35842 add (additive_inverse (multiply ?61 ?62))
35843 (additive_inverse (multiply ?61 ?63))
35844 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
35845 22095: Id : 23, {_}:
35846 multiply (add ?65 ?66) (additive_inverse ?67)
35848 add (additive_inverse (multiply ?65 ?67))
35849 (additive_inverse (multiply ?66 ?67))
35850 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
35852 22095: Id : 1, {_}:
35853 associator x (multiply y x) z =>= multiply x (associator x y z)
35854 [] by prove_left_moufang
35858 22095: y 2 0 2 1,2,2
35861 22095: additive_identity 8 0 0
35862 22095: additive_inverse 22 1 0
35863 22095: commutator 1 2 0
35865 22095: multiply 42 2 2 0,2,2
35866 22095: associator 3 3 2 0,2
35867 NO CLASH, using fixed ground order
35869 NO CLASH, using fixed ground order
35870 22098: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35871 22098: Id : 3, {_}:
35872 add ?4 additive_identity =>= ?4
35873 [4] by right_additive_identity ?4
35874 22098: Id : 4, {_}:
35875 multiply additive_identity ?6 =>= additive_identity
35876 [6] by left_multiplicative_zero ?6
35877 22098: Id : 5, {_}:
35878 multiply ?8 additive_identity =>= additive_identity
35879 [8] by right_multiplicative_zero ?8
35880 22098: Id : 6, {_}:
35881 add (additive_inverse ?10) ?10 =>= additive_identity
35882 [10] by left_additive_inverse ?10
35883 22098: Id : 7, {_}:
35884 add ?12 (additive_inverse ?12) =>= additive_identity
35885 [12] by right_additive_inverse ?12
35886 22098: Id : 8, {_}:
35887 additive_inverse (additive_inverse ?14) =>= ?14
35888 [14] by additive_inverse_additive_inverse ?14
35889 22098: Id : 9, {_}:
35890 multiply ?16 (add ?17 ?18)
35892 add (multiply ?16 ?17) (multiply ?16 ?18)
35893 [18, 17, 16] by distribute1 ?16 ?17 ?18
35894 22098: Id : 10, {_}:
35895 multiply (add ?20 ?21) ?22
35897 add (multiply ?20 ?22) (multiply ?21 ?22)
35898 [22, 21, 20] by distribute2 ?20 ?21 ?22
35899 22098: Id : 11, {_}:
35900 add ?24 ?25 =?= add ?25 ?24
35901 [25, 24] by commutativity_for_addition ?24 ?25
35902 22098: Id : 12, {_}:
35903 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
35904 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
35905 22098: Id : 13, {_}:
35906 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
35907 [32, 31] by right_alternative ?31 ?32
35908 22098: Id : 14, {_}:
35909 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
35910 [35, 34] by left_alternative ?34 ?35
35911 22098: Id : 15, {_}:
35912 associator ?37 ?38 ?39
35914 add (multiply (multiply ?37 ?38) ?39)
35915 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
35916 [39, 38, 37] by associator ?37 ?38 ?39
35917 22098: Id : 16, {_}:
35920 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
35921 [42, 41] by commutator ?41 ?42
35922 22098: Id : 17, {_}:
35923 multiply (additive_inverse ?44) (additive_inverse ?45)
35926 [45, 44] by product_of_inverses ?44 ?45
35927 22098: Id : 18, {_}:
35928 multiply (additive_inverse ?47) ?48
35930 additive_inverse (multiply ?47 ?48)
35931 [48, 47] by inverse_product1 ?47 ?48
35932 22098: Id : 19, {_}:
35933 multiply ?50 (additive_inverse ?51)
35935 additive_inverse (multiply ?50 ?51)
35936 [51, 50] by inverse_product2 ?50 ?51
35937 22098: Id : 20, {_}:
35938 multiply ?53 (add ?54 (additive_inverse ?55))
35940 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
35941 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
35942 22098: Id : 21, {_}:
35943 multiply (add ?57 (additive_inverse ?58)) ?59
35945 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
35946 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
35947 22098: Id : 22, {_}:
35948 multiply (additive_inverse ?61) (add ?62 ?63)
35950 add (additive_inverse (multiply ?61 ?62))
35951 (additive_inverse (multiply ?61 ?63))
35952 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
35953 22098: Id : 23, {_}:
35954 multiply (add ?65 ?66) (additive_inverse ?67)
35956 add (additive_inverse (multiply ?65 ?67))
35957 (additive_inverse (multiply ?66 ?67))
35958 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
35960 22098: Id : 1, {_}:
35961 associator x (multiply y x) z =>= multiply x (associator x y z)
35962 [] by prove_left_moufang
35966 22098: y 2 0 2 1,2,2
35969 22098: additive_identity 8 0 0
35970 22098: additive_inverse 22 1 0
35971 22098: commutator 1 2 0
35973 22098: multiply 42 2 2 0,2,2
35974 22098: associator 3 3 2 0,2
35976 22100: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
35977 22100: Id : 3, {_}:
35978 add ?4 additive_identity =>= ?4
35979 [4] by right_additive_identity ?4
35980 22100: Id : 4, {_}:
35981 multiply additive_identity ?6 =>= additive_identity
35982 [6] by left_multiplicative_zero ?6
35983 22100: Id : 5, {_}:
35984 multiply ?8 additive_identity =>= additive_identity
35985 [8] by right_multiplicative_zero ?8
35986 22100: Id : 6, {_}:
35987 add (additive_inverse ?10) ?10 =>= additive_identity
35988 [10] by left_additive_inverse ?10
35989 22100: Id : 7, {_}:
35990 add ?12 (additive_inverse ?12) =>= additive_identity
35991 [12] by right_additive_inverse ?12
35992 22100: Id : 8, {_}:
35993 additive_inverse (additive_inverse ?14) =>= ?14
35994 [14] by additive_inverse_additive_inverse ?14
35995 22100: Id : 9, {_}:
35996 multiply ?16 (add ?17 ?18)
35998 add (multiply ?16 ?17) (multiply ?16 ?18)
35999 [18, 17, 16] by distribute1 ?16 ?17 ?18
36000 22100: Id : 10, {_}:
36001 multiply (add ?20 ?21) ?22
36003 add (multiply ?20 ?22) (multiply ?21 ?22)
36004 [22, 21, 20] by distribute2 ?20 ?21 ?22
36005 22100: Id : 11, {_}:
36006 add ?24 ?25 =?= add ?25 ?24
36007 [25, 24] by commutativity_for_addition ?24 ?25
36008 22100: Id : 12, {_}:
36009 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
36010 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36011 22100: Id : 13, {_}:
36012 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
36013 [32, 31] by right_alternative ?31 ?32
36014 22100: Id : 14, {_}:
36015 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
36016 [35, 34] by left_alternative ?34 ?35
36017 22100: Id : 15, {_}:
36018 associator ?37 ?38 ?39
36020 add (multiply (multiply ?37 ?38) ?39)
36021 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36022 [39, 38, 37] by associator ?37 ?38 ?39
36023 22100: Id : 16, {_}:
36026 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36027 [42, 41] by commutator ?41 ?42
36028 22100: Id : 17, {_}:
36029 multiply (additive_inverse ?44) (additive_inverse ?45)
36032 [45, 44] by product_of_inverses ?44 ?45
36033 22100: Id : 18, {_}:
36034 multiply (additive_inverse ?47) ?48
36036 additive_inverse (multiply ?47 ?48)
36037 [48, 47] by inverse_product1 ?47 ?48
36038 22100: Id : 19, {_}:
36039 multiply ?50 (additive_inverse ?51)
36041 additive_inverse (multiply ?50 ?51)
36042 [51, 50] by inverse_product2 ?50 ?51
36043 22100: Id : 20, {_}:
36044 multiply ?53 (add ?54 (additive_inverse ?55))
36046 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
36047 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
36048 22100: Id : 21, {_}:
36049 multiply (add ?57 (additive_inverse ?58)) ?59
36051 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
36052 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
36053 22100: Id : 22, {_}:
36054 multiply (additive_inverse ?61) (add ?62 ?63)
36056 add (additive_inverse (multiply ?61 ?62))
36057 (additive_inverse (multiply ?61 ?63))
36058 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
36059 22100: Id : 23, {_}:
36060 multiply (add ?65 ?66) (additive_inverse ?67)
36062 add (additive_inverse (multiply ?65 ?67))
36063 (additive_inverse (multiply ?66 ?67))
36064 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
36066 22100: Id : 1, {_}:
36067 associator x (multiply y x) z =>= multiply x (associator x y z)
36068 [] by prove_left_moufang
36072 22100: y 2 0 2 1,2,2
36075 22100: additive_identity 8 0 0
36076 22100: additive_inverse 22 1 0
36077 22100: commutator 1 2 0
36079 22100: multiply 42 2 2 0,2,2
36080 22100: associator 3 3 2 0,2
36081 % SZS status Timeout for RNG028-9.p
36082 NO CLASH, using fixed ground order
36084 23750: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36085 23750: Id : 3, {_}:
36086 add ?4 additive_identity =>= ?4
36087 [4] by right_additive_identity ?4
36088 23750: Id : 4, {_}:
36089 multiply additive_identity ?6 =>= additive_identity
36090 [6] by left_multiplicative_zero ?6
36091 23750: Id : 5, {_}:
36092 multiply ?8 additive_identity =>= additive_identity
36093 [8] by right_multiplicative_zero ?8
36094 23750: Id : 6, {_}:
36095 add (additive_inverse ?10) ?10 =>= additive_identity
36096 [10] by left_additive_inverse ?10
36097 23750: Id : 7, {_}:
36098 add ?12 (additive_inverse ?12) =>= additive_identity
36099 [12] by right_additive_inverse ?12
36100 23750: Id : 8, {_}:
36101 additive_inverse (additive_inverse ?14) =>= ?14
36102 [14] by additive_inverse_additive_inverse ?14
36103 23750: Id : 9, {_}:
36104 multiply ?16 (add ?17 ?18)
36106 add (multiply ?16 ?17) (multiply ?16 ?18)
36107 [18, 17, 16] by distribute1 ?16 ?17 ?18
36108 23750: Id : 10, {_}:
36109 multiply (add ?20 ?21) ?22
36111 add (multiply ?20 ?22) (multiply ?21 ?22)
36112 [22, 21, 20] by distribute2 ?20 ?21 ?22
36113 23750: Id : 11, {_}:
36114 add ?24 ?25 =?= add ?25 ?24
36115 [25, 24] by commutativity_for_addition ?24 ?25
36116 23750: Id : 12, {_}:
36117 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
36118 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36119 23750: Id : 13, {_}:
36120 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
36121 [32, 31] by right_alternative ?31 ?32
36122 23750: Id : 14, {_}:
36123 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
36124 [35, 34] by left_alternative ?34 ?35
36125 23750: Id : 15, {_}:
36126 associator ?37 ?38 ?39
36128 add (multiply (multiply ?37 ?38) ?39)
36129 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36130 [39, 38, 37] by associator ?37 ?38 ?39
36131 23750: Id : 16, {_}:
36134 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36135 [42, 41] by commutator ?41 ?42
36137 23750: Id : 1, {_}:
36138 multiply (multiply cx cy) (multiply cz cx)
36140 multiply cx (multiply (multiply cy cz) cx)
36141 [] by prove_middle_law
36145 23750: cz 2 0 2 1,2,2
36146 23750: cy 2 0 2 2,1,2
36147 23750: cx 4 0 4 1,1,2
36148 23750: additive_identity 8 0 0
36149 23750: additive_inverse 6 1 0
36150 23750: commutator 1 2 0
36152 23750: multiply 28 2 6 0,2
36153 23750: associator 1 3 0
36154 NO CLASH, using fixed ground order
36156 23751: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36157 23751: Id : 3, {_}:
36158 add ?4 additive_identity =>= ?4
36159 [4] by right_additive_identity ?4
36160 23751: Id : 4, {_}:
36161 multiply additive_identity ?6 =>= additive_identity
36162 [6] by left_multiplicative_zero ?6
36163 23751: Id : 5, {_}:
36164 multiply ?8 additive_identity =>= additive_identity
36165 [8] by right_multiplicative_zero ?8
36166 23751: Id : 6, {_}:
36167 add (additive_inverse ?10) ?10 =>= additive_identity
36168 [10] by left_additive_inverse ?10
36169 23751: Id : 7, {_}:
36170 add ?12 (additive_inverse ?12) =>= additive_identity
36171 [12] by right_additive_inverse ?12
36172 23751: Id : 8, {_}:
36173 additive_inverse (additive_inverse ?14) =>= ?14
36174 [14] by additive_inverse_additive_inverse ?14
36175 23751: Id : 9, {_}:
36176 multiply ?16 (add ?17 ?18)
36178 add (multiply ?16 ?17) (multiply ?16 ?18)
36179 [18, 17, 16] by distribute1 ?16 ?17 ?18
36180 23751: Id : 10, {_}:
36181 multiply (add ?20 ?21) ?22
36183 add (multiply ?20 ?22) (multiply ?21 ?22)
36184 [22, 21, 20] by distribute2 ?20 ?21 ?22
36185 23751: Id : 11, {_}:
36186 add ?24 ?25 =?= add ?25 ?24
36187 [25, 24] by commutativity_for_addition ?24 ?25
36188 23751: Id : 12, {_}:
36189 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
36190 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36191 23751: Id : 13, {_}:
36192 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
36193 [32, 31] by right_alternative ?31 ?32
36194 23751: Id : 14, {_}:
36195 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
36196 [35, 34] by left_alternative ?34 ?35
36197 23751: Id : 15, {_}:
36198 associator ?37 ?38 ?39
36200 add (multiply (multiply ?37 ?38) ?39)
36201 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36202 [39, 38, 37] by associator ?37 ?38 ?39
36203 23751: Id : 16, {_}:
36206 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36207 [42, 41] by commutator ?41 ?42
36209 23751: Id : 1, {_}:
36210 multiply (multiply cx cy) (multiply cz cx)
36212 multiply cx (multiply (multiply cy cz) cx)
36213 [] by prove_middle_law
36217 23751: cz 2 0 2 1,2,2
36218 23751: cy 2 0 2 2,1,2
36219 23751: cx 4 0 4 1,1,2
36220 23751: additive_identity 8 0 0
36221 23751: additive_inverse 6 1 0
36222 23751: commutator 1 2 0
36224 23751: multiply 28 2 6 0,2
36225 23751: associator 1 3 0
36226 NO CLASH, using fixed ground order
36228 23752: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36229 23752: Id : 3, {_}:
36230 add ?4 additive_identity =>= ?4
36231 [4] by right_additive_identity ?4
36232 23752: Id : 4, {_}:
36233 multiply additive_identity ?6 =>= additive_identity
36234 [6] by left_multiplicative_zero ?6
36235 23752: Id : 5, {_}:
36236 multiply ?8 additive_identity =>= additive_identity
36237 [8] by right_multiplicative_zero ?8
36238 23752: Id : 6, {_}:
36239 add (additive_inverse ?10) ?10 =>= additive_identity
36240 [10] by left_additive_inverse ?10
36241 23752: Id : 7, {_}:
36242 add ?12 (additive_inverse ?12) =>= additive_identity
36243 [12] by right_additive_inverse ?12
36244 23752: Id : 8, {_}:
36245 additive_inverse (additive_inverse ?14) =>= ?14
36246 [14] by additive_inverse_additive_inverse ?14
36247 23752: Id : 9, {_}:
36248 multiply ?16 (add ?17 ?18)
36250 add (multiply ?16 ?17) (multiply ?16 ?18)
36251 [18, 17, 16] by distribute1 ?16 ?17 ?18
36252 23752: Id : 10, {_}:
36253 multiply (add ?20 ?21) ?22
36255 add (multiply ?20 ?22) (multiply ?21 ?22)
36256 [22, 21, 20] by distribute2 ?20 ?21 ?22
36257 23752: Id : 11, {_}:
36258 add ?24 ?25 =?= add ?25 ?24
36259 [25, 24] by commutativity_for_addition ?24 ?25
36260 23752: Id : 12, {_}:
36261 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
36262 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36263 23752: Id : 13, {_}:
36264 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
36265 [32, 31] by right_alternative ?31 ?32
36266 23752: Id : 14, {_}:
36267 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
36268 [35, 34] by left_alternative ?34 ?35
36269 23752: Id : 15, {_}:
36270 associator ?37 ?38 ?39
36272 add (multiply (multiply ?37 ?38) ?39)
36273 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36274 [39, 38, 37] by associator ?37 ?38 ?39
36275 23752: Id : 16, {_}:
36278 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36279 [42, 41] by commutator ?41 ?42
36281 23752: Id : 1, {_}:
36282 multiply (multiply cx cy) (multiply cz cx)
36284 multiply cx (multiply (multiply cy cz) cx)
36285 [] by prove_middle_law
36289 23752: cz 2 0 2 1,2,2
36290 23752: cy 2 0 2 2,1,2
36291 23752: cx 4 0 4 1,1,2
36292 23752: additive_identity 8 0 0
36293 23752: additive_inverse 6 1 0
36294 23752: commutator 1 2 0
36296 23752: multiply 28 2 6 0,2
36297 23752: associator 1 3 0
36298 % SZS status Timeout for RNG029-5.p
36299 NO CLASH, using fixed ground order
36301 24862: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36302 24862: Id : 3, {_}:
36303 add ?4 additive_identity =>= ?4
36304 [4] by right_additive_identity ?4
36305 24862: Id : 4, {_}:
36306 multiply additive_identity ?6 =>= additive_identity
36307 [6] by left_multiplicative_zero ?6
36308 24862: Id : 5, {_}:
36309 multiply ?8 additive_identity =>= additive_identity
36310 [8] by right_multiplicative_zero ?8
36311 24862: Id : 6, {_}:
36312 add (additive_inverse ?10) ?10 =>= additive_identity
36313 [10] by left_additive_inverse ?10
36314 24862: Id : 7, {_}:
36315 add ?12 (additive_inverse ?12) =>= additive_identity
36316 [12] by right_additive_inverse ?12
36317 24862: Id : 8, {_}:
36318 additive_inverse (additive_inverse ?14) =>= ?14
36319 [14] by additive_inverse_additive_inverse ?14
36320 24862: Id : 9, {_}:
36321 multiply ?16 (add ?17 ?18)
36323 add (multiply ?16 ?17) (multiply ?16 ?18)
36324 [18, 17, 16] by distribute1 ?16 ?17 ?18
36325 24862: Id : 10, {_}:
36326 multiply (add ?20 ?21) ?22
36328 add (multiply ?20 ?22) (multiply ?21 ?22)
36329 [22, 21, 20] by distribute2 ?20 ?21 ?22
36330 24862: Id : 11, {_}:
36331 add ?24 ?25 =?= add ?25 ?24
36332 [25, 24] by commutativity_for_addition ?24 ?25
36333 24862: Id : 12, {_}:
36334 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
36335 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36336 24862: Id : 13, {_}:
36337 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
36338 [32, 31] by right_alternative ?31 ?32
36339 24862: Id : 14, {_}:
36340 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
36341 [35, 34] by left_alternative ?34 ?35
36342 24862: Id : 15, {_}:
36343 associator ?37 ?38 ?39
36345 add (multiply (multiply ?37 ?38) ?39)
36346 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36347 [39, 38, 37] by associator ?37 ?38 ?39
36348 24862: Id : 16, {_}:
36351 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36352 [42, 41] by commutator ?41 ?42
36354 24862: Id : 1, {_}:
36355 multiply (multiply x y) (multiply z x)
36357 multiply (multiply x (multiply y z)) x
36358 [] by prove_middle_moufang
36362 24862: z 2 0 2 1,2,2
36363 24862: y 2 0 2 2,1,2
36364 24862: x 4 0 4 1,1,2
36365 24862: additive_identity 8 0 0
36366 24862: additive_inverse 6 1 0
36367 24862: commutator 1 2 0
36369 24862: multiply 28 2 6 0,2
36370 24862: associator 1 3 0
36371 NO CLASH, using fixed ground order
36373 24863: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36374 24863: Id : 3, {_}:
36375 add ?4 additive_identity =>= ?4
36376 [4] by right_additive_identity ?4
36377 24863: Id : 4, {_}:
36378 multiply additive_identity ?6 =>= additive_identity
36379 [6] by left_multiplicative_zero ?6
36380 24863: Id : 5, {_}:
36381 multiply ?8 additive_identity =>= additive_identity
36382 [8] by right_multiplicative_zero ?8
36383 24863: Id : 6, {_}:
36384 add (additive_inverse ?10) ?10 =>= additive_identity
36385 [10] by left_additive_inverse ?10
36386 24863: Id : 7, {_}:
36387 add ?12 (additive_inverse ?12) =>= additive_identity
36388 [12] by right_additive_inverse ?12
36389 24863: Id : 8, {_}:
36390 additive_inverse (additive_inverse ?14) =>= ?14
36391 [14] by additive_inverse_additive_inverse ?14
36392 24863: Id : 9, {_}:
36393 multiply ?16 (add ?17 ?18)
36395 add (multiply ?16 ?17) (multiply ?16 ?18)
36396 [18, 17, 16] by distribute1 ?16 ?17 ?18
36397 24863: Id : 10, {_}:
36398 multiply (add ?20 ?21) ?22
36400 add (multiply ?20 ?22) (multiply ?21 ?22)
36401 [22, 21, 20] by distribute2 ?20 ?21 ?22
36402 24863: Id : 11, {_}:
36403 add ?24 ?25 =?= add ?25 ?24
36404 [25, 24] by commutativity_for_addition ?24 ?25
36405 24863: Id : 12, {_}:
36406 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
36407 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36408 24863: Id : 13, {_}:
36409 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
36410 [32, 31] by right_alternative ?31 ?32
36411 24863: Id : 14, {_}:
36412 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
36413 [35, 34] by left_alternative ?34 ?35
36414 24863: Id : 15, {_}:
36415 associator ?37 ?38 ?39
36417 add (multiply (multiply ?37 ?38) ?39)
36418 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36419 [39, 38, 37] by associator ?37 ?38 ?39
36420 24863: Id : 16, {_}:
36423 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36424 [42, 41] by commutator ?41 ?42
36426 24863: Id : 1, {_}:
36427 multiply (multiply x y) (multiply z x)
36429 multiply (multiply x (multiply y z)) x
36430 [] by prove_middle_moufang
36434 24863: z 2 0 2 1,2,2
36435 24863: y 2 0 2 2,1,2
36436 24863: x 4 0 4 1,1,2
36437 24863: additive_identity 8 0 0
36438 24863: additive_inverse 6 1 0
36439 24863: commutator 1 2 0
36441 24863: multiply 28 2 6 0,2
36442 24863: associator 1 3 0
36443 NO CLASH, using fixed ground order
36445 24864: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36446 24864: Id : 3, {_}:
36447 add ?4 additive_identity =>= ?4
36448 [4] by right_additive_identity ?4
36449 24864: Id : 4, {_}:
36450 multiply additive_identity ?6 =>= additive_identity
36451 [6] by left_multiplicative_zero ?6
36452 24864: Id : 5, {_}:
36453 multiply ?8 additive_identity =>= additive_identity
36454 [8] by right_multiplicative_zero ?8
36455 24864: Id : 6, {_}:
36456 add (additive_inverse ?10) ?10 =>= additive_identity
36457 [10] by left_additive_inverse ?10
36458 24864: Id : 7, {_}:
36459 add ?12 (additive_inverse ?12) =>= additive_identity
36460 [12] by right_additive_inverse ?12
36461 24864: Id : 8, {_}:
36462 additive_inverse (additive_inverse ?14) =>= ?14
36463 [14] by additive_inverse_additive_inverse ?14
36464 24864: Id : 9, {_}:
36465 multiply ?16 (add ?17 ?18)
36467 add (multiply ?16 ?17) (multiply ?16 ?18)
36468 [18, 17, 16] by distribute1 ?16 ?17 ?18
36469 24864: Id : 10, {_}:
36470 multiply (add ?20 ?21) ?22
36472 add (multiply ?20 ?22) (multiply ?21 ?22)
36473 [22, 21, 20] by distribute2 ?20 ?21 ?22
36474 24864: Id : 11, {_}:
36475 add ?24 ?25 =?= add ?25 ?24
36476 [25, 24] by commutativity_for_addition ?24 ?25
36477 24864: Id : 12, {_}:
36478 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
36479 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36480 24864: Id : 13, {_}:
36481 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
36482 [32, 31] by right_alternative ?31 ?32
36483 24864: Id : 14, {_}:
36484 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
36485 [35, 34] by left_alternative ?34 ?35
36486 24864: Id : 15, {_}:
36487 associator ?37 ?38 ?39
36489 add (multiply (multiply ?37 ?38) ?39)
36490 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36491 [39, 38, 37] by associator ?37 ?38 ?39
36492 24864: Id : 16, {_}:
36495 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36496 [42, 41] by commutator ?41 ?42
36498 24864: Id : 1, {_}:
36499 multiply (multiply x y) (multiply z x)
36501 multiply (multiply x (multiply y z)) x
36502 [] by prove_middle_moufang
36506 24864: z 2 0 2 1,2,2
36507 24864: y 2 0 2 2,1,2
36508 24864: x 4 0 4 1,1,2
36509 24864: additive_identity 8 0 0
36510 24864: additive_inverse 6 1 0
36511 24864: commutator 1 2 0
36513 24864: multiply 28 2 6 0,2
36514 24864: associator 1 3 0
36515 % SZS status Timeout for RNG029-6.p
36516 NO CLASH, using fixed ground order
36518 26436: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36519 26436: Id : 3, {_}:
36520 add ?4 additive_identity =>= ?4
36521 [4] by right_additive_identity ?4
36522 26436: Id : 4, {_}:
36523 multiply additive_identity ?6 =>= additive_identity
36524 [6] by left_multiplicative_zero ?6
36525 26436: Id : 5, {_}:
36526 multiply ?8 additive_identity =>= additive_identity
36527 [8] by right_multiplicative_zero ?8
36528 26436: Id : 6, {_}:
36529 add (additive_inverse ?10) ?10 =>= additive_identity
36530 [10] by left_additive_inverse ?10
36531 26436: Id : 7, {_}:
36532 add ?12 (additive_inverse ?12) =>= additive_identity
36533 [12] by right_additive_inverse ?12
36534 26436: Id : 8, {_}:
36535 additive_inverse (additive_inverse ?14) =>= ?14
36536 [14] by additive_inverse_additive_inverse ?14
36537 26436: Id : 9, {_}:
36538 multiply ?16 (add ?17 ?18)
36540 add (multiply ?16 ?17) (multiply ?16 ?18)
36541 [18, 17, 16] by distribute1 ?16 ?17 ?18
36542 26436: Id : 10, {_}:
36543 multiply (add ?20 ?21) ?22
36545 add (multiply ?20 ?22) (multiply ?21 ?22)
36546 [22, 21, 20] by distribute2 ?20 ?21 ?22
36547 26436: Id : 11, {_}:
36548 add ?24 ?25 =?= add ?25 ?24
36549 [25, 24] by commutativity_for_addition ?24 ?25
36550 26436: Id : 12, {_}:
36551 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
36552 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36553 26436: Id : 13, {_}:
36554 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
36555 [32, 31] by right_alternative ?31 ?32
36556 26436: Id : 14, {_}:
36557 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
36558 [35, 34] by left_alternative ?34 ?35
36559 26436: Id : 15, {_}:
36560 associator ?37 ?38 ?39
36562 add (multiply (multiply ?37 ?38) ?39)
36563 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36564 [39, 38, 37] by associator ?37 ?38 ?39
36565 26436: Id : 16, {_}:
36568 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36569 [42, 41] by commutator ?41 ?42
36570 26436: Id : 17, {_}:
36571 multiply (additive_inverse ?44) (additive_inverse ?45)
36574 [45, 44] by product_of_inverses ?44 ?45
36575 26436: Id : 18, {_}:
36576 multiply (additive_inverse ?47) ?48
36578 additive_inverse (multiply ?47 ?48)
36579 [48, 47] by inverse_product1 ?47 ?48
36580 26436: Id : 19, {_}:
36581 multiply ?50 (additive_inverse ?51)
36583 additive_inverse (multiply ?50 ?51)
36584 [51, 50] by inverse_product2 ?50 ?51
36585 26436: Id : 20, {_}:
36586 multiply ?53 (add ?54 (additive_inverse ?55))
36588 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
36589 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
36590 26436: Id : 21, {_}:
36591 multiply (add ?57 (additive_inverse ?58)) ?59
36593 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
36594 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
36595 26436: Id : 22, {_}:
36596 multiply (additive_inverse ?61) (add ?62 ?63)
36598 add (additive_inverse (multiply ?61 ?62))
36599 (additive_inverse (multiply ?61 ?63))
36600 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
36601 26436: Id : 23, {_}:
36602 multiply (add ?65 ?66) (additive_inverse ?67)
36604 add (additive_inverse (multiply ?65 ?67))
36605 (additive_inverse (multiply ?66 ?67))
36606 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
36608 26436: Id : 1, {_}:
36609 multiply (multiply x y) (multiply z x)
36611 multiply (multiply x (multiply y z)) x
36612 [] by prove_middle_moufang
36616 26436: z 2 0 2 1,2,2
36617 26436: y 2 0 2 2,1,2
36618 26436: x 4 0 4 1,1,2
36619 26436: additive_identity 8 0 0
36620 26436: additive_inverse 22 1 0
36621 26436: commutator 1 2 0
36623 26436: multiply 46 2 6 0,2
36624 26436: associator 1 3 0
36625 NO CLASH, using fixed ground order
36627 26437: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36628 26437: Id : 3, {_}:
36629 add ?4 additive_identity =>= ?4
36630 [4] by right_additive_identity ?4
36631 26437: Id : 4, {_}:
36632 multiply additive_identity ?6 =>= additive_identity
36633 [6] by left_multiplicative_zero ?6
36634 26437: Id : 5, {_}:
36635 multiply ?8 additive_identity =>= additive_identity
36636 [8] by right_multiplicative_zero ?8
36637 26437: Id : 6, {_}:
36638 add (additive_inverse ?10) ?10 =>= additive_identity
36639 [10] by left_additive_inverse ?10
36640 26437: Id : 7, {_}:
36641 add ?12 (additive_inverse ?12) =>= additive_identity
36642 [12] by right_additive_inverse ?12
36643 NO CLASH, using fixed ground order
36645 26438: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
36646 26438: Id : 3, {_}:
36647 add ?4 additive_identity =>= ?4
36648 [4] by right_additive_identity ?4
36649 26438: Id : 4, {_}:
36650 multiply additive_identity ?6 =>= additive_identity
36651 [6] by left_multiplicative_zero ?6
36652 26438: Id : 5, {_}:
36653 multiply ?8 additive_identity =>= additive_identity
36654 [8] by right_multiplicative_zero ?8
36655 26438: Id : 6, {_}:
36656 add (additive_inverse ?10) ?10 =>= additive_identity
36657 [10] by left_additive_inverse ?10
36658 26438: Id : 7, {_}:
36659 add ?12 (additive_inverse ?12) =>= additive_identity
36660 [12] by right_additive_inverse ?12
36661 26438: Id : 8, {_}:
36662 additive_inverse (additive_inverse ?14) =>= ?14
36663 [14] by additive_inverse_additive_inverse ?14
36664 26438: Id : 9, {_}:
36665 multiply ?16 (add ?17 ?18)
36667 add (multiply ?16 ?17) (multiply ?16 ?18)
36668 [18, 17, 16] by distribute1 ?16 ?17 ?18
36669 26438: Id : 10, {_}:
36670 multiply (add ?20 ?21) ?22
36672 add (multiply ?20 ?22) (multiply ?21 ?22)
36673 [22, 21, 20] by distribute2 ?20 ?21 ?22
36674 26438: Id : 11, {_}:
36675 add ?24 ?25 =?= add ?25 ?24
36676 [25, 24] by commutativity_for_addition ?24 ?25
36677 26438: Id : 12, {_}:
36678 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
36679 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36680 26438: Id : 13, {_}:
36681 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
36682 [32, 31] by right_alternative ?31 ?32
36683 26438: Id : 14, {_}:
36684 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
36685 [35, 34] by left_alternative ?34 ?35
36686 26438: Id : 15, {_}:
36687 associator ?37 ?38 ?39
36689 add (multiply (multiply ?37 ?38) ?39)
36690 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36691 [39, 38, 37] by associator ?37 ?38 ?39
36692 26438: Id : 16, {_}:
36695 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36696 [42, 41] by commutator ?41 ?42
36697 26438: Id : 17, {_}:
36698 multiply (additive_inverse ?44) (additive_inverse ?45)
36701 [45, 44] by product_of_inverses ?44 ?45
36702 26438: Id : 18, {_}:
36703 multiply (additive_inverse ?47) ?48
36705 additive_inverse (multiply ?47 ?48)
36706 [48, 47] by inverse_product1 ?47 ?48
36707 26438: Id : 19, {_}:
36708 multiply ?50 (additive_inverse ?51)
36710 additive_inverse (multiply ?50 ?51)
36711 [51, 50] by inverse_product2 ?50 ?51
36712 26438: Id : 20, {_}:
36713 multiply ?53 (add ?54 (additive_inverse ?55))
36715 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
36716 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
36717 26438: Id : 21, {_}:
36718 multiply (add ?57 (additive_inverse ?58)) ?59
36720 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
36721 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
36722 26438: Id : 22, {_}:
36723 multiply (additive_inverse ?61) (add ?62 ?63)
36725 add (additive_inverse (multiply ?61 ?62))
36726 (additive_inverse (multiply ?61 ?63))
36727 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
36728 26438: Id : 23, {_}:
36729 multiply (add ?65 ?66) (additive_inverse ?67)
36731 add (additive_inverse (multiply ?65 ?67))
36732 (additive_inverse (multiply ?66 ?67))
36733 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
36735 26438: Id : 1, {_}:
36736 multiply (multiply x y) (multiply z x)
36738 multiply (multiply x (multiply y z)) x
36739 [] by prove_middle_moufang
36743 26438: z 2 0 2 1,2,2
36744 26438: y 2 0 2 2,1,2
36745 26438: x 4 0 4 1,1,2
36746 26438: additive_identity 8 0 0
36747 26438: additive_inverse 22 1 0
36748 26438: commutator 1 2 0
36750 26438: multiply 46 2 6 0,2
36751 26438: associator 1 3 0
36752 26437: Id : 8, {_}:
36753 additive_inverse (additive_inverse ?14) =>= ?14
36754 [14] by additive_inverse_additive_inverse ?14
36755 26437: Id : 9, {_}:
36756 multiply ?16 (add ?17 ?18)
36758 add (multiply ?16 ?17) (multiply ?16 ?18)
36759 [18, 17, 16] by distribute1 ?16 ?17 ?18
36760 26437: Id : 10, {_}:
36761 multiply (add ?20 ?21) ?22
36763 add (multiply ?20 ?22) (multiply ?21 ?22)
36764 [22, 21, 20] by distribute2 ?20 ?21 ?22
36765 26437: Id : 11, {_}:
36766 add ?24 ?25 =?= add ?25 ?24
36767 [25, 24] by commutativity_for_addition ?24 ?25
36768 26437: Id : 12, {_}:
36769 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
36770 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
36771 26437: Id : 13, {_}:
36772 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
36773 [32, 31] by right_alternative ?31 ?32
36774 26437: Id : 14, {_}:
36775 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
36776 [35, 34] by left_alternative ?34 ?35
36777 26437: Id : 15, {_}:
36778 associator ?37 ?38 ?39
36780 add (multiply (multiply ?37 ?38) ?39)
36781 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
36782 [39, 38, 37] by associator ?37 ?38 ?39
36783 26437: Id : 16, {_}:
36786 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
36787 [42, 41] by commutator ?41 ?42
36788 26437: Id : 17, {_}:
36789 multiply (additive_inverse ?44) (additive_inverse ?45)
36792 [45, 44] by product_of_inverses ?44 ?45
36793 26437: Id : 18, {_}:
36794 multiply (additive_inverse ?47) ?48
36796 additive_inverse (multiply ?47 ?48)
36797 [48, 47] by inverse_product1 ?47 ?48
36798 26437: Id : 19, {_}:
36799 multiply ?50 (additive_inverse ?51)
36801 additive_inverse (multiply ?50 ?51)
36802 [51, 50] by inverse_product2 ?50 ?51
36803 26437: Id : 20, {_}:
36804 multiply ?53 (add ?54 (additive_inverse ?55))
36806 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
36807 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
36808 26437: Id : 21, {_}:
36809 multiply (add ?57 (additive_inverse ?58)) ?59
36811 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
36812 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
36813 26437: Id : 22, {_}:
36814 multiply (additive_inverse ?61) (add ?62 ?63)
36816 add (additive_inverse (multiply ?61 ?62))
36817 (additive_inverse (multiply ?61 ?63))
36818 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
36819 26437: Id : 23, {_}:
36820 multiply (add ?65 ?66) (additive_inverse ?67)
36822 add (additive_inverse (multiply ?65 ?67))
36823 (additive_inverse (multiply ?66 ?67))
36824 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
36826 26437: Id : 1, {_}:
36827 multiply (multiply x y) (multiply z x)
36829 multiply (multiply x (multiply y z)) x
36830 [] by prove_middle_moufang
36834 26437: z 2 0 2 1,2,2
36835 26437: y 2 0 2 2,1,2
36836 26437: x 4 0 4 1,1,2
36837 26437: additive_identity 8 0 0
36838 26437: additive_inverse 22 1 0
36839 26437: commutator 1 2 0
36841 26437: multiply 46 2 6 0,2
36842 26437: associator 1 3 0
36843 % SZS status Timeout for RNG029-7.p
36844 NO CLASH, using fixed ground order
36846 28162: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
36847 28162: Id : 3, {_}:
36848 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
36849 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
36850 28162: Id : 4, {_}:
36851 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
36854 [10, 9] by robbins_axiom ?9 ?10
36855 28162: Id : 5, {_}: add c d =>= d [] by absorbtion
36857 28162: Id : 1, {_}:
36858 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
36861 [] by prove_huntingtons_axiom
36867 28162: a 2 0 2 1,1,1,2
36868 28162: b 3 0 3 1,2,1,1,2
36869 28162: negate 9 1 5 0,1,2
36870 28162: add 13 2 3 0,2
36871 NO CLASH, using fixed ground order
36873 28167: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
36874 28167: Id : 3, {_}:
36875 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
36876 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
36877 28167: Id : 4, {_}:
36878 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
36881 [10, 9] by robbins_axiom ?9 ?10
36882 28167: Id : 5, {_}: add c d =>= d [] by absorbtion
36884 28167: Id : 1, {_}:
36885 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
36888 [] by prove_huntingtons_axiom
36894 28167: a 2 0 2 1,1,1,2
36895 28167: b 3 0 3 1,2,1,1,2
36896 28167: negate 9 1 5 0,1,2
36897 28167: add 13 2 3 0,2
36898 NO CLASH, using fixed ground order
36900 28168: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
36901 28168: Id : 3, {_}:
36902 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
36903 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
36904 28168: Id : 4, {_}:
36905 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
36908 [10, 9] by robbins_axiom ?9 ?10
36909 28168: Id : 5, {_}: add c d =>= d [] by absorbtion
36911 28168: Id : 1, {_}:
36912 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
36915 [] by prove_huntingtons_axiom
36921 28168: a 2 0 2 1,1,1,2
36922 28168: b 3 0 3 1,2,1,1,2
36923 28168: negate 9 1 5 0,1,2
36924 28168: add 13 2 3 0,2
36925 % SZS status Timeout for ROB006-1.p
36926 NO CLASH, using fixed ground order
36928 30020: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
36929 30020: Id : 3, {_}:
36930 add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8)
36931 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
36932 30020: Id : 4, {_}:
36933 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
36936 [11, 10] by robbins_axiom ?10 ?11
36937 30020: Id : 5, {_}: add c d =>= d [] by absorbtion
36939 30020: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
36945 30020: negate 4 1 0
36946 30020: add 11 2 1 0,2
36947 NO CLASH, using fixed ground order
36949 30021: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
36950 30021: Id : 3, {_}:
36951 add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8)
36952 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
36953 30021: Id : 4, {_}:
36954 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
36957 [11, 10] by robbins_axiom ?10 ?11
36958 30021: Id : 5, {_}: add c d =>= d [] by absorbtion
36960 30021: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
36966 30021: negate 4 1 0
36967 30021: add 11 2 1 0,2
36968 NO CLASH, using fixed ground order
36970 30022: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
36971 30022: Id : 3, {_}:
36972 add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8)
36973 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
36974 30022: Id : 4, {_}:
36975 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
36978 [11, 10] by robbins_axiom ?10 ?11
36979 30022: Id : 5, {_}: add c d =>= d [] by absorbtion
36981 30022: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
36987 30022: negate 4 1 0
36988 30022: add 11 2 1 0,2
36989 % SZS status Timeout for ROB006-2.p
36990 NO CLASH, using fixed ground order
36992 31074: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
36993 31074: Id : 3, {_}:
36994 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
36995 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
36996 31074: Id : 4, {_}:
36997 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
37000 [10, 9] by robbins_axiom ?9 ?10
37001 31074: Id : 5, {_}: add c d =>= c [] by identity_constant
37003 31074: Id : 1, {_}:
37004 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
37007 [] by prove_huntingtons_axiom
37013 31074: a 2 0 2 1,1,1,2
37014 31074: b 3 0 3 1,2,1,1,2
37015 31074: negate 9 1 5 0,1,2
37016 31074: add 13 2 3 0,2
37017 NO CLASH, using fixed ground order
37019 31075: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
37020 31075: Id : 3, {_}:
37021 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
37022 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
37023 31075: Id : 4, {_}:
37024 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
37027 [10, 9] by robbins_axiom ?9 ?10
37028 31075: Id : 5, {_}: add c d =>= c [] by identity_constant
37030 31075: Id : 1, {_}:
37031 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
37034 [] by prove_huntingtons_axiom
37040 31075: a 2 0 2 1,1,1,2
37041 31075: b 3 0 3 1,2,1,1,2
37042 31075: negate 9 1 5 0,1,2
37043 31075: add 13 2 3 0,2
37044 NO CLASH, using fixed ground order
37046 31076: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
37047 31076: Id : 3, {_}:
37048 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
37049 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
37050 31076: Id : 4, {_}:
37051 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
37054 [10, 9] by robbins_axiom ?9 ?10
37055 31076: Id : 5, {_}: add c d =>= c [] by identity_constant
37057 31076: Id : 1, {_}:
37058 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
37061 [] by prove_huntingtons_axiom
37067 31076: a 2 0 2 1,1,1,2
37068 31076: b 3 0 3 1,2,1,1,2
37069 31076: negate 9 1 5 0,1,2
37070 31076: add 13 2 3 0,2
37071 % SZS status Timeout for ROB026-1.p
37072 NO CLASH, using fixed ground order
37074 32629: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
37075 32629: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
37076 32629: Id : 4, {_}:
37077 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
37078 [8, 7, 6] by associativity ?6 ?7 ?8
37079 32629: Id : 5, {_}:
37080 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
37081 [11, 10] by symmetry_of_glb ?10 ?11
37082 32629: Id : 6, {_}:
37083 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
37084 [14, 13] by symmetry_of_lub ?13 ?14
37085 32629: Id : 7, {_}:
37086 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
37088 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
37089 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
37090 32629: Id : 8, {_}:
37091 least_upper_bound ?20 (least_upper_bound ?21 ?22)
37093 least_upper_bound (least_upper_bound ?20 ?21) ?22
37094 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
37095 32629: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
37096 32629: Id : 10, {_}:
37097 greatest_lower_bound ?26 ?26 =>= ?26
37098 [26] by idempotence_of_gld ?26
37099 32629: Id : 11, {_}:
37100 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
37101 [29, 28] by lub_absorbtion ?28 ?29
37102 32629: Id : 12, {_}:
37103 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
37104 [32, 31] by glb_absorbtion ?31 ?32
37105 32629: Id : 13, {_}:
37106 multiply ?34 (least_upper_bound ?35 ?36)
37108 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
37109 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
37110 32629: Id : 14, {_}:
37111 multiply ?38 (greatest_lower_bound ?39 ?40)
37113 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
37114 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
37115 32629: Id : 15, {_}:
37116 multiply (least_upper_bound ?42 ?43) ?44
37118 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
37119 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
37120 32629: Id : 16, {_}:
37121 multiply (greatest_lower_bound ?46 ?47) ?48
37123 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
37124 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
37126 32629: Id : 1, {_}:
37127 least_upper_bound a (greatest_lower_bound b c)
37129 greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c)
37130 [] by prove_distrnu
37134 32629: identity 2 0 0
37135 32629: b 2 0 2 1,2,2
37136 32629: c 2 0 2 2,2,2
37138 32629: inverse 1 1 0
37139 32629: greatest_lower_bound 15 2 2 0,2,2
37140 32629: least_upper_bound 16 2 3 0,2
37141 32629: multiply 18 2 0
37142 NO CLASH, using fixed ground order
37144 32630: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
37145 32630: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
37146 32630: Id : 4, {_}:
37147 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
37148 [8, 7, 6] by associativity ?6 ?7 ?8
37149 32630: Id : 5, {_}:
37150 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
37151 [11, 10] by symmetry_of_glb ?10 ?11
37152 32630: Id : 6, {_}:
37153 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
37154 [14, 13] by symmetry_of_lub ?13 ?14
37155 32630: Id : 7, {_}:
37156 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
37158 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
37159 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
37160 32630: Id : 8, {_}:
37161 least_upper_bound ?20 (least_upper_bound ?21 ?22)
37163 least_upper_bound (least_upper_bound ?20 ?21) ?22
37164 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
37165 32630: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
37166 32630: Id : 10, {_}:
37167 greatest_lower_bound ?26 ?26 =>= ?26
37168 [26] by idempotence_of_gld ?26
37169 32630: Id : 11, {_}:
37170 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
37171 [29, 28] by lub_absorbtion ?28 ?29
37172 32630: Id : 12, {_}:
37173 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
37174 [32, 31] by glb_absorbtion ?31 ?32
37175 32630: Id : 13, {_}:
37176 multiply ?34 (least_upper_bound ?35 ?36)
37178 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
37179 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
37180 32630: Id : 14, {_}:
37181 multiply ?38 (greatest_lower_bound ?39 ?40)
37183 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
37184 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
37185 32630: Id : 15, {_}:
37186 multiply (least_upper_bound ?42 ?43) ?44
37188 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
37189 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
37190 32630: Id : 16, {_}:
37191 multiply (greatest_lower_bound ?46 ?47) ?48
37193 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
37194 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
37196 32630: Id : 1, {_}:
37197 least_upper_bound a (greatest_lower_bound b c)
37199 greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c)
37200 [] by prove_distrnu
37204 32630: identity 2 0 0
37205 32630: b 2 0 2 1,2,2
37206 32630: c 2 0 2 2,2,2
37208 32630: inverse 1 1 0
37209 32630: greatest_lower_bound 15 2 2 0,2,2
37210 32630: least_upper_bound 16 2 3 0,2
37211 32630: multiply 18 2 0
37212 NO CLASH, using fixed ground order
37214 32631: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
37215 32631: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
37216 32631: Id : 4, {_}:
37217 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
37218 [8, 7, 6] by associativity ?6 ?7 ?8
37219 32631: Id : 5, {_}:
37220 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
37221 [11, 10] by symmetry_of_glb ?10 ?11
37222 32631: Id : 6, {_}:
37223 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
37224 [14, 13] by symmetry_of_lub ?13 ?14
37225 32631: Id : 7, {_}:
37226 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
37228 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
37229 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
37230 32631: Id : 8, {_}:
37231 least_upper_bound ?20 (least_upper_bound ?21 ?22)
37233 least_upper_bound (least_upper_bound ?20 ?21) ?22
37234 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
37235 32631: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
37236 32631: Id : 10, {_}:
37237 greatest_lower_bound ?26 ?26 =>= ?26
37238 [26] by idempotence_of_gld ?26
37239 32631: Id : 11, {_}:
37240 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
37241 [29, 28] by lub_absorbtion ?28 ?29
37242 32631: Id : 12, {_}:
37243 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
37244 [32, 31] by glb_absorbtion ?31 ?32
37245 32631: Id : 13, {_}:
37246 multiply ?34 (least_upper_bound ?35 ?36)
37248 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
37249 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
37250 32631: Id : 14, {_}:
37251 multiply ?38 (greatest_lower_bound ?39 ?40)
37253 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
37254 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
37255 32631: Id : 15, {_}:
37256 multiply (least_upper_bound ?42 ?43) ?44
37258 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
37259 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
37260 32631: Id : 16, {_}:
37261 multiply (greatest_lower_bound ?46 ?47) ?48
37263 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
37264 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
37266 32631: Id : 1, {_}:
37267 least_upper_bound a (greatest_lower_bound b c)
37269 greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c)
37270 [] by prove_distrnu
37274 32631: identity 2 0 0
37275 32631: b 2 0 2 1,2,2
37276 32631: c 2 0 2 2,2,2
37278 32631: inverse 1 1 0
37279 32631: greatest_lower_bound 15 2 2 0,2,2
37280 32631: least_upper_bound 16 2 3 0,2
37281 32631: multiply 18 2 0
37282 % SZS status Timeout for GRP164-1.p
37283 NO CLASH, using fixed ground order
37285 2296: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
37286 2296: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
37288 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
37289 [8, 7, 6] by associativity ?6 ?7 ?8
37291 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
37292 [11, 10] by symmetry_of_glb ?10 ?11
37294 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
37295 [14, 13] by symmetry_of_lub ?13 ?14
37297 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
37299 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
37300 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
37302 least_upper_bound ?20 (least_upper_bound ?21 ?22)
37304 least_upper_bound (least_upper_bound ?20 ?21) ?22
37305 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
37306 2296: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
37307 2296: Id : 10, {_}:
37308 greatest_lower_bound ?26 ?26 =>= ?26
37309 [26] by idempotence_of_gld ?26
37310 2296: Id : 11, {_}:
37311 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
37312 [29, 28] by lub_absorbtion ?28 ?29
37313 2296: Id : 12, {_}:
37314 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
37315 [32, 31] by glb_absorbtion ?31 ?32
37316 2296: Id : 13, {_}:
37317 multiply ?34 (least_upper_bound ?35 ?36)
37319 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
37320 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
37321 2296: Id : 14, {_}:
37322 multiply ?38 (greatest_lower_bound ?39 ?40)
37324 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
37325 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
37326 2296: Id : 15, {_}:
37327 multiply (least_upper_bound ?42 ?43) ?44
37329 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
37330 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
37331 2296: Id : 16, {_}:
37332 multiply (greatest_lower_bound ?46 ?47) ?48
37334 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
37335 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
37338 greatest_lower_bound a (least_upper_bound b c)
37340 least_upper_bound (greatest_lower_bound a b)
37341 (greatest_lower_bound a c)
37342 [] by prove_distrun
37346 2296: identity 2 0 0
37347 2296: b 2 0 2 1,2,2
37348 2296: c 2 0 2 2,2,2
37350 2296: inverse 1 1 0
37351 2296: least_upper_bound 15 2 2 0,2,2
37352 2296: greatest_lower_bound 16 2 3 0,2
37353 2296: multiply 18 2 0
37354 NO CLASH, using fixed ground order
37356 2305: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
37357 2305: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
37359 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
37360 [8, 7, 6] by associativity ?6 ?7 ?8
37362 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
37363 [11, 10] by symmetry_of_glb ?10 ?11
37365 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
37366 [14, 13] by symmetry_of_lub ?13 ?14
37368 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
37370 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
37371 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
37373 least_upper_bound ?20 (least_upper_bound ?21 ?22)
37375 least_upper_bound (least_upper_bound ?20 ?21) ?22
37376 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
37377 2305: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
37378 2305: Id : 10, {_}:
37379 greatest_lower_bound ?26 ?26 =>= ?26
37380 [26] by idempotence_of_gld ?26
37381 2305: Id : 11, {_}:
37382 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
37383 [29, 28] by lub_absorbtion ?28 ?29
37384 2305: Id : 12, {_}:
37385 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
37386 [32, 31] by glb_absorbtion ?31 ?32
37387 2305: Id : 13, {_}:
37388 multiply ?34 (least_upper_bound ?35 ?36)
37390 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
37391 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
37392 2305: Id : 14, {_}:
37393 multiply ?38 (greatest_lower_bound ?39 ?40)
37395 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
37396 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
37397 2305: Id : 15, {_}:
37398 multiply (least_upper_bound ?42 ?43) ?44
37400 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
37401 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
37402 2305: Id : 16, {_}:
37403 multiply (greatest_lower_bound ?46 ?47) ?48
37405 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
37406 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
37409 greatest_lower_bound a (least_upper_bound b c)
37411 least_upper_bound (greatest_lower_bound a b)
37412 (greatest_lower_bound a c)
37413 [] by prove_distrun
37417 2305: identity 2 0 0
37418 2305: b 2 0 2 1,2,2
37419 2305: c 2 0 2 2,2,2
37421 2305: inverse 1 1 0
37422 2305: least_upper_bound 15 2 2 0,2,2
37423 2305: greatest_lower_bound 16 2 3 0,2
37424 2305: multiply 18 2 0
37425 NO CLASH, using fixed ground order
37427 2309: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
37428 2309: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
37430 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
37431 [8, 7, 6] by associativity ?6 ?7 ?8
37433 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
37434 [11, 10] by symmetry_of_glb ?10 ?11
37436 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
37437 [14, 13] by symmetry_of_lub ?13 ?14
37439 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
37441 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
37442 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
37444 least_upper_bound ?20 (least_upper_bound ?21 ?22)
37446 least_upper_bound (least_upper_bound ?20 ?21) ?22
37447 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
37448 2309: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
37449 2309: Id : 10, {_}:
37450 greatest_lower_bound ?26 ?26 =>= ?26
37451 [26] by idempotence_of_gld ?26
37452 2309: Id : 11, {_}:
37453 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
37454 [29, 28] by lub_absorbtion ?28 ?29
37455 2309: Id : 12, {_}:
37456 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
37457 [32, 31] by glb_absorbtion ?31 ?32
37458 2309: Id : 13, {_}:
37459 multiply ?34 (least_upper_bound ?35 ?36)
37461 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
37462 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
37463 2309: Id : 14, {_}:
37464 multiply ?38 (greatest_lower_bound ?39 ?40)
37466 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
37467 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
37468 2309: Id : 15, {_}:
37469 multiply (least_upper_bound ?42 ?43) ?44
37471 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
37472 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
37473 2309: Id : 16, {_}:
37474 multiply (greatest_lower_bound ?46 ?47) ?48
37476 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
37477 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
37480 greatest_lower_bound a (least_upper_bound b c)
37482 least_upper_bound (greatest_lower_bound a b)
37483 (greatest_lower_bound a c)
37484 [] by prove_distrun
37488 2309: identity 2 0 0
37489 2309: b 2 0 2 1,2,2
37490 2309: c 2 0 2 2,2,2
37492 2309: inverse 1 1 0
37493 2309: least_upper_bound 15 2 2 0,2,2
37494 2309: greatest_lower_bound 16 2 3 0,2
37495 2309: multiply 18 2 0
37496 % SZS status Timeout for GRP164-2.p
37497 NO CLASH, using fixed ground order
37500 multiply (multiply ?2 ?3) ?4 =?= multiply ?2 (multiply ?3 ?4)
37501 [4, 3, 2] by associativity_of_multiply ?2 ?3 ?4
37503 multiply ?6 (multiply ?7 (multiply ?7 ?7))
37505 multiply ?7 (multiply ?7 (multiply ?7 ?6))
37506 [7, 6] by condition ?6 ?7
37523 (multiply a (multiply b (multiply a b))))))))))))))))
37539 (multiply b (multiply b (multiply b b))))))))))))))))
37544 4004: a 18 0 18 1,2
37545 4004: b 18 0 18 1,2,2
37546 4004: multiply 44 2 34 0,2
37547 NO CLASH, using fixed ground order
37550 multiply (multiply ?2 ?3) ?4 =>= multiply ?2 (multiply ?3 ?4)
37551 [4, 3, 2] by associativity_of_multiply ?2 ?3 ?4
37553 multiply ?6 (multiply ?7 (multiply ?7 ?7))
37555 multiply ?7 (multiply ?7 (multiply ?7 ?6))
37556 [7, 6] by condition ?6 ?7
37573 (multiply a (multiply b (multiply a b))))))))))))))))
37589 (multiply b (multiply b (multiply b b))))))))))))))))
37594 4005: a 18 0 18 1,2
37595 4005: b 18 0 18 1,2,2
37596 4005: multiply 44 2 34 0,2
37597 NO CLASH, using fixed ground order
37598 % SZS status Timeout for GRP196-1.p
37599 NO CLASH, using fixed ground order
37602 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
37603 (f ?3 (f (f ?3 (f (f ?2 ?2) ?2)) ?4))
37606 [5, 4, 3, 2] by ol_23A ?2 ?3 ?4 ?5
37609 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
37610 [] by associativity
37615 7093: c 3 0 3 2,1,2,2
37616 7093: b 4 0 4 1,1,2,2
37618 NO CLASH, using fixed ground order
37621 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
37622 (f ?3 (f (f ?3 (f (f ?2 ?2) ?2)) ?4))
37625 [5, 4, 3, 2] by ol_23A ?2 ?3 ?4 ?5
37628 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
37629 [] by associativity
37634 7104: c 3 0 3 2,1,2,2
37635 7104: b 4 0 4 1,1,2,2
37637 NO CLASH, using fixed ground order
37640 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
37641 (f ?3 (f (f ?3 (f (f ?2 ?2) ?2)) ?4))
37644 [5, 4, 3, 2] by ol_23A ?2 ?3 ?4 ?5
37647 f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a))
37648 [] by associativity
37653 7109: c 3 0 3 2,1,2,2
37654 7109: b 4 0 4 1,1,2,2
37656 % SZS status Timeout for LAT070-1.p
37657 NO CLASH, using fixed ground order
37659 9646: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37660 9646: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37661 9646: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37662 9646: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37664 meet ?12 ?13 =?= meet ?13 ?12
37665 [13, 12] by commutativity_of_meet ?12 ?13
37667 join ?15 ?16 =?= join ?16 ?15
37668 [16, 15] by commutativity_of_join ?15 ?16
37670 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
37671 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37673 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
37674 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37675 9646: Id : 10, {_}:
37676 meet ?26 (join ?27 (meet ?26 ?28))
37680 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))))
37681 [28, 27, 26] by equation_H7 ?26 ?27 ?28
37684 meet a (join b (meet a c))
37686 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
37691 9646: b 3 0 3 1,2,2
37692 9646: c 3 0 3 2,2,2,2
37694 9646: join 17 2 4 0,2,2
37695 9646: meet 21 2 6 0,2
37696 NO CLASH, using fixed ground order
37698 9648: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37699 9648: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37700 9648: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37701 9648: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37703 meet ?12 ?13 =?= meet ?13 ?12
37704 [13, 12] by commutativity_of_meet ?12 ?13
37706 join ?15 ?16 =?= join ?16 ?15
37707 [16, 15] by commutativity_of_join ?15 ?16
37709 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
37710 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37712 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
37713 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37714 9648: Id : 10, {_}:
37715 meet ?26 (join ?27 (meet ?26 ?28))
37719 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))))
37720 [28, 27, 26] by equation_H7 ?26 ?27 ?28
37723 meet a (join b (meet a c))
37725 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
37730 9648: b 3 0 3 1,2,2
37731 9648: c 3 0 3 2,2,2,2
37733 9648: join 17 2 4 0,2,2
37734 9648: meet 21 2 6 0,2
37735 NO CLASH, using fixed ground order
37737 9649: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37738 9649: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37739 9649: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37740 9649: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37742 meet ?12 ?13 =?= meet ?13 ?12
37743 [13, 12] by commutativity_of_meet ?12 ?13
37745 join ?15 ?16 =?= join ?16 ?15
37746 [16, 15] by commutativity_of_join ?15 ?16
37748 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
37749 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37751 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
37752 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37753 9649: Id : 10, {_}:
37754 meet ?26 (join ?27 (meet ?26 ?28))
37758 (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27)))))
37759 [28, 27, 26] by equation_H7 ?26 ?27 ?28
37762 meet a (join b (meet a c))
37764 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
37769 9649: b 3 0 3 1,2,2
37770 9649: c 3 0 3 2,2,2,2
37772 9649: join 17 2 4 0,2,2
37773 9649: meet 21 2 6 0,2
37774 % SZS status Timeout for LAT138-1.p
37775 NO CLASH, using fixed ground order
37777 11119: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37778 11119: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37779 11119: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37780 11119: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37781 11119: Id : 6, {_}:
37782 meet ?12 ?13 =?= meet ?13 ?12
37783 [13, 12] by commutativity_of_meet ?12 ?13
37784 11119: Id : 7, {_}:
37785 join ?15 ?16 =?= join ?16 ?15
37786 [16, 15] by commutativity_of_join ?15 ?16
37787 11119: Id : 8, {_}:
37788 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
37789 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37790 11119: Id : 9, {_}:
37791 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
37792 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37793 11119: Id : 10, {_}:
37794 join (meet ?26 ?27) (meet ?26 ?28)
37797 (join (meet ?27 (join ?26 (meet ?27 ?28)))
37798 (meet ?28 (join ?26 ?27)))
37799 [28, 27, 26] by equation_H21 ?26 ?27 ?28
37801 11119: Id : 1, {_}:
37802 meet a (join b (meet a c))
37804 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
37810 11119: b 4 0 4 1,2,2
37811 11119: c 4 0 4 2,2,2,2
37812 11119: join 17 2 4 0,2,2
37813 11119: meet 21 2 6 0,2
37814 NO CLASH, using fixed ground order
37816 11120: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37817 11120: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37818 11120: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37819 11120: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37820 11120: Id : 6, {_}:
37821 meet ?12 ?13 =?= meet ?13 ?12
37822 [13, 12] by commutativity_of_meet ?12 ?13
37823 11120: Id : 7, {_}:
37824 join ?15 ?16 =?= join ?16 ?15
37825 [16, 15] by commutativity_of_join ?15 ?16
37826 11120: Id : 8, {_}:
37827 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
37828 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37829 11120: Id : 9, {_}:
37830 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
37831 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37832 11120: Id : 10, {_}:
37833 join (meet ?26 ?27) (meet ?26 ?28)
37836 (join (meet ?27 (join ?26 (meet ?27 ?28)))
37837 (meet ?28 (join ?26 ?27)))
37838 [28, 27, 26] by equation_H21 ?26 ?27 ?28
37840 11120: Id : 1, {_}:
37841 meet a (join b (meet a c))
37843 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
37849 11120: b 4 0 4 1,2,2
37850 11120: c 4 0 4 2,2,2,2
37851 11120: join 17 2 4 0,2,2
37852 11120: meet 21 2 6 0,2
37853 NO CLASH, using fixed ground order
37855 11118: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37856 11118: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37857 11118: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37858 11118: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37859 11118: Id : 6, {_}:
37860 meet ?12 ?13 =?= meet ?13 ?12
37861 [13, 12] by commutativity_of_meet ?12 ?13
37862 11118: Id : 7, {_}:
37863 join ?15 ?16 =?= join ?16 ?15
37864 [16, 15] by commutativity_of_join ?15 ?16
37865 11118: Id : 8, {_}:
37866 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
37867 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37868 11118: Id : 9, {_}:
37869 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
37870 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37871 11118: Id : 10, {_}:
37872 join (meet ?26 ?27) (meet ?26 ?28)
37875 (join (meet ?27 (join ?26 (meet ?27 ?28)))
37876 (meet ?28 (join ?26 ?27)))
37877 [28, 27, 26] by equation_H21 ?26 ?27 ?28
37879 11118: Id : 1, {_}:
37880 meet a (join b (meet a c))
37882 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
37888 11118: b 4 0 4 1,2,2
37889 11118: c 4 0 4 2,2,2,2
37890 11118: join 17 2 4 0,2,2
37891 11118: meet 21 2 6 0,2
37892 % SZS status Timeout for LAT140-1.p
37893 NO CLASH, using fixed ground order
37895 12763: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37896 12763: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37897 12763: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37898 12763: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37899 12763: Id : 6, {_}:
37900 meet ?12 ?13 =?= meet ?13 ?12
37901 [13, 12] by commutativity_of_meet ?12 ?13
37902 12763: Id : 7, {_}:
37903 join ?15 ?16 =?= join ?16 ?15
37904 [16, 15] by commutativity_of_join ?15 ?16
37905 12763: Id : 8, {_}:
37906 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
37907 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37908 12763: Id : 9, {_}:
37909 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
37910 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37911 12763: Id : 10, {_}:
37912 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
37914 meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29))))
37915 [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29
37917 12763: Id : 1, {_}:
37918 meet a (join b (meet a c))
37920 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
37925 12763: b 3 0 3 1,2,2
37926 12763: c 3 0 3 2,2,2,2
37928 12763: join 16 2 4 0,2,2
37929 12763: meet 22 2 6 0,2
37930 NO CLASH, using fixed ground order
37932 12764: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37933 12764: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37934 12764: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37935 12764: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37936 12764: Id : 6, {_}:
37937 meet ?12 ?13 =?= meet ?13 ?12
37938 [13, 12] by commutativity_of_meet ?12 ?13
37939 12764: Id : 7, {_}:
37940 join ?15 ?16 =?= join ?16 ?15
37941 [16, 15] by commutativity_of_join ?15 ?16
37942 12764: Id : 8, {_}:
37943 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
37944 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37945 12764: Id : 9, {_}:
37946 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
37947 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37948 12764: Id : 10, {_}:
37949 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
37951 meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29))))
37952 [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29
37954 12764: Id : 1, {_}:
37955 meet a (join b (meet a c))
37957 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
37962 12764: b 3 0 3 1,2,2
37963 12764: c 3 0 3 2,2,2,2
37965 12764: join 16 2 4 0,2,2
37966 12764: meet 22 2 6 0,2
37967 NO CLASH, using fixed ground order
37969 12765: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
37970 12765: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
37971 12765: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
37972 12765: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
37973 12765: Id : 6, {_}:
37974 meet ?12 ?13 =?= meet ?13 ?12
37975 [13, 12] by commutativity_of_meet ?12 ?13
37976 12765: Id : 7, {_}:
37977 join ?15 ?16 =?= join ?16 ?15
37978 [16, 15] by commutativity_of_join ?15 ?16
37979 12765: Id : 8, {_}:
37980 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
37981 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
37982 12765: Id : 9, {_}:
37983 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
37984 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
37985 12765: Id : 10, {_}:
37986 meet ?26 (join ?27 (meet ?26 (meet ?28 ?29)))
37988 meet ?26 (join ?27 (meet ?28 (join (meet ?26 ?29) (meet ?27 ?29))))
37989 [29, 28, 27, 26] by equation_H32 ?26 ?27 ?28 ?29
37991 12765: Id : 1, {_}:
37992 meet a (join b (meet a c))
37994 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
37999 12765: b 3 0 3 1,2,2
38000 12765: c 3 0 3 2,2,2,2
38002 12765: join 16 2 4 0,2,2
38003 12765: meet 22 2 6 0,2
38004 % SZS status Timeout for LAT145-1.p
38005 NO CLASH, using fixed ground order
38007 13612: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38008 13612: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38009 13612: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38010 13612: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38011 13612: Id : 6, {_}:
38012 meet ?12 ?13 =?= meet ?13 ?12
38013 [13, 12] by commutativity_of_meet ?12 ?13
38014 13612: Id : 7, {_}:
38015 join ?15 ?16 =?= join ?16 ?15
38016 [16, 15] by commutativity_of_join ?15 ?16
38017 13612: Id : 8, {_}:
38018 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38019 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38020 13612: Id : 9, {_}:
38021 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38022 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38023 13612: Id : 10, {_}:
38024 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
38026 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
38027 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
38029 13612: Id : 1, {_}:
38030 meet a (join b (meet c (join b d)))
38032 meet a (join b (meet c (join d (meet a (join b d)))))
38037 13612: c 2 0 2 1,2,2,2
38039 13612: d 3 0 3 2,2,2,2,2
38040 13612: b 4 0 4 1,2,2
38041 13612: meet 19 2 5 0,2
38042 13612: join 19 2 5 0,2,2
38043 NO CLASH, using fixed ground order
38045 13613: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38046 13613: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38047 13613: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38048 13613: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38049 13613: Id : 6, {_}:
38050 meet ?12 ?13 =?= meet ?13 ?12
38051 [13, 12] by commutativity_of_meet ?12 ?13
38052 13613: Id : 7, {_}:
38053 join ?15 ?16 =?= join ?16 ?15
38054 [16, 15] by commutativity_of_join ?15 ?16
38055 13613: Id : 8, {_}:
38056 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38057 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38058 13613: Id : 9, {_}:
38059 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38060 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38061 13613: Id : 10, {_}:
38062 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
38064 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
38065 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
38067 13613: Id : 1, {_}:
38068 meet a (join b (meet c (join b d)))
38070 meet a (join b (meet c (join d (meet a (join b d)))))
38075 13613: c 2 0 2 1,2,2,2
38077 13613: d 3 0 3 2,2,2,2,2
38078 13613: b 4 0 4 1,2,2
38079 13613: meet 19 2 5 0,2
38080 13613: join 19 2 5 0,2,2
38081 NO CLASH, using fixed ground order
38083 13614: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38084 13614: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38085 13614: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38086 13614: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38087 13614: Id : 6, {_}:
38088 meet ?12 ?13 =?= meet ?13 ?12
38089 [13, 12] by commutativity_of_meet ?12 ?13
38090 13614: Id : 7, {_}:
38091 join ?15 ?16 =?= join ?16 ?15
38092 [16, 15] by commutativity_of_join ?15 ?16
38093 13614: Id : 8, {_}:
38094 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38095 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38096 13614: Id : 9, {_}:
38097 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38098 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38099 13614: Id : 10, {_}:
38100 meet ?26 (join ?27 (join ?28 (meet ?26 ?29)))
38102 meet ?26 (join ?27 (join ?28 (meet ?29 (join ?26 (meet ?27 ?28)))))
38103 [29, 28, 27, 26] by equation_H37 ?26 ?27 ?28 ?29
38105 13614: Id : 1, {_}:
38106 meet a (join b (meet c (join b d)))
38108 meet a (join b (meet c (join d (meet a (join b d)))))
38113 13614: c 2 0 2 1,2,2,2
38115 13614: d 3 0 3 2,2,2,2,2
38116 13614: b 4 0 4 1,2,2
38117 13614: meet 19 2 5 0,2
38118 13614: join 19 2 5 0,2,2
38119 % SZS status Timeout for LAT149-1.p
38120 NO CLASH, using fixed ground order
38122 14638: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38123 14638: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38124 14638: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38125 14638: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38126 14638: Id : 6, {_}:
38127 meet ?12 ?13 =?= meet ?13 ?12
38128 [13, 12] by commutativity_of_meet ?12 ?13
38129 14638: Id : 7, {_}:
38130 join ?15 ?16 =?= join ?16 ?15
38131 [16, 15] by commutativity_of_join ?15 ?16
38132 14638: Id : 8, {_}:
38133 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38134 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38135 14638: Id : 9, {_}:
38136 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38137 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38138 14638: Id : 10, {_}:
38139 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38141 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27)))))
38142 [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29
38144 14638: Id : 1, {_}:
38145 meet a (join b (meet a c))
38147 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
38152 14638: c 2 0 2 2,2,2,2
38153 14638: b 4 0 4 1,2,2
38155 14638: join 18 2 4 0,2,2
38156 14638: meet 20 2 6 0,2
38157 NO CLASH, using fixed ground order
38159 14639: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38160 14639: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38161 14639: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38162 14639: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38163 14639: Id : 6, {_}:
38164 meet ?12 ?13 =?= meet ?13 ?12
38165 [13, 12] by commutativity_of_meet ?12 ?13
38166 14639: Id : 7, {_}:
38167 join ?15 ?16 =?= join ?16 ?15
38168 [16, 15] by commutativity_of_join ?15 ?16
38169 14639: Id : 8, {_}:
38170 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38171 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38172 14639: Id : 9, {_}:
38173 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38174 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38175 14639: Id : 10, {_}:
38176 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38178 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27)))))
38179 [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29
38181 14639: Id : 1, {_}:
38182 meet a (join b (meet a c))
38184 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
38187 NO CLASH, using fixed ground order
38189 14640: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38190 14640: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38191 14640: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38192 14640: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38193 14640: Id : 6, {_}:
38194 meet ?12 ?13 =?= meet ?13 ?12
38195 [13, 12] by commutativity_of_meet ?12 ?13
38196 14640: Id : 7, {_}:
38197 join ?15 ?16 =?= join ?16 ?15
38198 [16, 15] by commutativity_of_join ?15 ?16
38199 14640: Id : 8, {_}:
38200 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38201 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38202 14640: Id : 9, {_}:
38203 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38204 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38205 14640: Id : 10, {_}:
38206 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38208 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27)))))
38209 [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29
38211 14640: Id : 1, {_}:
38212 meet a (join b (meet a c))
38214 meet a (join b (meet a (join (meet a b) (meet c (join a b)))))
38219 14640: c 2 0 2 2,2,2,2
38220 14640: b 4 0 4 1,2,2
38222 14640: join 18 2 4 0,2,2
38223 14640: meet 20 2 6 0,2
38226 14639: c 2 0 2 2,2,2,2
38227 14639: b 4 0 4 1,2,2
38229 14639: join 18 2 4 0,2,2
38230 14639: meet 20 2 6 0,2
38231 % SZS status Timeout for LAT153-1.p
38232 NO CLASH, using fixed ground order
38234 15430: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38235 15430: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38236 15430: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38237 15430: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38238 15430: Id : 6, {_}:
38239 meet ?12 ?13 =?= meet ?13 ?12
38240 [13, 12] by commutativity_of_meet ?12 ?13
38241 15430: Id : 7, {_}:
38242 join ?15 ?16 =?= join ?16 ?15
38243 [16, 15] by commutativity_of_join ?15 ?16
38244 15430: Id : 8, {_}:
38245 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38246 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38247 15430: Id : 9, {_}:
38248 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38249 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38250 15430: Id : 10, {_}:
38251 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38253 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
38254 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
38256 15430: Id : 1, {_}:
38257 meet a (join b (meet a c))
38259 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
38265 15430: b 4 0 4 1,2,2
38266 15430: c 4 0 4 2,2,2,2
38267 15430: join 18 2 4 0,2,2
38268 15430: meet 20 2 6 0,2
38269 NO CLASH, using fixed ground order
38271 15431: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38272 15431: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38273 15431: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38274 15431: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38275 15431: Id : 6, {_}:
38276 meet ?12 ?13 =?= meet ?13 ?12
38277 [13, 12] by commutativity_of_meet ?12 ?13
38278 15431: Id : 7, {_}:
38279 join ?15 ?16 =?= join ?16 ?15
38280 [16, 15] by commutativity_of_join ?15 ?16
38281 15431: Id : 8, {_}:
38282 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38283 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38284 15431: Id : 9, {_}:
38285 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38286 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38287 15431: Id : 10, {_}:
38288 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38290 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
38291 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
38293 15431: Id : 1, {_}:
38294 meet a (join b (meet a c))
38296 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
38302 15431: b 4 0 4 1,2,2
38303 15431: c 4 0 4 2,2,2,2
38304 15431: join 18 2 4 0,2,2
38305 15431: meet 20 2 6 0,2
38306 NO CLASH, using fixed ground order
38308 15432: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38309 15432: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38310 15432: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38311 15432: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38312 15432: Id : 6, {_}:
38313 meet ?12 ?13 =?= meet ?13 ?12
38314 [13, 12] by commutativity_of_meet ?12 ?13
38315 15432: Id : 7, {_}:
38316 join ?15 ?16 =?= join ?16 ?15
38317 [16, 15] by commutativity_of_join ?15 ?16
38318 15432: Id : 8, {_}:
38319 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38320 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38321 15432: Id : 9, {_}:
38322 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38323 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38324 15432: Id : 10, {_}:
38325 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38327 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
38328 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
38330 15432: Id : 1, {_}:
38331 meet a (join b (meet a c))
38333 meet a (join b (meet c (join (meet a (join b c)) (meet b c))))
38339 15432: b 4 0 4 1,2,2
38340 15432: c 4 0 4 2,2,2,2
38341 15432: join 18 2 4 0,2,2
38342 15432: meet 20 2 6 0,2
38343 % SZS status Timeout for LAT157-1.p
38344 NO CLASH, using fixed ground order
38346 16370: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38347 16370: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38348 16370: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38349 16370: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38350 16370: Id : 6, {_}:
38351 meet ?12 ?13 =?= meet ?13 ?12
38352 [13, 12] by commutativity_of_meet ?12 ?13
38353 16370: Id : 7, {_}:
38354 join ?15 ?16 =?= join ?16 ?15
38355 [16, 15] by commutativity_of_join ?15 ?16
38356 16370: Id : 8, {_}:
38357 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38358 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38359 16370: Id : 9, {_}:
38360 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38361 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38362 16370: Id : 10, {_}:
38363 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38365 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
38366 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
38368 16370: Id : 1, {_}:
38369 meet a (join b (meet c (join a d)))
38371 meet a (join b (join (meet a c) (meet c (join b d))))
38376 16370: d 2 0 2 2,2,2,2,2
38377 16370: b 3 0 3 1,2,2
38378 16370: c 3 0 3 1,2,2,2
38380 16370: meet 19 2 5 0,2
38381 16370: join 19 2 5 0,2,2
38382 NO CLASH, using fixed ground order
38384 16387: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38385 16387: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38386 16387: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38387 16387: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38388 16387: Id : 6, {_}:
38389 meet ?12 ?13 =?= meet ?13 ?12
38390 [13, 12] by commutativity_of_meet ?12 ?13
38391 16387: Id : 7, {_}:
38392 join ?15 ?16 =?= join ?16 ?15
38393 [16, 15] by commutativity_of_join ?15 ?16
38394 16387: Id : 8, {_}:
38395 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38396 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38397 16387: Id : 9, {_}:
38398 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38399 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38400 16387: Id : 10, {_}:
38401 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38403 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
38404 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
38406 16387: Id : 1, {_}:
38407 meet a (join b (meet c (join a d)))
38409 meet a (join b (join (meet a c) (meet c (join b d))))
38414 16387: d 2 0 2 2,2,2,2,2
38415 16387: b 3 0 3 1,2,2
38416 16387: c 3 0 3 1,2,2,2
38418 16387: meet 19 2 5 0,2
38419 16387: join 19 2 5 0,2,2
38420 NO CLASH, using fixed ground order
38422 16398: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38423 16398: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38424 16398: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38425 16398: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38426 16398: Id : 6, {_}:
38427 meet ?12 ?13 =?= meet ?13 ?12
38428 [13, 12] by commutativity_of_meet ?12 ?13
38429 16398: Id : 7, {_}:
38430 join ?15 ?16 =?= join ?16 ?15
38431 [16, 15] by commutativity_of_join ?15 ?16
38432 16398: Id : 8, {_}:
38433 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38434 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38435 16398: Id : 9, {_}:
38436 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38437 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38438 16398: Id : 10, {_}:
38439 meet ?26 (join ?27 (meet ?28 (join ?26 ?29)))
38441 meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29)))))
38442 [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29
38444 16398: Id : 1, {_}:
38445 meet a (join b (meet c (join a d)))
38447 meet a (join b (join (meet a c) (meet c (join b d))))
38452 16398: d 2 0 2 2,2,2,2,2
38453 16398: b 3 0 3 1,2,2
38454 16398: c 3 0 3 1,2,2,2
38456 16398: meet 19 2 5 0,2
38457 16398: join 19 2 5 0,2,2
38458 % SZS status Timeout for LAT158-1.p
38459 NO CLASH, using fixed ground order
38461 17619: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38462 17619: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38463 17619: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38464 17619: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38465 17619: Id : 6, {_}:
38466 meet ?12 ?13 =?= meet ?13 ?12
38467 [13, 12] by commutativity_of_meet ?12 ?13
38468 17619: Id : 7, {_}:
38469 join ?15 ?16 =?= join ?16 ?15
38470 [16, 15] by commutativity_of_join ?15 ?16
38471 17619: Id : 8, {_}:
38472 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38473 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38474 17619: Id : 9, {_}:
38475 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38476 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38477 17619: Id : 10, {_}:
38478 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38480 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
38481 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
38483 17619: Id : 1, {_}:
38484 meet a (join b (meet a (meet c d)))
38486 meet a (join b (meet c (join (meet a d) (meet b d))))
38491 17619: c 2 0 2 1,2,2,2,2
38492 17619: b 3 0 3 1,2,2
38493 17619: d 3 0 3 2,2,2,2,2
38495 17619: join 16 2 3 0,2,2
38496 17619: meet 21 2 7 0,2
38497 NO CLASH, using fixed ground order
38499 17620: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38500 17620: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38501 17620: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38502 17620: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38503 17620: Id : 6, {_}:
38504 meet ?12 ?13 =?= meet ?13 ?12
38505 [13, 12] by commutativity_of_meet ?12 ?13
38506 17620: Id : 7, {_}:
38507 join ?15 ?16 =?= join ?16 ?15
38508 [16, 15] by commutativity_of_join ?15 ?16
38509 17620: Id : 8, {_}:
38510 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38511 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38512 17620: Id : 9, {_}:
38513 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38514 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38515 17620: Id : 10, {_}:
38516 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38518 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
38519 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
38521 NO CLASH, using fixed ground order
38522 17620: Id : 1, {_}:
38523 meet a (join b (meet a (meet c d)))
38525 meet a (join b (meet c (join (meet a d) (meet b d))))
38530 17620: c 2 0 2 1,2,2,2,2
38531 17620: b 3 0 3 1,2,2
38532 17620: d 3 0 3 2,2,2,2,2
38534 17620: join 16 2 3 0,2,2
38535 17620: meet 21 2 7 0,2
38537 17622: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38538 17622: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38539 17622: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38540 17622: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38541 17622: Id : 6, {_}:
38542 meet ?12 ?13 =?= meet ?13 ?12
38543 [13, 12] by commutativity_of_meet ?12 ?13
38544 17622: Id : 7, {_}:
38545 join ?15 ?16 =?= join ?16 ?15
38546 [16, 15] by commutativity_of_join ?15 ?16
38547 17622: Id : 8, {_}:
38548 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38549 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38550 17622: Id : 9, {_}:
38551 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38552 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38553 17622: Id : 10, {_}:
38554 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38556 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
38557 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
38559 17622: Id : 1, {_}:
38560 meet a (join b (meet a (meet c d)))
38562 meet a (join b (meet c (join (meet a d) (meet b d))))
38567 17622: c 2 0 2 1,2,2,2,2
38568 17622: b 3 0 3 1,2,2
38569 17622: d 3 0 3 2,2,2,2,2
38571 17622: join 16 2 3 0,2,2
38572 17622: meet 21 2 7 0,2
38573 % SZS status Timeout for LAT163-1.p
38574 NO CLASH, using fixed ground order
38576 17778: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38577 17778: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38578 17778: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38579 17778: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38580 17778: Id : 6, {_}:
38581 meet ?12 ?13 =?= meet ?13 ?12
38582 [13, 12] by commutativity_of_meet ?12 ?13
38583 17778: Id : 7, {_}:
38584 join ?15 ?16 =?= join ?16 ?15
38585 [16, 15] by commutativity_of_join ?15 ?16
38586 17778: Id : 8, {_}:
38587 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38588 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38589 17778: Id : 9, {_}:
38590 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38591 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38592 17778: Id : 10, {_}:
38593 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38595 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
38596 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
38598 17778: Id : 1, {_}:
38599 meet a (join b (meet c (join b d)))
38601 meet a (join b (meet c (join d (meet a (meet b c)))))
38606 17778: d 2 0 2 2,2,2,2,2
38608 17778: c 3 0 3 1,2,2,2
38609 17778: b 4 0 4 1,2,2
38610 17778: join 17 2 4 0,2,2
38611 17778: meet 20 2 6 0,2
38612 NO CLASH, using fixed ground order
38614 17779: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38615 17779: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38616 17779: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38617 17779: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38618 17779: Id : 6, {_}:
38619 meet ?12 ?13 =?= meet ?13 ?12
38620 [13, 12] by commutativity_of_meet ?12 ?13
38621 17779: Id : 7, {_}:
38622 join ?15 ?16 =?= join ?16 ?15
38623 [16, 15] by commutativity_of_join ?15 ?16
38624 17779: Id : 8, {_}:
38625 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38626 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38627 17779: Id : 9, {_}:
38628 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38629 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38630 17779: Id : 10, {_}:
38631 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38633 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
38634 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
38636 17779: Id : 1, {_}:
38637 meet a (join b (meet c (join b d)))
38639 meet a (join b (meet c (join d (meet a (meet b c)))))
38644 17779: d 2 0 2 2,2,2,2,2
38646 17779: c 3 0 3 1,2,2,2
38647 17779: b 4 0 4 1,2,2
38648 17779: join 17 2 4 0,2,2
38649 17779: meet 20 2 6 0,2
38650 NO CLASH, using fixed ground order
38652 17780: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38653 17780: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38654 17780: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38655 17780: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38656 17780: Id : 6, {_}:
38657 meet ?12 ?13 =?= meet ?13 ?12
38658 [13, 12] by commutativity_of_meet ?12 ?13
38659 17780: Id : 7, {_}:
38660 join ?15 ?16 =?= join ?16 ?15
38661 [16, 15] by commutativity_of_join ?15 ?16
38662 17780: Id : 8, {_}:
38663 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38664 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38665 17780: Id : 9, {_}:
38666 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38667 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38668 17780: Id : 10, {_}:
38669 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38671 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27))))
38672 [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29
38674 17780: Id : 1, {_}:
38675 meet a (join b (meet c (join b d)))
38677 meet a (join b (meet c (join d (meet a (meet b c)))))
38682 17780: d 2 0 2 2,2,2,2,2
38684 17780: c 3 0 3 1,2,2,2
38685 17780: b 4 0 4 1,2,2
38686 17780: join 17 2 4 0,2,2
38687 17780: meet 20 2 6 0,2
38688 % SZS status Timeout for LAT165-1.p
38689 NO CLASH, using fixed ground order
38691 18025: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38692 18025: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38693 18025: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38694 18025: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38695 18025: Id : 6, {_}:
38696 meet ?12 ?13 =?= meet ?13 ?12
38697 [13, 12] by commutativity_of_meet ?12 ?13
38698 18025: Id : 7, {_}:
38699 join ?15 ?16 =?= join ?16 ?15
38700 [16, 15] by commutativity_of_join ?15 ?16
38701 18025: Id : 8, {_}:
38702 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38703 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38704 18025: Id : 9, {_}:
38705 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38706 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38707 18025: Id : 10, {_}:
38708 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38710 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28)))))
38711 [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29
38713 18025: Id : 1, {_}:
38714 meet a (join b (meet c (join b d)))
38716 meet a (join b (meet c (join d (meet b (join a d)))))
38721 18025: c 2 0 2 1,2,2,2
38723 18025: d 3 0 3 2,2,2,2,2
38724 18025: b 4 0 4 1,2,2
38725 18025: join 18 2 5 0,2,2
38726 18025: meet 20 2 5 0,2
38727 NO CLASH, using fixed ground order
38729 18026: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38730 18026: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38731 18026: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38732 18026: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38733 18026: Id : 6, {_}:
38734 meet ?12 ?13 =?= meet ?13 ?12
38735 [13, 12] by commutativity_of_meet ?12 ?13
38736 18026: Id : 7, {_}:
38737 join ?15 ?16 =?= join ?16 ?15
38738 [16, 15] by commutativity_of_join ?15 ?16
38739 18026: Id : 8, {_}:
38740 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38741 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38742 18026: Id : 9, {_}:
38743 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38744 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38745 18026: Id : 10, {_}:
38746 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38748 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28)))))
38749 [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29
38751 18026: Id : 1, {_}:
38752 meet a (join b (meet c (join b d)))
38754 meet a (join b (meet c (join d (meet b (join a d)))))
38759 18026: c 2 0 2 1,2,2,2
38761 18026: d 3 0 3 2,2,2,2,2
38762 18026: b 4 0 4 1,2,2
38763 18026: join 18 2 5 0,2,2
38764 18026: meet 20 2 5 0,2
38765 NO CLASH, using fixed ground order
38767 18027: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38768 18027: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38769 18027: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38770 18027: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38771 18027: Id : 6, {_}:
38772 meet ?12 ?13 =?= meet ?13 ?12
38773 [13, 12] by commutativity_of_meet ?12 ?13
38774 18027: Id : 7, {_}:
38775 join ?15 ?16 =?= join ?16 ?15
38776 [16, 15] by commutativity_of_join ?15 ?16
38777 18027: Id : 8, {_}:
38778 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38779 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38780 18027: Id : 9, {_}:
38781 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38782 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38783 18027: Id : 10, {_}:
38784 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38786 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28)))))
38787 [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29
38789 18027: Id : 1, {_}:
38790 meet a (join b (meet c (join b d)))
38792 meet a (join b (meet c (join d (meet b (join a d)))))
38797 18027: c 2 0 2 1,2,2,2
38799 18027: d 3 0 3 2,2,2,2,2
38800 18027: b 4 0 4 1,2,2
38801 18027: join 18 2 5 0,2,2
38802 18027: meet 20 2 5 0,2
38803 % SZS status Timeout for LAT166-1.p
38804 NO CLASH, using fixed ground order
38805 NO CLASH, using fixed ground order
38807 18051: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38808 18051: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38809 18051: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38810 18051: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38811 18051: Id : 6, {_}:
38812 meet ?12 ?13 =?= meet ?13 ?12
38813 [13, 12] by commutativity_of_meet ?12 ?13
38814 18051: Id : 7, {_}:
38815 join ?15 ?16 =?= join ?16 ?15
38816 [16, 15] by commutativity_of_join ?15 ?16
38817 18051: Id : 8, {_}:
38818 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38819 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38820 18051: Id : 9, {_}:
38821 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38822 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38823 18051: Id : 10, {_}:
38824 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38826 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?27 (join ?26 ?29)))))
38827 [29, 28, 27, 26] by equation_H78 ?26 ?27 ?28 ?29
38829 18051: Id : 1, {_}:
38830 meet a (join b (meet c (join b d)))
38832 meet a (join b (meet c (join d (meet a (meet b c)))))
38837 18051: d 2 0 2 2,2,2,2,2
38839 18051: c 3 0 3 1,2,2,2
38840 18051: b 4 0 4 1,2,2
38841 18051: join 18 2 4 0,2,2
38842 18051: meet 20 2 6 0,2
38843 NO CLASH, using fixed ground order
38845 18052: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38846 18052: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38847 18052: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38848 18052: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38849 18052: Id : 6, {_}:
38850 meet ?12 ?13 =?= meet ?13 ?12
38851 [13, 12] by commutativity_of_meet ?12 ?13
38852 18052: Id : 7, {_}:
38853 join ?15 ?16 =?= join ?16 ?15
38854 [16, 15] by commutativity_of_join ?15 ?16
38855 18052: Id : 8, {_}:
38856 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38857 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38858 18052: Id : 9, {_}:
38859 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38860 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38861 18052: Id : 10, {_}:
38862 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38864 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?27 (join ?26 ?29)))))
38865 [29, 28, 27, 26] by equation_H78 ?26 ?27 ?28 ?29
38867 18052: Id : 1, {_}:
38868 meet a (join b (meet c (join b d)))
38870 meet a (join b (meet c (join d (meet a (meet b c)))))
38875 18052: d 2 0 2 2,2,2,2,2
38877 18052: c 3 0 3 1,2,2,2
38878 18052: b 4 0 4 1,2,2
38879 18052: join 18 2 4 0,2,2
38880 18052: meet 20 2 6 0,2
38882 18050: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38883 18050: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38884 18050: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38885 18050: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38886 18050: Id : 6, {_}:
38887 meet ?12 ?13 =?= meet ?13 ?12
38888 [13, 12] by commutativity_of_meet ?12 ?13
38889 18050: Id : 7, {_}:
38890 join ?15 ?16 =?= join ?16 ?15
38891 [16, 15] by commutativity_of_join ?15 ?16
38892 18050: Id : 8, {_}:
38893 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38894 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38895 18050: Id : 9, {_}:
38896 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38897 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38898 18050: Id : 10, {_}:
38899 meet ?26 (join ?27 (meet ?28 (join ?27 ?29)))
38901 meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?27 (join ?26 ?29)))))
38902 [29, 28, 27, 26] by equation_H78 ?26 ?27 ?28 ?29
38904 18050: Id : 1, {_}:
38905 meet a (join b (meet c (join b d)))
38907 meet a (join b (meet c (join d (meet a (meet b c)))))
38912 18050: d 2 0 2 2,2,2,2,2
38914 18050: c 3 0 3 1,2,2,2
38915 18050: b 4 0 4 1,2,2
38916 18050: join 18 2 4 0,2,2
38917 18050: meet 20 2 6 0,2
38918 % SZS status Timeout for LAT167-1.p
38919 NO CLASH, using fixed ground order
38921 18084: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38922 18084: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38923 18084: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38924 18084: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38925 18084: Id : 6, {_}:
38926 meet ?12 ?13 =?= meet ?13 ?12
38927 [13, 12] by commutativity_of_meet ?12 ?13
38928 18084: Id : 7, {_}:
38929 join ?15 ?16 =?= join ?16 ?15
38930 [16, 15] by commutativity_of_join ?15 ?16
38931 18084: Id : 8, {_}:
38932 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
38933 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38934 18084: Id : 9, {_}:
38935 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
38936 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38937 18084: Id : 10, {_}:
38938 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
38940 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
38941 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
38943 18084: Id : 1, {_}:
38944 meet a (join b (meet a (meet c d)))
38946 meet a (join b (meet c (join (meet a d) (meet b d))))
38951 18084: c 2 0 2 1,2,2,2,2
38952 18084: b 3 0 3 1,2,2
38953 18084: d 3 0 3 2,2,2,2,2
38955 18084: join 17 2 3 0,2,2
38956 18084: meet 20 2 7 0,2
38957 NO CLASH, using fixed ground order
38959 18085: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38960 18085: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38961 18085: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
38962 18085: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
38963 18085: Id : 6, {_}:
38964 meet ?12 ?13 =?= meet ?13 ?12
38965 [13, 12] by commutativity_of_meet ?12 ?13
38966 18085: Id : 7, {_}:
38967 join ?15 ?16 =?= join ?16 ?15
38968 [16, 15] by commutativity_of_join ?15 ?16
38969 18085: Id : 8, {_}:
38970 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
38971 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
38972 18085: Id : 9, {_}:
38973 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
38974 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
38975 18085: Id : 10, {_}:
38976 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
38978 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
38979 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
38981 18085: Id : 1, {_}:
38982 meet a (join b (meet a (meet c d)))
38984 meet a (join b (meet c (join (meet a d) (meet b d))))
38989 18085: c 2 0 2 1,2,2,2,2
38990 18085: b 3 0 3 1,2,2
38991 18085: d 3 0 3 2,2,2,2,2
38993 18085: join 17 2 3 0,2,2
38994 18085: meet 20 2 7 0,2
38995 NO CLASH, using fixed ground order
38997 18086: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
38998 18086: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
38999 18086: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39000 18086: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39001 18086: Id : 6, {_}:
39002 meet ?12 ?13 =?= meet ?13 ?12
39003 [13, 12] by commutativity_of_meet ?12 ?13
39004 18086: Id : 7, {_}:
39005 join ?15 ?16 =?= join ?16 ?15
39006 [16, 15] by commutativity_of_join ?15 ?16
39007 18086: Id : 8, {_}:
39008 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
39009 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39010 18086: Id : 9, {_}:
39011 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
39012 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39013 18086: Id : 10, {_}:
39014 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
39016 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
39017 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
39019 18086: Id : 1, {_}:
39020 meet a (join b (meet a (meet c d)))
39022 meet a (join b (meet c (join (meet a d) (meet b d))))
39027 18086: c 2 0 2 1,2,2,2,2
39028 18086: b 3 0 3 1,2,2
39029 18086: d 3 0 3 2,2,2,2,2
39031 18086: join 17 2 3 0,2,2
39032 18086: meet 20 2 7 0,2
39033 % SZS status Timeout for LAT172-1.p
39034 NO CLASH, using fixed ground order
39036 18325: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39037 18325: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39038 18325: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39039 18325: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39040 18325: Id : 6, {_}:
39041 meet ?12 ?13 =?= meet ?13 ?12
39042 [13, 12] by commutativity_of_meet ?12 ?13
39043 18325: Id : 7, {_}:
39044 join ?15 ?16 =?= join ?16 ?15
39045 [16, 15] by commutativity_of_join ?15 ?16
39046 18325: Id : 8, {_}:
39047 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
39048 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39049 18325: Id : 9, {_}:
39050 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
39051 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39052 18325: Id : 10, {_}:
39053 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
39055 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
39056 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
39058 18325: Id : 1, {_}:
39059 meet a (join b (meet c (join a d)))
39061 meet a (join b (meet c (join d (meet c (join a b)))))
39066 18325: d 2 0 2 2,2,2,2,2
39067 18325: b 3 0 3 1,2,2
39068 18325: c 3 0 3 1,2,2,2
39070 18325: meet 18 2 5 0,2
39071 18325: join 19 2 5 0,2,2
39072 NO CLASH, using fixed ground order
39074 18329: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39075 18329: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39076 18329: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39077 18329: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39078 18329: Id : 6, {_}:
39079 meet ?12 ?13 =?= meet ?13 ?12
39080 [13, 12] by commutativity_of_meet ?12 ?13
39081 18329: Id : 7, {_}:
39082 join ?15 ?16 =?= join ?16 ?15
39083 [16, 15] by commutativity_of_join ?15 ?16
39084 18329: Id : 8, {_}:
39085 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
39086 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39087 18329: Id : 9, {_}:
39088 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
39089 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39090 18329: Id : 10, {_}:
39091 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
39093 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
39094 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
39096 18329: Id : 1, {_}:
39097 meet a (join b (meet c (join a d)))
39099 meet a (join b (meet c (join d (meet c (join a b)))))
39104 18329: d 2 0 2 2,2,2,2,2
39105 18329: b 3 0 3 1,2,2
39106 18329: c 3 0 3 1,2,2,2
39108 18329: meet 18 2 5 0,2
39109 18329: join 19 2 5 0,2,2
39110 NO CLASH, using fixed ground order
39112 18330: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39113 18330: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39114 18330: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39115 18330: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39116 18330: Id : 6, {_}:
39117 meet ?12 ?13 =?= meet ?13 ?12
39118 [13, 12] by commutativity_of_meet ?12 ?13
39119 18330: Id : 7, {_}:
39120 join ?15 ?16 =?= join ?16 ?15
39121 [16, 15] by commutativity_of_join ?15 ?16
39122 18330: Id : 8, {_}:
39123 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
39124 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39125 18330: Id : 9, {_}:
39126 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
39127 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39128 18330: Id : 10, {_}:
39129 join ?26 (meet ?27 (join ?28 (meet ?27 ?29)))
39131 join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27))))
39132 [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29
39134 18330: Id : 1, {_}:
39135 meet a (join b (meet c (join a d)))
39137 meet a (join b (meet c (join d (meet c (join a b)))))
39142 18330: d 2 0 2 2,2,2,2,2
39143 18330: b 3 0 3 1,2,2
39144 18330: c 3 0 3 1,2,2,2
39146 18330: meet 18 2 5 0,2
39147 18330: join 19 2 5 0,2,2
39148 % SZS status Timeout for LAT173-1.p
39149 NO CLASH, using fixed ground order
39151 19752: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39152 19752: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39153 19752: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39154 19752: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39155 19752: Id : 6, {_}:
39156 meet ?12 ?13 =?= meet ?13 ?12
39157 [13, 12] by commutativity_of_meet ?12 ?13
39158 19752: Id : 7, {_}:
39159 join ?15 ?16 =?= join ?16 ?15
39160 [16, 15] by commutativity_of_join ?15 ?16
39161 19752: Id : 8, {_}:
39162 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
39163 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39164 NO CLASH, using fixed ground order
39166 19755: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39167 19755: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39168 19755: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39169 19755: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39170 19755: Id : 6, {_}:
39171 meet ?12 ?13 =?= meet ?13 ?12
39172 [13, 12] by commutativity_of_meet ?12 ?13
39173 19755: Id : 7, {_}:
39174 join ?15 ?16 =?= join ?16 ?15
39175 [16, 15] by commutativity_of_join ?15 ?16
39176 19755: Id : 8, {_}:
39177 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
39178 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39179 19755: Id : 9, {_}:
39180 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
39181 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39182 NO CLASH, using fixed ground order
39184 19757: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39185 19757: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39186 19757: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39187 19757: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39188 19757: Id : 6, {_}:
39189 meet ?12 ?13 =?= meet ?13 ?12
39190 [13, 12] by commutativity_of_meet ?12 ?13
39191 19757: Id : 7, {_}:
39192 join ?15 ?16 =?= join ?16 ?15
39193 [16, 15] by commutativity_of_join ?15 ?16
39194 19757: Id : 8, {_}:
39195 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
39196 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39197 19757: Id : 9, {_}:
39198 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
39199 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39200 19757: Id : 10, {_}:
39201 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
39203 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
39204 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
39206 19757: Id : 1, {_}:
39207 meet a (join b (meet a (meet c d)))
39209 meet a (join b (meet c (join (meet a d) (meet b d))))
39214 19757: c 2 0 2 1,2,2,2,2
39215 19757: b 3 0 3 1,2,2
39216 19757: d 3 0 3 2,2,2,2,2
39218 19757: join 18 2 3 0,2,2
39219 19757: meet 20 2 7 0,2
39220 19752: Id : 9, {_}:
39221 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
39222 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39223 19752: Id : 10, {_}:
39224 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
39226 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
39227 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
39229 19752: Id : 1, {_}:
39230 meet a (join b (meet a (meet c d)))
39232 meet a (join b (meet c (join (meet a d) (meet b d))))
39237 19752: c 2 0 2 1,2,2,2,2
39238 19752: b 3 0 3 1,2,2
39239 19752: d 3 0 3 2,2,2,2,2
39241 19752: join 18 2 3 0,2,2
39242 19752: meet 20 2 7 0,2
39243 19755: Id : 10, {_}:
39244 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
39246 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
39247 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
39249 19755: Id : 1, {_}:
39250 meet a (join b (meet a (meet c d)))
39252 meet a (join b (meet c (join (meet a d) (meet b d))))
39257 19755: c 2 0 2 1,2,2,2,2
39258 19755: b 3 0 3 1,2,2
39259 19755: d 3 0 3 2,2,2,2,2
39261 19755: join 18 2 3 0,2,2
39262 19755: meet 20 2 7 0,2
39263 % SZS status Timeout for LAT175-1.p
39264 NO CLASH, using fixed ground order
39266 21153: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39267 21153: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39268 21153: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39269 21153: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39270 21153: Id : 6, {_}:
39271 meet ?12 ?13 =?= meet ?13 ?12
39272 [13, 12] by commutativity_of_meet ?12 ?13
39273 21153: Id : 7, {_}:
39274 join ?15 ?16 =?= join ?16 ?15
39275 [16, 15] by commutativity_of_join ?15 ?16
39276 21153: Id : 8, {_}:
39277 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
39278 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39279 21153: Id : 9, {_}:
39280 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
39281 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39282 21153: Id : 10, {_}:
39283 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
39285 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
39286 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
39288 21153: Id : 1, {_}:
39289 meet a (join b (meet c (join a d)))
39291 meet a (join b (meet c (join b (join d (meet a c)))))
39296 21153: d 2 0 2 2,2,2,2,2
39297 21153: b 3 0 3 1,2,2
39298 21153: c 3 0 3 1,2,2,2
39300 21153: meet 18 2 5 0,2
39301 21153: join 20 2 5 0,2,2
39302 NO CLASH, using fixed ground order
39304 21154: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39305 21154: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39306 21154: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39307 21154: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39308 21154: Id : 6, {_}:
39309 meet ?12 ?13 =?= meet ?13 ?12
39310 [13, 12] by commutativity_of_meet ?12 ?13
39311 21154: Id : 7, {_}:
39312 join ?15 ?16 =?= join ?16 ?15
39313 [16, 15] by commutativity_of_join ?15 ?16
39314 21154: Id : 8, {_}:
39315 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
39316 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39317 21154: Id : 9, {_}:
39318 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
39319 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39320 21154: Id : 10, {_}:
39321 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
39323 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
39324 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
39326 21154: Id : 1, {_}:
39327 meet a (join b (meet c (join a d)))
39329 meet a (join b (meet c (join b (join d (meet a c)))))
39334 21154: d 2 0 2 2,2,2,2,2
39335 21154: b 3 0 3 1,2,2
39336 21154: c 3 0 3 1,2,2,2
39338 21154: meet 18 2 5 0,2
39339 21154: join 20 2 5 0,2,2
39340 NO CLASH, using fixed ground order
39342 21155: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
39343 21155: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
39344 21155: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
39345 21155: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
39346 21155: Id : 6, {_}:
39347 meet ?12 ?13 =?= meet ?13 ?12
39348 [13, 12] by commutativity_of_meet ?12 ?13
39349 21155: Id : 7, {_}:
39350 join ?15 ?16 =?= join ?16 ?15
39351 [16, 15] by commutativity_of_join ?15 ?16
39352 21155: Id : 8, {_}:
39353 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
39354 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
39355 21155: Id : 9, {_}:
39356 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
39357 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
39358 21155: Id : 10, {_}:
39359 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
39361 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
39362 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
39364 21155: Id : 1, {_}:
39365 meet a (join b (meet c (join a d)))
39367 meet a (join b (meet c (join b (join d (meet a c)))))
39372 21155: d 2 0 2 2,2,2,2,2
39373 21155: b 3 0 3 1,2,2
39374 21155: c 3 0 3 1,2,2,2
39376 21155: meet 18 2 5 0,2
39377 21155: join 20 2 5 0,2,2
39378 % SZS status Timeout for LAT176-1.p
39379 NO CLASH, using fixed ground order
39381 23137: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
39382 23137: Id : 3, {_}:
39383 add ?4 additive_identity =>= ?4
39384 [4] by right_additive_identity ?4
39385 23137: Id : 4, {_}:
39386 add (additive_inverse ?6) ?6 =>= additive_identity
39387 [6] by left_additive_inverse ?6
39388 23137: Id : 5, {_}:
39389 add ?8 (additive_inverse ?8) =>= additive_identity
39390 [8] by right_additive_inverse ?8
39391 23137: Id : 6, {_}:
39392 add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12
39393 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
39394 23137: Id : 7, {_}:
39395 add ?14 ?15 =?= add ?15 ?14
39396 [15, 14] by commutativity_for_addition ?14 ?15
39397 23137: Id : 8, {_}:
39398 multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19
39399 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
39400 23137: Id : 9, {_}:
39401 multiply ?21 (add ?22 ?23)
39403 add (multiply ?21 ?22) (multiply ?21 ?23)
39404 [23, 22, 21] by distribute1 ?21 ?22 ?23
39405 23137: Id : 10, {_}:
39406 multiply (add ?25 ?26) ?27
39408 add (multiply ?25 ?27) (multiply ?26 ?27)
39409 [27, 26, 25] by distribute2 ?25 ?26 ?27
39410 23137: Id : 11, {_}:
39411 multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29
39412 [29] by x_fourthed_is_x ?29
39413 23137: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
39415 23137: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
39422 23137: additive_identity 4 0 0
39423 23137: additive_inverse 2 1 0
39425 23137: multiply 15 2 1 0,2
39426 NO CLASH, using fixed ground order
39428 23138: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
39429 23138: Id : 3, {_}:
39430 add ?4 additive_identity =>= ?4
39431 [4] by right_additive_identity ?4
39432 23138: Id : 4, {_}:
39433 add (additive_inverse ?6) ?6 =>= additive_identity
39434 [6] by left_additive_inverse ?6
39435 23138: Id : 5, {_}:
39436 add ?8 (additive_inverse ?8) =>= additive_identity
39437 [8] by right_additive_inverse ?8
39438 23138: Id : 6, {_}:
39439 add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12
39440 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
39441 23138: Id : 7, {_}:
39442 add ?14 ?15 =?= add ?15 ?14
39443 [15, 14] by commutativity_for_addition ?14 ?15
39444 23138: Id : 8, {_}:
39445 multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19
39446 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
39447 23138: Id : 9, {_}:
39448 multiply ?21 (add ?22 ?23)
39450 add (multiply ?21 ?22) (multiply ?21 ?23)
39451 [23, 22, 21] by distribute1 ?21 ?22 ?23
39452 23138: Id : 10, {_}:
39453 multiply (add ?25 ?26) ?27
39455 add (multiply ?25 ?27) (multiply ?26 ?27)
39456 [27, 26, 25] by distribute2 ?25 ?26 ?27
39457 23138: Id : 11, {_}:
39458 multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29
39459 [29] by x_fourthed_is_x ?29
39460 23138: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
39462 23138: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
39469 23138: additive_identity 4 0 0
39470 23138: additive_inverse 2 1 0
39472 23138: multiply 15 2 1 0,2
39473 NO CLASH, using fixed ground order
39475 23139: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
39476 23139: Id : 3, {_}:
39477 add ?4 additive_identity =>= ?4
39478 [4] by right_additive_identity ?4
39479 23139: Id : 4, {_}:
39480 add (additive_inverse ?6) ?6 =>= additive_identity
39481 [6] by left_additive_inverse ?6
39482 23139: Id : 5, {_}:
39483 add ?8 (additive_inverse ?8) =>= additive_identity
39484 [8] by right_additive_inverse ?8
39485 23139: Id : 6, {_}:
39486 add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12
39487 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
39488 23139: Id : 7, {_}:
39489 add ?14 ?15 =?= add ?15 ?14
39490 [15, 14] by commutativity_for_addition ?14 ?15
39491 23139: Id : 8, {_}:
39492 multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19
39493 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
39494 23139: Id : 9, {_}:
39495 multiply ?21 (add ?22 ?23)
39497 add (multiply ?21 ?22) (multiply ?21 ?23)
39498 [23, 22, 21] by distribute1 ?21 ?22 ?23
39499 23139: Id : 10, {_}:
39500 multiply (add ?25 ?26) ?27
39502 add (multiply ?25 ?27) (multiply ?26 ?27)
39503 [27, 26, 25] by distribute2 ?25 ?26 ?27
39504 23139: Id : 11, {_}:
39505 multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29
39506 [29] by x_fourthed_is_x ?29
39507 23139: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
39509 23139: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
39516 23139: additive_identity 4 0 0
39517 23139: additive_inverse 2 1 0
39519 23139: multiply 15 2 1 0,2
39520 % SZS status Timeout for RNG035-7.p
39521 NO CLASH, using fixed ground order
39523 NO CLASH, using fixed ground order
39525 23162: Id : 2, {_}:
39526 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3
39527 [4, 3, 2] by c1 ?2 ?3 ?4
39529 23162: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39533 23162: b 1 0 1 1,2,2
39534 23162: a 4 0 4 1,1,2
39535 23162: nand 9 2 3 0,2
39536 23161: Id : 2, {_}:
39537 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3
39538 [4, 3, 2] by c1 ?2 ?3 ?4
39540 23161: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39544 23161: b 1 0 1 1,2,2
39545 23161: a 4 0 4 1,1,2
39546 23161: nand 9 2 3 0,2
39547 NO CLASH, using fixed ground order
39549 23163: Id : 2, {_}:
39550 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3
39551 [4, 3, 2] by c1 ?2 ?3 ?4
39553 23163: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39557 23163: b 1 0 1 1,2,2
39558 23163: a 4 0 4 1,1,2
39559 23163: nand 9 2 3 0,2
39560 % SZS status Timeout for BOO077-1.p
39561 NO CLASH, using fixed ground order
39563 23212: Id : 2, {_}:
39564 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3
39565 [4, 3, 2] by c1 ?2 ?3 ?4
39567 23212: Id : 1, {_}:
39568 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39569 [] by prove_meredith_2_basis_2
39573 23212: c 2 0 2 2,2,2,2
39575 23212: b 3 0 3 1,2,2
39576 23212: nand 12 2 6 0,2
39577 NO CLASH, using fixed ground order
39579 23213: Id : 2, {_}:
39580 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3
39581 [4, 3, 2] by c1 ?2 ?3 ?4
39583 23213: Id : 1, {_}:
39584 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39585 [] by prove_meredith_2_basis_2
39589 23213: c 2 0 2 2,2,2,2
39591 23213: b 3 0 3 1,2,2
39592 23213: nand 12 2 6 0,2
39593 NO CLASH, using fixed ground order
39595 23214: Id : 2, {_}:
39596 nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?2 ?4)) =>= ?3
39597 [4, 3, 2] by c1 ?2 ?3 ?4
39599 23214: Id : 1, {_}:
39600 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39601 [] by prove_meredith_2_basis_2
39605 23214: c 2 0 2 2,2,2,2
39607 23214: b 3 0 3 1,2,2
39608 23214: nand 12 2 6 0,2
39609 % SZS status Timeout for BOO078-1.p
39610 NO CLASH, using fixed ground order
39612 23320: Id : 2, {_}:
39613 nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3
39614 [4, 3, 2] by c2 ?2 ?3 ?4
39616 23320: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39620 23320: b 1 0 1 1,2,2
39621 23320: a 4 0 4 1,1,2
39622 23320: nand 9 2 3 0,2
39623 NO CLASH, using fixed ground order
39625 23321: Id : 2, {_}:
39626 nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3
39627 [4, 3, 2] by c2 ?2 ?3 ?4
39629 23321: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39633 23321: b 1 0 1 1,2,2
39634 23321: a 4 0 4 1,1,2
39635 23321: nand 9 2 3 0,2
39636 NO CLASH, using fixed ground order
39638 23322: Id : 2, {_}:
39639 nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3
39640 [4, 3, 2] by c2 ?2 ?3 ?4
39642 23322: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39646 23322: b 1 0 1 1,2,2
39647 23322: a 4 0 4 1,1,2
39648 23322: nand 9 2 3 0,2
39649 % SZS status Timeout for BOO079-1.p
39650 NO CLASH, using fixed ground order
39652 23351: Id : 2, {_}:
39653 nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3
39654 [4, 3, 2] by c2 ?2 ?3 ?4
39656 NO CLASH, using fixed ground order
39658 23352: Id : 2, {_}:
39659 nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3
39660 [4, 3, 2] by c2 ?2 ?3 ?4
39662 23352: Id : 1, {_}:
39663 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39664 [] by prove_meredith_2_basis_2
39668 23352: c 2 0 2 2,2,2,2
39670 23352: b 3 0 3 1,2,2
39671 23352: nand 12 2 6 0,2
39672 NO CLASH, using fixed ground order
39674 23353: Id : 2, {_}:
39675 nand (nand ?2 (nand ?2 (nand ?3 ?2))) (nand ?3 (nand ?4 ?2)) =>= ?3
39676 [4, 3, 2] by c2 ?2 ?3 ?4
39678 23353: Id : 1, {_}:
39679 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39680 [] by prove_meredith_2_basis_2
39684 23353: c 2 0 2 2,2,2,2
39686 23353: b 3 0 3 1,2,2
39687 23353: nand 12 2 6 0,2
39688 23351: Id : 1, {_}:
39689 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39690 [] by prove_meredith_2_basis_2
39694 23351: c 2 0 2 2,2,2,2
39696 23351: b 3 0 3 1,2,2
39697 23351: nand 12 2 6 0,2
39698 % SZS status Timeout for BOO080-1.p
39699 NO CLASH, using fixed ground order
39701 23376: Id : 2, {_}:
39702 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
39703 [4, 3, 2] by c3 ?2 ?3 ?4
39705 23376: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39709 23376: b 1 0 1 1,2,2
39710 23376: a 4 0 4 1,1,2
39711 23376: nand 9 2 3 0,2
39712 NO CLASH, using fixed ground order
39714 23377: Id : 2, {_}:
39715 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
39716 [4, 3, 2] by c3 ?2 ?3 ?4
39718 23377: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39722 23377: b 1 0 1 1,2,2
39723 23377: a 4 0 4 1,1,2
39724 23377: nand 9 2 3 0,2
39725 NO CLASH, using fixed ground order
39727 23378: Id : 2, {_}:
39728 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
39729 [4, 3, 2] by c3 ?2 ?3 ?4
39731 23378: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39735 23378: b 1 0 1 1,2,2
39736 23378: a 4 0 4 1,1,2
39737 23378: nand 9 2 3 0,2
39738 % SZS status Timeout for BOO081-1.p
39739 NO CLASH, using fixed ground order
39741 23400: Id : 2, {_}:
39742 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
39743 [4, 3, 2] by c3 ?2 ?3 ?4
39745 23400: Id : 1, {_}:
39746 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39747 [] by prove_meredith_2_basis_2
39751 23400: c 2 0 2 2,2,2,2
39753 23400: b 3 0 3 1,2,2
39754 23400: nand 12 2 6 0,2
39755 NO CLASH, using fixed ground order
39757 23401: Id : 2, {_}:
39758 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
39759 [4, 3, 2] by c3 ?2 ?3 ?4
39761 23401: Id : 1, {_}:
39762 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39763 [] by prove_meredith_2_basis_2
39767 23401: c 2 0 2 2,2,2,2
39769 23401: b 3 0 3 1,2,2
39770 23401: nand 12 2 6 0,2
39771 NO CLASH, using fixed ground order
39773 23402: Id : 2, {_}:
39774 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
39775 [4, 3, 2] by c3 ?2 ?3 ?4
39777 23402: Id : 1, {_}:
39778 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39779 [] by prove_meredith_2_basis_2
39783 23402: c 2 0 2 2,2,2,2
39785 23402: b 3 0 3 1,2,2
39786 23402: nand 12 2 6 0,2
39787 % SZS status Timeout for BOO082-1.p
39788 NO CLASH, using fixed ground order
39790 23425: Id : 2, {_}:
39791 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3
39792 [4, 3, 2] by c4 ?2 ?3 ?4
39794 23425: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39798 23425: b 1 0 1 1,2,2
39799 23425: a 4 0 4 1,1,2
39800 23425: nand 9 2 3 0,2
39801 NO CLASH, using fixed ground order
39803 23426: Id : 2, {_}:
39804 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3
39805 [4, 3, 2] by c4 ?2 ?3 ?4
39807 23426: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39811 23426: b 1 0 1 1,2,2
39812 23426: a 4 0 4 1,1,2
39813 23426: nand 9 2 3 0,2
39814 NO CLASH, using fixed ground order
39816 23427: Id : 2, {_}:
39817 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3
39818 [4, 3, 2] by c4 ?2 ?3 ?4
39820 23427: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39824 23427: b 1 0 1 1,2,2
39825 23427: a 4 0 4 1,1,2
39826 23427: nand 9 2 3 0,2
39827 % SZS status Timeout for BOO083-1.p
39828 NO CLASH, using fixed ground order
39830 23456: Id : 2, {_}:
39831 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3
39832 [4, 3, 2] by c4 ?2 ?3 ?4
39834 23456: Id : 1, {_}:
39835 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39836 [] by prove_meredith_2_basis_2
39840 23456: c 2 0 2 2,2,2,2
39842 23456: b 3 0 3 1,2,2
39843 23456: nand 12 2 6 0,2
39844 NO CLASH, using fixed ground order
39845 NO CLASH, using fixed ground order
39847 23458: Id : 2, {_}:
39848 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3
39849 [4, 3, 2] by c4 ?2 ?3 ?4
39851 23458: Id : 1, {_}:
39852 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39853 [] by prove_meredith_2_basis_2
39857 23458: c 2 0 2 2,2,2,2
39859 23458: b 3 0 3 1,2,2
39860 23458: nand 12 2 6 0,2
39862 23457: Id : 2, {_}:
39863 nand (nand ?2 (nand ?2 (nand ?2 ?3))) (nand ?3 (nand ?2 ?4)) =>= ?3
39864 [4, 3, 2] by c4 ?2 ?3 ?4
39866 23457: Id : 1, {_}:
39867 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39868 [] by prove_meredith_2_basis_2
39872 23457: c 2 0 2 2,2,2,2
39874 23457: b 3 0 3 1,2,2
39875 23457: nand 12 2 6 0,2
39876 % SZS status Timeout for BOO084-1.p
39877 NO CLASH, using fixed ground order
39878 NO CLASH, using fixed ground order
39880 23485: Id : 2, {_}:
39881 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3
39882 [4, 3, 2] by c5 ?2 ?3 ?4
39884 23485: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39888 23485: b 1 0 1 1,2,2
39889 23485: a 4 0 4 1,1,2
39890 23485: nand 9 2 3 0,2
39892 23484: Id : 2, {_}:
39893 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3
39894 [4, 3, 2] by c5 ?2 ?3 ?4
39896 23484: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39900 23484: b 1 0 1 1,2,2
39901 23484: a 4 0 4 1,1,2
39902 23484: nand 9 2 3 0,2
39903 NO CLASH, using fixed ground order
39905 23486: Id : 2, {_}:
39906 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3
39907 [4, 3, 2] by c5 ?2 ?3 ?4
39909 23486: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39913 23486: b 1 0 1 1,2,2
39914 23486: a 4 0 4 1,1,2
39915 23486: nand 9 2 3 0,2
39916 % SZS status Timeout for BOO085-1.p
39917 NO CLASH, using fixed ground order
39919 23521: Id : 2, {_}:
39920 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3
39921 [4, 3, 2] by c5 ?2 ?3 ?4
39923 23521: Id : 1, {_}:
39924 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39925 [] by prove_meredith_2_basis_2
39929 23521: c 2 0 2 2,2,2,2
39931 23521: b 3 0 3 1,2,2
39932 23521: nand 12 2 6 0,2
39933 NO CLASH, using fixed ground order
39935 23522: Id : 2, {_}:
39936 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3
39937 [4, 3, 2] by c5 ?2 ?3 ?4
39939 23522: Id : 1, {_}:
39940 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39941 [] by prove_meredith_2_basis_2
39945 23522: c 2 0 2 2,2,2,2
39947 23522: b 3 0 3 1,2,2
39948 23522: nand 12 2 6 0,2
39949 NO CLASH, using fixed ground order
39951 23523: Id : 2, {_}:
39952 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?3 (nand ?4 ?2)) =>= ?3
39953 [4, 3, 2] by c5 ?2 ?3 ?4
39955 23523: Id : 1, {_}:
39956 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
39957 [] by prove_meredith_2_basis_2
39961 23523: c 2 0 2 2,2,2,2
39963 23523: b 3 0 3 1,2,2
39964 23523: nand 12 2 6 0,2
39965 % SZS status Timeout for BOO086-1.p
39966 NO CLASH, using fixed ground order
39968 23545: Id : 2, {_}:
39969 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4
39970 [4, 3, 2] by c6 ?2 ?3 ?4
39972 23545: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39976 23545: b 1 0 1 1,2,2
39977 23545: a 4 0 4 1,1,2
39978 23545: nand 9 2 3 0,2
39979 NO CLASH, using fixed ground order
39981 23546: Id : 2, {_}:
39982 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4
39983 [4, 3, 2] by c6 ?2 ?3 ?4
39985 23546: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
39989 23546: b 1 0 1 1,2,2
39990 23546: a 4 0 4 1,1,2
39991 23546: nand 9 2 3 0,2
39992 NO CLASH, using fixed ground order
39994 23547: Id : 2, {_}:
39995 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4
39996 [4, 3, 2] by c6 ?2 ?3 ?4
39998 23547: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40002 23547: b 1 0 1 1,2,2
40003 23547: a 4 0 4 1,1,2
40004 23547: nand 9 2 3 0,2
40005 % SZS status Timeout for BOO087-1.p
40006 NO CLASH, using fixed ground order
40008 23572: Id : 2, {_}:
40009 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4
40010 [4, 3, 2] by c6 ?2 ?3 ?4
40012 23572: Id : 1, {_}:
40013 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40014 [] by prove_meredith_2_basis_2
40018 23572: c 2 0 2 2,2,2,2
40020 23572: b 3 0 3 1,2,2
40021 23572: nand 12 2 6 0,2
40022 NO CLASH, using fixed ground order
40024 23573: Id : 2, {_}:
40025 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4
40026 [4, 3, 2] by c6 ?2 ?3 ?4
40028 23573: Id : 1, {_}:
40029 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40030 [] by prove_meredith_2_basis_2
40034 23573: c 2 0 2 2,2,2,2
40036 23573: b 3 0 3 1,2,2
40037 23573: nand 12 2 6 0,2
40038 NO CLASH, using fixed ground order
40040 23574: Id : 2, {_}:
40041 nand (nand ?2 (nand ?2 (nand ?3 ?4))) (nand ?4 (nand ?2 ?3)) =>= ?4
40042 [4, 3, 2] by c6 ?2 ?3 ?4
40044 23574: Id : 1, {_}:
40045 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40046 [] by prove_meredith_2_basis_2
40050 23574: c 2 0 2 2,2,2,2
40052 23574: b 3 0 3 1,2,2
40053 23574: nand 12 2 6 0,2
40054 % SZS status Timeout for BOO088-1.p
40055 NO CLASH, using fixed ground order
40057 23605: Id : 2, {_}:
40058 nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
40059 [4, 3, 2] by c7 ?2 ?3 ?4
40061 23605: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40065 23605: b 1 0 1 1,2,2
40066 23605: a 4 0 4 1,1,2
40067 23605: nand 9 2 3 0,2
40068 NO CLASH, using fixed ground order
40070 23606: Id : 2, {_}:
40071 nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
40072 [4, 3, 2] by c7 ?2 ?3 ?4
40074 23606: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40078 23606: b 1 0 1 1,2,2
40079 23606: a 4 0 4 1,1,2
40080 23606: nand 9 2 3 0,2
40081 NO CLASH, using fixed ground order
40083 23607: Id : 2, {_}:
40084 nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
40085 [4, 3, 2] by c7 ?2 ?3 ?4
40087 23607: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40091 23607: b 1 0 1 1,2,2
40092 23607: a 4 0 4 1,1,2
40093 23607: nand 9 2 3 0,2
40094 % SZS status Timeout for BOO089-1.p
40095 NO CLASH, using fixed ground order
40096 NO CLASH, using fixed ground order
40098 23696: Id : 2, {_}:
40099 nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
40100 [4, 3, 2] by c7 ?2 ?3 ?4
40102 23696: Id : 1, {_}:
40103 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40104 [] by prove_meredith_2_basis_2
40108 23696: c 2 0 2 2,2,2,2
40110 23696: b 3 0 3 1,2,2
40111 23696: nand 12 2 6 0,2
40112 NO CLASH, using fixed ground order
40114 23697: Id : 2, {_}:
40115 nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
40116 [4, 3, 2] by c7 ?2 ?3 ?4
40118 23697: Id : 1, {_}:
40119 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40120 [] by prove_meredith_2_basis_2
40124 23697: c 2 0 2 2,2,2,2
40126 23697: b 3 0 3 1,2,2
40127 23697: nand 12 2 6 0,2
40129 23695: Id : 2, {_}:
40130 nand (nand ?2 (nand ?2 (nand ?3 ?3))) (nand ?3 (nand ?4 ?2)) =>= ?3
40131 [4, 3, 2] by c7 ?2 ?3 ?4
40133 23695: Id : 1, {_}:
40134 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40135 [] by prove_meredith_2_basis_2
40139 23695: c 2 0 2 2,2,2,2
40141 23695: b 3 0 3 1,2,2
40142 23695: nand 12 2 6 0,2
40143 % SZS status Timeout for BOO090-1.p
40144 NO CLASH, using fixed ground order
40146 23723: Id : 2, {_}:
40147 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40148 [4, 3, 2] by c8 ?2 ?3 ?4
40150 23723: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40154 23723: b 1 0 1 1,2,2
40155 23723: a 4 0 4 1,1,2
40156 23723: nand 9 2 3 0,2
40157 NO CLASH, using fixed ground order
40159 23724: Id : 2, {_}:
40160 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40161 [4, 3, 2] by c8 ?2 ?3 ?4
40163 23724: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40167 23724: b 1 0 1 1,2,2
40168 23724: a 4 0 4 1,1,2
40169 23724: nand 9 2 3 0,2
40170 NO CLASH, using fixed ground order
40172 23725: Id : 2, {_}:
40173 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40174 [4, 3, 2] by c8 ?2 ?3 ?4
40176 23725: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40180 23725: b 1 0 1 1,2,2
40181 23725: a 4 0 4 1,1,2
40182 23725: nand 9 2 3 0,2
40183 % SZS status Timeout for BOO091-1.p
40184 NO CLASH, using fixed ground order
40186 23747: Id : 2, {_}:
40187 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40188 [4, 3, 2] by c8 ?2 ?3 ?4
40190 23747: Id : 1, {_}:
40191 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40192 [] by prove_meredith_2_basis_2
40196 23747: c 2 0 2 2,2,2,2
40198 23747: b 3 0 3 1,2,2
40199 23747: nand 12 2 6 0,2
40200 NO CLASH, using fixed ground order
40202 23748: Id : 2, {_}:
40203 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40204 [4, 3, 2] by c8 ?2 ?3 ?4
40206 23748: Id : 1, {_}:
40207 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40208 [] by prove_meredith_2_basis_2
40212 23748: c 2 0 2 2,2,2,2
40214 23748: b 3 0 3 1,2,2
40215 23748: nand 12 2 6 0,2
40216 NO CLASH, using fixed ground order
40218 23749: Id : 2, {_}:
40219 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40220 [4, 3, 2] by c8 ?2 ?3 ?4
40222 23749: Id : 1, {_}:
40223 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40224 [] by prove_meredith_2_basis_2
40228 23749: c 2 0 2 2,2,2,2
40230 23749: b 3 0 3 1,2,2
40231 23749: nand 12 2 6 0,2
40232 % SZS status Timeout for BOO092-1.p
40233 NO CLASH, using fixed ground order
40235 23772: Id : 2, {_}:
40236 nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40237 [4, 3, 2] by c9 ?2 ?3 ?4
40239 NO CLASH, using fixed ground order
40241 23773: Id : 2, {_}:
40242 nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40243 [4, 3, 2] by c9 ?2 ?3 ?4
40245 23773: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40249 23773: b 1 0 1 1,2,2
40250 23773: a 4 0 4 1,1,2
40251 23773: nand 9 2 3 0,2
40252 NO CLASH, using fixed ground order
40254 23774: Id : 2, {_}:
40255 nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40256 [4, 3, 2] by c9 ?2 ?3 ?4
40258 23774: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40262 23774: b 1 0 1 1,2,2
40263 23774: a 4 0 4 1,1,2
40264 23774: nand 9 2 3 0,2
40265 23772: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40269 23772: b 1 0 1 1,2,2
40270 23772: a 4 0 4 1,1,2
40271 23772: nand 9 2 3 0,2
40272 % SZS status Timeout for BOO093-1.p
40273 NO CLASH, using fixed ground order
40275 23798: Id : 2, {_}:
40276 nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40277 [4, 3, 2] by c9 ?2 ?3 ?4
40279 23798: Id : 1, {_}:
40280 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40281 [] by prove_meredith_2_basis_2
40285 23798: c 2 0 2 2,2,2,2
40287 23798: b 3 0 3 1,2,2
40288 23798: nand 12 2 6 0,2
40289 NO CLASH, using fixed ground order
40291 23799: Id : 2, {_}:
40292 nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40293 [4, 3, 2] by c9 ?2 ?3 ?4
40295 23799: Id : 1, {_}:
40296 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40297 [] by prove_meredith_2_basis_2
40301 23799: c 2 0 2 2,2,2,2
40303 23799: b 3 0 3 1,2,2
40304 23799: nand 12 2 6 0,2
40305 NO CLASH, using fixed ground order
40307 23800: Id : 2, {_}:
40308 nand (nand (nand ?2 (nand ?3 ?3)) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40309 [4, 3, 2] by c9 ?2 ?3 ?4
40311 23800: Id : 1, {_}:
40312 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40313 [] by prove_meredith_2_basis_2
40317 23800: c 2 0 2 2,2,2,2
40319 23800: b 3 0 3 1,2,2
40320 23800: nand 12 2 6 0,2
40321 % SZS status Timeout for BOO094-1.p
40322 NO CLASH, using fixed ground order
40324 23822: Id : 2, {_}:
40325 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40326 [4, 3, 2] by c10 ?2 ?3 ?4
40328 23822: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40332 23822: b 1 0 1 1,2,2
40333 23822: a 4 0 4 1,1,2
40334 23822: nand 9 2 3 0,2
40335 NO CLASH, using fixed ground order
40337 23823: Id : 2, {_}:
40338 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40339 [4, 3, 2] by c10 ?2 ?3 ?4
40341 23823: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40345 23823: b 1 0 1 1,2,2
40346 23823: a 4 0 4 1,1,2
40347 23823: nand 9 2 3 0,2
40348 NO CLASH, using fixed ground order
40350 23824: Id : 2, {_}:
40351 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40352 [4, 3, 2] by c10 ?2 ?3 ?4
40354 23824: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40358 23824: b 1 0 1 1,2,2
40359 23824: a 4 0 4 1,1,2
40360 23824: nand 9 2 3 0,2
40361 % SZS status Timeout for BOO095-1.p
40362 NO CLASH, using fixed ground order
40364 23854: Id : 2, {_}:
40365 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40366 [4, 3, 2] by c10 ?2 ?3 ?4
40368 23854: Id : 1, {_}:
40369 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40370 [] by prove_meredith_2_basis_2
40374 23854: c 2 0 2 2,2,2,2
40376 23854: b 3 0 3 1,2,2
40377 23854: nand 12 2 6 0,2
40378 NO CLASH, using fixed ground order
40380 23855: Id : 2, {_}:
40381 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40382 [4, 3, 2] by c10 ?2 ?3 ?4
40384 23855: Id : 1, {_}:
40385 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40386 [] by prove_meredith_2_basis_2
40390 23855: c 2 0 2 2,2,2,2
40392 23855: b 3 0 3 1,2,2
40393 23855: nand 12 2 6 0,2
40394 NO CLASH, using fixed ground order
40396 23856: Id : 2, {_}:
40397 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40398 [4, 3, 2] by c10 ?2 ?3 ?4
40400 23856: Id : 1, {_}:
40401 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40402 [] by prove_meredith_2_basis_2
40406 23856: c 2 0 2 2,2,2,2
40408 23856: b 3 0 3 1,2,2
40409 23856: nand 12 2 6 0,2
40410 % SZS status Timeout for BOO096-1.p
40411 NO CLASH, using fixed ground order
40413 23878: Id : 2, {_}:
40414 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4
40415 [4, 3, 2] by c11 ?2 ?3 ?4
40417 23878: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40421 23878: b 1 0 1 1,2,2
40422 23878: a 4 0 4 1,1,2
40423 23878: nand 9 2 3 0,2
40424 NO CLASH, using fixed ground order
40426 23879: Id : 2, {_}:
40427 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4
40428 [4, 3, 2] by c11 ?2 ?3 ?4
40430 23879: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40434 23879: b 1 0 1 1,2,2
40435 23879: a 4 0 4 1,1,2
40436 23879: nand 9 2 3 0,2
40437 NO CLASH, using fixed ground order
40439 23880: Id : 2, {_}:
40440 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4
40441 [4, 3, 2] by c11 ?2 ?3 ?4
40443 23880: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40447 23880: b 1 0 1 1,2,2
40448 23880: a 4 0 4 1,1,2
40449 23880: nand 9 2 3 0,2
40450 % SZS status Timeout for BOO097-1.p
40451 NO CLASH, using fixed ground order
40453 23905: Id : 2, {_}:
40454 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4
40455 [4, 3, 2] by c11 ?2 ?3 ?4
40457 23905: Id : 1, {_}:
40458 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40459 [] by prove_meredith_2_basis_2
40463 23905: c 2 0 2 2,2,2,2
40465 23905: b 3 0 3 1,2,2
40466 23905: nand 12 2 6 0,2
40467 NO CLASH, using fixed ground order
40469 23906: Id : 2, {_}:
40470 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4
40471 [4, 3, 2] by c11 ?2 ?3 ?4
40473 23906: Id : 1, {_}:
40474 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40475 [] by prove_meredith_2_basis_2
40479 23906: c 2 0 2 2,2,2,2
40481 23906: b 3 0 3 1,2,2
40482 23906: nand 12 2 6 0,2
40483 NO CLASH, using fixed ground order
40485 23907: Id : 2, {_}:
40486 nand (nand (nand ?2 (nand ?3 ?4)) ?2) (nand ?4 (nand ?2 ?3)) =>= ?4
40487 [4, 3, 2] by c11 ?2 ?3 ?4
40489 23907: Id : 1, {_}:
40490 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40491 [] by prove_meredith_2_basis_2
40495 23907: c 2 0 2 2,2,2,2
40497 23907: b 3 0 3 1,2,2
40498 23907: nand 12 2 6 0,2
40499 % SZS status Timeout for BOO098-1.p
40500 NO CLASH, using fixed ground order
40502 23950: Id : 2, {_}:
40503 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40504 [4, 3, 2] by c12 ?2 ?3 ?4
40506 23950: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40510 23950: b 1 0 1 1,2,2
40511 23950: a 4 0 4 1,1,2
40512 23950: nand 9 2 3 0,2
40513 NO CLASH, using fixed ground order
40515 23951: Id : 2, {_}:
40516 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40517 [4, 3, 2] by c12 ?2 ?3 ?4
40519 23951: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40523 23951: b 1 0 1 1,2,2
40524 23951: a 4 0 4 1,1,2
40525 23951: nand 9 2 3 0,2
40526 NO CLASH, using fixed ground order
40528 23949: Id : 2, {_}:
40529 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40530 [4, 3, 2] by c12 ?2 ?3 ?4
40532 23949: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40536 23949: b 1 0 1 1,2,2
40537 23949: a 4 0 4 1,1,2
40538 23949: nand 9 2 3 0,2
40539 % SZS status Timeout for BOO099-1.p
40540 NO CLASH, using fixed ground order
40542 23972: Id : 2, {_}:
40543 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40544 [4, 3, 2] by c12 ?2 ?3 ?4
40546 23972: Id : 1, {_}:
40547 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40548 [] by prove_meredith_2_basis_2
40552 23972: c 2 0 2 2,2,2,2
40554 23972: b 3 0 3 1,2,2
40555 23972: nand 12 2 6 0,2
40556 NO CLASH, using fixed ground order
40558 23973: Id : 2, {_}:
40559 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40560 [4, 3, 2] by c12 ?2 ?3 ?4
40562 23973: Id : 1, {_}:
40563 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40564 [] by prove_meredith_2_basis_2
40568 23973: c 2 0 2 2,2,2,2
40570 23973: b 3 0 3 1,2,2
40571 23973: nand 12 2 6 0,2
40572 NO CLASH, using fixed ground order
40574 23974: Id : 2, {_}:
40575 nand (nand (nand ?2 (nand ?2 ?3)) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40576 [4, 3, 2] by c12 ?2 ?3 ?4
40578 23974: Id : 1, {_}:
40579 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40580 [] by prove_meredith_2_basis_2
40584 23974: c 2 0 2 2,2,2,2
40586 23974: b 3 0 3 1,2,2
40587 23974: nand 12 2 6 0,2
40588 % SZS status Timeout for BOO100-1.p
40589 NO CLASH, using fixed ground order
40591 24933: Id : 2, {_}:
40592 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40593 [4, 3, 2] by c13 ?2 ?3 ?4
40595 24933: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40599 24933: b 1 0 1 1,2,2
40600 24933: a 4 0 4 1,1,2
40601 24933: nand 9 2 3 0,2
40602 NO CLASH, using fixed ground order
40604 24934: Id : 2, {_}:
40605 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40606 [4, 3, 2] by c13 ?2 ?3 ?4
40608 24934: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40612 24934: b 1 0 1 1,2,2
40613 24934: a 4 0 4 1,1,2
40614 24934: nand 9 2 3 0,2
40615 NO CLASH, using fixed ground order
40617 24935: Id : 2, {_}:
40618 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40619 [4, 3, 2] by c13 ?2 ?3 ?4
40621 24935: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40625 24935: b 1 0 1 1,2,2
40626 24935: a 4 0 4 1,1,2
40627 24935: nand 9 2 3 0,2
40628 % SZS status Timeout for BOO101-1.p
40629 NO CLASH, using fixed ground order
40631 NO CLASH, using fixed ground order
40633 24958: Id : 2, {_}:
40634 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40635 [4, 3, 2] by c13 ?2 ?3 ?4
40637 24958: Id : 1, {_}:
40638 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40639 [] by prove_meredith_2_basis_2
40643 24958: c 2 0 2 2,2,2,2
40645 24958: b 3 0 3 1,2,2
40646 24958: nand 12 2 6 0,2
40647 24957: Id : 2, {_}:
40648 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40649 [4, 3, 2] by c13 ?2 ?3 ?4
40651 24957: Id : 1, {_}:
40652 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40653 [] by prove_meredith_2_basis_2
40657 24957: c 2 0 2 2,2,2,2
40659 24957: b 3 0 3 1,2,2
40660 24957: nand 12 2 6 0,2
40661 NO CLASH, using fixed ground order
40663 24959: Id : 2, {_}:
40664 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?4 ?2)) =>= ?3
40665 [4, 3, 2] by c13 ?2 ?3 ?4
40667 24959: Id : 1, {_}:
40668 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40669 [] by prove_meredith_2_basis_2
40673 24959: c 2 0 2 2,2,2,2
40675 24959: b 3 0 3 1,2,2
40676 24959: nand 12 2 6 0,2
40677 % SZS status Timeout for BOO102-1.p
40678 NO CLASH, using fixed ground order
40680 24983: Id : 2, {_}:
40681 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40682 [4, 3, 2] by c14 ?2 ?3 ?4
40684 24983: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40688 24983: b 1 0 1 1,2,2
40689 24983: a 4 0 4 1,1,2
40690 24983: nand 9 2 3 0,2
40691 NO CLASH, using fixed ground order
40693 24984: Id : 2, {_}:
40694 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40695 [4, 3, 2] by c14 ?2 ?3 ?4
40697 24984: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40701 24984: b 1 0 1 1,2,2
40702 24984: a 4 0 4 1,1,2
40703 24984: nand 9 2 3 0,2
40704 NO CLASH, using fixed ground order
40706 24985: Id : 2, {_}:
40707 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40708 [4, 3, 2] by c14 ?2 ?3 ?4
40710 24985: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40714 24985: b 1 0 1 1,2,2
40715 24985: a 4 0 4 1,1,2
40716 24985: nand 9 2 3 0,2
40717 % SZS status Timeout for BOO103-1.p
40718 NO CLASH, using fixed ground order
40720 25006: Id : 2, {_}:
40721 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40722 [4, 3, 2] by c14 ?2 ?3 ?4
40724 25006: Id : 1, {_}:
40725 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40726 [] by prove_meredith_2_basis_2
40730 25006: c 2 0 2 2,2,2,2
40732 25006: b 3 0 3 1,2,2
40733 25006: nand 12 2 6 0,2
40734 NO CLASH, using fixed ground order
40736 25007: Id : 2, {_}:
40737 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40738 [4, 3, 2] by c14 ?2 ?3 ?4
40740 25007: Id : 1, {_}:
40741 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40742 [] by prove_meredith_2_basis_2
40746 25007: c 2 0 2 2,2,2,2
40748 25007: b 3 0 3 1,2,2
40749 25007: nand 12 2 6 0,2
40750 NO CLASH, using fixed ground order
40752 25008: Id : 2, {_}:
40753 nand (nand (nand (nand ?2 ?3) ?2) ?2) (nand ?3 (nand ?2 ?4)) =>= ?3
40754 [4, 3, 2] by c14 ?2 ?3 ?4
40756 25008: Id : 1, {_}:
40757 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40758 [] by prove_meredith_2_basis_2
40762 25008: c 2 0 2 2,2,2,2
40764 25008: b 3 0 3 1,2,2
40765 25008: nand 12 2 6 0,2
40766 % SZS status Timeout for BOO104-1.p
40767 NO CLASH, using fixed ground order
40769 25030: Id : 2, {_}:
40770 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3
40771 [4, 3, 2] by c15 ?2 ?3 ?4
40773 25030: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40777 25030: b 1 0 1 1,2,2
40778 25030: a 4 0 4 1,1,2
40779 25030: nand 9 2 3 0,2
40780 NO CLASH, using fixed ground order
40782 25031: Id : 2, {_}:
40783 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3
40784 [4, 3, 2] by c15 ?2 ?3 ?4
40786 25031: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40790 25031: b 1 0 1 1,2,2
40791 25031: a 4 0 4 1,1,2
40792 25031: nand 9 2 3 0,2
40793 NO CLASH, using fixed ground order
40795 25032: Id : 2, {_}:
40796 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3
40797 [4, 3, 2] by c15 ?2 ?3 ?4
40799 25032: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40803 25032: b 1 0 1 1,2,2
40804 25032: a 4 0 4 1,1,2
40805 25032: nand 9 2 3 0,2
40806 % SZS status Timeout for BOO105-1.p
40807 NO CLASH, using fixed ground order
40809 25053: Id : 2, {_}:
40810 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3
40811 [4, 3, 2] by c15 ?2 ?3 ?4
40813 25053: Id : 1, {_}:
40814 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40815 [] by prove_meredith_2_basis_2
40819 25053: c 2 0 2 2,2,2,2
40821 25053: b 3 0 3 1,2,2
40822 25053: nand 12 2 6 0,2
40823 NO CLASH, using fixed ground order
40825 25054: Id : 2, {_}:
40826 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3
40827 [4, 3, 2] by c15 ?2 ?3 ?4
40829 25054: Id : 1, {_}:
40830 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40831 [] by prove_meredith_2_basis_2
40835 25054: c 2 0 2 2,2,2,2
40837 25054: b 3 0 3 1,2,2
40838 25054: nand 12 2 6 0,2
40839 NO CLASH, using fixed ground order
40841 25055: Id : 2, {_}:
40842 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?2 ?4)) =>= ?3
40843 [4, 3, 2] by c15 ?2 ?3 ?4
40845 25055: Id : 1, {_}:
40846 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40847 [] by prove_meredith_2_basis_2
40851 25055: c 2 0 2 2,2,2,2
40853 25055: b 3 0 3 1,2,2
40854 25055: nand 12 2 6 0,2
40855 % SZS status Timeout for BOO106-1.p
40856 NO CLASH, using fixed ground order
40858 25082: Id : 2, {_}:
40859 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3
40860 [4, 3, 2] by c16 ?2 ?3 ?4
40862 25082: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40866 25082: b 1 0 1 1,2,2
40867 25082: a 4 0 4 1,1,2
40868 25082: nand 9 2 3 0,2
40869 NO CLASH, using fixed ground order
40871 25083: Id : 2, {_}:
40872 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3
40873 [4, 3, 2] by c16 ?2 ?3 ?4
40875 25083: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40879 25083: b 1 0 1 1,2,2
40880 25083: a 4 0 4 1,1,2
40881 25083: nand 9 2 3 0,2
40882 NO CLASH, using fixed ground order
40884 25084: Id : 2, {_}:
40885 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3
40886 [4, 3, 2] by c16 ?2 ?3 ?4
40888 25084: Id : 1, {_}: nand (nand a a) (nand b a) =>= a [] by prove_meredith_2_basis_1
40892 25084: b 1 0 1 1,2,2
40893 25084: a 4 0 4 1,1,2
40894 25084: nand 9 2 3 0,2
40895 % SZS status Timeout for BOO107-1.p
40896 NO CLASH, using fixed ground order
40898 25109: Id : 2, {_}:
40899 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3
40900 [4, 3, 2] by c16 ?2 ?3 ?4
40902 25109: Id : 1, {_}:
40903 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40904 [] by prove_meredith_2_basis_2
40908 25109: c 2 0 2 2,2,2,2
40910 25109: b 3 0 3 1,2,2
40911 25109: nand 12 2 6 0,2
40912 NO CLASH, using fixed ground order
40914 25110: Id : 2, {_}:
40915 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3
40916 [4, 3, 2] by c16 ?2 ?3 ?4
40918 25110: Id : 1, {_}:
40919 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40920 [] by prove_meredith_2_basis_2
40924 25110: c 2 0 2 2,2,2,2
40926 25110: b 3 0 3 1,2,2
40927 25110: nand 12 2 6 0,2
40928 NO CLASH, using fixed ground order
40930 25111: Id : 2, {_}:
40931 nand (nand (nand (nand ?2 ?3) ?4) ?4) (nand ?3 (nand ?4 ?2)) =>= ?3
40932 [4, 3, 2] by c16 ?2 ?3 ?4
40934 25111: Id : 1, {_}:
40935 nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a
40936 [] by prove_meredith_2_basis_2
40940 25111: c 2 0 2 2,2,2,2
40942 25111: b 3 0 3 1,2,2
40943 25111: nand 12 2 6 0,2
40944 % SZS status Timeout for BOO108-1.p
40945 CLASH, statistics insufficient
40947 25136: Id : 2, {_}:
40948 apply (apply (apply s ?3) ?4) ?5
40950 apply (apply ?3 ?5) (apply ?4 ?5)
40951 [5, 4, 3] by s_definition ?3 ?4 ?5
40952 25136: Id : 3, {_}:
40953 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
40954 [9, 8, 7] by b_definition ?7 ?8 ?9
40956 25136: Id : 1, {_}:
40957 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
40958 [1] by prove_fixed_point ?1
40964 25136: f 3 1 3 0,2,2
40965 25136: apply 14 2 3 0,2
40966 CLASH, statistics insufficient
40968 25137: Id : 2, {_}:
40969 apply (apply (apply s ?3) ?4) ?5
40971 apply (apply ?3 ?5) (apply ?4 ?5)
40972 [5, 4, 3] by s_definition ?3 ?4 ?5
40973 25137: Id : 3, {_}:
40974 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
40975 [9, 8, 7] by b_definition ?7 ?8 ?9
40977 25137: Id : 1, {_}:
40978 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
40979 [1] by prove_fixed_point ?1
40985 25137: f 3 1 3 0,2,2
40986 25137: apply 14 2 3 0,2
40987 CLASH, statistics insufficient
40989 25138: Id : 2, {_}:
40990 apply (apply (apply s ?3) ?4) ?5
40992 apply (apply ?3 ?5) (apply ?4 ?5)
40993 [5, 4, 3] by s_definition ?3 ?4 ?5
40994 25138: Id : 3, {_}:
40995 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
40996 [9, 8, 7] by b_definition ?7 ?8 ?9
40998 25138: Id : 1, {_}:
40999 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
41000 [1] by prove_fixed_point ?1
41006 25138: f 3 1 3 0,2,2
41007 25138: apply 14 2 3 0,2
41008 % SZS status Timeout for COL067-1.p
41009 CLASH, statistics insufficient
41011 25159: Id : 2, {_}:
41012 apply (apply (apply s ?3) ?4) ?5
41014 apply (apply ?3 ?5) (apply ?4 ?5)
41015 [5, 4, 3] by s_definition ?3 ?4 ?5
41016 25159: Id : 3, {_}:
41017 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
41018 [9, 8, 7] by b_definition ?7 ?8 ?9
41020 25159: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1
41026 25159: combinator 1 0 1 1,3
41027 25159: apply 12 2 1 0,3
41028 CLASH, statistics insufficient
41030 25160: Id : 2, {_}:
41031 apply (apply (apply s ?3) ?4) ?5
41033 apply (apply ?3 ?5) (apply ?4 ?5)
41034 [5, 4, 3] by s_definition ?3 ?4 ?5
41035 25160: Id : 3, {_}:
41036 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
41037 [9, 8, 7] by b_definition ?7 ?8 ?9
41039 25160: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1
41045 25160: combinator 1 0 1 1,3
41046 25160: apply 12 2 1 0,3
41047 CLASH, statistics insufficient
41049 25161: Id : 2, {_}:
41050 apply (apply (apply s ?3) ?4) ?5
41052 apply (apply ?3 ?5) (apply ?4 ?5)
41053 [5, 4, 3] by s_definition ?3 ?4 ?5
41054 25161: Id : 3, {_}:
41055 apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9)
41056 [9, 8, 7] by b_definition ?7 ?8 ?9
41058 25161: Id : 1, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1
41064 25161: combinator 1 0 1 1,3
41065 25161: apply 12 2 1 0,3
41066 % SZS status Timeout for COL068-1.p
41067 CLASH, statistics insufficient
41069 25183: Id : 2, {_}:
41070 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
41071 [5, 4, 3] by b_definition ?3 ?4 ?5
41072 25183: Id : 3, {_}:
41073 apply (apply l ?7) ?8 =?= apply ?7 (apply ?8 ?8)
41074 [8, 7] by l_definition ?7 ?8
41076 25183: Id : 1, {_}:
41077 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
41078 [1] by prove_fixed_point ?1
41084 25183: f 3 1 3 0,2,2
41085 25183: apply 12 2 3 0,2
41086 CLASH, statistics insufficient
41088 25184: Id : 2, {_}:
41089 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
41090 [5, 4, 3] by b_definition ?3 ?4 ?5
41091 25184: Id : 3, {_}:
41092 apply (apply l ?7) ?8 =?= apply ?7 (apply ?8 ?8)
41093 [8, 7] by l_definition ?7 ?8
41095 25184: Id : 1, {_}:
41096 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
41097 [1] by prove_fixed_point ?1
41103 25184: f 3 1 3 0,2,2
41104 25184: apply 12 2 3 0,2
41105 CLASH, statistics insufficient
41107 25185: Id : 2, {_}:
41108 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
41109 [5, 4, 3] by b_definition ?3 ?4 ?5
41110 25185: Id : 3, {_}:
41111 apply (apply l ?7) ?8 =?= apply ?7 (apply ?8 ?8)
41112 [8, 7] by l_definition ?7 ?8
41114 25185: Id : 1, {_}:
41115 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
41116 [1] by prove_fixed_point ?1
41122 25185: f 3 1 3 0,2,2
41123 25185: apply 12 2 3 0,2
41124 % SZS status Timeout for COL069-1.p
41125 CLASH, statistics insufficient
41127 25251: Id : 2, {_}:
41128 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
41129 [5, 4, 3] by definition_B ?3 ?4 ?5
41130 25251: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by definition_M ?7
41132 25251: Id : 1, {_}:
41133 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
41134 [1] by strong_fixpoint ?1
41140 25251: f 3 1 3 0,2,2
41141 25251: apply 10 2 3 0,2
41142 CLASH, statistics insufficient
41144 25252: Id : 2, {_}:
41145 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
41146 [5, 4, 3] by definition_B ?3 ?4 ?5
41147 25252: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by definition_M ?7
41149 25252: Id : 1, {_}:
41150 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
41151 [1] by strong_fixpoint ?1
41157 25252: f 3 1 3 0,2,2
41158 25252: apply 10 2 3 0,2
41159 CLASH, statistics insufficient
41161 25253: Id : 2, {_}:
41162 apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5)
41163 [5, 4, 3] by definition_B ?3 ?4 ?5
41164 25253: Id : 3, {_}: apply m ?7 =?= apply ?7 ?7 [7] by definition_M ?7
41166 25253: Id : 1, {_}:
41167 apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1))
41168 [1] by strong_fixpoint ?1
41174 25253: f 3 1 3 0,2,2
41175 25253: apply 10 2 3 0,2
41176 % SZS status Timeout for COL087-1.p
41177 NO CLASH, using fixed ground order
41179 25281: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
41180 25281: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
41181 25281: Id : 4, {_}:
41182 multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8)
41183 [8, 7, 6] by associativity ?6 ?7 ?8
41184 25281: Id : 5, {_}:
41185 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
41186 [11, 10] by symmetry_of_glb ?10 ?11
41187 25281: Id : 6, {_}:
41188 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
41189 [14, 13] by symmetry_of_lub ?13 ?14
41190 25281: Id : 7, {_}:
41191 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
41193 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
41194 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
41195 25281: Id : 8, {_}:
41196 least_upper_bound ?20 (least_upper_bound ?21 ?22)
41198 least_upper_bound (least_upper_bound ?20 ?21) ?22
41199 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
41200 25281: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
41201 25281: Id : 10, {_}:
41202 greatest_lower_bound ?26 ?26 =>= ?26
41203 [26] by idempotence_of_gld ?26
41204 25281: Id : 11, {_}:
41205 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
41206 [29, 28] by lub_absorbtion ?28 ?29
41207 25281: Id : 12, {_}:
41208 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
41209 [32, 31] by glb_absorbtion ?31 ?32
41210 25281: Id : 13, {_}:
41211 multiply ?34 (least_upper_bound ?35 ?36)
41213 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
41214 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
41215 25281: Id : 14, {_}:
41216 multiply ?38 (greatest_lower_bound ?39 ?40)
41218 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
41219 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
41220 25281: Id : 15, {_}:
41221 multiply (least_upper_bound ?42 ?43) ?44
41223 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
41224 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
41225 25281: Id : 16, {_}:
41226 multiply (greatest_lower_bound ?46 ?47) ?48
41228 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
41229 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
41230 25281: Id : 17, {_}: least_upper_bound identity a =>= a [] by p08a_1
41231 25281: Id : 18, {_}: least_upper_bound identity b =>= b [] by p08a_2
41232 25281: Id : 19, {_}: least_upper_bound identity c =>= c [] by p08a_3
41234 25281: Id : 1, {_}:
41235 least_upper_bound (greatest_lower_bound a (multiply b c))
41236 (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))
41238 multiply (greatest_lower_bound a b) (greatest_lower_bound a c)
41243 25281: identity 5 0 0
41244 25281: b 5 0 3 1,2,1,2
41245 25281: c 5 0 3 2,2,1,2
41246 25281: a 7 0 5 1,1,2
41247 25281: inverse 1 1 0
41248 25281: least_upper_bound 17 2 1 0,2
41249 25281: greatest_lower_bound 18 2 5 0,1,2
41250 25281: multiply 21 2 3 0,2,1,2
41251 NO CLASH, using fixed ground order
41253 25282: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
41254 25282: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
41255 25282: Id : 4, {_}:
41256 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
41257 [8, 7, 6] by associativity ?6 ?7 ?8
41258 25282: Id : 5, {_}:
41259 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
41260 [11, 10] by symmetry_of_glb ?10 ?11
41261 25282: Id : 6, {_}:
41262 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
41263 [14, 13] by symmetry_of_lub ?13 ?14
41264 25282: Id : 7, {_}:
41265 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
41267 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
41268 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
41269 25282: Id : 8, {_}:
41270 least_upper_bound ?20 (least_upper_bound ?21 ?22)
41272 least_upper_bound (least_upper_bound ?20 ?21) ?22
41273 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
41274 25282: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
41275 25282: Id : 10, {_}:
41276 greatest_lower_bound ?26 ?26 =>= ?26
41277 [26] by idempotence_of_gld ?26
41278 25282: Id : 11, {_}:
41279 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
41280 [29, 28] by lub_absorbtion ?28 ?29
41281 25282: Id : 12, {_}:
41282 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
41283 [32, 31] by glb_absorbtion ?31 ?32
41284 25282: Id : 13, {_}:
41285 multiply ?34 (least_upper_bound ?35 ?36)
41287 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
41288 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
41289 25282: Id : 14, {_}:
41290 multiply ?38 (greatest_lower_bound ?39 ?40)
41292 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
41293 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
41294 25282: Id : 15, {_}:
41295 multiply (least_upper_bound ?42 ?43) ?44
41297 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
41298 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
41299 25282: Id : 16, {_}:
41300 multiply (greatest_lower_bound ?46 ?47) ?48
41302 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
41303 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
41304 25282: Id : 17, {_}: least_upper_bound identity a =>= a [] by p08a_1
41305 25282: Id : 18, {_}: least_upper_bound identity b =>= b [] by p08a_2
41306 25282: Id : 19, {_}: least_upper_bound identity c =>= c [] by p08a_3
41308 25282: Id : 1, {_}:
41309 least_upper_bound (greatest_lower_bound a (multiply b c))
41310 (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))
41312 multiply (greatest_lower_bound a b) (greatest_lower_bound a c)
41317 25282: identity 5 0 0
41318 25282: b 5 0 3 1,2,1,2
41319 25282: c 5 0 3 2,2,1,2
41320 25282: a 7 0 5 1,1,2
41321 25282: inverse 1 1 0
41322 25282: least_upper_bound 17 2 1 0,2
41323 25282: greatest_lower_bound 18 2 5 0,1,2
41324 25282: multiply 21 2 3 0,2,1,2
41325 NO CLASH, using fixed ground order
41327 25283: Id : 2, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2
41328 25283: Id : 3, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4
41329 25283: Id : 4, {_}:
41330 multiply (multiply ?6 ?7) ?8 =>= multiply ?6 (multiply ?7 ?8)
41331 [8, 7, 6] by associativity ?6 ?7 ?8
41332 25283: Id : 5, {_}:
41333 greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10
41334 [11, 10] by symmetry_of_glb ?10 ?11
41335 25283: Id : 6, {_}:
41336 least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13
41337 [14, 13] by symmetry_of_lub ?13 ?14
41338 25283: Id : 7, {_}:
41339 greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18)
41341 greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18
41342 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18
41343 25283: Id : 8, {_}:
41344 least_upper_bound ?20 (least_upper_bound ?21 ?22)
41346 least_upper_bound (least_upper_bound ?20 ?21) ?22
41347 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22
41348 25283: Id : 9, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24
41349 25283: Id : 10, {_}:
41350 greatest_lower_bound ?26 ?26 =>= ?26
41351 [26] by idempotence_of_gld ?26
41352 25283: Id : 11, {_}:
41353 least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28
41354 [29, 28] by lub_absorbtion ?28 ?29
41355 25283: Id : 12, {_}:
41356 greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31
41357 [32, 31] by glb_absorbtion ?31 ?32
41358 25283: Id : 13, {_}:
41359 multiply ?34 (least_upper_bound ?35 ?36)
41361 least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36)
41362 [36, 35, 34] by monotony_lub1 ?34 ?35 ?36
41363 25283: Id : 14, {_}:
41364 multiply ?38 (greatest_lower_bound ?39 ?40)
41366 greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40)
41367 [40, 39, 38] by monotony_glb1 ?38 ?39 ?40
41368 25283: Id : 15, {_}:
41369 multiply (least_upper_bound ?42 ?43) ?44
41371 least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44)
41372 [44, 43, 42] by monotony_lub2 ?42 ?43 ?44
41373 25283: Id : 16, {_}:
41374 multiply (greatest_lower_bound ?46 ?47) ?48
41376 greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48)
41377 [48, 47, 46] by monotony_glb2 ?46 ?47 ?48
41378 25283: Id : 17, {_}: least_upper_bound identity a =>= a [] by p08a_1
41379 25283: Id : 18, {_}: least_upper_bound identity b =>= b [] by p08a_2
41380 25283: Id : 19, {_}: least_upper_bound identity c =>= c [] by p08a_3
41382 25283: Id : 1, {_}:
41383 least_upper_bound (greatest_lower_bound a (multiply b c))
41384 (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))
41386 multiply (greatest_lower_bound a b) (greatest_lower_bound a c)
41391 25283: identity 5 0 0
41392 25283: b 5 0 3 1,2,1,2
41393 25283: c 5 0 3 2,2,1,2
41394 25283: a 7 0 5 1,1,2
41395 25283: inverse 1 1 0
41396 25283: least_upper_bound 17 2 1 0,2
41397 25283: greatest_lower_bound 18 2 5 0,1,2
41398 25283: multiply 21 2 3 0,2,1,2
41399 % SZS status Timeout for GRP177-1.p
41400 NO CLASH, using fixed ground order
41402 25304: Id : 2, {_}:
41403 f (f ?2 ?3) (f (f (f (f ?2 ?3) ?3) (f ?4 ?3)) (f (f ?3 ?3) ?5))
41406 [5, 4, 3, 2] by oml_21C ?2 ?3 ?4 ?5
41408 25304: Id : 1, {_}:
41409 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41410 [] by associativity
41415 25304: c 3 0 3 2,1,2,2
41416 25304: b 4 0 4 1,1,2,2
41417 25304: f 17 2 8 0,2
41418 NO CLASH, using fixed ground order
41420 25305: Id : 2, {_}:
41421 f (f ?2 ?3) (f (f (f (f ?2 ?3) ?3) (f ?4 ?3)) (f (f ?3 ?3) ?5))
41424 [5, 4, 3, 2] by oml_21C ?2 ?3 ?4 ?5
41426 25305: Id : 1, {_}:
41427 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41428 [] by associativity
41433 25305: c 3 0 3 2,1,2,2
41434 25305: b 4 0 4 1,1,2,2
41435 25305: f 17 2 8 0,2
41436 NO CLASH, using fixed ground order
41438 25306: Id : 2, {_}:
41439 f (f ?2 ?3) (f (f (f (f ?2 ?3) ?3) (f ?4 ?3)) (f (f ?3 ?3) ?5))
41442 [5, 4, 3, 2] by oml_21C ?2 ?3 ?4 ?5
41444 25306: Id : 1, {_}:
41445 f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a))
41446 [] by associativity
41451 25306: c 3 0 3 2,1,2,2
41452 25306: b 4 0 4 1,1,2,2
41453 25306: f 17 2 8 0,2
41454 % SZS status Timeout for LAT071-1.p
41455 NO CLASH, using fixed ground order
41457 25332: Id : 2, {_}:
41458 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41459 (f ?3 (f (f ?4 (f (f ?3 ?3) ?4)) ?4))
41462 [5, 4, 3, 2] by oml_23A ?2 ?3 ?4 ?5
41464 25332: Id : 1, {_}:
41465 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41466 [] by associativity
41471 25332: c 3 0 3 2,1,2,2
41472 25332: b 4 0 4 1,1,2,2
41473 25332: f 18 2 8 0,2
41474 NO CLASH, using fixed ground order
41476 25333: Id : 2, {_}:
41477 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41478 (f ?3 (f (f ?4 (f (f ?3 ?3) ?4)) ?4))
41481 [5, 4, 3, 2] by oml_23A ?2 ?3 ?4 ?5
41483 25333: Id : 1, {_}:
41484 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41485 [] by associativity
41490 25333: c 3 0 3 2,1,2,2
41491 25333: b 4 0 4 1,1,2,2
41492 25333: f 18 2 8 0,2
41493 NO CLASH, using fixed ground order
41495 25334: Id : 2, {_}:
41496 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41497 (f ?3 (f (f ?4 (f (f ?3 ?3) ?4)) ?4))
41500 [5, 4, 3, 2] by oml_23A ?2 ?3 ?4 ?5
41502 25334: Id : 1, {_}:
41503 f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a))
41504 [] by associativity
41509 25334: c 3 0 3 2,1,2,2
41510 25334: b 4 0 4 1,1,2,2
41511 25334: f 18 2 8 0,2
41512 % SZS status Timeout for LAT072-1.p
41513 NO CLASH, using fixed ground order
41515 25355: Id : 2, {_}:
41516 f (f (f ?2 (f ?3 ?2)) ?2)
41517 (f ?3 (f ?4 (f (f ?3 ?2) (f (f ?4 ?4) ?5))))
41520 [5, 4, 3, 2] by mol_23C ?2 ?3 ?4 ?5
41522 25355: Id : 1, {_}:
41523 f a (f b (f a (f c c))) =<= f a (f c (f a (f b b)))
41528 25355: b 3 0 3 1,2,2
41529 25355: c 3 0 3 1,2,2,2,2
41531 25355: f 18 2 8 0,2
41532 NO CLASH, using fixed ground order
41534 25356: Id : 2, {_}:
41535 f (f (f ?2 (f ?3 ?2)) ?2)
41536 (f ?3 (f ?4 (f (f ?3 ?2) (f (f ?4 ?4) ?5))))
41539 [5, 4, 3, 2] by mol_23C ?2 ?3 ?4 ?5
41541 25356: Id : 1, {_}:
41542 f a (f b (f a (f c c))) =?= f a (f c (f a (f b b)))
41547 25356: b 3 0 3 1,2,2
41548 25356: c 3 0 3 1,2,2,2,2
41550 25356: f 18 2 8 0,2
41551 NO CLASH, using fixed ground order
41553 25357: Id : 2, {_}:
41554 f (f (f ?2 (f ?3 ?2)) ?2)
41555 (f ?3 (f ?4 (f (f ?3 ?2) (f (f ?4 ?4) ?5))))
41558 [5, 4, 3, 2] by mol_23C ?2 ?3 ?4 ?5
41560 25357: Id : 1, {_}:
41561 f a (f b (f a (f c c))) =>= f a (f c (f a (f b b)))
41566 25357: b 3 0 3 1,2,2
41567 25357: c 3 0 3 1,2,2,2,2
41569 25357: f 18 2 8 0,2
41570 % SZS status Timeout for LAT073-1.p
41571 NO CLASH, using fixed ground order
41573 NO CLASH, using fixed ground order
41575 25381: Id : 2, {_}:
41577 (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5)))
41580 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5
41582 25381: Id : 1, {_}:
41583 f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a))
41584 [] by associativity
41589 25381: c 3 0 3 2,1,2,2
41590 25381: b 4 0 4 1,1,2,2
41591 25381: f 19 2 8 0,2
41592 NO CLASH, using fixed ground order
41594 25380: Id : 2, {_}:
41596 (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5)))
41599 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5
41601 25380: Id : 1, {_}:
41602 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41603 [] by associativity
41608 25380: c 3 0 3 2,1,2,2
41609 25380: b 4 0 4 1,1,2,2
41610 25380: f 19 2 8 0,2
41611 25379: Id : 2, {_}:
41613 (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5)))
41616 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5
41618 25379: Id : 1, {_}:
41619 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41620 [] by associativity
41625 25379: c 3 0 3 2,1,2,2
41626 25379: b 4 0 4 1,1,2,2
41627 25379: f 19 2 8 0,2
41628 % SZS status Timeout for LAT074-1.p
41629 NO CLASH, using fixed ground order
41631 25407: Id : 2, {_}:
41633 (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5)))
41636 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5
41638 25407: Id : 1, {_}:
41639 f a (f b (f a (f c c))) =<= f a (f c (f a (f b b)))
41644 25407: b 3 0 3 1,2,2
41645 25407: c 3 0 3 1,2,2,2,2
41647 25407: f 19 2 8 0,2
41648 NO CLASH, using fixed ground order
41650 25408: Id : 2, {_}:
41652 (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5)))
41655 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5
41657 25408: Id : 1, {_}:
41658 f a (f b (f a (f c c))) =?= f a (f c (f a (f b b)))
41663 25408: b 3 0 3 1,2,2
41664 25408: c 3 0 3 1,2,2,2,2
41666 25408: f 19 2 8 0,2
41667 NO CLASH, using fixed ground order
41669 25409: Id : 2, {_}:
41671 (f (f (f ?3 ?3) ?4) (f (f (f (f (f ?3 ?2) ?4) ?4) ?3) (f ?3 ?5)))
41674 [5, 4, 3, 2] by mol_25A ?2 ?3 ?4 ?5
41676 25409: Id : 1, {_}:
41677 f a (f b (f a (f c c))) =>= f a (f c (f a (f b b)))
41682 25409: b 3 0 3 1,2,2
41683 25409: c 3 0 3 1,2,2,2,2
41685 25409: f 19 2 8 0,2
41686 % SZS status Timeout for LAT075-1.p
41687 NO CLASH, using fixed ground order
41689 25460: Id : 2, {_}:
41690 f (f (f (f ?2 ?3) (f ?4 ?3)) ?5)
41691 (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2))
41694 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5
41696 25460: Id : 1, {_}:
41697 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41698 [] by associativity
41703 25460: c 3 0 3 2,1,2,2
41704 25460: b 4 0 4 1,1,2,2
41705 25460: f 20 2 8 0,2
41706 NO CLASH, using fixed ground order
41708 25461: Id : 2, {_}:
41709 f (f (f (f ?2 ?3) (f ?4 ?3)) ?5)
41710 (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2))
41713 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5
41715 25461: Id : 1, {_}:
41716 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41717 [] by associativity
41722 25461: c 3 0 3 2,1,2,2
41723 25461: b 4 0 4 1,1,2,2
41724 25461: f 20 2 8 0,2
41725 NO CLASH, using fixed ground order
41727 25462: Id : 2, {_}:
41728 f (f (f (f ?2 ?3) (f ?4 ?3)) ?5)
41729 (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2))
41732 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5
41734 25462: Id : 1, {_}:
41735 f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a))
41736 [] by associativity
41741 25462: c 3 0 3 2,1,2,2
41742 25462: b 4 0 4 1,1,2,2
41743 25462: f 20 2 8 0,2
41744 % SZS status Timeout for LAT076-1.p
41745 NO CLASH, using fixed ground order
41747 25483: Id : 2, {_}:
41748 f (f (f (f ?2 ?3) (f ?4 ?3)) ?5)
41749 (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2))
41752 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5
41754 25483: Id : 1, {_}:
41755 f a (f b (f a (f c c))) =<= f a (f c (f a (f b b)))
41760 25483: b 3 0 3 1,2,2
41761 25483: c 3 0 3 1,2,2,2,2
41763 25483: f 20 2 8 0,2
41764 NO CLASH, using fixed ground order
41766 25484: Id : 2, {_}:
41767 f (f (f (f ?2 ?3) (f ?4 ?3)) ?5)
41768 (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2))
41771 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5
41773 25484: Id : 1, {_}:
41774 f a (f b (f a (f c c))) =?= f a (f c (f a (f b b)))
41779 25484: b 3 0 3 1,2,2
41780 25484: c 3 0 3 1,2,2,2,2
41782 25484: f 20 2 8 0,2
41783 NO CLASH, using fixed ground order
41785 25485: Id : 2, {_}:
41786 f (f (f (f ?2 ?3) (f ?4 ?3)) ?5)
41787 (f ?3 (f (f (f (f (f (f ?2 ?2) ?3) ?4) ?4) ?3) ?2))
41790 [5, 4, 3, 2] by mol_27B1 ?2 ?3 ?4 ?5
41792 25485: Id : 1, {_}:
41793 f a (f b (f a (f c c))) =>= f a (f c (f a (f b b)))
41798 25485: b 3 0 3 1,2,2
41799 25485: c 3 0 3 1,2,2,2,2
41801 25485: f 20 2 8 0,2
41802 % SZS status Timeout for LAT077-1.p
41803 NO CLASH, using fixed ground order
41805 25507: Id : 2, {_}:
41806 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41807 (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4))
41810 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5
41812 25507: Id : 1, {_}:
41813 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41814 [] by associativity
41819 25507: c 3 0 3 2,1,2,2
41820 25507: b 4 0 4 1,1,2,2
41821 25507: f 20 2 8 0,2
41822 NO CLASH, using fixed ground order
41824 25508: Id : 2, {_}:
41825 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41826 (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4))
41829 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5
41831 25508: Id : 1, {_}:
41832 f a (f (f b c) (f b c)) =<= f c (f (f b a) (f b a))
41833 [] by associativity
41838 25508: c 3 0 3 2,1,2,2
41839 25508: b 4 0 4 1,1,2,2
41840 25508: f 20 2 8 0,2
41841 NO CLASH, using fixed ground order
41843 25509: Id : 2, {_}:
41844 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41845 (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4))
41848 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5
41850 25509: Id : 1, {_}:
41851 f a (f (f b c) (f b c)) =>= f c (f (f b a) (f b a))
41852 [] by associativity
41857 25509: c 3 0 3 2,1,2,2
41858 25509: b 4 0 4 1,1,2,2
41859 25509: f 20 2 8 0,2
41860 % SZS status Timeout for LAT078-1.p
41861 NO CLASH, using fixed ground order
41863 25531: Id : 2, {_}:
41864 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41865 (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4))
41868 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5
41870 25531: Id : 1, {_}:
41871 f a (f b (f a (f c c))) =<= f a (f c (f a (f b b)))
41876 25531: b 3 0 3 1,2,2
41877 25531: c 3 0 3 1,2,2,2,2
41879 25531: f 20 2 8 0,2
41880 NO CLASH, using fixed ground order
41882 25532: Id : 2, {_}:
41883 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41884 (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4))
41887 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5
41889 25532: Id : 1, {_}:
41890 f a (f b (f a (f c c))) =?= f a (f c (f a (f b b)))
41895 25532: b 3 0 3 1,2,2
41896 25532: c 3 0 3 1,2,2,2,2
41898 25532: f 20 2 8 0,2
41899 NO CLASH, using fixed ground order
41901 25533: Id : 2, {_}:
41902 f (f (f (f ?2 ?3) (f ?3 ?4)) ?5)
41903 (f ?3 (f (f (f ?2 (f ?2 (f (f ?4 ?4) ?3))) ?3) ?4))
41906 [5, 4, 3, 2] by mol_27B2 ?2 ?3 ?4 ?5
41908 25533: Id : 1, {_}:
41909 f a (f b (f a (f c c))) =>= f a (f c (f a (f b b)))
41914 25533: b 3 0 3 1,2,2
41915 25533: c 3 0 3 1,2,2,2,2
41917 25533: f 20 2 8 0,2
41918 % SZS status Timeout for LAT079-1.p
41919 NO CLASH, using fixed ground order
41921 25631: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
41922 25631: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
41923 25631: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
41924 25631: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
41925 25631: Id : 6, {_}:
41926 meet ?12 ?13 =?= meet ?13 ?12
41927 [13, 12] by commutativity_of_meet ?12 ?13
41928 25631: Id : 7, {_}:
41929 join ?15 ?16 =?= join ?16 ?15
41930 [16, 15] by commutativity_of_join ?15 ?16
41931 25631: Id : 8, {_}:
41932 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
41933 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
41934 25631: Id : 9, {_}:
41935 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
41936 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
41937 25631: Id : 10, {_}:
41938 meet ?26 (join ?27 (meet ?26 ?28))
41942 (meet ?28 (join ?26 (meet ?27 (join ?28 (meet ?26 ?27))))))
41943 [28, 27, 26] by equation_H11 ?26 ?27 ?28
41945 25631: Id : 1, {_}:
41946 meet a (join b (meet a c))
41948 meet a (join b (meet c (join a (meet b c))))
41953 25631: b 3 0 3 1,2,2
41954 25631: c 3 0 3 2,2,2,2
41956 25631: join 16 2 3 0,2,2
41957 25631: meet 20 2 5 0,2
41958 NO CLASH, using fixed ground order
41960 25633: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
41961 25633: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
41962 25633: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
41963 25633: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
41964 25633: Id : 6, {_}:
41965 meet ?12 ?13 =?= meet ?13 ?12
41966 [13, 12] by commutativity_of_meet ?12 ?13
41967 25633: Id : 7, {_}:
41968 join ?15 ?16 =?= join ?16 ?15
41969 [16, 15] by commutativity_of_join ?15 ?16
41970 25633: Id : 8, {_}:
41971 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
41972 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
41973 25633: Id : 9, {_}:
41974 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
41975 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
41976 25633: Id : 10, {_}:
41977 meet ?26 (join ?27 (meet ?26 ?28))
41981 (meet ?28 (join ?26 (meet ?27 (join ?28 (meet ?26 ?27))))))
41982 [28, 27, 26] by equation_H11 ?26 ?27 ?28
41984 25633: Id : 1, {_}:
41985 meet a (join b (meet a c))
41987 meet a (join b (meet c (join a (meet b c))))
41992 25633: b 3 0 3 1,2,2
41993 25633: c 3 0 3 2,2,2,2
41995 25633: join 16 2 3 0,2,2
41996 25633: meet 20 2 5 0,2
41997 NO CLASH, using fixed ground order
41999 25632: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42000 25632: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42001 25632: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42002 25632: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42003 25632: Id : 6, {_}:
42004 meet ?12 ?13 =?= meet ?13 ?12
42005 [13, 12] by commutativity_of_meet ?12 ?13
42006 25632: Id : 7, {_}:
42007 join ?15 ?16 =?= join ?16 ?15
42008 [16, 15] by commutativity_of_join ?15 ?16
42009 25632: Id : 8, {_}:
42010 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
42011 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42012 25632: Id : 9, {_}:
42013 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
42014 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42015 25632: Id : 10, {_}:
42016 meet ?26 (join ?27 (meet ?26 ?28))
42020 (meet ?28 (join ?26 (meet ?27 (join ?28 (meet ?26 ?27))))))
42021 [28, 27, 26] by equation_H11 ?26 ?27 ?28
42023 25632: Id : 1, {_}:
42024 meet a (join b (meet a c))
42026 meet a (join b (meet c (join a (meet b c))))
42031 25632: b 3 0 3 1,2,2
42032 25632: c 3 0 3 2,2,2,2
42034 25632: join 16 2 3 0,2,2
42035 25632: meet 20 2 5 0,2
42036 % SZS status Timeout for LAT139-1.p
42037 NO CLASH, using fixed ground order
42039 25659: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42040 25659: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42041 25659: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42042 25659: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42043 25659: Id : 6, {_}:
42044 meet ?12 ?13 =?= meet ?13 ?12
42045 [13, 12] by commutativity_of_meet ?12 ?13
42046 25659: Id : 7, {_}:
42047 join ?15 ?16 =?= join ?16 ?15
42048 [16, 15] by commutativity_of_join ?15 ?16
42049 25659: Id : 8, {_}:
42050 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
42051 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42052 25659: Id : 9, {_}:
42053 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
42054 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42055 25659: Id : 10, {_}:
42056 join (meet ?26 ?27) (meet ?26 ?28)
42059 (join (meet ?27 (join ?26 (meet ?27 ?28)))
42060 (meet ?28 (join ?26 ?27)))
42061 [28, 27, 26] by equation_H21 ?26 ?27 ?28
42063 25659: Id : 1, {_}:
42064 meet a (join b (meet a c))
42066 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
42071 25659: b 3 0 3 1,2,2
42072 25659: c 3 0 3 2,2,2,2
42074 25659: join 17 2 4 0,2,2
42075 25659: meet 21 2 6 0,2
42076 NO CLASH, using fixed ground order
42078 25660: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42079 25660: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42080 25660: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42081 25660: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42082 25660: Id : 6, {_}:
42083 meet ?12 ?13 =?= meet ?13 ?12
42084 [13, 12] by commutativity_of_meet ?12 ?13
42085 25660: Id : 7, {_}:
42086 join ?15 ?16 =?= join ?16 ?15
42087 [16, 15] by commutativity_of_join ?15 ?16
42088 25660: Id : 8, {_}:
42089 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
42090 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42091 25660: Id : 9, {_}:
42092 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
42093 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42094 25660: Id : 10, {_}:
42095 join (meet ?26 ?27) (meet ?26 ?28)
42098 (join (meet ?27 (join ?26 (meet ?27 ?28)))
42099 (meet ?28 (join ?26 ?27)))
42100 [28, 27, 26] by equation_H21 ?26 ?27 ?28
42102 25660: Id : 1, {_}:
42103 meet a (join b (meet a c))
42105 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
42110 25660: b 3 0 3 1,2,2
42111 25660: c 3 0 3 2,2,2,2
42113 25660: join 17 2 4 0,2,2
42114 25660: meet 21 2 6 0,2
42115 NO CLASH, using fixed ground order
42117 25661: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42118 25661: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42119 25661: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42120 25661: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42121 25661: Id : 6, {_}:
42122 meet ?12 ?13 =?= meet ?13 ?12
42123 [13, 12] by commutativity_of_meet ?12 ?13
42124 25661: Id : 7, {_}:
42125 join ?15 ?16 =?= join ?16 ?15
42126 [16, 15] by commutativity_of_join ?15 ?16
42127 25661: Id : 8, {_}:
42128 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
42129 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42130 25661: Id : 9, {_}:
42131 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
42132 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42133 25661: Id : 10, {_}:
42134 join (meet ?26 ?27) (meet ?26 ?28)
42137 (join (meet ?27 (join ?26 (meet ?27 ?28)))
42138 (meet ?28 (join ?26 ?27)))
42139 [28, 27, 26] by equation_H21 ?26 ?27 ?28
42141 25661: Id : 1, {_}:
42142 meet a (join b (meet a c))
42144 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
42149 25661: b 3 0 3 1,2,2
42150 25661: c 3 0 3 2,2,2,2
42152 25661: join 17 2 4 0,2,2
42153 25661: meet 21 2 6 0,2
42154 % SZS status Timeout for LAT141-1.p
42155 NO CLASH, using fixed ground order
42157 25683: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42158 25683: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42159 25683: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42160 25683: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42161 25683: Id : 6, {_}:
42162 meet ?12 ?13 =?= meet ?13 ?12
42163 [13, 12] by commutativity_of_meet ?12 ?13
42164 25683: Id : 7, {_}:
42165 join ?15 ?16 =?= join ?16 ?15
42166 [16, 15] by commutativity_of_join ?15 ?16
42167 25683: Id : 8, {_}:
42168 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
42169 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42170 25683: Id : 9, {_}:
42171 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
42172 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42173 25683: Id : 10, {_}:
42174 meet ?26 (join ?27 ?28)
42176 meet ?26 (join ?27 (meet (join ?26 ?27) (join ?28 (meet ?26 ?27))))
42177 [28, 27, 26] by equation_H58 ?26 ?27 ?28
42179 25683: Id : 1, {_}:
42180 meet a (meet (join b c) (join b d))
42182 meet a (join b (meet (join b d) (join c (meet a b))))
42187 25683: c 2 0 2 2,1,2,2
42188 25683: d 2 0 2 2,2,2,2
42190 25683: b 5 0 5 1,1,2,2
42191 25683: join 18 2 5 0,1,2,2
42192 25683: meet 18 2 5 0,2
42193 NO CLASH, using fixed ground order
42195 25684: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42196 25684: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42197 25684: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42198 25684: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42199 25684: Id : 6, {_}:
42200 meet ?12 ?13 =?= meet ?13 ?12
42201 [13, 12] by commutativity_of_meet ?12 ?13
42202 25684: Id : 7, {_}:
42203 join ?15 ?16 =?= join ?16 ?15
42204 [16, 15] by commutativity_of_join ?15 ?16
42205 25684: Id : 8, {_}:
42206 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
42207 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42208 25684: Id : 9, {_}:
42209 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
42210 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42211 25684: Id : 10, {_}:
42212 meet ?26 (join ?27 ?28)
42214 meet ?26 (join ?27 (meet (join ?26 ?27) (join ?28 (meet ?26 ?27))))
42215 [28, 27, 26] by equation_H58 ?26 ?27 ?28
42217 25684: Id : 1, {_}:
42218 meet a (meet (join b c) (join b d))
42220 meet a (join b (meet (join b d) (join c (meet a b))))
42225 25684: c 2 0 2 2,1,2,2
42226 25684: d 2 0 2 2,2,2,2
42228 25684: b 5 0 5 1,1,2,2
42229 25684: join 18 2 5 0,1,2,2
42230 25684: meet 18 2 5 0,2
42231 NO CLASH, using fixed ground order
42233 25685: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42234 25685: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42235 25685: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42236 25685: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42237 25685: Id : 6, {_}:
42238 meet ?12 ?13 =?= meet ?13 ?12
42239 [13, 12] by commutativity_of_meet ?12 ?13
42240 25685: Id : 7, {_}:
42241 join ?15 ?16 =?= join ?16 ?15
42242 [16, 15] by commutativity_of_join ?15 ?16
42243 25685: Id : 8, {_}:
42244 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
42245 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42246 25685: Id : 9, {_}:
42247 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
42248 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42249 25685: Id : 10, {_}:
42250 meet ?26 (join ?27 ?28)
42252 meet ?26 (join ?27 (meet (join ?26 ?27) (join ?28 (meet ?26 ?27))))
42253 [28, 27, 26] by equation_H58 ?26 ?27 ?28
42255 25685: Id : 1, {_}:
42256 meet a (meet (join b c) (join b d))
42258 meet a (join b (meet (join b d) (join c (meet a b))))
42263 25685: c 2 0 2 2,1,2,2
42264 25685: d 2 0 2 2,2,2,2
42266 25685: b 5 0 5 1,1,2,2
42267 25685: join 18 2 5 0,1,2,2
42268 25685: meet 18 2 5 0,2
42269 % SZS status Timeout for LAT161-1.p
42270 NO CLASH, using fixed ground order
42272 25706: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42273 25706: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42274 25706: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42275 25706: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42276 25706: Id : 6, {_}:
42277 meet ?12 ?13 =?= meet ?13 ?12
42278 [13, 12] by commutativity_of_meet ?12 ?13
42279 25706: Id : 7, {_}:
42280 join ?15 ?16 =?= join ?16 ?15
42281 [16, 15] by commutativity_of_join ?15 ?16
42282 25706: Id : 8, {_}:
42283 meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20)
42284 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42285 25706: Id : 9, {_}:
42286 join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24)
42287 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42288 NO CLASH, using fixed ground order
42290 25707: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42291 25707: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42292 25707: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42293 25707: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42294 25707: Id : 6, {_}:
42295 meet ?12 ?13 =?= meet ?13 ?12
42296 [13, 12] by commutativity_of_meet ?12 ?13
42297 25707: Id : 7, {_}:
42298 join ?15 ?16 =?= join ?16 ?15
42299 [16, 15] by commutativity_of_join ?15 ?16
42300 25707: Id : 8, {_}:
42301 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
42302 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42303 25707: Id : 9, {_}:
42304 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
42305 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42306 25707: Id : 10, {_}:
42307 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
42309 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
42310 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
42312 25707: Id : 1, {_}:
42313 meet a (join b (meet a c))
42315 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
42320 25707: b 3 0 3 1,2,2
42321 25707: c 3 0 3 2,2,2,2
42323 25707: join 19 2 4 0,2,2
42324 25707: meet 19 2 6 0,2
42325 NO CLASH, using fixed ground order
42327 25708: Id : 2, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2
42328 25708: Id : 3, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4
42329 25708: Id : 4, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7
42330 25708: Id : 5, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10
42331 25708: Id : 6, {_}:
42332 meet ?12 ?13 =?= meet ?13 ?12
42333 [13, 12] by commutativity_of_meet ?12 ?13
42334 25708: Id : 7, {_}:
42335 join ?15 ?16 =?= join ?16 ?15
42336 [16, 15] by commutativity_of_join ?15 ?16
42337 25708: Id : 8, {_}:
42338 meet (meet ?18 ?19) ?20 =>= meet ?18 (meet ?19 ?20)
42339 [20, 19, 18] by associativity_of_meet ?18 ?19 ?20
42340 25708: Id : 9, {_}:
42341 join (join ?22 ?23) ?24 =>= join ?22 (join ?23 ?24)
42342 [24, 23, 22] by associativity_of_join ?22 ?23 ?24
42343 25708: Id : 10, {_}:
42344 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
42346 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
42347 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
42349 25708: Id : 1, {_}:
42350 meet a (join b (meet a c))
42352 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
42357 25708: b 3 0 3 1,2,2
42358 25708: c 3 0 3 2,2,2,2
42360 25708: join 19 2 4 0,2,2
42361 25708: meet 19 2 6 0,2
42362 25706: Id : 10, {_}:
42363 join ?26 (meet ?27 (join ?28 (meet ?26 ?29)))
42365 join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29))
42366 [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29
42368 25706: Id : 1, {_}:
42369 meet a (join b (meet a c))
42371 meet a (join (meet a (join b (meet a c))) (meet c (join a b)))
42376 25706: b 3 0 3 1,2,2
42377 25706: c 3 0 3 2,2,2,2
42379 25706: join 19 2 4 0,2,2
42380 25706: meet 19 2 6 0,2
42381 % SZS status Timeout for LAT177-1.p
42382 NO CLASH, using fixed ground order
42384 25759: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutative_addition ?2 ?3
42385 25759: Id : 3, {_}:
42386 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
42387 [7, 6, 5] by associative_addition ?5 ?6 ?7
42388 25759: Id : 4, {_}: add ?9 additive_identity =>= ?9 [9] by right_identity ?9
42389 25759: Id : 5, {_}: add additive_identity ?11 =>= ?11 [11] by left_identity ?11
42390 25759: Id : 6, {_}:
42391 add ?13 (additive_inverse ?13) =>= additive_identity
42392 [13] by right_additive_inverse ?13
42393 25759: Id : 7, {_}:
42394 add (additive_inverse ?15) ?15 =>= additive_identity
42395 [15] by left_additive_inverse ?15
42396 25759: Id : 8, {_}:
42397 additive_inverse additive_identity =>= additive_identity
42398 [] by additive_inverse_identity
42399 25759: Id : 9, {_}:
42400 add ?18 (add (additive_inverse ?18) ?19) =>= ?19
42401 [19, 18] by property_of_inverse_and_add ?18 ?19
42402 25759: Id : 10, {_}:
42403 additive_inverse (add ?21 ?22)
42405 add (additive_inverse ?21) (additive_inverse ?22)
42406 [22, 21] by distribute_additive_inverse ?21 ?22
42407 25759: Id : 11, {_}:
42408 additive_inverse (additive_inverse ?24) =>= ?24
42409 [24] by additive_inverse_additive_inverse ?24
42410 25759: Id : 12, {_}:
42411 multiply ?26 additive_identity =>= additive_identity
42412 [26] by multiply_additive_id1 ?26
42413 25759: Id : 13, {_}:
42414 multiply additive_identity ?28 =>= additive_identity
42415 [28] by multiply_additive_id2 ?28
42416 25759: Id : 14, {_}:
42417 multiply (additive_inverse ?30) (additive_inverse ?31)
42420 [31, 30] by product_of_inverse ?30 ?31
42421 25759: Id : 15, {_}:
42422 multiply ?33 (additive_inverse ?34)
42424 additive_inverse (multiply ?33 ?34)
42425 [34, 33] by multiply_additive_inverse1 ?33 ?34
42426 25759: Id : 16, {_}:
42427 multiply (additive_inverse ?36) ?37
42429 additive_inverse (multiply ?36 ?37)
42430 [37, 36] by multiply_additive_inverse2 ?36 ?37
42431 25759: Id : 17, {_}:
42432 multiply ?39 (add ?40 ?41)
42434 add (multiply ?39 ?40) (multiply ?39 ?41)
42435 [41, 40, 39] by distribute1 ?39 ?40 ?41
42436 25759: Id : 18, {_}:
42437 multiply (add ?43 ?44) ?45
42439 add (multiply ?43 ?45) (multiply ?44 ?45)
42440 [45, 44, 43] by distribute2 ?43 ?44 ?45
42441 25759: Id : 19, {_}:
42442 multiply (multiply ?47 ?48) ?48 =?= multiply ?47 (multiply ?48 ?48)
42443 [48, 47] by right_alternative ?47 ?48
42444 25759: Id : 20, {_}:
42445 associator ?50 ?51 ?52
42447 add (multiply (multiply ?50 ?51) ?52)
42448 (additive_inverse (multiply ?50 (multiply ?51 ?52)))
42449 [52, 51, 50] by associator ?50 ?51 ?52
42450 25759: Id : 21, {_}:
42453 add (multiply ?55 ?54) (additive_inverse (multiply ?54 ?55))
42454 [55, 54] by commutator ?54 ?55
42455 25759: Id : 22, {_}:
42456 multiply (multiply (associator ?57 ?57 ?58) ?57)
42457 (associator ?57 ?57 ?58)
42460 [58, 57] by middle_associator ?57 ?58
42461 25759: Id : 23, {_}:
42462 multiply (multiply ?60 ?60) ?61 =?= multiply ?60 (multiply ?60 ?61)
42463 [61, 60] by left_alternative ?60 ?61
42464 25759: Id : 24, {_}:
42468 (add (associator (multiply ?63 ?64) ?65 ?66)
42469 (additive_inverse (multiply ?64 (associator ?63 ?65 ?66))))
42470 (additive_inverse (multiply (associator ?64 ?65 ?66) ?63))
42471 [66, 65, 64, 63] by defines_s ?63 ?64 ?65 ?66
42472 25759: Id : 25, {_}:
42473 multiply ?68 (multiply ?69 (multiply ?70 ?69))
42475 multiply (multiply (multiply ?68 ?69) ?70) ?69
42476 [70, 69, 68] by right_moufang ?68 ?69 ?70
42477 25759: Id : 26, {_}:
42478 multiply (multiply ?72 (multiply ?73 ?72)) ?74
42480 multiply ?72 (multiply ?73 (multiply ?72 ?74))
42481 [74, 73, 72] by left_moufang ?72 ?73 ?74
42482 25759: Id : 27, {_}:
42483 multiply (multiply ?76 ?77) (multiply ?78 ?76)
42485 multiply (multiply ?76 (multiply ?77 ?78)) ?76
42486 [78, 77, 76] by middle_moufang ?76 ?77 ?78
42488 25759: Id : 1, {_}:
42489 s a b c d =<= additive_inverse (s b a c d)
42490 [] by prove_skew_symmetry
42498 25759: additive_identity 11 0 0
42499 25759: additive_inverse 20 1 1 0,3
42500 25759: commutator 1 2 0
42502 25759: multiply 51 2 0
42503 25759: associator 6 3 0
42505 NO CLASH, using fixed ground order
42507 25760: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutative_addition ?2 ?3
42508 25760: Id : 3, {_}:
42509 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
42510 [7, 6, 5] by associative_addition ?5 ?6 ?7
42511 25760: Id : 4, {_}: add ?9 additive_identity =>= ?9 [9] by right_identity ?9
42512 25760: Id : 5, {_}: add additive_identity ?11 =>= ?11 [11] by left_identity ?11
42513 25760: Id : 6, {_}:
42514 add ?13 (additive_inverse ?13) =>= additive_identity
42515 [13] by right_additive_inverse ?13
42516 25760: Id : 7, {_}:
42517 add (additive_inverse ?15) ?15 =>= additive_identity
42518 [15] by left_additive_inverse ?15
42519 25760: Id : 8, {_}:
42520 additive_inverse additive_identity =>= additive_identity
42521 [] by additive_inverse_identity
42522 25760: Id : 9, {_}:
42523 add ?18 (add (additive_inverse ?18) ?19) =>= ?19
42524 [19, 18] by property_of_inverse_and_add ?18 ?19
42525 25760: Id : 10, {_}:
42526 additive_inverse (add ?21 ?22)
42528 add (additive_inverse ?21) (additive_inverse ?22)
42529 [22, 21] by distribute_additive_inverse ?21 ?22
42530 25760: Id : 11, {_}:
42531 additive_inverse (additive_inverse ?24) =>= ?24
42532 [24] by additive_inverse_additive_inverse ?24
42533 25760: Id : 12, {_}:
42534 multiply ?26 additive_identity =>= additive_identity
42535 [26] by multiply_additive_id1 ?26
42536 25760: Id : 13, {_}:
42537 multiply additive_identity ?28 =>= additive_identity
42538 [28] by multiply_additive_id2 ?28
42539 25760: Id : 14, {_}:
42540 multiply (additive_inverse ?30) (additive_inverse ?31)
42543 [31, 30] by product_of_inverse ?30 ?31
42544 25760: Id : 15, {_}:
42545 multiply ?33 (additive_inverse ?34)
42547 additive_inverse (multiply ?33 ?34)
42548 [34, 33] by multiply_additive_inverse1 ?33 ?34
42549 25760: Id : 16, {_}:
42550 multiply (additive_inverse ?36) ?37
42552 additive_inverse (multiply ?36 ?37)
42553 [37, 36] by multiply_additive_inverse2 ?36 ?37
42554 25760: Id : 17, {_}:
42555 multiply ?39 (add ?40 ?41)
42557 add (multiply ?39 ?40) (multiply ?39 ?41)
42558 [41, 40, 39] by distribute1 ?39 ?40 ?41
42559 25760: Id : 18, {_}:
42560 multiply (add ?43 ?44) ?45
42562 add (multiply ?43 ?45) (multiply ?44 ?45)
42563 [45, 44, 43] by distribute2 ?43 ?44 ?45
42564 25760: Id : 19, {_}:
42565 multiply (multiply ?47 ?48) ?48 =>= multiply ?47 (multiply ?48 ?48)
42566 [48, 47] by right_alternative ?47 ?48
42567 25760: Id : 20, {_}:
42568 associator ?50 ?51 ?52
42570 add (multiply (multiply ?50 ?51) ?52)
42571 (additive_inverse (multiply ?50 (multiply ?51 ?52)))
42572 [52, 51, 50] by associator ?50 ?51 ?52
42573 25760: Id : 21, {_}:
42576 add (multiply ?55 ?54) (additive_inverse (multiply ?54 ?55))
42577 [55, 54] by commutator ?54 ?55
42578 25760: Id : 22, {_}:
42579 multiply (multiply (associator ?57 ?57 ?58) ?57)
42580 (associator ?57 ?57 ?58)
42583 [58, 57] by middle_associator ?57 ?58
42584 25760: Id : 23, {_}:
42585 multiply (multiply ?60 ?60) ?61 =>= multiply ?60 (multiply ?60 ?61)
42586 [61, 60] by left_alternative ?60 ?61
42587 25760: Id : 24, {_}:
42591 (add (associator (multiply ?63 ?64) ?65 ?66)
42592 (additive_inverse (multiply ?64 (associator ?63 ?65 ?66))))
42593 (additive_inverse (multiply (associator ?64 ?65 ?66) ?63))
42594 [66, 65, 64, 63] by defines_s ?63 ?64 ?65 ?66
42595 25760: Id : 25, {_}:
42596 multiply ?68 (multiply ?69 (multiply ?70 ?69))
42598 multiply (multiply (multiply ?68 ?69) ?70) ?69
42599 [70, 69, 68] by right_moufang ?68 ?69 ?70
42600 25760: Id : 26, {_}:
42601 multiply (multiply ?72 (multiply ?73 ?72)) ?74
42603 multiply ?72 (multiply ?73 (multiply ?72 ?74))
42604 [74, 73, 72] by left_moufang ?72 ?73 ?74
42605 25760: Id : 27, {_}:
42606 multiply (multiply ?76 ?77) (multiply ?78 ?76)
42608 multiply (multiply ?76 (multiply ?77 ?78)) ?76
42609 [78, 77, 76] by middle_moufang ?76 ?77 ?78
42611 25760: Id : 1, {_}:
42612 s a b c d =<= additive_inverse (s b a c d)
42613 [] by prove_skew_symmetry
42621 25760: additive_identity 11 0 0
42622 25760: additive_inverse 20 1 1 0,3
42623 25760: commutator 1 2 0
42625 25760: multiply 51 2 0
42626 25760: associator 6 3 0
42628 NO CLASH, using fixed ground order
42630 25761: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutative_addition ?2 ?3
42631 25761: Id : 3, {_}:
42632 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
42633 [7, 6, 5] by associative_addition ?5 ?6 ?7
42634 25761: Id : 4, {_}: add ?9 additive_identity =>= ?9 [9] by right_identity ?9
42635 25761: Id : 5, {_}: add additive_identity ?11 =>= ?11 [11] by left_identity ?11
42636 25761: Id : 6, {_}:
42637 add ?13 (additive_inverse ?13) =>= additive_identity
42638 [13] by right_additive_inverse ?13
42639 25761: Id : 7, {_}:
42640 add (additive_inverse ?15) ?15 =>= additive_identity
42641 [15] by left_additive_inverse ?15
42642 25761: Id : 8, {_}:
42643 additive_inverse additive_identity =>= additive_identity
42644 [] by additive_inverse_identity
42645 25761: Id : 9, {_}:
42646 add ?18 (add (additive_inverse ?18) ?19) =>= ?19
42647 [19, 18] by property_of_inverse_and_add ?18 ?19
42648 25761: Id : 10, {_}:
42649 additive_inverse (add ?21 ?22)
42651 add (additive_inverse ?21) (additive_inverse ?22)
42652 [22, 21] by distribute_additive_inverse ?21 ?22
42653 25761: Id : 11, {_}:
42654 additive_inverse (additive_inverse ?24) =>= ?24
42655 [24] by additive_inverse_additive_inverse ?24
42656 25761: Id : 12, {_}:
42657 multiply ?26 additive_identity =>= additive_identity
42658 [26] by multiply_additive_id1 ?26
42659 25761: Id : 13, {_}:
42660 multiply additive_identity ?28 =>= additive_identity
42661 [28] by multiply_additive_id2 ?28
42662 25761: Id : 14, {_}:
42663 multiply (additive_inverse ?30) (additive_inverse ?31)
42666 [31, 30] by product_of_inverse ?30 ?31
42667 25761: Id : 15, {_}:
42668 multiply ?33 (additive_inverse ?34)
42670 additive_inverse (multiply ?33 ?34)
42671 [34, 33] by multiply_additive_inverse1 ?33 ?34
42672 25761: Id : 16, {_}:
42673 multiply (additive_inverse ?36) ?37
42675 additive_inverse (multiply ?36 ?37)
42676 [37, 36] by multiply_additive_inverse2 ?36 ?37
42677 25761: Id : 17, {_}:
42678 multiply ?39 (add ?40 ?41)
42680 add (multiply ?39 ?40) (multiply ?39 ?41)
42681 [41, 40, 39] by distribute1 ?39 ?40 ?41
42682 25761: Id : 18, {_}:
42683 multiply (add ?43 ?44) ?45
42685 add (multiply ?43 ?45) (multiply ?44 ?45)
42686 [45, 44, 43] by distribute2 ?43 ?44 ?45
42687 25761: Id : 19, {_}:
42688 multiply (multiply ?47 ?48) ?48 =>= multiply ?47 (multiply ?48 ?48)
42689 [48, 47] by right_alternative ?47 ?48
42690 25761: Id : 20, {_}:
42691 associator ?50 ?51 ?52
42693 add (multiply (multiply ?50 ?51) ?52)
42694 (additive_inverse (multiply ?50 (multiply ?51 ?52)))
42695 [52, 51, 50] by associator ?50 ?51 ?52
42696 25761: Id : 21, {_}:
42699 add (multiply ?55 ?54) (additive_inverse (multiply ?54 ?55))
42700 [55, 54] by commutator ?54 ?55
42701 25761: Id : 22, {_}:
42702 multiply (multiply (associator ?57 ?57 ?58) ?57)
42703 (associator ?57 ?57 ?58)
42706 [58, 57] by middle_associator ?57 ?58
42707 25761: Id : 23, {_}:
42708 multiply (multiply ?60 ?60) ?61 =>= multiply ?60 (multiply ?60 ?61)
42709 [61, 60] by left_alternative ?60 ?61
42710 25761: Id : 24, {_}:
42714 (add (associator (multiply ?63 ?64) ?65 ?66)
42715 (additive_inverse (multiply ?64 (associator ?63 ?65 ?66))))
42716 (additive_inverse (multiply (associator ?64 ?65 ?66) ?63))
42717 [66, 65, 64, 63] by defines_s ?63 ?64 ?65 ?66
42718 25761: Id : 25, {_}:
42719 multiply ?68 (multiply ?69 (multiply ?70 ?69))
42721 multiply (multiply (multiply ?68 ?69) ?70) ?69
42722 [70, 69, 68] by right_moufang ?68 ?69 ?70
42723 25761: Id : 26, {_}:
42724 multiply (multiply ?72 (multiply ?73 ?72)) ?74
42726 multiply ?72 (multiply ?73 (multiply ?72 ?74))
42727 [74, 73, 72] by left_moufang ?72 ?73 ?74
42728 25761: Id : 27, {_}:
42729 multiply (multiply ?76 ?77) (multiply ?78 ?76)
42731 multiply (multiply ?76 (multiply ?77 ?78)) ?76
42732 [78, 77, 76] by middle_moufang ?76 ?77 ?78
42734 25761: Id : 1, {_}:
42735 s a b c d =<= additive_inverse (s b a c d)
42736 [] by prove_skew_symmetry
42744 25761: additive_identity 11 0 0
42745 25761: additive_inverse 20 1 1 0,3
42746 25761: commutator 1 2 0
42748 25761: multiply 51 2 0
42749 25761: associator 6 3 0
42751 % SZS status Timeout for RNG010-5.p
42752 NO CLASH, using fixed ground order
42754 25787: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
42755 25787: Id : 3, {_}:
42756 add ?4 additive_identity =>= ?4
42757 [4] by right_additive_identity ?4
42758 25787: Id : 4, {_}:
42759 multiply additive_identity ?6 =>= additive_identity
42760 [6] by left_multiplicative_zero ?6
42761 25787: Id : 5, {_}:
42762 multiply ?8 additive_identity =>= additive_identity
42763 [8] by right_multiplicative_zero ?8
42764 25787: Id : 6, {_}:
42765 add (additive_inverse ?10) ?10 =>= additive_identity
42766 [10] by left_additive_inverse ?10
42767 25787: Id : 7, {_}:
42768 add ?12 (additive_inverse ?12) =>= additive_identity
42769 [12] by right_additive_inverse ?12
42770 25787: Id : 8, {_}:
42771 additive_inverse (additive_inverse ?14) =>= ?14
42772 [14] by additive_inverse_additive_inverse ?14
42773 25787: Id : 9, {_}:
42774 multiply ?16 (add ?17 ?18)
42776 add (multiply ?16 ?17) (multiply ?16 ?18)
42777 [18, 17, 16] by distribute1 ?16 ?17 ?18
42778 25787: Id : 10, {_}:
42779 multiply (add ?20 ?21) ?22
42781 add (multiply ?20 ?22) (multiply ?21 ?22)
42782 [22, 21, 20] by distribute2 ?20 ?21 ?22
42783 25787: Id : 11, {_}:
42784 add ?24 ?25 =?= add ?25 ?24
42785 [25, 24] by commutativity_for_addition ?24 ?25
42786 25787: Id : 12, {_}:
42787 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
42788 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
42789 25787: Id : 13, {_}:
42790 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
42791 [32, 31] by right_alternative ?31 ?32
42792 25787: Id : 14, {_}:
42793 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
42794 [35, 34] by left_alternative ?34 ?35
42795 25787: Id : 15, {_}:
42796 associator ?37 ?38 ?39
42798 add (multiply (multiply ?37 ?38) ?39)
42799 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
42800 [39, 38, 37] by associator ?37 ?38 ?39
42801 25787: Id : 16, {_}:
42804 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
42805 [42, 41] by commutator ?41 ?42
42806 25787: Id : 17, {_}:
42810 (add (associator (multiply ?44 ?45) ?46 ?47)
42811 (additive_inverse (multiply ?45 (associator ?44 ?46 ?47))))
42812 (additive_inverse (multiply (associator ?45 ?46 ?47) ?44))
42813 [47, 46, 45, 44] by defines_s ?44 ?45 ?46 ?47
42814 25787: Id : 18, {_}:
42815 multiply ?49 (multiply ?50 (multiply ?51 ?50))
42817 multiply (multiply (multiply ?49 ?50) ?51) ?50
42818 [51, 50, 49] by right_moufang ?49 ?50 ?51
42819 25787: Id : 19, {_}:
42820 multiply (multiply ?53 (multiply ?54 ?53)) ?55
42822 multiply ?53 (multiply ?54 (multiply ?53 ?55))
42823 [55, 54, 53] by left_moufang ?53 ?54 ?55
42824 25787: Id : 20, {_}:
42825 multiply (multiply ?57 ?58) (multiply ?59 ?57)
42827 multiply (multiply ?57 (multiply ?58 ?59)) ?57
42828 [59, 58, 57] by middle_moufang ?57 ?58 ?59
42830 25787: Id : 1, {_}:
42831 s a b c d =<= additive_inverse (s b a c d)
42832 [] by prove_skew_symmetry
42840 25787: additive_identity 8 0 0
42841 25787: additive_inverse 9 1 1 0,3
42842 25787: commutator 1 2 0
42844 25787: multiply 43 2 0
42845 25787: associator 4 3 0
42847 NO CLASH, using fixed ground order
42849 25788: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
42850 25788: Id : 3, {_}:
42851 add ?4 additive_identity =>= ?4
42852 [4] by right_additive_identity ?4
42853 25788: Id : 4, {_}:
42854 multiply additive_identity ?6 =>= additive_identity
42855 [6] by left_multiplicative_zero ?6
42856 25788: Id : 5, {_}:
42857 multiply ?8 additive_identity =>= additive_identity
42858 [8] by right_multiplicative_zero ?8
42859 25788: Id : 6, {_}:
42860 add (additive_inverse ?10) ?10 =>= additive_identity
42861 [10] by left_additive_inverse ?10
42862 25788: Id : 7, {_}:
42863 add ?12 (additive_inverse ?12) =>= additive_identity
42864 [12] by right_additive_inverse ?12
42865 25788: Id : 8, {_}:
42866 additive_inverse (additive_inverse ?14) =>= ?14
42867 [14] by additive_inverse_additive_inverse ?14
42868 25788: Id : 9, {_}:
42869 multiply ?16 (add ?17 ?18)
42871 add (multiply ?16 ?17) (multiply ?16 ?18)
42872 [18, 17, 16] by distribute1 ?16 ?17 ?18
42873 25788: Id : 10, {_}:
42874 multiply (add ?20 ?21) ?22
42876 add (multiply ?20 ?22) (multiply ?21 ?22)
42877 [22, 21, 20] by distribute2 ?20 ?21 ?22
42878 25788: Id : 11, {_}:
42879 add ?24 ?25 =?= add ?25 ?24
42880 [25, 24] by commutativity_for_addition ?24 ?25
42881 25788: Id : 12, {_}:
42882 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
42883 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
42884 25788: Id : 13, {_}:
42885 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
42886 [32, 31] by right_alternative ?31 ?32
42887 25788: Id : 14, {_}:
42888 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
42889 [35, 34] by left_alternative ?34 ?35
42890 25788: Id : 15, {_}:
42891 associator ?37 ?38 ?39
42893 add (multiply (multiply ?37 ?38) ?39)
42894 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
42895 [39, 38, 37] by associator ?37 ?38 ?39
42896 25788: Id : 16, {_}:
42899 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
42900 [42, 41] by commutator ?41 ?42
42901 25788: Id : 17, {_}:
42905 (add (associator (multiply ?44 ?45) ?46 ?47)
42906 (additive_inverse (multiply ?45 (associator ?44 ?46 ?47))))
42907 (additive_inverse (multiply (associator ?45 ?46 ?47) ?44))
42908 [47, 46, 45, 44] by defines_s ?44 ?45 ?46 ?47
42909 25788: Id : 18, {_}:
42910 multiply ?49 (multiply ?50 (multiply ?51 ?50))
42912 multiply (multiply (multiply ?49 ?50) ?51) ?50
42913 [51, 50, 49] by right_moufang ?49 ?50 ?51
42914 25788: Id : 19, {_}:
42915 multiply (multiply ?53 (multiply ?54 ?53)) ?55
42917 multiply ?53 (multiply ?54 (multiply ?53 ?55))
42918 [55, 54, 53] by left_moufang ?53 ?54 ?55
42919 25788: Id : 20, {_}:
42920 multiply (multiply ?57 ?58) (multiply ?59 ?57)
42922 multiply (multiply ?57 (multiply ?58 ?59)) ?57
42923 [59, 58, 57] by middle_moufang ?57 ?58 ?59
42925 25788: Id : 1, {_}:
42926 s a b c d =<= additive_inverse (s b a c d)
42927 [] by prove_skew_symmetry
42935 25788: additive_identity 8 0 0
42936 25788: additive_inverse 9 1 1 0,3
42937 25788: commutator 1 2 0
42939 25788: multiply 43 2 0
42940 25788: associator 4 3 0
42942 NO CLASH, using fixed ground order
42944 25789: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
42945 25789: Id : 3, {_}:
42946 add ?4 additive_identity =>= ?4
42947 [4] by right_additive_identity ?4
42948 25789: Id : 4, {_}:
42949 multiply additive_identity ?6 =>= additive_identity
42950 [6] by left_multiplicative_zero ?6
42951 25789: Id : 5, {_}:
42952 multiply ?8 additive_identity =>= additive_identity
42953 [8] by right_multiplicative_zero ?8
42954 25789: Id : 6, {_}:
42955 add (additive_inverse ?10) ?10 =>= additive_identity
42956 [10] by left_additive_inverse ?10
42957 25789: Id : 7, {_}:
42958 add ?12 (additive_inverse ?12) =>= additive_identity
42959 [12] by right_additive_inverse ?12
42960 25789: Id : 8, {_}:
42961 additive_inverse (additive_inverse ?14) =>= ?14
42962 [14] by additive_inverse_additive_inverse ?14
42963 25789: Id : 9, {_}:
42964 multiply ?16 (add ?17 ?18)
42966 add (multiply ?16 ?17) (multiply ?16 ?18)
42967 [18, 17, 16] by distribute1 ?16 ?17 ?18
42968 25789: Id : 10, {_}:
42969 multiply (add ?20 ?21) ?22
42971 add (multiply ?20 ?22) (multiply ?21 ?22)
42972 [22, 21, 20] by distribute2 ?20 ?21 ?22
42973 25789: Id : 11, {_}:
42974 add ?24 ?25 =?= add ?25 ?24
42975 [25, 24] by commutativity_for_addition ?24 ?25
42976 25789: Id : 12, {_}:
42977 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
42978 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
42979 25789: Id : 13, {_}:
42980 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
42981 [32, 31] by right_alternative ?31 ?32
42982 25789: Id : 14, {_}:
42983 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
42984 [35, 34] by left_alternative ?34 ?35
42985 25789: Id : 15, {_}:
42986 associator ?37 ?38 ?39
42988 add (multiply (multiply ?37 ?38) ?39)
42989 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
42990 [39, 38, 37] by associator ?37 ?38 ?39
42991 25789: Id : 16, {_}:
42994 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
42995 [42, 41] by commutator ?41 ?42
42996 25789: Id : 17, {_}:
43000 (add (associator (multiply ?44 ?45) ?46 ?47)
43001 (additive_inverse (multiply ?45 (associator ?44 ?46 ?47))))
43002 (additive_inverse (multiply (associator ?45 ?46 ?47) ?44))
43003 [47, 46, 45, 44] by defines_s ?44 ?45 ?46 ?47
43004 25789: Id : 18, {_}:
43005 multiply ?49 (multiply ?50 (multiply ?51 ?50))
43007 multiply (multiply (multiply ?49 ?50) ?51) ?50
43008 [51, 50, 49] by right_moufang ?49 ?50 ?51
43009 25789: Id : 19, {_}:
43010 multiply (multiply ?53 (multiply ?54 ?53)) ?55
43012 multiply ?53 (multiply ?54 (multiply ?53 ?55))
43013 [55, 54, 53] by left_moufang ?53 ?54 ?55
43014 25789: Id : 20, {_}:
43015 multiply (multiply ?57 ?58) (multiply ?59 ?57)
43017 multiply (multiply ?57 (multiply ?58 ?59)) ?57
43018 [59, 58, 57] by middle_moufang ?57 ?58 ?59
43020 25789: Id : 1, {_}:
43021 s a b c d =<= additive_inverse (s b a c d)
43022 [] by prove_skew_symmetry
43030 25789: additive_identity 8 0 0
43031 25789: additive_inverse 9 1 1 0,3
43032 25789: commutator 1 2 0
43034 25789: multiply 43 2 0
43035 25789: associator 4 3 0
43037 % SZS status Timeout for RNG010-6.p
43038 NO CLASH, using fixed ground order
43040 25814: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
43041 25814: Id : 3, {_}:
43042 add ?4 additive_identity =>= ?4
43043 [4] by right_additive_identity ?4
43044 25814: Id : 4, {_}:
43045 multiply additive_identity ?6 =>= additive_identity
43046 [6] by left_multiplicative_zero ?6
43047 25814: Id : 5, {_}:
43048 multiply ?8 additive_identity =>= additive_identity
43049 [8] by right_multiplicative_zero ?8
43050 25814: Id : 6, {_}:
43051 add (additive_inverse ?10) ?10 =>= additive_identity
43052 [10] by left_additive_inverse ?10
43053 25814: Id : 7, {_}:
43054 add ?12 (additive_inverse ?12) =>= additive_identity
43055 [12] by right_additive_inverse ?12
43056 25814: Id : 8, {_}:
43057 additive_inverse (additive_inverse ?14) =>= ?14
43058 [14] by additive_inverse_additive_inverse ?14
43059 25814: Id : 9, {_}:
43060 multiply ?16 (add ?17 ?18)
43062 add (multiply ?16 ?17) (multiply ?16 ?18)
43063 [18, 17, 16] by distribute1 ?16 ?17 ?18
43064 25814: Id : 10, {_}:
43065 multiply (add ?20 ?21) ?22
43067 add (multiply ?20 ?22) (multiply ?21 ?22)
43068 [22, 21, 20] by distribute2 ?20 ?21 ?22
43069 25814: Id : 11, {_}:
43070 add ?24 ?25 =?= add ?25 ?24
43071 [25, 24] by commutativity_for_addition ?24 ?25
43072 25814: Id : 12, {_}:
43073 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
43074 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
43075 25814: Id : 13, {_}:
43076 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
43077 [32, 31] by right_alternative ?31 ?32
43078 25814: Id : 14, {_}:
43079 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
43080 [35, 34] by left_alternative ?34 ?35
43081 25814: Id : 15, {_}:
43082 associator ?37 ?38 ?39
43084 add (multiply (multiply ?37 ?38) ?39)
43085 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
43086 [39, 38, 37] by associator ?37 ?38 ?39
43087 25814: Id : 16, {_}:
43090 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
43091 [42, 41] by commutator ?41 ?42
43092 25814: Id : 17, {_}:
43093 multiply (additive_inverse ?44) (additive_inverse ?45)
43096 [45, 44] by product_of_inverses ?44 ?45
43097 25814: Id : 18, {_}:
43098 multiply (additive_inverse ?47) ?48
43100 additive_inverse (multiply ?47 ?48)
43101 [48, 47] by inverse_product1 ?47 ?48
43102 25814: Id : 19, {_}:
43103 multiply ?50 (additive_inverse ?51)
43105 additive_inverse (multiply ?50 ?51)
43106 [51, 50] by inverse_product2 ?50 ?51
43107 25814: Id : 20, {_}:
43108 multiply ?53 (add ?54 (additive_inverse ?55))
43110 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
43111 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
43112 25814: Id : 21, {_}:
43113 multiply (add ?57 (additive_inverse ?58)) ?59
43115 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
43116 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
43117 25814: Id : 22, {_}:
43118 multiply (additive_inverse ?61) (add ?62 ?63)
43120 add (additive_inverse (multiply ?61 ?62))
43121 (additive_inverse (multiply ?61 ?63))
43122 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
43123 25814: Id : 23, {_}:
43124 multiply (add ?65 ?66) (additive_inverse ?67)
43126 add (additive_inverse (multiply ?65 ?67))
43127 (additive_inverse (multiply ?66 ?67))
43128 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
43129 25814: Id : 24, {_}:
43133 (add (associator (multiply ?69 ?70) ?71 ?72)
43134 (additive_inverse (multiply ?70 (associator ?69 ?71 ?72))))
43135 (additive_inverse (multiply (associator ?70 ?71 ?72) ?69))
43136 [72, 71, 70, 69] by defines_s ?69 ?70 ?71 ?72
43137 25814: Id : 25, {_}:
43138 multiply ?74 (multiply ?75 (multiply ?76 ?75))
43140 multiply (multiply (multiply ?74 ?75) ?76) ?75
43141 [76, 75, 74] by right_moufang ?74 ?75 ?76
43142 25814: Id : 26, {_}:
43143 multiply (multiply ?78 (multiply ?79 ?78)) ?80
43145 multiply ?78 (multiply ?79 (multiply ?78 ?80))
43146 [80, 79, 78] by left_moufang ?78 ?79 ?80
43147 25814: Id : 27, {_}:
43148 multiply (multiply ?82 ?83) (multiply ?84 ?82)
43150 multiply (multiply ?82 (multiply ?83 ?84)) ?82
43151 [84, 83, 82] by middle_moufang ?82 ?83 ?84
43153 25814: Id : 1, {_}:
43154 s a b c d =<= additive_inverse (s b a c d)
43155 [] by prove_skew_symmetry
43163 25814: additive_identity 8 0 0
43164 25814: additive_inverse 25 1 1 0,3
43165 25814: commutator 1 2 0
43167 25814: multiply 61 2 0
43168 25814: associator 4 3 0
43170 NO CLASH, using fixed ground order
43172 NO CLASH, using fixed ground order
43174 25816: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
43175 25816: Id : 3, {_}:
43176 add ?4 additive_identity =>= ?4
43177 [4] by right_additive_identity ?4
43178 25816: Id : 4, {_}:
43179 multiply additive_identity ?6 =>= additive_identity
43180 [6] by left_multiplicative_zero ?6
43181 25816: Id : 5, {_}:
43182 multiply ?8 additive_identity =>= additive_identity
43183 [8] by right_multiplicative_zero ?8
43184 25816: Id : 6, {_}:
43185 add (additive_inverse ?10) ?10 =>= additive_identity
43186 [10] by left_additive_inverse ?10
43187 25816: Id : 7, {_}:
43188 add ?12 (additive_inverse ?12) =>= additive_identity
43189 [12] by right_additive_inverse ?12
43190 25816: Id : 8, {_}:
43191 additive_inverse (additive_inverse ?14) =>= ?14
43192 [14] by additive_inverse_additive_inverse ?14
43193 25816: Id : 9, {_}:
43194 multiply ?16 (add ?17 ?18)
43196 add (multiply ?16 ?17) (multiply ?16 ?18)
43197 [18, 17, 16] by distribute1 ?16 ?17 ?18
43198 25816: Id : 10, {_}:
43199 multiply (add ?20 ?21) ?22
43201 add (multiply ?20 ?22) (multiply ?21 ?22)
43202 [22, 21, 20] by distribute2 ?20 ?21 ?22
43203 25816: Id : 11, {_}:
43204 add ?24 ?25 =?= add ?25 ?24
43205 [25, 24] by commutativity_for_addition ?24 ?25
43206 25816: Id : 12, {_}:
43207 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
43208 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
43209 25816: Id : 13, {_}:
43210 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
43211 [32, 31] by right_alternative ?31 ?32
43212 25816: Id : 14, {_}:
43213 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
43214 [35, 34] by left_alternative ?34 ?35
43215 25816: Id : 15, {_}:
43216 associator ?37 ?38 ?39
43218 add (multiply (multiply ?37 ?38) ?39)
43219 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
43220 [39, 38, 37] by associator ?37 ?38 ?39
43221 25816: Id : 16, {_}:
43224 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
43225 [42, 41] by commutator ?41 ?42
43226 25816: Id : 17, {_}:
43227 multiply (additive_inverse ?44) (additive_inverse ?45)
43230 [45, 44] by product_of_inverses ?44 ?45
43231 25816: Id : 18, {_}:
43232 multiply (additive_inverse ?47) ?48
43234 additive_inverse (multiply ?47 ?48)
43235 [48, 47] by inverse_product1 ?47 ?48
43236 25816: Id : 19, {_}:
43237 multiply ?50 (additive_inverse ?51)
43239 additive_inverse (multiply ?50 ?51)
43240 [51, 50] by inverse_product2 ?50 ?51
43241 25816: Id : 20, {_}:
43242 multiply ?53 (add ?54 (additive_inverse ?55))
43244 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
43245 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
43246 25816: Id : 21, {_}:
43247 multiply (add ?57 (additive_inverse ?58)) ?59
43249 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
43250 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
43251 25816: Id : 22, {_}:
43252 multiply (additive_inverse ?61) (add ?62 ?63)
43254 add (additive_inverse (multiply ?61 ?62))
43255 (additive_inverse (multiply ?61 ?63))
43256 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
43257 25816: Id : 23, {_}:
43258 multiply (add ?65 ?66) (additive_inverse ?67)
43260 add (additive_inverse (multiply ?65 ?67))
43261 (additive_inverse (multiply ?66 ?67))
43262 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
43263 25816: Id : 24, {_}:
43267 (add (associator (multiply ?69 ?70) ?71 ?72)
43268 (additive_inverse (multiply ?70 (associator ?69 ?71 ?72))))
43269 (additive_inverse (multiply (associator ?70 ?71 ?72) ?69))
43270 [72, 71, 70, 69] by defines_s ?69 ?70 ?71 ?72
43271 25816: Id : 25, {_}:
43272 multiply ?74 (multiply ?75 (multiply ?76 ?75))
43274 multiply (multiply (multiply ?74 ?75) ?76) ?75
43275 [76, 75, 74] by right_moufang ?74 ?75 ?76
43276 25816: Id : 26, {_}:
43277 multiply (multiply ?78 (multiply ?79 ?78)) ?80
43279 multiply ?78 (multiply ?79 (multiply ?78 ?80))
43280 [80, 79, 78] by left_moufang ?78 ?79 ?80
43281 25816: Id : 27, {_}:
43282 multiply (multiply ?82 ?83) (multiply ?84 ?82)
43284 multiply (multiply ?82 (multiply ?83 ?84)) ?82
43285 [84, 83, 82] by middle_moufang ?82 ?83 ?84
43287 25816: Id : 1, {_}:
43288 s a b c d =<= additive_inverse (s b a c d)
43289 [] by prove_skew_symmetry
43297 25816: additive_identity 8 0 0
43298 25816: additive_inverse 25 1 1 0,3
43299 25816: commutator 1 2 0
43301 25816: multiply 61 2 0
43302 25816: associator 4 3 0
43304 25815: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
43305 25815: Id : 3, {_}:
43306 add ?4 additive_identity =>= ?4
43307 [4] by right_additive_identity ?4
43308 25815: Id : 4, {_}:
43309 multiply additive_identity ?6 =>= additive_identity
43310 [6] by left_multiplicative_zero ?6
43311 25815: Id : 5, {_}:
43312 multiply ?8 additive_identity =>= additive_identity
43313 [8] by right_multiplicative_zero ?8
43314 25815: Id : 6, {_}:
43315 add (additive_inverse ?10) ?10 =>= additive_identity
43316 [10] by left_additive_inverse ?10
43317 25815: Id : 7, {_}:
43318 add ?12 (additive_inverse ?12) =>= additive_identity
43319 [12] by right_additive_inverse ?12
43320 25815: Id : 8, {_}:
43321 additive_inverse (additive_inverse ?14) =>= ?14
43322 [14] by additive_inverse_additive_inverse ?14
43323 25815: Id : 9, {_}:
43324 multiply ?16 (add ?17 ?18)
43326 add (multiply ?16 ?17) (multiply ?16 ?18)
43327 [18, 17, 16] by distribute1 ?16 ?17 ?18
43328 25815: Id : 10, {_}:
43329 multiply (add ?20 ?21) ?22
43331 add (multiply ?20 ?22) (multiply ?21 ?22)
43332 [22, 21, 20] by distribute2 ?20 ?21 ?22
43333 25815: Id : 11, {_}:
43334 add ?24 ?25 =?= add ?25 ?24
43335 [25, 24] by commutativity_for_addition ?24 ?25
43336 25815: Id : 12, {_}:
43337 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
43338 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
43339 25815: Id : 13, {_}:
43340 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
43341 [32, 31] by right_alternative ?31 ?32
43342 25815: Id : 14, {_}:
43343 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
43344 [35, 34] by left_alternative ?34 ?35
43345 25815: Id : 15, {_}:
43346 associator ?37 ?38 ?39
43348 add (multiply (multiply ?37 ?38) ?39)
43349 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
43350 [39, 38, 37] by associator ?37 ?38 ?39
43351 25815: Id : 16, {_}:
43354 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
43355 [42, 41] by commutator ?41 ?42
43356 25815: Id : 17, {_}:
43357 multiply (additive_inverse ?44) (additive_inverse ?45)
43360 [45, 44] by product_of_inverses ?44 ?45
43361 25815: Id : 18, {_}:
43362 multiply (additive_inverse ?47) ?48
43364 additive_inverse (multiply ?47 ?48)
43365 [48, 47] by inverse_product1 ?47 ?48
43366 25815: Id : 19, {_}:
43367 multiply ?50 (additive_inverse ?51)
43369 additive_inverse (multiply ?50 ?51)
43370 [51, 50] by inverse_product2 ?50 ?51
43371 25815: Id : 20, {_}:
43372 multiply ?53 (add ?54 (additive_inverse ?55))
43374 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
43375 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
43376 25815: Id : 21, {_}:
43377 multiply (add ?57 (additive_inverse ?58)) ?59
43379 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
43380 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
43381 25815: Id : 22, {_}:
43382 multiply (additive_inverse ?61) (add ?62 ?63)
43384 add (additive_inverse (multiply ?61 ?62))
43385 (additive_inverse (multiply ?61 ?63))
43386 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
43387 25815: Id : 23, {_}:
43388 multiply (add ?65 ?66) (additive_inverse ?67)
43390 add (additive_inverse (multiply ?65 ?67))
43391 (additive_inverse (multiply ?66 ?67))
43392 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
43393 25815: Id : 24, {_}:
43397 (add (associator (multiply ?69 ?70) ?71 ?72)
43398 (additive_inverse (multiply ?70 (associator ?69 ?71 ?72))))
43399 (additive_inverse (multiply (associator ?70 ?71 ?72) ?69))
43400 [72, 71, 70, 69] by defines_s ?69 ?70 ?71 ?72
43401 25815: Id : 25, {_}:
43402 multiply ?74 (multiply ?75 (multiply ?76 ?75))
43404 multiply (multiply (multiply ?74 ?75) ?76) ?75
43405 [76, 75, 74] by right_moufang ?74 ?75 ?76
43406 25815: Id : 26, {_}:
43407 multiply (multiply ?78 (multiply ?79 ?78)) ?80
43409 multiply ?78 (multiply ?79 (multiply ?78 ?80))
43410 [80, 79, 78] by left_moufang ?78 ?79 ?80
43411 25815: Id : 27, {_}:
43412 multiply (multiply ?82 ?83) (multiply ?84 ?82)
43414 multiply (multiply ?82 (multiply ?83 ?84)) ?82
43415 [84, 83, 82] by middle_moufang ?82 ?83 ?84
43417 25815: Id : 1, {_}:
43418 s a b c d =<= additive_inverse (s b a c d)
43419 [] by prove_skew_symmetry
43427 25815: additive_identity 8 0 0
43428 25815: additive_inverse 25 1 1 0,3
43429 25815: commutator 1 2 0
43431 25815: multiply 61 2 0
43432 25815: associator 4 3 0
43434 % SZS status Timeout for RNG010-7.p
43435 NO CLASH, using fixed ground order
43437 25837: Id : 2, {_}:
43438 add ?2 ?3 =?= add ?3 ?2
43439 [3, 2] by commutativity_for_addition ?2 ?3
43440 25837: Id : 3, {_}:
43441 add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7
43442 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
43443 25837: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
43444 25837: Id : 5, {_}:
43445 add ?11 additive_identity =>= ?11
43446 [11] by right_additive_identity ?11
43447 25837: Id : 6, {_}:
43448 multiply additive_identity ?13 =>= additive_identity
43449 [13] by left_multiplicative_zero ?13
43450 25837: Id : 7, {_}:
43451 multiply ?15 additive_identity =>= additive_identity
43452 [15] by right_multiplicative_zero ?15
43453 25837: Id : 8, {_}:
43454 add (additive_inverse ?17) ?17 =>= additive_identity
43455 [17] by left_additive_inverse ?17
43456 25837: Id : 9, {_}:
43457 add ?19 (additive_inverse ?19) =>= additive_identity
43458 [19] by right_additive_inverse ?19
43459 25837: Id : 10, {_}:
43460 multiply ?21 (add ?22 ?23)
43462 add (multiply ?21 ?22) (multiply ?21 ?23)
43463 [23, 22, 21] by distribute1 ?21 ?22 ?23
43464 25837: Id : 11, {_}:
43465 multiply (add ?25 ?26) ?27
43467 add (multiply ?25 ?27) (multiply ?26 ?27)
43468 [27, 26, 25] by distribute2 ?25 ?26 ?27
43469 25837: Id : 12, {_}:
43470 additive_inverse (additive_inverse ?29) =>= ?29
43471 [29] by additive_inverse_additive_inverse ?29
43472 25837: Id : 13, {_}:
43473 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
43474 [32, 31] by right_alternative ?31 ?32
43475 25837: Id : 14, {_}:
43476 associator ?34 ?35 ?36
43478 add (multiply (multiply ?34 ?35) ?36)
43479 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
43480 [36, 35, 34] by associator ?34 ?35 ?36
43481 25837: Id : 15, {_}:
43484 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
43485 [39, 38] by commutator ?38 ?39
43487 25837: Id : 1, {_}:
43489 (multiply (associator x x y)
43490 (multiply (associator x x y) (associator x x y)))
43491 (multiply (associator x x y)
43492 (multiply (associator x x y) (associator x x y)))
43495 [] by prove_conjecture_1
43499 25837: y 6 0 6 3,1,1,2
43500 25837: additive_identity 9 0 1 3
43501 25837: x 12 0 12 1,1,1,2
43502 25837: additive_inverse 6 1 0
43503 25837: commutator 1 2 0
43504 25837: add 17 2 1 0,2
43505 25837: multiply 22 2 4 0,1,2
43506 25837: associator 7 3 6 0,1,1,2
43507 NO CLASH, using fixed ground order
43509 25838: Id : 2, {_}:
43510 add ?2 ?3 =?= add ?3 ?2
43511 [3, 2] by commutativity_for_addition ?2 ?3
43512 25838: Id : 3, {_}:
43513 add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7
43514 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
43515 25838: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
43516 25838: Id : 5, {_}:
43517 add ?11 additive_identity =>= ?11
43518 [11] by right_additive_identity ?11
43519 25838: Id : 6, {_}:
43520 multiply additive_identity ?13 =>= additive_identity
43521 [13] by left_multiplicative_zero ?13
43522 25838: Id : 7, {_}:
43523 multiply ?15 additive_identity =>= additive_identity
43524 [15] by right_multiplicative_zero ?15
43525 25838: Id : 8, {_}:
43526 add (additive_inverse ?17) ?17 =>= additive_identity
43527 [17] by left_additive_inverse ?17
43528 25838: Id : 9, {_}:
43529 add ?19 (additive_inverse ?19) =>= additive_identity
43530 [19] by right_additive_inverse ?19
43531 25838: Id : 10, {_}:
43532 multiply ?21 (add ?22 ?23)
43534 add (multiply ?21 ?22) (multiply ?21 ?23)
43535 [23, 22, 21] by distribute1 ?21 ?22 ?23
43536 25838: Id : 11, {_}:
43537 multiply (add ?25 ?26) ?27
43539 add (multiply ?25 ?27) (multiply ?26 ?27)
43540 [27, 26, 25] by distribute2 ?25 ?26 ?27
43541 25838: Id : 12, {_}:
43542 additive_inverse (additive_inverse ?29) =>= ?29
43543 [29] by additive_inverse_additive_inverse ?29
43544 25838: Id : 13, {_}:
43545 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
43546 [32, 31] by right_alternative ?31 ?32
43547 25838: Id : 14, {_}:
43548 associator ?34 ?35 ?36
43550 add (multiply (multiply ?34 ?35) ?36)
43551 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
43552 [36, 35, 34] by associator ?34 ?35 ?36
43553 25838: Id : 15, {_}:
43556 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
43557 [39, 38] by commutator ?38 ?39
43559 25838: Id : 1, {_}:
43561 (multiply (associator x x y)
43562 (multiply (associator x x y) (associator x x y)))
43563 (multiply (associator x x y)
43564 (multiply (associator x x y) (associator x x y)))
43567 [] by prove_conjecture_1
43571 25838: y 6 0 6 3,1,1,2
43572 25838: additive_identity 9 0 1 3
43573 25838: x 12 0 12 1,1,1,2
43574 25838: additive_inverse 6 1 0
43575 25838: commutator 1 2 0
43576 25838: add 17 2 1 0,2
43577 25838: multiply 22 2 4 0,1,2
43578 25838: associator 7 3 6 0,1,1,2
43579 NO CLASH, using fixed ground order
43581 25839: Id : 2, {_}:
43582 add ?2 ?3 =?= add ?3 ?2
43583 [3, 2] by commutativity_for_addition ?2 ?3
43584 25839: Id : 3, {_}:
43585 add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7
43586 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
43587 25839: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
43588 25839: Id : 5, {_}:
43589 add ?11 additive_identity =>= ?11
43590 [11] by right_additive_identity ?11
43591 25839: Id : 6, {_}:
43592 multiply additive_identity ?13 =>= additive_identity
43593 [13] by left_multiplicative_zero ?13
43594 25839: Id : 7, {_}:
43595 multiply ?15 additive_identity =>= additive_identity
43596 [15] by right_multiplicative_zero ?15
43597 25839: Id : 8, {_}:
43598 add (additive_inverse ?17) ?17 =>= additive_identity
43599 [17] by left_additive_inverse ?17
43600 25839: Id : 9, {_}:
43601 add ?19 (additive_inverse ?19) =>= additive_identity
43602 [19] by right_additive_inverse ?19
43603 25839: Id : 10, {_}:
43604 multiply ?21 (add ?22 ?23)
43606 add (multiply ?21 ?22) (multiply ?21 ?23)
43607 [23, 22, 21] by distribute1 ?21 ?22 ?23
43608 25839: Id : 11, {_}:
43609 multiply (add ?25 ?26) ?27
43611 add (multiply ?25 ?27) (multiply ?26 ?27)
43612 [27, 26, 25] by distribute2 ?25 ?26 ?27
43613 25839: Id : 12, {_}:
43614 additive_inverse (additive_inverse ?29) =>= ?29
43615 [29] by additive_inverse_additive_inverse ?29
43616 25839: Id : 13, {_}:
43617 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
43618 [32, 31] by right_alternative ?31 ?32
43619 25839: Id : 14, {_}:
43620 associator ?34 ?35 ?36
43622 add (multiply (multiply ?34 ?35) ?36)
43623 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
43624 [36, 35, 34] by associator ?34 ?35 ?36
43625 25839: Id : 15, {_}:
43628 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
43629 [39, 38] by commutator ?38 ?39
43631 25839: Id : 1, {_}:
43633 (multiply (associator x x y)
43634 (multiply (associator x x y) (associator x x y)))
43635 (multiply (associator x x y)
43636 (multiply (associator x x y) (associator x x y)))
43639 [] by prove_conjecture_1
43643 25839: y 6 0 6 3,1,1,2
43644 25839: additive_identity 9 0 1 3
43645 25839: x 12 0 12 1,1,1,2
43646 25839: additive_inverse 6 1 0
43647 25839: commutator 1 2 0
43648 25839: add 17 2 1 0,2
43649 25839: multiply 22 2 4 0,1,2
43650 25839: associator 7 3 6 0,1,1,2
43651 % SZS status Timeout for RNG030-6.p
43652 NO CLASH, using fixed ground order
43654 25861: Id : 2, {_}:
43655 multiply (additive_inverse ?2) (additive_inverse ?3)
43658 [3, 2] by product_of_inverses ?2 ?3
43659 25861: Id : 3, {_}:
43660 multiply (additive_inverse ?5) ?6
43662 additive_inverse (multiply ?5 ?6)
43663 [6, 5] by inverse_product1 ?5 ?6
43664 25861: Id : 4, {_}:
43665 multiply ?8 (additive_inverse ?9)
43667 additive_inverse (multiply ?8 ?9)
43668 [9, 8] by inverse_product2 ?8 ?9
43669 25861: Id : 5, {_}:
43670 multiply ?11 (add ?12 (additive_inverse ?13))
43672 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
43673 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
43674 25861: Id : 6, {_}:
43675 multiply (add ?15 (additive_inverse ?16)) ?17
43677 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
43678 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
43679 25861: Id : 7, {_}:
43680 multiply (additive_inverse ?19) (add ?20 ?21)
43682 add (additive_inverse (multiply ?19 ?20))
43683 (additive_inverse (multiply ?19 ?21))
43684 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
43685 25861: Id : 8, {_}:
43686 multiply (add ?23 ?24) (additive_inverse ?25)
43688 add (additive_inverse (multiply ?23 ?25))
43689 (additive_inverse (multiply ?24 ?25))
43690 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
43691 25861: Id : 9, {_}:
43692 add ?27 ?28 =?= add ?28 ?27
43693 [28, 27] by commutativity_for_addition ?27 ?28
43694 25861: Id : 10, {_}:
43695 add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32
43696 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
43697 25861: Id : 11, {_}:
43698 add additive_identity ?34 =>= ?34
43699 [34] by left_additive_identity ?34
43700 25861: Id : 12, {_}:
43701 add ?36 additive_identity =>= ?36
43702 [36] by right_additive_identity ?36
43703 25861: Id : 13, {_}:
43704 multiply additive_identity ?38 =>= additive_identity
43705 [38] by left_multiplicative_zero ?38
43706 25861: Id : 14, {_}:
43707 multiply ?40 additive_identity =>= additive_identity
43708 [40] by right_multiplicative_zero ?40
43709 25861: Id : 15, {_}:
43710 add (additive_inverse ?42) ?42 =>= additive_identity
43711 [42] by left_additive_inverse ?42
43712 25861: Id : 16, {_}:
43713 add ?44 (additive_inverse ?44) =>= additive_identity
43714 [44] by right_additive_inverse ?44
43715 25861: Id : 17, {_}:
43716 multiply ?46 (add ?47 ?48)
43718 add (multiply ?46 ?47) (multiply ?46 ?48)
43719 [48, 47, 46] by distribute1 ?46 ?47 ?48
43720 25861: Id : 18, {_}:
43721 multiply (add ?50 ?51) ?52
43723 add (multiply ?50 ?52) (multiply ?51 ?52)
43724 [52, 51, 50] by distribute2 ?50 ?51 ?52
43725 25861: Id : 19, {_}:
43726 additive_inverse (additive_inverse ?54) =>= ?54
43727 [54] by additive_inverse_additive_inverse ?54
43728 25861: Id : 20, {_}:
43729 multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57)
43730 [57, 56] by right_alternative ?56 ?57
43731 25861: Id : 21, {_}:
43732 associator ?59 ?60 ?61
43734 add (multiply (multiply ?59 ?60) ?61)
43735 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
43736 [61, 60, 59] by associator ?59 ?60 ?61
43737 25861: Id : 22, {_}:
43740 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
43741 [64, 63] by commutator ?63 ?64
43743 25861: Id : 1, {_}:
43745 (multiply (associator x x y)
43746 (multiply (associator x x y) (associator x x y)))
43747 (multiply (associator x x y)
43748 (multiply (associator x x y) (associator x x y)))
43751 [] by prove_conjecture_1
43755 25861: y 6 0 6 3,1,1,2
43756 25861: additive_identity 9 0 1 3
43757 25861: x 12 0 12 1,1,1,2
43758 25861: additive_inverse 22 1 0
43759 25861: commutator 1 2 0
43760 25861: add 25 2 1 0,2
43761 25861: multiply 40 2 4 0,1,2add
43762 25861: associator 7 3 6 0,1,1,2
43763 NO CLASH, using fixed ground order
43765 NO CLASH, using fixed ground order
43767 25863: Id : 2, {_}:
43768 multiply (additive_inverse ?2) (additive_inverse ?3)
43771 [3, 2] by product_of_inverses ?2 ?3
43772 25863: Id : 3, {_}:
43773 multiply (additive_inverse ?5) ?6
43775 additive_inverse (multiply ?5 ?6)
43776 [6, 5] by inverse_product1 ?5 ?6
43777 25863: Id : 4, {_}:
43778 multiply ?8 (additive_inverse ?9)
43780 additive_inverse (multiply ?8 ?9)
43781 [9, 8] by inverse_product2 ?8 ?9
43782 25863: Id : 5, {_}:
43783 multiply ?11 (add ?12 (additive_inverse ?13))
43785 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
43786 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
43787 25863: Id : 6, {_}:
43788 multiply (add ?15 (additive_inverse ?16)) ?17
43790 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
43791 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
43792 25863: Id : 7, {_}:
43793 multiply (additive_inverse ?19) (add ?20 ?21)
43795 add (additive_inverse (multiply ?19 ?20))
43796 (additive_inverse (multiply ?19 ?21))
43797 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
43798 25863: Id : 8, {_}:
43799 multiply (add ?23 ?24) (additive_inverse ?25)
43801 add (additive_inverse (multiply ?23 ?25))
43802 (additive_inverse (multiply ?24 ?25))
43803 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
43804 25863: Id : 9, {_}:
43805 add ?27 ?28 =?= add ?28 ?27
43806 [28, 27] by commutativity_for_addition ?27 ?28
43807 25863: Id : 10, {_}:
43808 add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32
43809 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
43810 25863: Id : 11, {_}:
43811 add additive_identity ?34 =>= ?34
43812 [34] by left_additive_identity ?34
43813 25863: Id : 12, {_}:
43814 add ?36 additive_identity =>= ?36
43815 [36] by right_additive_identity ?36
43816 25863: Id : 13, {_}:
43817 multiply additive_identity ?38 =>= additive_identity
43818 [38] by left_multiplicative_zero ?38
43819 25863: Id : 14, {_}:
43820 multiply ?40 additive_identity =>= additive_identity
43821 [40] by right_multiplicative_zero ?40
43822 25863: Id : 15, {_}:
43823 add (additive_inverse ?42) ?42 =>= additive_identity
43824 [42] by left_additive_inverse ?42
43825 25863: Id : 16, {_}:
43826 add ?44 (additive_inverse ?44) =>= additive_identity
43827 [44] by right_additive_inverse ?44
43828 25863: Id : 17, {_}:
43829 multiply ?46 (add ?47 ?48)
43831 add (multiply ?46 ?47) (multiply ?46 ?48)
43832 [48, 47, 46] by distribute1 ?46 ?47 ?48
43833 25863: Id : 18, {_}:
43834 multiply (add ?50 ?51) ?52
43836 add (multiply ?50 ?52) (multiply ?51 ?52)
43837 [52, 51, 50] by distribute2 ?50 ?51 ?52
43838 25863: Id : 19, {_}:
43839 additive_inverse (additive_inverse ?54) =>= ?54
43840 [54] by additive_inverse_additive_inverse ?54
43841 25863: Id : 20, {_}:
43842 multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57)
43843 [57, 56] by right_alternative ?56 ?57
43844 25863: Id : 21, {_}:
43845 associator ?59 ?60 ?61
43847 add (multiply (multiply ?59 ?60) ?61)
43848 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
43849 [61, 60, 59] by associator ?59 ?60 ?61
43850 25863: Id : 22, {_}:
43853 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
43854 [64, 63] by commutator ?63 ?64
43856 25863: Id : 1, {_}:
43858 (multiply (associator x x y)
43859 (multiply (associator x x y) (associator x x y)))
43860 (multiply (associator x x y)
43861 (multiply (associator x x y) (associator x x y)))
43864 [] by prove_conjecture_1
43868 25863: y 6 0 6 3,1,1,2
43869 25863: additive_identity 9 0 1 3
43870 25863: x 12 0 12 1,1,1,2
43871 25863: additive_inverse 22 1 0
43872 25863: commutator 1 2 0
43873 25863: add 25 2 1 0,2
43874 25863: multiply 40 2 4 0,1,2add
43875 25863: associator 7 3 6 0,1,1,2
43876 25862: Id : 2, {_}:
43877 multiply (additive_inverse ?2) (additive_inverse ?3)
43880 [3, 2] by product_of_inverses ?2 ?3
43881 25862: Id : 3, {_}:
43882 multiply (additive_inverse ?5) ?6
43884 additive_inverse (multiply ?5 ?6)
43885 [6, 5] by inverse_product1 ?5 ?6
43886 25862: Id : 4, {_}:
43887 multiply ?8 (additive_inverse ?9)
43889 additive_inverse (multiply ?8 ?9)
43890 [9, 8] by inverse_product2 ?8 ?9
43891 25862: Id : 5, {_}:
43892 multiply ?11 (add ?12 (additive_inverse ?13))
43894 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
43895 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
43896 25862: Id : 6, {_}:
43897 multiply (add ?15 (additive_inverse ?16)) ?17
43899 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
43900 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
43901 25862: Id : 7, {_}:
43902 multiply (additive_inverse ?19) (add ?20 ?21)
43904 add (additive_inverse (multiply ?19 ?20))
43905 (additive_inverse (multiply ?19 ?21))
43906 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
43907 25862: Id : 8, {_}:
43908 multiply (add ?23 ?24) (additive_inverse ?25)
43910 add (additive_inverse (multiply ?23 ?25))
43911 (additive_inverse (multiply ?24 ?25))
43912 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
43913 25862: Id : 9, {_}:
43914 add ?27 ?28 =?= add ?28 ?27
43915 [28, 27] by commutativity_for_addition ?27 ?28
43916 25862: Id : 10, {_}:
43917 add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32
43918 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
43919 25862: Id : 11, {_}:
43920 add additive_identity ?34 =>= ?34
43921 [34] by left_additive_identity ?34
43922 25862: Id : 12, {_}:
43923 add ?36 additive_identity =>= ?36
43924 [36] by right_additive_identity ?36
43925 25862: Id : 13, {_}:
43926 multiply additive_identity ?38 =>= additive_identity
43927 [38] by left_multiplicative_zero ?38
43928 25862: Id : 14, {_}:
43929 multiply ?40 additive_identity =>= additive_identity
43930 [40] by right_multiplicative_zero ?40
43931 25862: Id : 15, {_}:
43932 add (additive_inverse ?42) ?42 =>= additive_identity
43933 [42] by left_additive_inverse ?42
43934 25862: Id : 16, {_}:
43935 add ?44 (additive_inverse ?44) =>= additive_identity
43936 [44] by right_additive_inverse ?44
43937 25862: Id : 17, {_}:
43938 multiply ?46 (add ?47 ?48)
43940 add (multiply ?46 ?47) (multiply ?46 ?48)
43941 [48, 47, 46] by distribute1 ?46 ?47 ?48
43942 25862: Id : 18, {_}:
43943 multiply (add ?50 ?51) ?52
43945 add (multiply ?50 ?52) (multiply ?51 ?52)
43946 [52, 51, 50] by distribute2 ?50 ?51 ?52
43947 25862: Id : 19, {_}:
43948 additive_inverse (additive_inverse ?54) =>= ?54
43949 [54] by additive_inverse_additive_inverse ?54
43950 25862: Id : 20, {_}:
43951 multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57)
43952 [57, 56] by right_alternative ?56 ?57
43953 25862: Id : 21, {_}:
43954 associator ?59 ?60 ?61
43956 add (multiply (multiply ?59 ?60) ?61)
43957 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
43958 [61, 60, 59] by associator ?59 ?60 ?61
43959 25862: Id : 22, {_}:
43962 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
43963 [64, 63] by commutator ?63 ?64
43965 25862: Id : 1, {_}:
43967 (multiply (associator x x y)
43968 (multiply (associator x x y) (associator x x y)))
43969 (multiply (associator x x y)
43970 (multiply (associator x x y) (associator x x y)))
43973 [] by prove_conjecture_1
43977 25862: y 6 0 6 3,1,1,2
43978 25862: additive_identity 9 0 1 3
43979 25862: x 12 0 12 1,1,1,2
43980 25862: additive_inverse 22 1 0
43981 25862: commutator 1 2 0
43982 25862: add 25 2 1 0,2
43983 25862: multiply 40 2 4 0,1,2add
43984 25862: associator 7 3 6 0,1,1,2
43985 % SZS status Timeout for RNG030-7.p
43986 NO CLASH, using fixed ground order
43988 25886: Id : 2, {_}:
43989 add ?2 ?3 =?= add ?3 ?2
43990 [3, 2] by commutativity_for_addition ?2 ?3
43991 25886: Id : 3, {_}:
43992 add ?5 (add ?6 ?7) =?= add (add ?5 ?6) ?7
43993 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
43994 25886: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
43995 25886: Id : 5, {_}:
43996 add ?11 additive_identity =>= ?11
43997 [11] by right_additive_identity ?11
43998 25886: Id : 6, {_}:
43999 multiply additive_identity ?13 =>= additive_identity
44000 [13] by left_multiplicative_zero ?13
44001 25886: Id : 7, {_}:
44002 multiply ?15 additive_identity =>= additive_identity
44003 [15] by right_multiplicative_zero ?15
44004 25886: Id : 8, {_}:
44005 add (additive_inverse ?17) ?17 =>= additive_identity
44006 [17] by left_additive_inverse ?17
44007 25886: Id : 9, {_}:
44008 add ?19 (additive_inverse ?19) =>= additive_identity
44009 [19] by right_additive_inverse ?19
44010 25886: Id : 10, {_}:
44011 multiply ?21 (add ?22 ?23)
44013 add (multiply ?21 ?22) (multiply ?21 ?23)
44014 [23, 22, 21] by distribute1 ?21 ?22 ?23
44015 25886: Id : 11, {_}:
44016 multiply (add ?25 ?26) ?27
44018 add (multiply ?25 ?27) (multiply ?26 ?27)
44019 [27, 26, 25] by distribute2 ?25 ?26 ?27
44020 25886: Id : 12, {_}:
44021 additive_inverse (additive_inverse ?29) =>= ?29
44022 [29] by additive_inverse_additive_inverse ?29
44023 25886: Id : 13, {_}:
44024 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
44025 [32, 31] by right_alternative ?31 ?32
44026 25886: Id : 14, {_}:
44027 associator ?34 ?35 ?36
44029 add (multiply (multiply ?34 ?35) ?36)
44030 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
44031 [36, 35, 34] by associator ?34 ?35 ?36
44032 25886: Id : 15, {_}:
44035 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
44036 [39, 38] by commutator ?38 ?39
44038 25886: Id : 1, {_}:
44044 (multiply (associator x x y)
44045 (multiply (associator x x y) (associator x x y)))
44046 (multiply (associator x x y)
44047 (multiply (associator x x y) (associator x x y))))
44048 (multiply (associator x x y)
44049 (multiply (associator x x y) (associator x x y))))
44050 (multiply (associator x x y)
44051 (multiply (associator x x y) (associator x x y))))
44052 (multiply (associator x x y)
44053 (multiply (associator x x y) (associator x x y))))
44054 (multiply (associator x x y)
44055 (multiply (associator x x y) (associator x x y)))
44058 [] by prove_conjecture_3
44062 25886: additive_identity 9 0 1 3
44063 25886: y 18 0 18 3,1,1,1,1,1,1,2
44064 25886: x 36 0 36 1,1,1,1,1,1,1,2
44065 25886: additive_inverse 6 1 0
44066 25886: commutator 1 2 0
44067 25886: add 21 2 5 0,2
44068 25886: multiply 30 2 12 0,1,1,1,1,1,2
44069 25886: associator 19 3 18 0,1,1,1,1,1,1,2
44070 NO CLASH, using fixed ground order
44072 25887: Id : 2, {_}:
44073 add ?2 ?3 =?= add ?3 ?2
44074 [3, 2] by commutativity_for_addition ?2 ?3
44075 25887: Id : 3, {_}:
44076 add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7
44077 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
44078 25887: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
44079 25887: Id : 5, {_}:
44080 add ?11 additive_identity =>= ?11
44081 [11] by right_additive_identity ?11
44082 25887: Id : 6, {_}:
44083 multiply additive_identity ?13 =>= additive_identity
44084 [13] by left_multiplicative_zero ?13
44085 25887: Id : 7, {_}:
44086 multiply ?15 additive_identity =>= additive_identity
44087 [15] by right_multiplicative_zero ?15
44088 25887: Id : 8, {_}:
44089 add (additive_inverse ?17) ?17 =>= additive_identity
44090 [17] by left_additive_inverse ?17
44091 25887: Id : 9, {_}:
44092 add ?19 (additive_inverse ?19) =>= additive_identity
44093 [19] by right_additive_inverse ?19
44094 25887: Id : 10, {_}:
44095 multiply ?21 (add ?22 ?23)
44097 add (multiply ?21 ?22) (multiply ?21 ?23)
44098 [23, 22, 21] by distribute1 ?21 ?22 ?23
44099 25887: Id : 11, {_}:
44100 multiply (add ?25 ?26) ?27
44102 add (multiply ?25 ?27) (multiply ?26 ?27)
44103 [27, 26, 25] by distribute2 ?25 ?26 ?27
44104 25887: Id : 12, {_}:
44105 additive_inverse (additive_inverse ?29) =>= ?29
44106 [29] by additive_inverse_additive_inverse ?29
44107 25887: Id : 13, {_}:
44108 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
44109 [32, 31] by right_alternative ?31 ?32
44110 25887: Id : 14, {_}:
44111 associator ?34 ?35 ?36
44113 add (multiply (multiply ?34 ?35) ?36)
44114 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
44115 [36, 35, 34] by associator ?34 ?35 ?36
44116 25887: Id : 15, {_}:
44119 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
44120 [39, 38] by commutator ?38 ?39
44122 25887: Id : 1, {_}:
44128 (multiply (associator x x y)
44129 (multiply (associator x x y) (associator x x y)))
44130 (multiply (associator x x y)
44131 (multiply (associator x x y) (associator x x y))))
44132 (multiply (associator x x y)
44133 (multiply (associator x x y) (associator x x y))))
44134 (multiply (associator x x y)
44135 (multiply (associator x x y) (associator x x y))))
44136 (multiply (associator x x y)
44137 (multiply (associator x x y) (associator x x y))))
44138 (multiply (associator x x y)
44139 (multiply (associator x x y) (associator x x y)))
44142 [] by prove_conjecture_3
44146 25887: additive_identity 9 0 1 3
44147 25887: y 18 0 18 3,1,1,1,1,1,1,2
44148 25887: x 36 0 36 1,1,1,1,1,1,1,2
44149 25887: additive_inverse 6 1 0
44150 25887: commutator 1 2 0
44151 25887: add 21 2 5 0,2
44152 25887: multiply 30 2 12 0,1,1,1,1,1,2
44153 25887: associator 19 3 18 0,1,1,1,1,1,1,2
44154 NO CLASH, using fixed ground order
44156 25888: Id : 2, {_}:
44157 add ?2 ?3 =?= add ?3 ?2
44158 [3, 2] by commutativity_for_addition ?2 ?3
44159 25888: Id : 3, {_}:
44160 add ?5 (add ?6 ?7) =<= add (add ?5 ?6) ?7
44161 [7, 6, 5] by associativity_for_addition ?5 ?6 ?7
44162 25888: Id : 4, {_}: add additive_identity ?9 =>= ?9 [9] by left_additive_identity ?9
44163 25888: Id : 5, {_}:
44164 add ?11 additive_identity =>= ?11
44165 [11] by right_additive_identity ?11
44166 25888: Id : 6, {_}:
44167 multiply additive_identity ?13 =>= additive_identity
44168 [13] by left_multiplicative_zero ?13
44169 25888: Id : 7, {_}:
44170 multiply ?15 additive_identity =>= additive_identity
44171 [15] by right_multiplicative_zero ?15
44172 25888: Id : 8, {_}:
44173 add (additive_inverse ?17) ?17 =>= additive_identity
44174 [17] by left_additive_inverse ?17
44175 25888: Id : 9, {_}:
44176 add ?19 (additive_inverse ?19) =>= additive_identity
44177 [19] by right_additive_inverse ?19
44178 25888: Id : 10, {_}:
44179 multiply ?21 (add ?22 ?23)
44181 add (multiply ?21 ?22) (multiply ?21 ?23)
44182 [23, 22, 21] by distribute1 ?21 ?22 ?23
44183 25888: Id : 11, {_}:
44184 multiply (add ?25 ?26) ?27
44186 add (multiply ?25 ?27) (multiply ?26 ?27)
44187 [27, 26, 25] by distribute2 ?25 ?26 ?27
44188 25888: Id : 12, {_}:
44189 additive_inverse (additive_inverse ?29) =>= ?29
44190 [29] by additive_inverse_additive_inverse ?29
44191 25888: Id : 13, {_}:
44192 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
44193 [32, 31] by right_alternative ?31 ?32
44194 25888: Id : 14, {_}:
44195 associator ?34 ?35 ?36
44197 add (multiply (multiply ?34 ?35) ?36)
44198 (additive_inverse (multiply ?34 (multiply ?35 ?36)))
44199 [36, 35, 34] by associator ?34 ?35 ?36
44200 25888: Id : 15, {_}:
44203 add (multiply ?39 ?38) (additive_inverse (multiply ?38 ?39))
44204 [39, 38] by commutator ?38 ?39
44206 25888: Id : 1, {_}:
44212 (multiply (associator x x y)
44213 (multiply (associator x x y) (associator x x y)))
44214 (multiply (associator x x y)
44215 (multiply (associator x x y) (associator x x y))))
44216 (multiply (associator x x y)
44217 (multiply (associator x x y) (associator x x y))))
44218 (multiply (associator x x y)
44219 (multiply (associator x x y) (associator x x y))))
44220 (multiply (associator x x y)
44221 (multiply (associator x x y) (associator x x y))))
44222 (multiply (associator x x y)
44223 (multiply (associator x x y) (associator x x y)))
44226 [] by prove_conjecture_3
44230 25888: additive_identity 9 0 1 3
44231 25888: y 18 0 18 3,1,1,1,1,1,1,2
44232 25888: x 36 0 36 1,1,1,1,1,1,1,2
44233 25888: additive_inverse 6 1 0
44234 25888: commutator 1 2 0
44235 25888: add 21 2 5 0,2
44236 25888: multiply 30 2 12 0,1,1,1,1,1,2
44237 25888: associator 19 3 18 0,1,1,1,1,1,1,2
44238 % SZS status Timeout for RNG032-6.p
44239 NO CLASH, using fixed ground order
44241 25915: Id : 2, {_}:
44242 multiply (additive_inverse ?2) (additive_inverse ?3)
44245 [3, 2] by product_of_inverses ?2 ?3
44246 25915: Id : 3, {_}:
44247 multiply (additive_inverse ?5) ?6
44249 additive_inverse (multiply ?5 ?6)
44250 [6, 5] by inverse_product1 ?5 ?6
44251 25915: Id : 4, {_}:
44252 multiply ?8 (additive_inverse ?9)
44254 additive_inverse (multiply ?8 ?9)
44255 [9, 8] by inverse_product2 ?8 ?9
44256 25915: Id : 5, {_}:
44257 multiply ?11 (add ?12 (additive_inverse ?13))
44259 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
44260 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
44261 25915: Id : 6, {_}:
44262 multiply (add ?15 (additive_inverse ?16)) ?17
44264 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
44265 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
44266 25915: Id : 7, {_}:
44267 multiply (additive_inverse ?19) (add ?20 ?21)
44269 add (additive_inverse (multiply ?19 ?20))
44270 (additive_inverse (multiply ?19 ?21))
44271 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
44272 25915: Id : 8, {_}:
44273 multiply (add ?23 ?24) (additive_inverse ?25)
44275 add (additive_inverse (multiply ?23 ?25))
44276 (additive_inverse (multiply ?24 ?25))
44277 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
44278 25915: Id : 9, {_}:
44279 add ?27 ?28 =?= add ?28 ?27
44280 [28, 27] by commutativity_for_addition ?27 ?28
44281 25915: Id : 10, {_}:
44282 add ?30 (add ?31 ?32) =?= add (add ?30 ?31) ?32
44283 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
44284 25915: Id : 11, {_}:
44285 add additive_identity ?34 =>= ?34
44286 [34] by left_additive_identity ?34
44287 25915: Id : 12, {_}:
44288 add ?36 additive_identity =>= ?36
44289 [36] by right_additive_identity ?36
44290 25915: Id : 13, {_}:
44291 multiply additive_identity ?38 =>= additive_identity
44292 [38] by left_multiplicative_zero ?38
44293 25915: Id : 14, {_}:
44294 multiply ?40 additive_identity =>= additive_identity
44295 [40] by right_multiplicative_zero ?40
44296 25915: Id : 15, {_}:
44297 add (additive_inverse ?42) ?42 =>= additive_identity
44298 [42] by left_additive_inverse ?42
44299 25915: Id : 16, {_}:
44300 add ?44 (additive_inverse ?44) =>= additive_identity
44301 [44] by right_additive_inverse ?44
44302 25915: Id : 17, {_}:
44303 multiply ?46 (add ?47 ?48)
44305 add (multiply ?46 ?47) (multiply ?46 ?48)
44306 [48, 47, 46] by distribute1 ?46 ?47 ?48
44307 25915: Id : 18, {_}:
44308 multiply (add ?50 ?51) ?52
44310 add (multiply ?50 ?52) (multiply ?51 ?52)
44311 [52, 51, 50] by distribute2 ?50 ?51 ?52
44312 25915: Id : 19, {_}:
44313 additive_inverse (additive_inverse ?54) =>= ?54
44314 [54] by additive_inverse_additive_inverse ?54
44315 25915: Id : 20, {_}:
44316 multiply (multiply ?56 ?57) ?57 =?= multiply ?56 (multiply ?57 ?57)
44317 [57, 56] by right_alternative ?56 ?57
44318 25915: Id : 21, {_}:
44319 associator ?59 ?60 ?61
44321 add (multiply (multiply ?59 ?60) ?61)
44322 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
44323 [61, 60, 59] by associator ?59 ?60 ?61
44324 25915: Id : 22, {_}:
44327 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
44328 [64, 63] by commutator ?63 ?64
44330 25915: Id : 1, {_}:
44336 (multiply (associator x x y)
44337 (multiply (associator x x y) (associator x x y)))
44338 (multiply (associator x x y)
44339 (multiply (associator x x y) (associator x x y))))
44340 (multiply (associator x x y)
44341 (multiply (associator x x y) (associator x x y))))
44342 (multiply (associator x x y)
44343 (multiply (associator x x y) (associator x x y))))
44344 (multiply (associator x x y)
44345 (multiply (associator x x y) (associator x x y))))
44346 (multiply (associator x x y)
44347 (multiply (associator x x y) (associator x x y)))
44350 [] by prove_conjecture_3
44354 25915: additive_identity 9 0 1 3
44355 25915: y 18 0 18 3,1,1,1,1,1,1,2
44356 25915: x 36 0 36 1,1,1,1,1,1,1,2
44357 25915: additive_inverse 22 1 0
44358 25915: commutator 1 2 0
44359 25915: add 29 2 5 0,2
44360 25915: multiply 48 2 12 0,1,1,1,1,1,2add
44361 25915: associator 19 3 18 0,1,1,1,1,1,1,2
44362 NO CLASH, using fixed ground order
44364 25916: Id : 2, {_}:
44365 multiply (additive_inverse ?2) (additive_inverse ?3)
44368 [3, 2] by product_of_inverses ?2 ?3
44369 25916: Id : 3, {_}:
44370 multiply (additive_inverse ?5) ?6
44372 additive_inverse (multiply ?5 ?6)
44373 [6, 5] by inverse_product1 ?5 ?6
44374 25916: Id : 4, {_}:
44375 multiply ?8 (additive_inverse ?9)
44377 additive_inverse (multiply ?8 ?9)
44378 [9, 8] by inverse_product2 ?8 ?9
44379 25916: Id : 5, {_}:
44380 multiply ?11 (add ?12 (additive_inverse ?13))
44382 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
44383 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
44384 25916: Id : 6, {_}:
44385 multiply (add ?15 (additive_inverse ?16)) ?17
44387 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
44388 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
44389 25916: Id : 7, {_}:
44390 multiply (additive_inverse ?19) (add ?20 ?21)
44392 add (additive_inverse (multiply ?19 ?20))
44393 (additive_inverse (multiply ?19 ?21))
44394 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
44395 25916: Id : 8, {_}:
44396 multiply (add ?23 ?24) (additive_inverse ?25)
44398 add (additive_inverse (multiply ?23 ?25))
44399 (additive_inverse (multiply ?24 ?25))
44400 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
44401 25916: Id : 9, {_}:
44402 add ?27 ?28 =?= add ?28 ?27
44403 [28, 27] by commutativity_for_addition ?27 ?28
44404 25916: Id : 10, {_}:
44405 add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32
44406 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
44407 25916: Id : 11, {_}:
44408 add additive_identity ?34 =>= ?34
44409 [34] by left_additive_identity ?34
44410 25916: Id : 12, {_}:
44411 add ?36 additive_identity =>= ?36
44412 [36] by right_additive_identity ?36
44413 25916: Id : 13, {_}:
44414 multiply additive_identity ?38 =>= additive_identity
44415 [38] by left_multiplicative_zero ?38
44416 25916: Id : 14, {_}:
44417 multiply ?40 additive_identity =>= additive_identity
44418 [40] by right_multiplicative_zero ?40
44419 25916: Id : 15, {_}:
44420 add (additive_inverse ?42) ?42 =>= additive_identity
44421 [42] by left_additive_inverse ?42
44422 25916: Id : 16, {_}:
44423 add ?44 (additive_inverse ?44) =>= additive_identity
44424 [44] by right_additive_inverse ?44
44425 25916: Id : 17, {_}:
44426 multiply ?46 (add ?47 ?48)
44428 add (multiply ?46 ?47) (multiply ?46 ?48)
44429 [48, 47, 46] by distribute1 ?46 ?47 ?48
44430 25916: Id : 18, {_}:
44431 multiply (add ?50 ?51) ?52
44433 add (multiply ?50 ?52) (multiply ?51 ?52)
44434 [52, 51, 50] by distribute2 ?50 ?51 ?52
44435 25916: Id : 19, {_}:
44436 additive_inverse (additive_inverse ?54) =>= ?54
44437 [54] by additive_inverse_additive_inverse ?54
44438 25916: Id : 20, {_}:
44439 multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57)
44440 [57, 56] by right_alternative ?56 ?57
44441 25916: Id : 21, {_}:
44442 associator ?59 ?60 ?61
44444 add (multiply (multiply ?59 ?60) ?61)
44445 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
44446 [61, 60, 59] by associator ?59 ?60 ?61
44447 25916: Id : 22, {_}:
44450 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
44451 [64, 63] by commutator ?63 ?64
44453 25916: Id : 1, {_}:
44459 (multiply (associator x x y)
44460 (multiply (associator x x y) (associator x x y)))
44461 (multiply (associator x x y)
44462 (multiply (associator x x y) (associator x x y))))
44463 (multiply (associator x x y)
44464 (multiply (associator x x y) (associator x x y))))
44465 (multiply (associator x x y)
44466 (multiply (associator x x y) (associator x x y))))
44467 (multiply (associator x x y)
44468 (multiply (associator x x y) (associator x x y))))
44469 (multiply (associator x x y)
44470 (multiply (associator x x y) (associator x x y)))
44473 [] by prove_conjecture_3
44477 25916: additive_identity 9 0 1 3
44478 25916: y 18 0 18 3,1,1,1,1,1,1,2
44479 25916: x 36 0 36 1,1,1,1,1,1,1,2
44480 25916: additive_inverse 22 1 0
44481 25916: commutator 1 2 0
44482 25916: add 29 2 5 0,2
44483 25916: multiply 48 2 12 0,1,1,1,1,1,2add
44484 25916: associator 19 3 18 0,1,1,1,1,1,1,2
44485 NO CLASH, using fixed ground order
44487 25917: Id : 2, {_}:
44488 multiply (additive_inverse ?2) (additive_inverse ?3)
44491 [3, 2] by product_of_inverses ?2 ?3
44492 25917: Id : 3, {_}:
44493 multiply (additive_inverse ?5) ?6
44495 additive_inverse (multiply ?5 ?6)
44496 [6, 5] by inverse_product1 ?5 ?6
44497 25917: Id : 4, {_}:
44498 multiply ?8 (additive_inverse ?9)
44500 additive_inverse (multiply ?8 ?9)
44501 [9, 8] by inverse_product2 ?8 ?9
44502 25917: Id : 5, {_}:
44503 multiply ?11 (add ?12 (additive_inverse ?13))
44505 add (multiply ?11 ?12) (additive_inverse (multiply ?11 ?13))
44506 [13, 12, 11] by distributivity_of_difference1 ?11 ?12 ?13
44507 25917: Id : 6, {_}:
44508 multiply (add ?15 (additive_inverse ?16)) ?17
44510 add (multiply ?15 ?17) (additive_inverse (multiply ?16 ?17))
44511 [17, 16, 15] by distributivity_of_difference2 ?15 ?16 ?17
44512 25917: Id : 7, {_}:
44513 multiply (additive_inverse ?19) (add ?20 ?21)
44515 add (additive_inverse (multiply ?19 ?20))
44516 (additive_inverse (multiply ?19 ?21))
44517 [21, 20, 19] by distributivity_of_difference3 ?19 ?20 ?21
44518 25917: Id : 8, {_}:
44519 multiply (add ?23 ?24) (additive_inverse ?25)
44521 add (additive_inverse (multiply ?23 ?25))
44522 (additive_inverse (multiply ?24 ?25))
44523 [25, 24, 23] by distributivity_of_difference4 ?23 ?24 ?25
44524 25917: Id : 9, {_}:
44525 add ?27 ?28 =?= add ?28 ?27
44526 [28, 27] by commutativity_for_addition ?27 ?28
44527 25917: Id : 10, {_}:
44528 add ?30 (add ?31 ?32) =<= add (add ?30 ?31) ?32
44529 [32, 31, 30] by associativity_for_addition ?30 ?31 ?32
44530 25917: Id : 11, {_}:
44531 add additive_identity ?34 =>= ?34
44532 [34] by left_additive_identity ?34
44533 25917: Id : 12, {_}:
44534 add ?36 additive_identity =>= ?36
44535 [36] by right_additive_identity ?36
44536 25917: Id : 13, {_}:
44537 multiply additive_identity ?38 =>= additive_identity
44538 [38] by left_multiplicative_zero ?38
44539 25917: Id : 14, {_}:
44540 multiply ?40 additive_identity =>= additive_identity
44541 [40] by right_multiplicative_zero ?40
44542 25917: Id : 15, {_}:
44543 add (additive_inverse ?42) ?42 =>= additive_identity
44544 [42] by left_additive_inverse ?42
44545 25917: Id : 16, {_}:
44546 add ?44 (additive_inverse ?44) =>= additive_identity
44547 [44] by right_additive_inverse ?44
44548 25917: Id : 17, {_}:
44549 multiply ?46 (add ?47 ?48)
44551 add (multiply ?46 ?47) (multiply ?46 ?48)
44552 [48, 47, 46] by distribute1 ?46 ?47 ?48
44553 25917: Id : 18, {_}:
44554 multiply (add ?50 ?51) ?52
44556 add (multiply ?50 ?52) (multiply ?51 ?52)
44557 [52, 51, 50] by distribute2 ?50 ?51 ?52
44558 25917: Id : 19, {_}:
44559 additive_inverse (additive_inverse ?54) =>= ?54
44560 [54] by additive_inverse_additive_inverse ?54
44561 25917: Id : 20, {_}:
44562 multiply (multiply ?56 ?57) ?57 =>= multiply ?56 (multiply ?57 ?57)
44563 [57, 56] by right_alternative ?56 ?57
44564 25917: Id : 21, {_}:
44565 associator ?59 ?60 ?61
44567 add (multiply (multiply ?59 ?60) ?61)
44568 (additive_inverse (multiply ?59 (multiply ?60 ?61)))
44569 [61, 60, 59] by associator ?59 ?60 ?61
44570 25917: Id : 22, {_}:
44573 add (multiply ?64 ?63) (additive_inverse (multiply ?63 ?64))
44574 [64, 63] by commutator ?63 ?64
44576 25917: Id : 1, {_}:
44582 (multiply (associator x x y)
44583 (multiply (associator x x y) (associator x x y)))
44584 (multiply (associator x x y)
44585 (multiply (associator x x y) (associator x x y))))
44586 (multiply (associator x x y)
44587 (multiply (associator x x y) (associator x x y))))
44588 (multiply (associator x x y)
44589 (multiply (associator x x y) (associator x x y))))
44590 (multiply (associator x x y)
44591 (multiply (associator x x y) (associator x x y))))
44592 (multiply (associator x x y)
44593 (multiply (associator x x y) (associator x x y)))
44596 [] by prove_conjecture_3
44600 25917: additive_identity 9 0 1 3
44601 25917: y 18 0 18 3,1,1,1,1,1,1,2
44602 25917: x 36 0 36 1,1,1,1,1,1,1,2
44603 25917: additive_inverse 22 1 0
44604 25917: commutator 1 2 0
44605 25917: add 29 2 5 0,2
44606 25917: multiply 48 2 12 0,1,1,1,1,1,2add
44607 25917: associator 19 3 18 0,1,1,1,1,1,1,2
44608 % SZS status Timeout for RNG032-7.p
44609 NO CLASH, using fixed ground order
44611 26009: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
44612 26009: Id : 3, {_}:
44613 add ?4 additive_identity =>= ?4
44614 [4] by right_additive_identity ?4
44615 26009: Id : 4, {_}:
44616 multiply additive_identity ?6 =>= additive_identity
44617 [6] by left_multiplicative_zero ?6
44618 26009: Id : 5, {_}:
44619 multiply ?8 additive_identity =>= additive_identity
44620 [8] by right_multiplicative_zero ?8
44621 26009: Id : 6, {_}:
44622 add (additive_inverse ?10) ?10 =>= additive_identity
44623 [10] by left_additive_inverse ?10
44624 26009: Id : 7, {_}:
44625 add ?12 (additive_inverse ?12) =>= additive_identity
44626 [12] by right_additive_inverse ?12
44627 26009: Id : 8, {_}:
44628 additive_inverse (additive_inverse ?14) =>= ?14
44629 [14] by additive_inverse_additive_inverse ?14
44630 26009: Id : 9, {_}:
44631 multiply ?16 (add ?17 ?18)
44633 add (multiply ?16 ?17) (multiply ?16 ?18)
44634 [18, 17, 16] by distribute1 ?16 ?17 ?18
44635 26009: Id : 10, {_}:
44636 multiply (add ?20 ?21) ?22
44638 add (multiply ?20 ?22) (multiply ?21 ?22)
44639 [22, 21, 20] by distribute2 ?20 ?21 ?22
44640 26009: Id : 11, {_}:
44641 add ?24 ?25 =?= add ?25 ?24
44642 [25, 24] by commutativity_for_addition ?24 ?25
44643 26009: Id : 12, {_}:
44644 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
44645 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
44646 NO CLASH, using fixed ground order
44648 26010: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
44649 26010: Id : 3, {_}:
44650 add ?4 additive_identity =>= ?4
44651 [4] by right_additive_identity ?4
44652 26010: Id : 4, {_}:
44653 multiply additive_identity ?6 =>= additive_identity
44654 [6] by left_multiplicative_zero ?6
44655 26010: Id : 5, {_}:
44656 multiply ?8 additive_identity =>= additive_identity
44657 [8] by right_multiplicative_zero ?8
44658 26010: Id : 6, {_}:
44659 add (additive_inverse ?10) ?10 =>= additive_identity
44660 [10] by left_additive_inverse ?10
44661 26010: Id : 7, {_}:
44662 add ?12 (additive_inverse ?12) =>= additive_identity
44663 [12] by right_additive_inverse ?12
44664 26010: Id : 8, {_}:
44665 additive_inverse (additive_inverse ?14) =>= ?14
44666 [14] by additive_inverse_additive_inverse ?14
44667 26010: Id : 9, {_}:
44668 multiply ?16 (add ?17 ?18)
44670 add (multiply ?16 ?17) (multiply ?16 ?18)
44671 [18, 17, 16] by distribute1 ?16 ?17 ?18
44672 26010: Id : 10, {_}:
44673 multiply (add ?20 ?21) ?22
44675 add (multiply ?20 ?22) (multiply ?21 ?22)
44676 [22, 21, 20] by distribute2 ?20 ?21 ?22
44677 26010: Id : 11, {_}:
44678 add ?24 ?25 =?= add ?25 ?24
44679 [25, 24] by commutativity_for_addition ?24 ?25
44680 26010: Id : 12, {_}:
44681 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
44682 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
44683 26010: Id : 13, {_}:
44684 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
44685 [32, 31] by right_alternative ?31 ?32
44686 26010: Id : 14, {_}:
44687 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
44688 [35, 34] by left_alternative ?34 ?35
44689 26010: Id : 15, {_}:
44690 associator ?37 ?38 ?39
44692 add (multiply (multiply ?37 ?38) ?39)
44693 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
44694 [39, 38, 37] by associator ?37 ?38 ?39
44695 26010: Id : 16, {_}:
44698 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
44699 [42, 41] by commutator ?41 ?42
44701 26010: Id : 1, {_}:
44702 add (associator (multiply x y) z w) (associator x y (commutator z w))
44704 add (multiply x (associator y z w)) (multiply (associator x z w) y)
44705 [] by prove_challenge
44709 26010: x 4 0 4 1,1,1,2
44710 26010: y 4 0 4 2,1,1,2
44711 26010: z 4 0 4 2,1,2
44712 26010: w 4 0 4 3,1,2
44713 26010: additive_identity 8 0 0
44714 26010: additive_inverse 6 1 0
44715 26010: commutator 2 2 1 0,3,2,2
44716 26010: add 18 2 2 0,2
44717 26010: multiply 25 2 3 0,1,1,2
44718 26010: associator 5 3 4 0,1,2
44719 26009: Id : 13, {_}:
44720 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
44721 [32, 31] by right_alternative ?31 ?32
44722 26009: Id : 14, {_}:
44723 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
44724 [35, 34] by left_alternative ?34 ?35
44725 26009: Id : 15, {_}:
44726 associator ?37 ?38 ?39
44728 add (multiply (multiply ?37 ?38) ?39)
44729 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
44730 [39, 38, 37] by associator ?37 ?38 ?39
44731 26009: Id : 16, {_}:
44734 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
44735 [42, 41] by commutator ?41 ?42
44737 26009: Id : 1, {_}:
44738 add (associator (multiply x y) z w) (associator x y (commutator z w))
44740 add (multiply x (associator y z w)) (multiply (associator x z w) y)
44741 [] by prove_challenge
44745 26009: x 4 0 4 1,1,1,2
44746 26009: y 4 0 4 2,1,1,2
44747 26009: z 4 0 4 2,1,2
44748 26009: w 4 0 4 3,1,2
44749 26009: additive_identity 8 0 0
44750 26009: additive_inverse 6 1 0
44751 26009: commutator 2 2 1 0,3,2,2
44752 26009: add 18 2 2 0,2
44753 26009: multiply 25 2 3 0,1,1,2
44754 26009: associator 5 3 4 0,1,2
44755 NO CLASH, using fixed ground order
44757 26008: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
44758 26008: Id : 3, {_}:
44759 add ?4 additive_identity =>= ?4
44760 [4] by right_additive_identity ?4
44761 26008: Id : 4, {_}:
44762 multiply additive_identity ?6 =>= additive_identity
44763 [6] by left_multiplicative_zero ?6
44764 26008: Id : 5, {_}:
44765 multiply ?8 additive_identity =>= additive_identity
44766 [8] by right_multiplicative_zero ?8
44767 26008: Id : 6, {_}:
44768 add (additive_inverse ?10) ?10 =>= additive_identity
44769 [10] by left_additive_inverse ?10
44770 26008: Id : 7, {_}:
44771 add ?12 (additive_inverse ?12) =>= additive_identity
44772 [12] by right_additive_inverse ?12
44773 26008: Id : 8, {_}:
44774 additive_inverse (additive_inverse ?14) =>= ?14
44775 [14] by additive_inverse_additive_inverse ?14
44776 26008: Id : 9, {_}:
44777 multiply ?16 (add ?17 ?18)
44779 add (multiply ?16 ?17) (multiply ?16 ?18)
44780 [18, 17, 16] by distribute1 ?16 ?17 ?18
44781 26008: Id : 10, {_}:
44782 multiply (add ?20 ?21) ?22
44784 add (multiply ?20 ?22) (multiply ?21 ?22)
44785 [22, 21, 20] by distribute2 ?20 ?21 ?22
44786 26008: Id : 11, {_}:
44787 add ?24 ?25 =?= add ?25 ?24
44788 [25, 24] by commutativity_for_addition ?24 ?25
44789 26008: Id : 12, {_}:
44790 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
44791 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
44792 26008: Id : 13, {_}:
44793 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
44794 [32, 31] by right_alternative ?31 ?32
44795 26008: Id : 14, {_}:
44796 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
44797 [35, 34] by left_alternative ?34 ?35
44798 26008: Id : 15, {_}:
44799 associator ?37 ?38 ?39
44801 add (multiply (multiply ?37 ?38) ?39)
44802 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
44803 [39, 38, 37] by associator ?37 ?38 ?39
44804 26008: Id : 16, {_}:
44807 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
44808 [42, 41] by commutator ?41 ?42
44810 26008: Id : 1, {_}:
44811 add (associator (multiply x y) z w) (associator x y (commutator z w))
44813 add (multiply x (associator y z w)) (multiply (associator x z w) y)
44814 [] by prove_challenge
44818 26008: x 4 0 4 1,1,1,2
44819 26008: y 4 0 4 2,1,1,2
44820 26008: z 4 0 4 2,1,2
44821 26008: w 4 0 4 3,1,2
44822 26008: additive_identity 8 0 0
44823 26008: additive_inverse 6 1 0
44824 26008: commutator 2 2 1 0,3,2,2
44825 26008: add 18 2 2 0,2
44826 26008: multiply 25 2 3 0,1,1,2
44827 26008: associator 5 3 4 0,1,2
44828 % SZS status Timeout for RNG033-6.p
44829 NO CLASH, using fixed ground order
44831 26035: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
44832 26035: Id : 3, {_}:
44833 add ?4 additive_identity =>= ?4
44834 [4] by right_additive_identity ?4
44835 26035: Id : 4, {_}:
44836 multiply additive_identity ?6 =>= additive_identity
44837 [6] by left_multiplicative_zero ?6
44838 26035: Id : 5, {_}:
44839 multiply ?8 additive_identity =>= additive_identity
44840 [8] by right_multiplicative_zero ?8
44841 26035: Id : 6, {_}:
44842 add (additive_inverse ?10) ?10 =>= additive_identity
44843 [10] by left_additive_inverse ?10
44844 26035: Id : 7, {_}:
44845 add ?12 (additive_inverse ?12) =>= additive_identity
44846 [12] by right_additive_inverse ?12
44847 26035: Id : 8, {_}:
44848 additive_inverse (additive_inverse ?14) =>= ?14
44849 [14] by additive_inverse_additive_inverse ?14
44850 26035: Id : 9, {_}:
44851 multiply ?16 (add ?17 ?18)
44853 add (multiply ?16 ?17) (multiply ?16 ?18)
44854 [18, 17, 16] by distribute1 ?16 ?17 ?18
44855 26035: Id : 10, {_}:
44856 multiply (add ?20 ?21) ?22
44858 add (multiply ?20 ?22) (multiply ?21 ?22)
44859 [22, 21, 20] by distribute2 ?20 ?21 ?22
44860 26035: Id : 11, {_}:
44861 add ?24 ?25 =?= add ?25 ?24
44862 [25, 24] by commutativity_for_addition ?24 ?25
44863 26035: Id : 12, {_}:
44864 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
44865 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
44866 26035: Id : 13, {_}:
44867 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
44868 [32, 31] by right_alternative ?31 ?32
44869 26035: Id : 14, {_}:
44870 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
44871 [35, 34] by left_alternative ?34 ?35
44872 26035: Id : 15, {_}:
44873 associator ?37 ?38 ?39
44875 add (multiply (multiply ?37 ?38) ?39)
44876 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
44877 [39, 38, 37] by associator ?37 ?38 ?39
44878 26035: Id : 16, {_}:
44881 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
44882 [42, 41] by commutator ?41 ?42
44883 26035: Id : 17, {_}:
44884 multiply (additive_inverse ?44) (additive_inverse ?45)
44887 [45, 44] by product_of_inverses ?44 ?45
44888 26035: Id : 18, {_}:
44889 multiply (additive_inverse ?47) ?48
44891 additive_inverse (multiply ?47 ?48)
44892 [48, 47] by inverse_product1 ?47 ?48
44893 26035: Id : 19, {_}:
44894 multiply ?50 (additive_inverse ?51)
44896 additive_inverse (multiply ?50 ?51)
44897 [51, 50] by inverse_product2 ?50 ?51
44898 26035: Id : 20, {_}:
44899 multiply ?53 (add ?54 (additive_inverse ?55))
44901 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
44902 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
44903 26035: Id : 21, {_}:
44904 multiply (add ?57 (additive_inverse ?58)) ?59
44906 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
44907 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
44908 26035: Id : 22, {_}:
44909 multiply (additive_inverse ?61) (add ?62 ?63)
44911 add (additive_inverse (multiply ?61 ?62))
44912 (additive_inverse (multiply ?61 ?63))
44913 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
44914 26035: Id : 23, {_}:
44915 multiply (add ?65 ?66) (additive_inverse ?67)
44917 add (additive_inverse (multiply ?65 ?67))
44918 (additive_inverse (multiply ?66 ?67))
44919 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
44921 26035: Id : 1, {_}:
44922 add (associator (multiply x y) z w) (associator x y (commutator z w))
44924 add (multiply x (associator y z w)) (multiply (associator x z w) y)
44925 [] by prove_challenge
44929 26035: x 4 0 4 1,1,1,2
44930 26035: y 4 0 4 2,1,1,2
44931 26035: z 4 0 4 2,1,2
44932 26035: w 4 0 4 3,1,2
44933 26035: additive_identity 8 0 0
44934 26035: additive_inverse 22 1 0
44935 26035: commutator 2 2 1 0,3,2,2
44936 26035: add 26 2 2 0,2
44937 26035: multiply 43 2 3 0,1,1,2
44938 26035: associator 5 3 4 0,1,2
44939 NO CLASH, using fixed ground order
44941 26036: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
44942 26036: Id : 3, {_}:
44943 add ?4 additive_identity =>= ?4
44944 [4] by right_additive_identity ?4
44945 26036: Id : 4, {_}:
44946 multiply additive_identity ?6 =>= additive_identity
44947 [6] by left_multiplicative_zero ?6
44948 26036: Id : 5, {_}:
44949 multiply ?8 additive_identity =>= additive_identity
44950 [8] by right_multiplicative_zero ?8
44951 26036: Id : 6, {_}:
44952 add (additive_inverse ?10) ?10 =>= additive_identity
44953 [10] by left_additive_inverse ?10
44954 26036: Id : 7, {_}:
44955 add ?12 (additive_inverse ?12) =>= additive_identity
44956 [12] by right_additive_inverse ?12
44957 26036: Id : 8, {_}:
44958 additive_inverse (additive_inverse ?14) =>= ?14
44959 [14] by additive_inverse_additive_inverse ?14
44960 26036: Id : 9, {_}:
44961 multiply ?16 (add ?17 ?18)
44963 add (multiply ?16 ?17) (multiply ?16 ?18)
44964 [18, 17, 16] by distribute1 ?16 ?17 ?18
44965 26036: Id : 10, {_}:
44966 multiply (add ?20 ?21) ?22
44968 add (multiply ?20 ?22) (multiply ?21 ?22)
44969 [22, 21, 20] by distribute2 ?20 ?21 ?22
44970 26036: Id : 11, {_}:
44971 add ?24 ?25 =?= add ?25 ?24
44972 [25, 24] by commutativity_for_addition ?24 ?25
44973 26036: Id : 12, {_}:
44974 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
44975 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
44976 26036: Id : 13, {_}:
44977 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
44978 [32, 31] by right_alternative ?31 ?32
44979 26036: Id : 14, {_}:
44980 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
44981 [35, 34] by left_alternative ?34 ?35
44982 26036: Id : 15, {_}:
44983 associator ?37 ?38 ?39
44985 add (multiply (multiply ?37 ?38) ?39)
44986 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
44987 [39, 38, 37] by associator ?37 ?38 ?39
44988 26036: Id : 16, {_}:
44991 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
44992 [42, 41] by commutator ?41 ?42
44993 26036: Id : 17, {_}:
44994 multiply (additive_inverse ?44) (additive_inverse ?45)
44997 [45, 44] by product_of_inverses ?44 ?45
44998 26036: Id : 18, {_}:
44999 multiply (additive_inverse ?47) ?48
45001 additive_inverse (multiply ?47 ?48)
45002 [48, 47] by inverse_product1 ?47 ?48
45003 26036: Id : 19, {_}:
45004 multiply ?50 (additive_inverse ?51)
45006 additive_inverse (multiply ?50 ?51)
45007 [51, 50] by inverse_product2 ?50 ?51
45008 26036: Id : 20, {_}:
45009 multiply ?53 (add ?54 (additive_inverse ?55))
45011 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
45012 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
45013 26036: Id : 21, {_}:
45014 multiply (add ?57 (additive_inverse ?58)) ?59
45016 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
45017 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
45018 26036: Id : 22, {_}:
45019 multiply (additive_inverse ?61) (add ?62 ?63)
45021 add (additive_inverse (multiply ?61 ?62))
45022 (additive_inverse (multiply ?61 ?63))
45023 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
45024 26036: Id : 23, {_}:
45025 multiply (add ?65 ?66) (additive_inverse ?67)
45027 add (additive_inverse (multiply ?65 ?67))
45028 (additive_inverse (multiply ?66 ?67))
45029 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
45031 26036: Id : 1, {_}:
45032 add (associator (multiply x y) z w) (associator x y (commutator z w))
45034 add (multiply x (associator y z w)) (multiply (associator x z w) y)
45035 [] by prove_challenge
45039 26036: x 4 0 4 1,1,1,2
45040 26036: y 4 0 4 2,1,1,2
45041 26036: z 4 0 4 2,1,2
45042 26036: w 4 0 4 3,1,2
45043 26036: additive_identity 8 0 0
45044 26036: additive_inverse 22 1 0
45045 26036: commutator 2 2 1 0,3,2,2
45046 26036: add 26 2 2 0,2
45047 26036: multiply 43 2 3 0,1,1,2
45048 26036: associator 5 3 4 0,1,2
45049 NO CLASH, using fixed ground order
45051 26037: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45052 26037: Id : 3, {_}:
45053 add ?4 additive_identity =>= ?4
45054 [4] by right_additive_identity ?4
45055 26037: Id : 4, {_}:
45056 multiply additive_identity ?6 =>= additive_identity
45057 [6] by left_multiplicative_zero ?6
45058 26037: Id : 5, {_}:
45059 multiply ?8 additive_identity =>= additive_identity
45060 [8] by right_multiplicative_zero ?8
45061 26037: Id : 6, {_}:
45062 add (additive_inverse ?10) ?10 =>= additive_identity
45063 [10] by left_additive_inverse ?10
45064 26037: Id : 7, {_}:
45065 add ?12 (additive_inverse ?12) =>= additive_identity
45066 [12] by right_additive_inverse ?12
45067 26037: Id : 8, {_}:
45068 additive_inverse (additive_inverse ?14) =>= ?14
45069 [14] by additive_inverse_additive_inverse ?14
45070 26037: Id : 9, {_}:
45071 multiply ?16 (add ?17 ?18)
45073 add (multiply ?16 ?17) (multiply ?16 ?18)
45074 [18, 17, 16] by distribute1 ?16 ?17 ?18
45075 26037: Id : 10, {_}:
45076 multiply (add ?20 ?21) ?22
45078 add (multiply ?20 ?22) (multiply ?21 ?22)
45079 [22, 21, 20] by distribute2 ?20 ?21 ?22
45080 26037: Id : 11, {_}:
45081 add ?24 ?25 =?= add ?25 ?24
45082 [25, 24] by commutativity_for_addition ?24 ?25
45083 26037: Id : 12, {_}:
45084 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
45085 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
45086 26037: Id : 13, {_}:
45087 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
45088 [32, 31] by right_alternative ?31 ?32
45089 26037: Id : 14, {_}:
45090 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
45091 [35, 34] by left_alternative ?34 ?35
45092 26037: Id : 15, {_}:
45093 associator ?37 ?38 ?39
45095 add (multiply (multiply ?37 ?38) ?39)
45096 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
45097 [39, 38, 37] by associator ?37 ?38 ?39
45098 26037: Id : 16, {_}:
45101 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
45102 [42, 41] by commutator ?41 ?42
45103 26037: Id : 17, {_}:
45104 multiply (additive_inverse ?44) (additive_inverse ?45)
45107 [45, 44] by product_of_inverses ?44 ?45
45108 26037: Id : 18, {_}:
45109 multiply (additive_inverse ?47) ?48
45111 additive_inverse (multiply ?47 ?48)
45112 [48, 47] by inverse_product1 ?47 ?48
45113 26037: Id : 19, {_}:
45114 multiply ?50 (additive_inverse ?51)
45116 additive_inverse (multiply ?50 ?51)
45117 [51, 50] by inverse_product2 ?50 ?51
45118 26037: Id : 20, {_}:
45119 multiply ?53 (add ?54 (additive_inverse ?55))
45121 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
45122 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
45123 26037: Id : 21, {_}:
45124 multiply (add ?57 (additive_inverse ?58)) ?59
45126 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
45127 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
45128 26037: Id : 22, {_}:
45129 multiply (additive_inverse ?61) (add ?62 ?63)
45131 add (additive_inverse (multiply ?61 ?62))
45132 (additive_inverse (multiply ?61 ?63))
45133 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
45134 26037: Id : 23, {_}:
45135 multiply (add ?65 ?66) (additive_inverse ?67)
45137 add (additive_inverse (multiply ?65 ?67))
45138 (additive_inverse (multiply ?66 ?67))
45139 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
45141 26037: Id : 1, {_}:
45142 add (associator (multiply x y) z w) (associator x y (commutator z w))
45144 add (multiply x (associator y z w)) (multiply (associator x z w) y)
45145 [] by prove_challenge
45149 26037: x 4 0 4 1,1,1,2
45150 26037: y 4 0 4 2,1,1,2
45151 26037: z 4 0 4 2,1,2
45152 26037: w 4 0 4 3,1,2
45153 26037: additive_identity 8 0 0
45154 26037: additive_inverse 22 1 0
45155 26037: commutator 2 2 1 0,3,2,2
45156 26037: add 26 2 2 0,2
45157 26037: multiply 43 2 3 0,1,1,2
45158 26037: associator 5 3 4 0,1,2
45159 % SZS status Timeout for RNG033-7.p
45160 NO CLASH, using fixed ground order
45162 26058: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45163 26058: Id : 3, {_}:
45164 add ?4 additive_identity =>= ?4
45165 [4] by right_additive_identity ?4
45166 26058: Id : 4, {_}:
45167 multiply additive_identity ?6 =>= additive_identity
45168 [6] by left_multiplicative_zero ?6
45169 26058: Id : 5, {_}:
45170 multiply ?8 additive_identity =>= additive_identity
45171 [8] by right_multiplicative_zero ?8
45172 26058: Id : 6, {_}:
45173 add (additive_inverse ?10) ?10 =>= additive_identity
45174 [10] by left_additive_inverse ?10
45175 26058: Id : 7, {_}:
45176 add ?12 (additive_inverse ?12) =>= additive_identity
45177 [12] by right_additive_inverse ?12
45178 26058: Id : 8, {_}:
45179 additive_inverse (additive_inverse ?14) =>= ?14
45180 [14] by additive_inverse_additive_inverse ?14
45181 26058: Id : 9, {_}:
45182 multiply ?16 (add ?17 ?18)
45184 add (multiply ?16 ?17) (multiply ?16 ?18)
45185 [18, 17, 16] by distribute1 ?16 ?17 ?18
45186 26058: Id : 10, {_}:
45187 multiply (add ?20 ?21) ?22
45189 add (multiply ?20 ?22) (multiply ?21 ?22)
45190 [22, 21, 20] by distribute2 ?20 ?21 ?22
45191 26058: Id : 11, {_}:
45192 add ?24 ?25 =?= add ?25 ?24
45193 [25, 24] by commutativity_for_addition ?24 ?25
45194 26058: Id : 12, {_}:
45195 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
45196 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
45197 26058: Id : 13, {_}:
45198 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
45199 [32, 31] by right_alternative ?31 ?32
45200 26058: Id : 14, {_}:
45201 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
45202 [35, 34] by left_alternative ?34 ?35
45203 26058: Id : 15, {_}:
45204 associator ?37 ?38 ?39
45206 add (multiply (multiply ?37 ?38) ?39)
45207 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
45208 [39, 38, 37] by associator ?37 ?38 ?39
45209 26058: Id : 16, {_}:
45212 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
45213 [42, 41] by commutator ?41 ?42
45214 26058: Id : 17, {_}:
45215 multiply ?44 (multiply ?45 (multiply ?46 ?45))
45217 multiply (multiply (multiply ?44 ?45) ?46) ?45
45218 [46, 45, 44] by right_moufang ?44 ?45 ?46
45220 26058: Id : 1, {_}:
45221 add (associator (multiply x y) z w) (associator x y (commutator z w))
45223 add (multiply x (associator y z w)) (multiply (associator x z w) y)
45224 [] by prove_challenge
45228 26058: x 4 0 4 1,1,1,2
45229 26058: y 4 0 4 2,1,1,2
45230 26058: z 4 0 4 2,1,2
45231 26058: w 4 0 4 3,1,2
45232 26058: additive_identity 8 0 0
45233 26058: additive_inverse 6 1 0
45234 26058: commutator 2 2 1 0,3,2,2
45235 26058: add 18 2 2 0,2
45236 26058: multiply 31 2 3 0,1,1,2
45237 26058: associator 5 3 4 0,1,2
45238 NO CLASH, using fixed ground order
45240 26059: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45241 26059: Id : 3, {_}:
45242 add ?4 additive_identity =>= ?4
45243 [4] by right_additive_identity ?4
45244 26059: Id : 4, {_}:
45245 multiply additive_identity ?6 =>= additive_identity
45246 [6] by left_multiplicative_zero ?6
45247 26059: Id : 5, {_}:
45248 multiply ?8 additive_identity =>= additive_identity
45249 [8] by right_multiplicative_zero ?8
45250 26059: Id : 6, {_}:
45251 add (additive_inverse ?10) ?10 =>= additive_identity
45252 [10] by left_additive_inverse ?10
45253 26059: Id : 7, {_}:
45254 add ?12 (additive_inverse ?12) =>= additive_identity
45255 [12] by right_additive_inverse ?12
45256 26059: Id : 8, {_}:
45257 additive_inverse (additive_inverse ?14) =>= ?14
45258 [14] by additive_inverse_additive_inverse ?14
45259 26059: Id : 9, {_}:
45260 multiply ?16 (add ?17 ?18)
45262 add (multiply ?16 ?17) (multiply ?16 ?18)
45263 [18, 17, 16] by distribute1 ?16 ?17 ?18
45264 26059: Id : 10, {_}:
45265 multiply (add ?20 ?21) ?22
45267 add (multiply ?20 ?22) (multiply ?21 ?22)
45268 [22, 21, 20] by distribute2 ?20 ?21 ?22
45269 26059: Id : 11, {_}:
45270 add ?24 ?25 =?= add ?25 ?24
45271 [25, 24] by commutativity_for_addition ?24 ?25
45272 26059: Id : 12, {_}:
45273 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
45274 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
45275 26059: Id : 13, {_}:
45276 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
45277 [32, 31] by right_alternative ?31 ?32
45278 26059: Id : 14, {_}:
45279 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
45280 [35, 34] by left_alternative ?34 ?35
45281 26059: Id : 15, {_}:
45282 associator ?37 ?38 ?39
45284 add (multiply (multiply ?37 ?38) ?39)
45285 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
45286 [39, 38, 37] by associator ?37 ?38 ?39
45287 26059: Id : 16, {_}:
45290 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
45291 [42, 41] by commutator ?41 ?42
45292 26059: Id : 17, {_}:
45293 multiply ?44 (multiply ?45 (multiply ?46 ?45))
45295 multiply (multiply (multiply ?44 ?45) ?46) ?45
45296 [46, 45, 44] by right_moufang ?44 ?45 ?46
45298 26059: Id : 1, {_}:
45299 add (associator (multiply x y) z w) (associator x y (commutator z w))
45301 add (multiply x (associator y z w)) (multiply (associator x z w) y)
45302 [] by prove_challenge
45306 26059: x 4 0 4 1,1,1,2
45307 26059: y 4 0 4 2,1,1,2
45308 26059: z 4 0 4 2,1,2
45309 26059: w 4 0 4 3,1,2
45310 26059: additive_identity 8 0 0
45311 26059: additive_inverse 6 1 0
45312 26059: commutator 2 2 1 0,3,2,2
45313 26059: add 18 2 2 0,2
45314 26059: multiply 31 2 3 0,1,1,2
45315 26059: associator 5 3 4 0,1,2
45316 NO CLASH, using fixed ground order
45318 26060: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45319 26060: Id : 3, {_}:
45320 add ?4 additive_identity =>= ?4
45321 [4] by right_additive_identity ?4
45322 26060: Id : 4, {_}:
45323 multiply additive_identity ?6 =>= additive_identity
45324 [6] by left_multiplicative_zero ?6
45325 26060: Id : 5, {_}:
45326 multiply ?8 additive_identity =>= additive_identity
45327 [8] by right_multiplicative_zero ?8
45328 26060: Id : 6, {_}:
45329 add (additive_inverse ?10) ?10 =>= additive_identity
45330 [10] by left_additive_inverse ?10
45331 26060: Id : 7, {_}:
45332 add ?12 (additive_inverse ?12) =>= additive_identity
45333 [12] by right_additive_inverse ?12
45334 26060: Id : 8, {_}:
45335 additive_inverse (additive_inverse ?14) =>= ?14
45336 [14] by additive_inverse_additive_inverse ?14
45337 26060: Id : 9, {_}:
45338 multiply ?16 (add ?17 ?18)
45340 add (multiply ?16 ?17) (multiply ?16 ?18)
45341 [18, 17, 16] by distribute1 ?16 ?17 ?18
45342 26060: Id : 10, {_}:
45343 multiply (add ?20 ?21) ?22
45345 add (multiply ?20 ?22) (multiply ?21 ?22)
45346 [22, 21, 20] by distribute2 ?20 ?21 ?22
45347 26060: Id : 11, {_}:
45348 add ?24 ?25 =?= add ?25 ?24
45349 [25, 24] by commutativity_for_addition ?24 ?25
45350 26060: Id : 12, {_}:
45351 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
45352 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
45353 26060: Id : 13, {_}:
45354 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
45355 [32, 31] by right_alternative ?31 ?32
45356 26060: Id : 14, {_}:
45357 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
45358 [35, 34] by left_alternative ?34 ?35
45359 26060: Id : 15, {_}:
45360 associator ?37 ?38 ?39
45362 add (multiply (multiply ?37 ?38) ?39)
45363 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
45364 [39, 38, 37] by associator ?37 ?38 ?39
45365 26060: Id : 16, {_}:
45368 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
45369 [42, 41] by commutator ?41 ?42
45370 26060: Id : 17, {_}:
45371 multiply ?44 (multiply ?45 (multiply ?46 ?45))
45373 multiply (multiply (multiply ?44 ?45) ?46) ?45
45374 [46, 45, 44] by right_moufang ?44 ?45 ?46
45376 26060: Id : 1, {_}:
45377 add (associator (multiply x y) z w) (associator x y (commutator z w))
45379 add (multiply x (associator y z w)) (multiply (associator x z w) y)
45380 [] by prove_challenge
45384 26060: x 4 0 4 1,1,1,2
45385 26060: y 4 0 4 2,1,1,2
45386 26060: z 4 0 4 2,1,2
45387 26060: w 4 0 4 3,1,2
45388 26060: additive_identity 8 0 0
45389 26060: additive_inverse 6 1 0
45390 26060: commutator 2 2 1 0,3,2,2
45391 26060: add 18 2 2 0,2
45392 26060: multiply 31 2 3 0,1,1,2
45393 26060: associator 5 3 4 0,1,2
45394 % SZS status Timeout for RNG033-8.p
45395 NO CLASH, using fixed ground order
45397 26087: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45398 26087: Id : 3, {_}:
45399 add ?4 additive_identity =>= ?4
45400 [4] by right_additive_identity ?4
45401 26087: Id : 4, {_}:
45402 multiply additive_identity ?6 =>= additive_identity
45403 [6] by left_multiplicative_zero ?6
45404 26087: Id : 5, {_}:
45405 multiply ?8 additive_identity =>= additive_identity
45406 [8] by right_multiplicative_zero ?8
45407 26087: Id : 6, {_}:
45408 add (additive_inverse ?10) ?10 =>= additive_identity
45409 [10] by left_additive_inverse ?10
45410 26087: Id : 7, {_}:
45411 add ?12 (additive_inverse ?12) =>= additive_identity
45412 [12] by right_additive_inverse ?12
45413 26087: Id : 8, {_}:
45414 additive_inverse (additive_inverse ?14) =>= ?14
45415 [14] by additive_inverse_additive_inverse ?14
45416 26087: Id : 9, {_}:
45417 multiply ?16 (add ?17 ?18)
45419 add (multiply ?16 ?17) (multiply ?16 ?18)
45420 [18, 17, 16] by distribute1 ?16 ?17 ?18
45421 26087: Id : 10, {_}:
45422 multiply (add ?20 ?21) ?22
45424 add (multiply ?20 ?22) (multiply ?21 ?22)
45425 [22, 21, 20] by distribute2 ?20 ?21 ?22
45426 26087: Id : 11, {_}:
45427 add ?24 ?25 =?= add ?25 ?24
45428 [25, 24] by commutativity_for_addition ?24 ?25
45429 26087: Id : 12, {_}:
45430 add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29
45431 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
45432 26087: Id : 13, {_}:
45433 multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32)
45434 [32, 31] by right_alternative ?31 ?32
45435 26087: Id : 14, {_}:
45436 multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35)
45437 [35, 34] by left_alternative ?34 ?35
45438 26087: Id : 15, {_}:
45439 associator ?37 ?38 ?39
45441 add (multiply (multiply ?37 ?38) ?39)
45442 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
45443 [39, 38, 37] by associator ?37 ?38 ?39
45444 26087: Id : 16, {_}:
45447 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
45448 [42, 41] by commutator ?41 ?42
45449 26087: Id : 17, {_}:
45450 multiply (additive_inverse ?44) (additive_inverse ?45)
45453 [45, 44] by product_of_inverses ?44 ?45
45454 26087: Id : 18, {_}:
45455 multiply (additive_inverse ?47) ?48
45457 additive_inverse (multiply ?47 ?48)
45458 [48, 47] by inverse_product1 ?47 ?48
45459 26087: Id : 19, {_}:
45460 multiply ?50 (additive_inverse ?51)
45462 additive_inverse (multiply ?50 ?51)
45463 [51, 50] by inverse_product2 ?50 ?51
45464 26087: Id : 20, {_}:
45465 multiply ?53 (add ?54 (additive_inverse ?55))
45467 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
45468 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
45469 26087: Id : 21, {_}:
45470 multiply (add ?57 (additive_inverse ?58)) ?59
45472 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
45473 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
45474 26087: Id : 22, {_}:
45475 multiply (additive_inverse ?61) (add ?62 ?63)
45477 add (additive_inverse (multiply ?61 ?62))
45478 (additive_inverse (multiply ?61 ?63))
45479 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
45480 26087: Id : 23, {_}:
45481 multiply (add ?65 ?66) (additive_inverse ?67)
45483 add (additive_inverse (multiply ?65 ?67))
45484 (additive_inverse (multiply ?66 ?67))
45485 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
45486 26087: Id : 24, {_}:
45487 multiply ?69 (multiply ?70 (multiply ?71 ?70))
45489 multiply (multiply (multiply ?69 ?70) ?71) ?70
45490 [71, 70, 69] by right_moufang ?69 ?70 ?71
45492 26087: Id : 1, {_}:
45493 add (associator (multiply x y) z w) (associator x y (commutator z w))
45495 add (multiply x (associator y z w)) (multiply (associator x z w) y)
45496 [] by prove_challenge
45500 26087: x 4 0 4 1,1,1,2
45501 26087: y 4 0 4 2,1,1,2
45502 26087: z 4 0 4 2,1,2
45503 26087: w 4 0 4 3,1,2
45504 26087: additive_identity 8 0 0
45505 26087: additive_inverse 22 1 0
45506 26087: commutator 2 2 1 0,3,2,2
45507 26087: add 26 2 2 0,2
45508 26087: multiply 49 2 3 0,1,1,2
45509 26087: associator 5 3 4 0,1,2
45510 NO CLASH, using fixed ground order
45512 26089: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45513 26089: Id : 3, {_}:
45514 add ?4 additive_identity =>= ?4
45515 [4] by right_additive_identity ?4
45516 26089: Id : 4, {_}:
45517 multiply additive_identity ?6 =>= additive_identity
45518 [6] by left_multiplicative_zero ?6
45519 26089: Id : 5, {_}:
45520 multiply ?8 additive_identity =>= additive_identity
45521 [8] by right_multiplicative_zero ?8
45522 26089: Id : 6, {_}:
45523 add (additive_inverse ?10) ?10 =>= additive_identity
45524 [10] by left_additive_inverse ?10
45525 26089: Id : 7, {_}:
45526 add ?12 (additive_inverse ?12) =>= additive_identity
45527 [12] by right_additive_inverse ?12
45528 26089: Id : 8, {_}:
45529 additive_inverse (additive_inverse ?14) =>= ?14
45530 [14] by additive_inverse_additive_inverse ?14
45531 26089: Id : 9, {_}:
45532 multiply ?16 (add ?17 ?18)
45534 add (multiply ?16 ?17) (multiply ?16 ?18)
45535 [18, 17, 16] by distribute1 ?16 ?17 ?18
45536 26089: Id : 10, {_}:
45537 multiply (add ?20 ?21) ?22
45539 add (multiply ?20 ?22) (multiply ?21 ?22)
45540 [22, 21, 20] by distribute2 ?20 ?21 ?22
45541 26089: Id : 11, {_}:
45542 add ?24 ?25 =?= add ?25 ?24
45543 [25, 24] by commutativity_for_addition ?24 ?25
45544 26089: Id : 12, {_}:
45545 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
45546 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
45547 26089: Id : 13, {_}:
45548 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
45549 [32, 31] by right_alternative ?31 ?32
45550 26089: Id : 14, {_}:
45551 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
45552 [35, 34] by left_alternative ?34 ?35
45553 26089: Id : 15, {_}:
45554 associator ?37 ?38 ?39
45556 add (multiply (multiply ?37 ?38) ?39)
45557 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
45558 [39, 38, 37] by associator ?37 ?38 ?39
45559 26089: Id : 16, {_}:
45562 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
45563 [42, 41] by commutator ?41 ?42
45564 26089: Id : 17, {_}:
45565 multiply (additive_inverse ?44) (additive_inverse ?45)
45568 [45, 44] by product_of_inverses ?44 ?45
45569 26089: Id : 18, {_}:
45570 multiply (additive_inverse ?47) ?48
45572 additive_inverse (multiply ?47 ?48)
45573 [48, 47] by inverse_product1 ?47 ?48
45574 26089: Id : 19, {_}:
45575 multiply ?50 (additive_inverse ?51)
45577 additive_inverse (multiply ?50 ?51)
45578 [51, 50] by inverse_product2 ?50 ?51
45579 26089: Id : 20, {_}:
45580 multiply ?53 (add ?54 (additive_inverse ?55))
45582 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
45583 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
45584 26089: Id : 21, {_}:
45585 multiply (add ?57 (additive_inverse ?58)) ?59
45587 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
45588 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
45589 26089: Id : 22, {_}:
45590 multiply (additive_inverse ?61) (add ?62 ?63)
45592 add (additive_inverse (multiply ?61 ?62))
45593 (additive_inverse (multiply ?61 ?63))
45594 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
45595 26089: Id : 23, {_}:
45596 multiply (add ?65 ?66) (additive_inverse ?67)
45598 add (additive_inverse (multiply ?65 ?67))
45599 (additive_inverse (multiply ?66 ?67))
45600 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
45601 26089: Id : 24, {_}:
45602 multiply ?69 (multiply ?70 (multiply ?71 ?70))
45604 multiply (multiply (multiply ?69 ?70) ?71) ?70
45605 [71, 70, 69] by right_moufang ?69 ?70 ?71
45607 26089: Id : 1, {_}:
45608 add (associator (multiply x y) z w) (associator x y (commutator z w))
45610 add (multiply x (associator y z w)) (multiply (associator x z w) y)
45611 [] by prove_challenge
45615 26089: x 4 0 4 1,1,1,2
45616 26089: y 4 0 4 2,1,1,2
45617 26089: z 4 0 4 2,1,2
45618 26089: w 4 0 4 3,1,2
45619 26089: additive_identity 8 0 0
45620 26089: additive_inverse 22 1 0
45621 26089: commutator 2 2 1 0,3,2,2
45622 26089: add 26 2 2 0,2
45623 26089: multiply 49 2 3 0,1,1,2
45624 26089: associator 5 3 4 0,1,2
45625 NO CLASH, using fixed ground order
45627 26088: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45628 26088: Id : 3, {_}:
45629 add ?4 additive_identity =>= ?4
45630 [4] by right_additive_identity ?4
45631 26088: Id : 4, {_}:
45632 multiply additive_identity ?6 =>= additive_identity
45633 [6] by left_multiplicative_zero ?6
45634 26088: Id : 5, {_}:
45635 multiply ?8 additive_identity =>= additive_identity
45636 [8] by right_multiplicative_zero ?8
45637 26088: Id : 6, {_}:
45638 add (additive_inverse ?10) ?10 =>= additive_identity
45639 [10] by left_additive_inverse ?10
45640 26088: Id : 7, {_}:
45641 add ?12 (additive_inverse ?12) =>= additive_identity
45642 [12] by right_additive_inverse ?12
45643 26088: Id : 8, {_}:
45644 additive_inverse (additive_inverse ?14) =>= ?14
45645 [14] by additive_inverse_additive_inverse ?14
45646 26088: Id : 9, {_}:
45647 multiply ?16 (add ?17 ?18)
45649 add (multiply ?16 ?17) (multiply ?16 ?18)
45650 [18, 17, 16] by distribute1 ?16 ?17 ?18
45651 26088: Id : 10, {_}:
45652 multiply (add ?20 ?21) ?22
45654 add (multiply ?20 ?22) (multiply ?21 ?22)
45655 [22, 21, 20] by distribute2 ?20 ?21 ?22
45656 26088: Id : 11, {_}:
45657 add ?24 ?25 =?= add ?25 ?24
45658 [25, 24] by commutativity_for_addition ?24 ?25
45659 26088: Id : 12, {_}:
45660 add ?27 (add ?28 ?29) =<= add (add ?27 ?28) ?29
45661 [29, 28, 27] by associativity_for_addition ?27 ?28 ?29
45662 26088: Id : 13, {_}:
45663 multiply (multiply ?31 ?32) ?32 =>= multiply ?31 (multiply ?32 ?32)
45664 [32, 31] by right_alternative ?31 ?32
45665 26088: Id : 14, {_}:
45666 multiply (multiply ?34 ?34) ?35 =>= multiply ?34 (multiply ?34 ?35)
45667 [35, 34] by left_alternative ?34 ?35
45668 26088: Id : 15, {_}:
45669 associator ?37 ?38 ?39
45671 add (multiply (multiply ?37 ?38) ?39)
45672 (additive_inverse (multiply ?37 (multiply ?38 ?39)))
45673 [39, 38, 37] by associator ?37 ?38 ?39
45674 26088: Id : 16, {_}:
45677 add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42))
45678 [42, 41] by commutator ?41 ?42
45679 26088: Id : 17, {_}:
45680 multiply (additive_inverse ?44) (additive_inverse ?45)
45683 [45, 44] by product_of_inverses ?44 ?45
45684 26088: Id : 18, {_}:
45685 multiply (additive_inverse ?47) ?48
45687 additive_inverse (multiply ?47 ?48)
45688 [48, 47] by inverse_product1 ?47 ?48
45689 26088: Id : 19, {_}:
45690 multiply ?50 (additive_inverse ?51)
45692 additive_inverse (multiply ?50 ?51)
45693 [51, 50] by inverse_product2 ?50 ?51
45694 26088: Id : 20, {_}:
45695 multiply ?53 (add ?54 (additive_inverse ?55))
45697 add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55))
45698 [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55
45699 26088: Id : 21, {_}:
45700 multiply (add ?57 (additive_inverse ?58)) ?59
45702 add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59))
45703 [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59
45704 26088: Id : 22, {_}:
45705 multiply (additive_inverse ?61) (add ?62 ?63)
45707 add (additive_inverse (multiply ?61 ?62))
45708 (additive_inverse (multiply ?61 ?63))
45709 [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63
45710 26088: Id : 23, {_}:
45711 multiply (add ?65 ?66) (additive_inverse ?67)
45713 add (additive_inverse (multiply ?65 ?67))
45714 (additive_inverse (multiply ?66 ?67))
45715 [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67
45716 26088: Id : 24, {_}:
45717 multiply ?69 (multiply ?70 (multiply ?71 ?70))
45719 multiply (multiply (multiply ?69 ?70) ?71) ?70
45720 [71, 70, 69] by right_moufang ?69 ?70 ?71
45722 26088: Id : 1, {_}:
45723 add (associator (multiply x y) z w) (associator x y (commutator z w))
45725 add (multiply x (associator y z w)) (multiply (associator x z w) y)
45726 [] by prove_challenge
45730 26088: x 4 0 4 1,1,1,2
45731 26088: y 4 0 4 2,1,1,2
45732 26088: z 4 0 4 2,1,2
45733 26088: w 4 0 4 3,1,2
45734 26088: additive_identity 8 0 0
45735 26088: additive_inverse 22 1 0
45736 26088: commutator 2 2 1 0,3,2,2
45737 26088: add 26 2 2 0,2
45738 26088: multiply 49 2 3 0,1,1,2
45739 26088: associator 5 3 4 0,1,2
45740 % SZS status Timeout for RNG033-9.p
45741 NO CLASH, using fixed ground order
45742 NO CLASH, using fixed ground order
45744 26115: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45746 26116: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45747 26116: Id : 3, {_}:
45748 add ?4 additive_identity =>= ?4
45749 [4] by right_additive_identity ?4
45750 26116: Id : 4, {_}:
45751 add (additive_inverse ?6) ?6 =>= additive_identity
45752 [6] by left_additive_inverse ?6
45753 26116: Id : 5, {_}:
45754 add ?8 (additive_inverse ?8) =>= additive_identity
45755 [8] by right_additive_inverse ?8
45756 26116: Id : 6, {_}:
45757 add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12
45758 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
45759 26116: Id : 7, {_}:
45760 add ?14 ?15 =?= add ?15 ?14
45761 [15, 14] by commutativity_for_addition ?14 ?15
45762 26116: Id : 8, {_}:
45763 multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19
45764 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
45765 26116: Id : 9, {_}:
45766 multiply ?21 (add ?22 ?23)
45768 add (multiply ?21 ?22) (multiply ?21 ?23)
45769 [23, 22, 21] by distribute1 ?21 ?22 ?23
45770 26115: Id : 3, {_}:
45771 add ?4 additive_identity =>= ?4
45772 [4] by right_additive_identity ?4
45773 26116: Id : 10, {_}:
45774 multiply (add ?25 ?26) ?27
45776 add (multiply ?25 ?27) (multiply ?26 ?27)
45777 [27, 26, 25] by distribute2 ?25 ?26 ?27
45778 26115: Id : 4, {_}:
45779 add (additive_inverse ?6) ?6 =>= additive_identity
45780 [6] by left_additive_inverse ?6
45781 26115: Id : 5, {_}:
45782 add ?8 (additive_inverse ?8) =>= additive_identity
45783 [8] by right_additive_inverse ?8
45784 26115: Id : 6, {_}:
45785 add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12
45786 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
45787 26115: Id : 7, {_}:
45788 add ?14 ?15 =?= add ?15 ?14
45789 [15, 14] by commutativity_for_addition ?14 ?15
45790 26115: Id : 8, {_}:
45791 multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19
45792 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
45793 26115: Id : 9, {_}:
45794 multiply ?21 (add ?22 ?23)
45796 add (multiply ?21 ?22) (multiply ?21 ?23)
45797 [23, 22, 21] by distribute1 ?21 ?22 ?23
45798 26115: Id : 10, {_}:
45799 multiply (add ?25 ?26) ?27
45801 add (multiply ?25 ?27) (multiply ?26 ?27)
45802 [27, 26, 25] by distribute2 ?25 ?26 ?27
45803 26115: Id : 11, {_}:
45804 multiply ?29 (multiply ?29 (multiply ?29 (multiply ?29 ?29))) =>= ?29
45805 [29] by x_fifthed_is_x ?29
45806 26115: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
45808 NO CLASH, using fixed ground order
45810 26117: Id : 2, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2
45811 26117: Id : 3, {_}:
45812 add ?4 additive_identity =>= ?4
45813 [4] by right_additive_identity ?4
45814 26117: Id : 4, {_}:
45815 add (additive_inverse ?6) ?6 =>= additive_identity
45816 [6] by left_additive_inverse ?6
45817 26117: Id : 5, {_}:
45818 add ?8 (additive_inverse ?8) =>= additive_identity
45819 [8] by right_additive_inverse ?8
45820 26117: Id : 6, {_}:
45821 add ?10 (add ?11 ?12) =<= add (add ?10 ?11) ?12
45822 [12, 11, 10] by associativity_for_addition ?10 ?11 ?12
45823 26117: Id : 7, {_}:
45824 add ?14 ?15 =?= add ?15 ?14
45825 [15, 14] by commutativity_for_addition ?14 ?15
45826 26117: Id : 8, {_}:
45827 multiply ?17 (multiply ?18 ?19) =<= multiply (multiply ?17 ?18) ?19
45828 [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19
45829 26117: Id : 9, {_}:
45830 multiply ?21 (add ?22 ?23)
45832 add (multiply ?21 ?22) (multiply ?21 ?23)
45833 [23, 22, 21] by distribute1 ?21 ?22 ?23
45834 26117: Id : 10, {_}:
45835 multiply (add ?25 ?26) ?27
45837 add (multiply ?25 ?27) (multiply ?26 ?27)
45838 [27, 26, 25] by distribute2 ?25 ?26 ?27
45839 26117: Id : 11, {_}:
45840 multiply ?29 (multiply ?29 (multiply ?29 (multiply ?29 ?29))) =>= ?29
45841 [29] by x_fifthed_is_x ?29
45842 26117: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
45844 26117: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
45851 26117: additive_identity 4 0 0
45852 26117: additive_inverse 2 1 0
45854 26117: multiply 16 2 1 0,2
45855 26116: Id : 11, {_}:
45856 multiply ?29 (multiply ?29 (multiply ?29 (multiply ?29 ?29))) =>= ?29
45857 [29] by x_fifthed_is_x ?29
45858 26116: Id : 12, {_}: multiply a b =>= c [] by a_times_b_is_c
45860 26116: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
45867 26116: additive_identity 4 0 0
45868 26116: additive_inverse 2 1 0
45870 26116: multiply 16 2 1 0,2
45871 26115: Id : 1, {_}: multiply b a =>= c [] by prove_commutativity
45878 26115: additive_identity 4 0 0
45879 26115: additive_inverse 2 1 0
45881 26115: multiply 16 2 1 0,2
45882 % SZS status Timeout for RNG036-7.p
45883 NO CLASH, using fixed ground order
45885 26159: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
45886 26159: Id : 3, {_}:
45887 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
45888 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
45889 26159: Id : 4, {_}:
45890 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
45893 [10, 9] by robbins_axiom ?9 ?10
45895 26159: Id : 1, {_}:
45896 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
45899 [] by prove_huntingtons_axiom
45903 26159: a 2 0 2 1,1,1,2
45904 26159: b 3 0 3 1,2,1,1,2
45905 26159: negate 9 1 5 0,1,2
45906 26159: add 12 2 3 0,2
45907 NO CLASH, using fixed ground order
45909 26160: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
45910 26160: Id : 3, {_}:
45911 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
45912 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
45913 26160: Id : 4, {_}:
45914 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
45917 [10, 9] by robbins_axiom ?9 ?10
45919 26160: Id : 1, {_}:
45920 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
45923 [] by prove_huntingtons_axiom
45927 26160: a 2 0 2 1,1,1,2
45928 26160: b 3 0 3 1,2,1,1,2
45929 26160: negate 9 1 5 0,1,2
45930 26160: add 12 2 3 0,2
45931 NO CLASH, using fixed ground order
45933 26161: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
45934 26161: Id : 3, {_}:
45935 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
45936 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
45937 26161: Id : 4, {_}:
45938 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
45941 [10, 9] by robbins_axiom ?9 ?10
45943 26161: Id : 1, {_}:
45944 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
45947 [] by prove_huntingtons_axiom
45951 26161: a 2 0 2 1,1,1,2
45952 26161: b 3 0 3 1,2,1,1,2
45953 26161: negate 9 1 5 0,1,2
45954 26161: add 12 2 3 0,2
45955 % SZS status Timeout for ROB001-1.p
45956 NO CLASH, using fixed ground order
45958 26183: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
45959 26183: Id : 3, {_}:
45960 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
45961 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
45962 26183: Id : 4, {_}:
45963 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
45966 [10, 9] by robbins_axiom ?9 ?10
45967 26183: Id : 5, {_}: negate (add a b) =>= negate b [] by condition
45969 26183: Id : 1, {_}:
45970 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
45973 [] by prove_huntingtons_axiom
45977 26183: a 3 0 2 1,1,1,2
45978 26183: b 5 0 3 1,2,1,1,2
45979 26183: negate 11 1 5 0,1,2
45980 26183: add 13 2 3 0,2
45981 NO CLASH, using fixed ground order
45983 26184: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
45984 26184: Id : 3, {_}:
45985 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
45986 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
45987 26184: Id : 4, {_}:
45988 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
45991 [10, 9] by robbins_axiom ?9 ?10
45992 26184: Id : 5, {_}: negate (add a b) =>= negate b [] by condition
45994 26184: Id : 1, {_}:
45995 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
45998 [] by prove_huntingtons_axiom
46002 26184: a 3 0 2 1,1,1,2
46003 26184: b 5 0 3 1,2,1,1,2
46004 26184: negate 11 1 5 0,1,2
46005 26184: add 13 2 3 0,2
46006 NO CLASH, using fixed ground order
46008 26185: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46009 26185: Id : 3, {_}:
46010 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
46011 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46012 26185: Id : 4, {_}:
46013 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46016 [10, 9] by robbins_axiom ?9 ?10
46017 26185: Id : 5, {_}: negate (add a b) =>= negate b [] by condition
46019 26185: Id : 1, {_}:
46020 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46023 [] by prove_huntingtons_axiom
46027 26185: a 3 0 2 1,1,1,2
46028 26185: b 5 0 3 1,2,1,1,2
46029 26185: negate 11 1 5 0,1,2
46030 26185: add 13 2 3 0,2
46031 % SZS status Timeout for ROB007-1.p
46032 NO CLASH, using fixed ground order
46034 26215: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
46035 26215: Id : 3, {_}:
46036 add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8)
46037 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
46038 26215: Id : 4, {_}:
46039 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
46042 [11, 10] by robbins_axiom ?10 ?11
46043 26215: Id : 5, {_}: negate (add a b) =>= negate b [] by condition
46045 26215: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
46051 26215: negate 6 1 0
46052 26215: add 11 2 1 0,2
46053 NO CLASH, using fixed ground order
46055 26216: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
46056 26216: Id : 3, {_}:
46057 add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8)
46058 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
46059 26216: Id : 4, {_}:
46060 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
46063 [11, 10] by robbins_axiom ?10 ?11
46064 26216: Id : 5, {_}: negate (add a b) =>= negate b [] by condition
46066 26216: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
46072 26216: negate 6 1 0
46073 26216: add 11 2 1 0,2
46074 NO CLASH, using fixed ground order
46076 26217: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
46077 26217: Id : 3, {_}:
46078 add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8)
46079 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
46080 26217: Id : 4, {_}:
46081 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
46084 [11, 10] by robbins_axiom ?10 ?11
46085 26217: Id : 5, {_}: negate (add a b) =>= negate b [] by condition
46087 26217: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
46093 26217: negate 6 1 0
46094 26217: add 11 2 1 0,2
46095 % SZS status Timeout for ROB007-2.p
46096 NO CLASH, using fixed ground order
46098 26249: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46099 26249: Id : 3, {_}:
46100 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
46101 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46102 26249: Id : 4, {_}:
46103 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46106 [10, 9] by robbins_axiom ?9 ?10
46107 26249: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1
46109 26249: Id : 1, {_}:
46110 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46113 [] by prove_huntingtons_axiom
46117 26249: a 3 0 2 1,1,1,2
46118 26249: b 5 0 3 1,2,1,1,2
46119 26249: negate 11 1 5 0,1,2
46120 26249: add 13 2 3 0,2
46121 NO CLASH, using fixed ground order
46123 26250: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46124 26250: Id : 3, {_}:
46125 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
46126 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46127 26250: Id : 4, {_}:
46128 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46131 [10, 9] by robbins_axiom ?9 ?10
46132 26250: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1
46134 26250: Id : 1, {_}:
46135 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46138 [] by prove_huntingtons_axiom
46142 26250: a 3 0 2 1,1,1,2
46143 26250: b 5 0 3 1,2,1,1,2
46144 26250: negate 11 1 5 0,1,2
46145 26250: add 13 2 3 0,2
46146 NO CLASH, using fixed ground order
46148 26251: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46149 26251: Id : 3, {_}:
46150 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
46151 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46152 26251: Id : 4, {_}:
46153 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46156 [10, 9] by robbins_axiom ?9 ?10
46157 26251: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1
46159 26251: Id : 1, {_}:
46160 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46163 [] by prove_huntingtons_axiom
46167 26251: a 3 0 2 1,1,1,2
46168 26251: b 5 0 3 1,2,1,1,2
46169 26251: negate 11 1 5 0,1,2
46170 26251: add 13 2 3 0,2
46171 % SZS status Timeout for ROB020-1.p
46172 NO CLASH, using fixed ground order
46174 26275: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
46175 26275: Id : 3, {_}:
46176 add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8)
46177 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
46178 26275: Id : 4, {_}:
46179 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
46182 [11, 10] by robbins_axiom ?10 ?11
46183 26275: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1
46185 26275: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
46191 26275: negate 6 1 0
46192 26275: add 11 2 1 0,2
46193 NO CLASH, using fixed ground order
46195 26276: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
46196 26276: Id : 3, {_}:
46197 add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8)
46198 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
46199 26276: Id : 4, {_}:
46200 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
46203 [11, 10] by robbins_axiom ?10 ?11
46204 26276: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1
46206 26276: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
46212 26276: negate 6 1 0
46213 26276: add 11 2 1 0,2
46214 NO CLASH, using fixed ground order
46216 26277: Id : 2, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4
46217 26277: Id : 3, {_}:
46218 add (add ?6 ?7) ?8 =>= add ?6 (add ?7 ?8)
46219 [8, 7, 6] by associativity_of_add ?6 ?7 ?8
46220 26277: Id : 4, {_}:
46221 negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11))))
46224 [11, 10] by robbins_axiom ?10 ?11
46225 26277: Id : 5, {_}: negate (add a (negate b)) =>= b [] by condition1
46227 26277: Id : 1, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1
46233 26277: negate 6 1 0
46234 26277: add 11 2 1 0,2
46235 % SZS status Timeout for ROB020-2.p
46236 NO CLASH, using fixed ground order
46238 26303: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46239 26303: Id : 3, {_}:
46240 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
46241 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46242 26303: Id : 4, {_}:
46243 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46246 [10, 9] by robbins_axiom ?9 ?10
46247 26303: Id : 5, {_}:
46248 negate (add (negate (add a (add a b))) (negate (add a (negate b))))
46251 [] by the_condition
46253 26303: Id : 1, {_}:
46254 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46257 [] by prove_huntingtons_axiom
46261 26303: b 5 0 3 1,2,1,1,2
46262 26303: a 6 0 2 1,1,1,2
46263 26303: negate 13 1 5 0,1,2
46264 26303: add 16 2 3 0,2
46265 NO CLASH, using fixed ground order
46267 26304: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46268 26304: Id : 3, {_}:
46269 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
46270 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46271 26304: Id : 4, {_}:
46272 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46275 [10, 9] by robbins_axiom ?9 ?10
46276 26304: Id : 5, {_}:
46277 negate (add (negate (add a (add a b))) (negate (add a (negate b))))
46280 [] by the_condition
46282 26304: Id : 1, {_}:
46283 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46286 [] by prove_huntingtons_axiom
46290 26304: b 5 0 3 1,2,1,1,2
46291 26304: a 6 0 2 1,1,1,2
46292 26304: negate 13 1 5 0,1,2
46293 26304: add 16 2 3 0,2
46294 NO CLASH, using fixed ground order
46296 26305: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46297 26305: Id : 3, {_}:
46298 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
46299 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46300 26305: Id : 4, {_}:
46301 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46304 [10, 9] by robbins_axiom ?9 ?10
46305 26305: Id : 5, {_}:
46306 negate (add (negate (add a (add a b))) (negate (add a (negate b))))
46309 [] by the_condition
46311 26305: Id : 1, {_}:
46312 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46315 [] by prove_huntingtons_axiom
46319 26305: b 5 0 3 1,2,1,1,2
46320 26305: a 6 0 2 1,1,1,2
46321 26305: negate 13 1 5 0,1,2
46322 26305: add 16 2 3 0,2
46323 % SZS status Timeout for ROB024-1.p
46324 NO CLASH, using fixed ground order
46326 26392: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46327 26392: Id : 3, {_}:
46328 add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7)
46329 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46330 26392: Id : 4, {_}:
46331 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46334 [10, 9] by robbins_axiom ?9 ?10
46335 26392: Id : 5, {_}: negate (negate c) =>= c [] by double_negation
46337 26392: Id : 1, {_}:
46338 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46341 [] by prove_huntingtons_axiom
46346 26392: a 2 0 2 1,1,1,2
46347 26392: b 3 0 3 1,2,1,1,2
46348 26392: negate 11 1 5 0,1,2
46349 26392: add 12 2 3 0,2
46350 NO CLASH, using fixed ground order
46352 26393: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46353 26393: Id : 3, {_}:
46354 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
46355 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46356 26393: Id : 4, {_}:
46357 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46360 [10, 9] by robbins_axiom ?9 ?10
46361 26393: Id : 5, {_}: negate (negate c) =>= c [] by double_negation
46363 26393: Id : 1, {_}:
46364 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46367 [] by prove_huntingtons_axiom
46372 26393: a 2 0 2 1,1,1,2
46373 26393: b 3 0 3 1,2,1,1,2
46374 26393: negate 11 1 5 0,1,2
46375 26393: add 12 2 3 0,2
46376 NO CLASH, using fixed ground order
46378 26394: Id : 2, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3
46379 26394: Id : 3, {_}:
46380 add (add ?5 ?6) ?7 =>= add ?5 (add ?6 ?7)
46381 [7, 6, 5] by associativity_of_add ?5 ?6 ?7
46382 26394: Id : 4, {_}:
46383 negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10))))
46386 [10, 9] by robbins_axiom ?9 ?10
46387 26394: Id : 5, {_}: negate (negate c) =>= c [] by double_negation
46389 26394: Id : 1, {_}:
46390 add (negate (add a (negate b))) (negate (add (negate a) (negate b)))
46393 [] by prove_huntingtons_axiom
46398 26394: a 2 0 2 1,1,1,2
46399 26394: b 3 0 3 1,2,1,1,2
46400 26394: negate 11 1 5 0,1,2
46401 26394: add 12 2 3 0,2
46402 % SZS status Timeout for ROB027-1.p
46403 NO CLASH, using fixed ground order
46405 26415: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5
46406 26415: Id : 3, {_}:
46407 add (add ?7 ?8) ?9 =?= add ?7 (add ?8 ?9)
46408 [9, 8, 7] by associativity_of_add ?7 ?8 ?9
46409 26415: Id : 4, {_}:
46410 negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12))))
46413 [12, 11] by robbins_axiom ?11 ?12
46415 26415: Id : 1, {_}:
46416 negate (add ?1 ?2) =>= negate ?2
46417 [2, 1] by prove_absorption_within_negation ?1 ?2
46421 26415: negate 6 1 2 0,2
46422 26415: add 10 2 1 0,1,2
46423 NO CLASH, using fixed ground order
46425 26416: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5
46426 26416: Id : 3, {_}:
46427 add (add ?7 ?8) ?9 =>= add ?7 (add ?8 ?9)
46428 [9, 8, 7] by associativity_of_add ?7 ?8 ?9
46429 26416: Id : 4, {_}:
46430 negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12))))
46433 [12, 11] by robbins_axiom ?11 ?12
46435 26416: Id : 1, {_}:
46436 negate (add ?1 ?2) =>= negate ?2
46437 [2, 1] by prove_absorption_within_negation ?1 ?2
46441 26416: negate 6 1 2 0,2
46442 26416: add 10 2 1 0,1,2
46443 NO CLASH, using fixed ground order
46445 26417: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5
46446 26417: Id : 3, {_}:
46447 add (add ?7 ?8) ?9 =>= add ?7 (add ?8 ?9)
46448 [9, 8, 7] by associativity_of_add ?7 ?8 ?9
46449 26417: Id : 4, {_}:
46450 negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12))))
46453 [12, 11] by robbins_axiom ?11 ?12
46455 26417: Id : 1, {_}:
46456 negate (add ?1 ?2) =>= negate ?2
46457 [2, 1] by prove_absorption_within_negation ?1 ?2
46461 26417: negate 6 1 2 0,2
46462 26417: add 10 2 1 0,1,2
46463 % SZS status Timeout for ROB031-1.p
46464 NO CLASH, using fixed ground order
46466 26440: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5
46467 26440: Id : 3, {_}:
46468 add (add ?7 ?8) ?9 =>= add ?7 (add ?8 ?9)
46469 [9, 8, 7] by associativity_of_add ?7 ?8 ?9
46470 26440: Id : 4, {_}:
46471 negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12))))
46474 [12, 11] by robbins_axiom ?11 ?12
46476 26440: Id : 1, {_}: add ?1 ?2 =>= ?2 [2, 1] by prove_absorbtion ?1 ?2
46480 26440: negate 4 1 0
46481 26440: add 10 2 1 0,2
46482 NO CLASH, using fixed ground order
46484 26441: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5
46485 26441: Id : 3, {_}:
46486 add (add ?7 ?8) ?9 =>= add ?7 (add ?8 ?9)
46487 [9, 8, 7] by associativity_of_add ?7 ?8 ?9
46488 26441: Id : 4, {_}:
46489 negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12))))
46492 [12, 11] by robbins_axiom ?11 ?12
46494 26441: Id : 1, {_}: add ?1 ?2 =>= ?2 [2, 1] by prove_absorbtion ?1 ?2
46498 26441: negate 4 1 0
46499 26441: add 10 2 1 0,2
46500 NO CLASH, using fixed ground order
46502 26439: Id : 2, {_}: add ?4 ?5 =?= add ?5 ?4 [5, 4] by commutativity_of_add ?4 ?5
46503 26439: Id : 3, {_}:
46504 add (add ?7 ?8) ?9 =?= add ?7 (add ?8 ?9)
46505 [9, 8, 7] by associativity_of_add ?7 ?8 ?9
46506 26439: Id : 4, {_}:
46507 negate (add (negate (add ?11 ?12)) (negate (add ?11 (negate ?12))))
46510 [12, 11] by robbins_axiom ?11 ?12
46512 26439: Id : 1, {_}: add ?1 ?2 =>= ?2 [2, 1] by prove_absorbtion ?1 ?2
46516 26439: negate 4 1 0
46517 26439: add 10 2 1 0,2
46518 % SZS status Timeout for ROB032-1.p