2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department, University of Bologna, Italy.
6 ||T|| HELM is free software; you can redistribute it and/or
7 ||A|| modify it under the terms of the GNU General Public License
8 \ / version 2 or (at your option) any later version.
9 \ / This software is distributed as is, NO WARRANTY.
10 V_______________________________________________________________ *)
14 type aux_comparison = XEQ | XLE | XGE | XLT | XGT | XINCOMPARABLE | XINVERTIBLE
20 (* This order relation should be:
21 * - stable for instantiation
22 * - total on ground terms
26 t Terms.foterm -> t Terms.foterm -> Terms.comparison
28 val compute_unit_clause_weight : 't Terms.unit_clause -> int
30 val compute_goal_weight : 't Terms.unit_clause -> int
36 type weight = int * (int * int) list;;
38 let rec eq_foterm f x y =
41 | Terms.Leaf t1, Terms.Leaf t2 -> f t1 t2
42 | Terms.Var i, Terms.Var j -> i = j
43 | Terms.Node l1, Terms.Node l2 when List.length l1 = List.length l2 ->
44 List.for_all2 (eq_foterm f) l1 l2
48 let string_of_weight (cw, mw) =
51 (List.map (function (m, w) -> Printf.sprintf "(%d,%d)" m w) mw)
53 Printf.sprintf "[%d; %s]" cw s
56 let weight_of_term term =
57 let vars_dict = Hashtbl.create 5 in
58 let rec aux = function
61 let oldw = Hashtbl.find vars_dict i in
62 Hashtbl.replace vars_dict i (oldw+1)
64 Hashtbl.add vars_dict i 1);
67 | Terms.Node l -> List.fold_left (+) 0 (List.map aux l)
71 Hashtbl.fold (fun meta metaw resw -> (meta, metaw)::resw) vars_dict []
75 | (m1, _), (m2, _) -> m1 - m2
77 (w, List.sort compare l) (* from the smallest meta to the bigest *)
80 let compute_unit_clause_weight (_,l, _, _) =
81 let weight_of_polynomial w m =
83 w + factor * List.fold_left (fun acc (_,occ) -> acc+occ) 0 m
86 | Terms.Predicate t ->
87 let w, m = weight_of_term t in
88 weight_of_polynomial w m
89 | Terms.Equation (_,x,_,Terms.Lt)
90 | Terms.Equation (x,_,_,Terms.Gt) ->
91 let w, m = weight_of_term x in
92 weight_of_polynomial w m
93 | Terms.Equation (l,r,_,Terms.Eq)
94 | Terms.Equation (l,r,_,Terms.Incomparable)
95 | Terms.Equation (l,r,_,Terms.Invertible) ->
96 let wl, ml = weight_of_term l in
97 let wr, mr = weight_of_term r in
98 weight_of_polynomial (wl+wr) (ml@mr)
102 let compute_goal_weight (_,l, _, _) =
103 let weight_of_polynomial w m =
105 w + factor * List.fold_left (fun acc (_,occ) -> acc+occ) 0 m
108 | Terms.Predicate t ->
109 let w, m = weight_of_term t in
110 weight_of_polynomial w m
111 | Terms.Equation (l,r,_,_) ->
112 let wl, ml = weight_of_term l in
113 let wr, mr = weight_of_term r in
114 let wl = weight_of_polynomial wl ml in
115 let wr = weight_of_polynomial wr mr in
119 let compute_goal_weight = compute_unit_clause_weight;;
121 (* Riazanov: 3.1.5 pag 38 *)
122 (* Compare weights normalized in a new way :
123 * Variables should be sorted from the lowest index to the highest
124 * Variables which do not occur in the term should not be present
125 * in the normalized polynomial
127 let compare_weights (h1, w1) (h2, w2) =
128 let rec aux hdiff (lt, gt) diffs w1 w2 =
130 | ((var1, w1)::tl1) as l1, (((var2, w2)::tl2) as l2) ->
132 let diffs = (w1 - w2) + diffs in
133 let r = Pervasives.compare w1 w2 in
134 let lt = lt or (r < 0) in
135 let gt = gt or (r > 0) in
136 if lt && gt then XINCOMPARABLE else
137 aux hdiff (lt, gt) diffs tl1 tl2
138 else if var1 < var2 then
139 if lt then XINCOMPARABLE else
140 aux hdiff (false,true) (diffs+w1) tl1 l2
142 if gt then XINCOMPARABLE else
143 aux hdiff (true,false) (diffs-w2) l1 tl2
145 if gt then XINCOMPARABLE else
146 aux hdiff (true,false) (diffs-w2) [] tl2
148 if lt then XINCOMPARABLE else
149 aux hdiff (false,true) (diffs+w1) tl1 []
152 if hdiff <= 0 then XLT
153 else if (- diffs) >= hdiff then XLE else XINCOMPARABLE
155 if hdiff >= 0 then XGT
156 else if diffs >= (- hdiff) then XGE else XINCOMPARABLE
158 if hdiff < 0 then XLT
159 else if hdiff > 0 then XGT
162 aux (h1-h2) (false,false) 0 w1 w2
165 (* Riazanov: p. 40, relation >>>
166 * if head_only=true then it is not >>> but helps case 2 of 3.14 p 39 *)
167 let rec aux_ordering b_compare ?(head_only=false) t1 t2 =
169 (* We want to discard any identity equality. *
170 * If we give back XEQ, no inference rule *
171 * will be applied on this equality *)
172 | Terms.Var i, Terms.Var j when i = j ->
176 | _, Terms.Var _ -> XINCOMPARABLE
178 | Terms.Leaf a1, Terms.Leaf a2 ->
179 let cmp = b_compare a1 a2 in
180 if cmp = 0 then XEQ else if cmp < 0 then XLT else XGT
181 | Terms.Leaf _, Terms.Node _ -> XLT
182 | Terms.Node _, Terms.Leaf _ -> XGT
184 | Terms.Node l1, Terms.Node l2 ->
188 | _, [] -> (* XGT *) assert false (* hd symbols were eq *)
189 | [], _ -> (* XLT *) assert false (* hd symbols were eq *)
190 | hd1::tl1, hd2::tl2 ->
191 let o = aux_ordering b_compare ~head_only hd1 hd2 in
192 if o = XEQ && not head_only then cmp tl1 tl2 else o
197 let compare_terms o x y =
199 | XINCOMPARABLE -> Terms.Incomparable
203 | XINVERTIBLE -> Terms.Invertible
207 module NRKBO (B : Terms.Blob) = struct
213 let eq_foterm = eq_foterm B.eq;;
215 exception UnificationFailure of string Lazy.t;;
218 (* DUPLICATE CODE FOR TESTS (see FoUnif) *)
220 let rec equiv subst s t =
221 let s = match s with Terms.Var i -> FoSubst.lookup i subst | _ -> s
222 and t = match t with Terms.Var i -> FoSubst.lookup i subst | _ -> t
226 | s, t when eq_foterm s t -> subst
227 | Terms.Var i, Terms.Var j
228 when (not (List.exists (fun (_,k) -> k=t) subst)) ->
229 let subst = FoSubst.build_subst i t subst in
231 | Terms.Node l1, Terms.Node l2 -> (
234 (fun subst' s t -> equiv subst' s t)
236 with Invalid_argument _ ->
237 raise (UnificationFailure (lazy "Inference.unification.unif"))
240 raise (UnificationFailure (lazy "Inference.unification.unif"))
242 equiv FoSubst.id_subst s t
245 let relocate maxvar varlist subst =
247 (fun i (maxvar, varlist, s) ->
248 maxvar+1, maxvar::varlist, FoSubst.build_subst i (Terms.Var maxvar) s)
249 varlist (maxvar+1, [], subst)
252 let are_invertible l r =
253 let varlist = (Terms.vars_of_term l)@(Terms.vars_of_term r) in
254 let maxvar = List.fold_left max 0 varlist in
255 let _,_,subst = relocate maxvar varlist FoSubst.id_subst in
256 let newl = FoSubst.apply_subst subst l in
257 let newr = FoSubst.apply_subst subst r in
258 try (let subst = alpha_eq l newr in eq_foterm newl (FoSubst.apply_subst subst r)) with
259 UnificationFailure _ -> false
262 let compute_unit_clause_weight = compute_unit_clause_weight;;
263 let compute_goal_weight = compute_goal_weight;;
265 (* Riazanov: p. 40, relation >_n *)
266 let nonrec_kbo t1 t2 =
267 let w1 = weight_of_term t1 in
268 let w2 = weight_of_term t2 in
269 match compare_weights w1 w2 with
270 | XLE -> (* this is .> *)
271 if aux_ordering B.compare t1 t2 = XLT then XLT else XINCOMPARABLE
273 if aux_ordering B.compare t1 t2 = XGT then XGT else XINCOMPARABLE
274 | XEQ -> let res = aux_ordering B.compare t1 t2 in
275 if res = XINCOMPARABLE && are_invertible t1 t2 then XINVERTIBLE
280 let compare_terms = compare_terms nonrec_kbo;;
282 let profiler = HExtlib.profile ~enable:true "compare_terms(nrkbo)";;
283 let compare_terms x y =
284 profiler.HExtlib.profile (compare_terms x) y
289 module KBO (B : Terms.Blob) = struct
295 let eq_foterm = eq_foterm B.eq;;
297 let compute_unit_clause_weight = compute_unit_clause_weight;;
298 let compute_goal_weight = compute_goal_weight;;
300 (* Riazanov: p. 38, relation > *)
302 let aux = aux_ordering B.compare ~head_only:true in
308 | hd1::tl1, hd2::tl2 ->
309 let o = kbo hd1 hd2 in
310 if o = XEQ then cmp tl1 tl2
313 let w1 = weight_of_term t1 in
314 let w2 = weight_of_term t2 in
315 let comparison = compare_weights w1 w2 in
316 match comparison with
320 else if r = XEQ then (
322 | Terms.Node (_::tl1), Terms.Node (_::tl2) ->
323 if cmp tl1 tl2 = XLT then XLT else XINCOMPARABLE
324 | _, _ -> assert false
329 else if r = XEQ then (
331 | Terms.Node (_::tl1), Terms.Node (_::tl2) ->
332 if cmp tl1 tl2 = XGT then XGT else XINCOMPARABLE
333 | _, _ -> assert false
339 | Terms.Var i, Terms.Var j when i=j -> XEQ
340 | Terms.Node (_::tl1), Terms.Node (_::tl2) -> cmp tl1 tl2
341 | _, _ -> XINCOMPARABLE
346 let compare_terms = compare_terms kbo;;
348 let profiler = HExtlib.profile ~enable:true "compare_terms(kbo)";;
349 let compare_terms x y =
350 profiler.HExtlib.profile (compare_terms x) y
355 module LPO (B : Terms.Blob) = struct
361 let eq_foterm = eq_foterm B.eq;;
363 let compute_unit_clause_weight = compute_unit_clause_weight;;
364 let compute_goal_weight = compute_goal_weight;;
368 | s, t when eq_foterm s t ->
370 | Terms.Var _, Terms.Var _ ->
373 if (List.mem i (Terms.vars_of_term s)) then XGT
376 if (List.mem i (Terms.vars_of_term t)) then XLT
378 | Terms.Node (hd1::tl1), Terms.Node (hd2::tl2) ->
379 let rec ge_subterm t ol = function
384 | XGT | XEQ -> (true,res::ol)
385 | o -> ge_subterm t (o::ol) tl
387 let (res, l_ol) = ge_subterm t [] tl1 in
389 else let (res, r_ol) = ge_subterm s [] tl2 in
392 let rec check_subterms t = function
395 if o = XLT then check_subterms t (ol,tl)
398 if lpo x t = XLT then check_subterms t ([],tl)
401 match aux_ordering B.compare hd1 hd2 with
402 | XGT -> if check_subterms s (r_ol,tl2) then XGT
404 | XLT -> if check_subterms t (l_ol,tl1) then XLT
408 let lex = List.fold_left2
409 (fun acc si ti -> if acc = XEQ then lpo si ti else acc)
414 if List.for_all (fun x -> lpo s x = XGT) tl2 then XGT
417 if List.for_all (fun x -> lpo x t = XLT) tl1 then XLT
420 with Invalid_argument _ -> (* assert false *)
422 | XINCOMPARABLE -> XINCOMPARABLE
425 | _,_ -> aux_ordering B.compare s t
429 let compare_terms = compare_terms lpo;;
431 let profiler = HExtlib.profile ~enable:true "compare_terms(lpo)";;
432 let compare_terms x y =
433 profiler.HExtlib.profile (compare_terms x) y