2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department, University of Bologna, Italy.
6 ||T|| HELM is free software; you can redistribute it and/or
7 ||A|| modify it under the terms of the GNU General Public License
8 \ / version 2 or (at your option) any later version.
9 \ / This software is distributed as is, NO WARRANTY.
10 V_______________________________________________________________ *)
12 (* $Id: index.mli 9822 2009-06-03 15:37:06Z tassi $ *)
14 module Superposition (B : Orderings.Blob) =
16 module IDX = Index.Index(B)
17 module Unif = FoUnif.Founif(B)
18 module Subst = FoSubst
20 module Utils = FoUtils.Utils(B)
26 * B.t Terms.unit_clause
27 * B.t Terms.substitution
29 let print s = prerr_endline (Lazy.force s);;
33 let rec list_first f = function
35 | x::tl -> match f x with Some _ as x -> x | _ -> list_first f tl
38 let first_position pos ctx t f =
39 let inject_pos pos ctx = function
41 | Some (a,b,c,d) -> Some(ctx a,b,c,d,pos)
43 let rec aux pos ctx = function
44 | Terms.Leaf _ as t -> inject_pos pos ctx (f t)
48 | Some _ as x -> inject_pos pos ctx x
50 let rec first pre post = function
53 let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
54 match aux (List.length pre :: pos) newctx t with
57 if post = [] then None (* tl is also empty *)
58 else first (pre @ [t]) (List.tl post) tl
60 first [] (List.tl l) l
65 let all_positions pos ctx t f =
66 let rec aux pos ctx = function
67 | Terms.Leaf _ as t -> f t pos ctx
72 (fun (acc,pre,post) t -> (* Invariant: pre @ [t] @ post = l *)
73 let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
74 let acc = aux (List.length pre :: pos) newctx t @ acc in
75 if post = [] then acc, l, []
76 else acc, pre @ [t], List.tl post)
77 (f t pos ctx, [], List.tl l) l
84 let parallel_positions bag pos ctx id t f =
85 let rec aux bag pos ctx id = function
86 | Terms.Leaf _ as t -> f bag t pos ctx id
87 | Terms.Var _ as t -> bag,t,id
88 | Terms.Node (hd::l) as t->
89 let bag,t,id1 = f bag t pos ctx id in
93 (fun (bag,pre,post,id) t ->
94 let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
95 let newpos = (List.length pre)::pos in
96 let bag,newt,id = aux bag newpos newctx id t in
97 if post = [] then bag, pre@[newt], [], id
98 else bag, pre @ [newt], List.tl post, id)
99 (bag, [hd], List.tl l, id) l
101 bag, Terms.Node l, id
103 (* else aux bag pos ctx id1 t *)
109 let visit bag pos ctx id t f =
110 let rec aux bag pos ctx id subst = function
111 | Terms.Leaf _ as t ->
112 let bag,subst,t,id = f bag t pos ctx id
113 in assert (subst=[]); bag,t,id
114 | Terms.Var i as t ->
115 let t= Subst.apply_subst subst t in
117 | Terms.Node (hd::l) ->
120 (fun (bag,pre,post,id) t ->
121 let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
122 let newpos = (List.length pre)::pos in
123 let bag,newt,id = aux bag newpos newctx id subst t in
124 if post = [] then bag, pre@[newt], [], id
125 else bag, pre @ [newt], List.tl post, id)
126 (bag, [hd], List.map (Subst.apply_subst subst) (List.tl l), id) l
128 let bag,subst,t,id1 = f bag (Terms.Node l) pos ctx id
130 if id1 = id then (assert (subst=[]); bag,t,id)
131 else aux bag pos ctx id1 subst t
134 aux bag pos ctx id [] t
137 let build_clause bag filter rule t subst id id2 pos dir =
138 let proof = Terms.Step(rule,id,id2,dir,pos,subst) in
139 let t = Subst.apply_subst subst t in
143 | Terms.Node [ Terms.Leaf eq ; ty; l; r ] when B.eq B.eqP eq ->
144 let o = Order.compare_terms l r in
145 Terms.Equation (l, r, ty, o)
146 | t -> Terms.Predicate t
149 Terms.add_to_bag (0, literal, Terms.vars_of_term t, proof) bag
153 ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm t);*)None)
155 let prof_build_clause = HExtlib.profile ~enable "build_clause";;
156 let build_clause bag filter rule t subst id id2 pos x =
157 prof_build_clause.HExtlib.profile (build_clause bag filter rule t subst id id2 pos) x
161 (* ============ simplification ================= *)
162 let prof_demod_u = HExtlib.profile ~enable "demod.unify";;
163 let prof_demod_r = HExtlib.profile ~enable "demod.retrieve_generalizations";;
164 let prof_demod_o = HExtlib.profile ~enable "demod.compare_terms";;
165 let prof_demod_s = HExtlib.profile ~enable "demod.apply_subst";;
167 let demod table varlist subterm =
169 prof_demod_r.HExtlib.profile
170 (IDX.DT.retrieve_generalizations table) subterm
173 (fun (dir, (id,lit,vl,_)) ->
175 | Terms.Predicate _ -> assert false
176 | Terms.Equation (l,r,_,o) ->
177 let side, newside = if dir=Terms.Left2Right then l,r else r,l in
180 prof_demod_u.HExtlib.profile
181 (Unif.unification (* (varlist@vl) *) varlist subterm) side
184 prof_demod_s.HExtlib.profile
185 (Subst.apply_subst subst) side
188 prof_demod_s.HExtlib.profile
189 (Subst.apply_subst subst) newside
191 if o = Terms.Incomparable || o = Terms.Invertible then
193 prof_demod_o.HExtlib.profile
194 (Order.compare_terms newside) side in
195 (* Riazanov, pp. 45 (ii) *)
197 Some (newside, subst, id, dir)
199 ((*prerr_endline ("Filtering: " ^
200 Pp.pp_foterm side ^ " =(< || =)" ^
201 Pp.pp_foterm newside ^ " coming from " ^
202 Pp.pp_unit_clause uc );*)None)
204 Some (newside, subst, id, dir)
205 with FoUnif.UnificationFailure _ -> None)
206 (IDX.ClauseSet.elements cands)
208 let prof_demod = HExtlib.profile ~enable "demod";;
209 let demod table varlist x =
210 prof_demod.HExtlib.profile (demod table varlist) x
213 let mydemod table varlist subterm =
215 prof_demod_r.HExtlib.profile
216 (IDX.DT.retrieve_generalizations table) subterm
219 (fun (dir, ((id,lit,vl,_) as c)) ->
220 debug (lazy("candidate: "
221 ^ Pp.pp_unit_clause c));
223 | Terms.Predicate _ -> assert false
224 | Terms.Equation (l,r,_,o) ->
225 let side, newside = if dir=Terms.Left2Right then l,r else r,l in
228 prof_demod_u.HExtlib.profile
229 (Unif.unification (* (varlist@vl) *) varlist subterm) side
232 prof_demod_s.HExtlib.profile
233 (Subst.apply_subst subst) side
236 prof_demod_s.HExtlib.profile
237 (Subst.apply_subst subst) newside
239 if o = Terms.Incomparable || o = Terms.Invertible then
241 prof_demod_o.HExtlib.profile
242 (Order.compare_terms inewside) iside in
243 (* Riazanov, pp. 45 (ii) *)
245 Some (newside, subst, id, dir)
247 ((*prerr_endline ("Filtering: " ^
248 Pp.pp_foterm side ^ " =(< || =)" ^
249 Pp.pp_foterm newside ^ " coming from " ^
250 Pp.pp_unit_clause uc );*)
251 debug (lazy "not applied");None)
253 Some (newside, subst, id, dir)
254 with FoUnif.UnificationFailure _ ->
255 debug (lazy "not applied"); None)
256 (IDX.ClauseSet.elements cands)
259 let ctx_demod table vl bag t pos ctx id =
260 match mydemod table vl t with
261 | None -> (bag,[],t,id)
262 | Some (newside, subst, id2, dir) ->
263 let inewside = Subst.apply_subst subst newside in
264 match build_clause bag (fun _ -> true)
265 Terms.Demodulation (ctx inewside) subst id id2 pos dir
267 | None -> assert false
268 | Some (bag,(id,_,_,_)) ->
269 (bag,subst,newside,id)
272 let rec demodulate bag (id, literal, vl, pr) table =
273 debug (lazy ("demodulate " ^ (string_of_int id)));
275 | Terms.Predicate t -> (* assert false *)
277 visit bag [] (fun x -> x) id t (ctx_demod table vl)
279 let cl,_,_ = Terms.get_from_bag id1 bag in
281 | Terms.Equation (l,r,ty,_) ->
284 (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) id l
289 (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) id1 r
292 let cl,_,_ = Terms.get_from_bag id2 bag in
296 let parallel_demod table vl bag t pos ctx id =
297 match demod table vl t with
299 | Some (newside, subst, id2, dir) ->
300 match build_clause bag (fun _ -> true)
301 Terms.Demodulation (ctx newside) subst id id2 pos dir
303 | None -> assert false
304 | Some (bag,(id,_,_,_)) ->
308 let are_alpha_eq cl1 cl2 =
309 let get_term (_,lit,_,_) =
311 | Terms.Predicate _ -> assert false
312 | Terms.Equation (l,r,ty,_) ->
313 Terms.Node [Terms.Leaf B.eqP; ty; l ; r]
315 try ignore(Unif.alpha_eq (get_term cl1) (get_term cl2)) ; true
316 with FoUnif.UnificationFailure _ -> false
319 let prof_demodulate = HExtlib.profile ~enable "demodulate";;
320 let demodulate bag clause x =
321 prof_demodulate.HExtlib.profile (demodulate bag clause) x
325 let is_identity_clause = function
326 | _, Terms.Equation (_,_,_,Terms.Eq), _, _ -> true
327 | _, Terms.Equation (_,_,_,_), _, _ -> false
328 | _, Terms.Predicate _, _, _ -> assert false
331 let is_identity_goal = function
332 | _, Terms.Equation (_,_,_,Terms.Eq), _, _ -> Some []
333 | _, Terms.Equation (l,r,_,_), vl, proof ->
334 (try Some (Unif.unification (* vl *) [] l r)
335 with FoUnif.UnificationFailure _ -> None)
336 | _, Terms.Predicate _, _, _ -> assert false
339 let build_new_clause_reloc bag maxvar filter rule t subst id id2 pos dir =
340 let maxvar, _vl, subst = Utils.relocate maxvar (Terms.vars_of_term
341 (Subst.apply_subst subst t)) subst in
342 match build_clause bag filter rule t subst id id2 pos dir with
343 | Some (bag, c) -> Some ((bag, maxvar), c), subst
347 let build_new_clause bag maxvar filter rule t subst id id2 pos dir =
348 fst (build_new_clause_reloc bag maxvar filter rule t
349 subst id id2 pos dir)
352 let prof_build_new_clause = HExtlib.profile ~enable "build_new_clause";;
353 let build_new_clause bag maxvar filter rule t subst id id2 pos x =
354 prof_build_new_clause.HExtlib.profile (build_new_clause bag maxvar filter
355 rule t subst id id2 pos) x
358 let fold_build_new_clause bag maxvar id rule filter res =
359 let (bag, maxvar), res =
360 HExtlib.filter_map_acc
361 (fun (bag, maxvar) (t,subst,id2,pos,dir) ->
362 build_new_clause bag maxvar filter rule t subst id id2 pos dir)
368 let rewrite_eq ~unify l r ty vl table =
369 let retrieve = if unify then IDX.DT.retrieve_unifiables
370 else IDX.DT.retrieve_generalizations in
371 let lcands = retrieve table l in
372 let rcands = retrieve table r in
374 let id, dir, l, r, vl =
376 | (d, (id,Terms.Equation (l,r,ty,_),vl,_))-> id, d, l, r, vl
379 let reverse = (dir = Terms.Left2Right) = b in
380 let l, r, proof_rewrite_dir = if reverse then l,r,Terms.Left2Right
381 else r,l, Terms.Right2Left in
382 (id,proof_rewrite_dir,Terms.Node [ Terms.Leaf B.eqP; ty; l; r ], vl)
384 let cands1 = List.map (f true) (IDX.ClauseSet.elements lcands) in
385 let cands2 = List.map (f false) (IDX.ClauseSet.elements rcands) in
386 let t = Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in
387 let locked_vars = if unify then [] else vl in
388 let rec aux = function
390 | (id2,dir,c,vl1)::tl ->
392 let subst = Unif.unification (* (vl@vl1) *) locked_vars c t in
393 Some (id2, dir, subst)
394 with FoUnif.UnificationFailure _ -> aux tl
396 aux (cands1 @ cands2)
399 let is_subsumed ~unify bag maxvar (id, lit, vl, _) table =
401 | Terms.Predicate _ -> assert false
402 | Terms.Equation (l,r,ty,_) ->
403 match rewrite_eq ~unify l r ty vl table with
405 | Some (id2, dir, subst) ->
406 let id_t = Terms.Node [ Terms.Leaf B.eqP; ty; r; r ] in
407 build_new_clause bag maxvar (fun _ -> true)
408 Terms.Superposition id_t subst id id2 [2] dir
410 let prof_is_subsumed = HExtlib.profile ~enable "is_subsumed";;
411 let is_subsumed ~unify bag maxvar c x =
412 prof_is_subsumed.HExtlib.profile (is_subsumed ~unify bag maxvar c) x
414 (* id refers to a clause proving contextl l = contextr r *)
416 let rec deep_eq ~unify l r ty pos contextl contextr table acc =
419 | Some(bag,maxvar,(id,lit,vl,p),subst) ->
420 (* prerr_endline ("input subst = "^Pp.pp_substitution subst); *)
421 let l = Subst.apply_subst subst l in
422 let r = Subst.apply_subst subst r in
424 let subst1 = Unif.unification (* vl *) [] l r in
426 match lit with Terms.Predicate _ -> assert false
427 | Terms.Equation (l,r,ty,o) ->
428 Terms.Equation (FoSubst.apply_subst subst1 l,
429 FoSubst.apply_subst subst1 r, ty, o)
431 Some(bag,maxvar,(id,lit,vl,p),Subst.concat subst1 subst)
432 with FoUnif.UnificationFailure _ ->
433 match rewrite_eq ~unify l r ty vl table with
434 | Some (id2, dir, subst1) ->
435 (* prerr_endline ("subst1 = "^Pp.pp_substitution subst1);
436 prerr_endline ("old subst = "^Pp.pp_substitution subst);*)
437 let newsubst = Subst.concat subst1 subst in
439 FoSubst.apply_subst newsubst
440 (Terms.Node[Terms.Leaf B.eqP;ty;contextl r;contextr r])
443 build_new_clause_reloc bag maxvar (fun _ -> true)
444 Terms.Superposition id_t
445 subst1 id id2 (pos@[2]) dir
447 | Some ((bag, maxvar), c), r ->
448 (* prerr_endline ("r = "^Pp.pp_substitution r); *)
449 let newsubst = Subst.flat
450 (Subst.concat r subst) in
451 Some(bag,maxvar,c,newsubst)
452 | None, _ -> assert false)
455 | Terms.Node (a::la), Terms.Node (b::lb) when
456 a = b && List.length la = List.length lb ->
459 (fun (acc,pre,postl,postr) a b ->
461 fun x -> contextl(Terms.Node (pre@(x::postl))) in
463 fun x -> contextr(Terms.Node (pre@(x::postr))) in
464 let newpos = List.length pre::pos in
466 if l = [] then [] else List.tl l in
467 (deep_eq ~unify a b ty
468 newpos newcl newcr table acc,pre@[b],
469 footail postl, footail postr))
470 (acc,[a],List.tl la,List.tl lb) la lb
475 let prof_deep_eq = HExtlib.profile ~enable "deep_eq";;
476 let deep_eq ~unify l r ty pos contextl contextr table x =
477 prof_deep_eq.HExtlib.profile (deep_eq ~unify l r ty pos contextl contextr table) x
480 let rec orphan_murder bag acc i =
481 match Terms.get_from_bag i bag with
482 | (_,_,_,Terms.Exact _),discarded,_ -> (discarded,acc)
483 | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),true,_ -> (true,acc)
484 | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),false,_ ->
485 if (List.mem i acc) then (false,acc)
486 else match orphan_murder bag acc i1 with
487 | (true,acc) -> (true,acc)
489 let (res,acc) = orphan_murder bag acc i2 in
490 if res then res,acc else res,i::acc
493 let orphan_murder bag actives cl =
494 let (id,_,_,_) = cl in
495 let actives = List.map (fun (i,_,_,_) -> i) actives in
496 let (res,_) = orphan_murder bag actives id in
497 if res then debug (lazy "Orphan murdered"); res
499 let prof_orphan_murder = HExtlib.profile ~enable "orphan_murder";;
500 let orphan_murder bag actives x =
501 prof_orphan_murder.HExtlib.profile (orphan_murder bag actives) x
504 (* demodulate and check for subsumption *)
505 let simplify table maxvar bag clause =
506 debug (lazy "simplify...");
507 if is_identity_clause clause then bag,None
508 (* else if orphan_murder bag actives clause then bag,None *)
509 else let bag, clause = demodulate bag clause table in
510 if is_identity_clause clause then bag,None
512 match is_subsumed ~unify:false bag maxvar clause table with
513 | None -> bag, Some clause
514 | Some _ -> bag, None
517 let simplify table maxvar bag clause =
518 match simplify table maxvar bag clause with
520 let (id,_,_,_) = clause in
521 let (_,_,iter) = Terms.get_from_bag id bag in
522 Terms.replace_in_bag (clause,true,iter) bag, None
523 | bag, Some clause -> bag, Some clause
524 (*let (id,_,_,_) = clause in
525 if orphan_murder bag clause then
526 Terms.M.add id (clause,true) bag, Some clause
527 else bag, Some clause*)
529 let prof_simplify = HExtlib.profile ~enable "simplify";;
530 let simplify table maxvar bag x =
531 prof_simplify.HExtlib.profile (simplify table maxvar bag ) x
534 let one_pass_simplification new_clause (alist,atable) bag maxvar =
535 match simplify atable maxvar bag new_clause with
536 | bag,None -> bag,None (* new_clause has been discarded *)
537 | bag,(Some clause) ->
538 let ctable = IDX.index_unit_clause IDX.DT.empty clause in
539 let bag, alist, atable =
541 (fun (bag, alist, atable) c ->
542 match simplify ctable maxvar bag c with
543 |bag,None -> (bag,alist,atable)
544 (* an active clause as been discarded *)
546 bag, c :: alist, IDX.index_unit_clause atable c)
547 (bag,[],IDX.DT.empty) alist
549 bag, Some (clause, (alist,atable))
551 let prof_one_pass_simplification = HExtlib.profile ~enable "one_pass_simplification";;
552 let one_pass_simplification new_clause t bag x =
553 prof_one_pass_simplification.HExtlib.profile (one_pass_simplification new_clause t bag ) x
556 let simplification_step ~new_cl cl (alist,atable) bag maxvar new_clause =
558 if new_cl then atable else
559 IDX.index_unit_clause atable cl
561 (* Simplification of new_clause with : *
562 * - actives and cl if new_clause is not cl *
563 * - only actives otherwise *)
565 simplify atable1 maxvar bag new_clause with
566 | bag,None -> bag,(Some cl, None) (* new_clause has been discarded *)
568 (* Simplification of each active clause with clause *
569 * which is the simplified form of new_clause *)
570 let ctable = IDX.index_unit_clause IDX.DT.empty clause in
571 let bag, newa, alist, atable =
573 (fun (bag, newa, alist, atable) c ->
574 match simplify ctable maxvar bag c with
575 |bag,None -> (bag, newa, alist, atable)
576 (* an active clause as been discarded *)
579 bag, newa, c :: alist,
580 IDX.index_unit_clause atable c
582 bag, c1 :: newa, alist, atable)
583 (bag,[],[],IDX.DT.empty) alist
586 bag, (Some cl, Some (clause, (alist,atable), newa))
588 (* if new_clause is not cl, we simplify cl with clause *)
589 match simplify ctable maxvar bag cl with
591 (* cl has been discarded *)
592 bag,(None, Some (clause, (alist,atable), newa))
594 bag,(Some cl1, Some (clause, (alist,atable), newa))
596 let prof_simplification_step = HExtlib.profile ~enable "simplification_step";;
597 let simplification_step ~new_cl cl (alist,atable) bag maxvar x =
598 prof_simplification_step.HExtlib.profile (simplification_step ~new_cl cl (alist,atable) bag maxvar) x
601 let keep_simplified cl (alist,atable) bag maxvar =
602 let rec keep_simplified_aux ~new_cl cl (alist,atable) bag newc =
604 match simplification_step ~new_cl cl (alist,atable) bag maxvar cl with
605 | _,(None, _) -> assert false
606 | bag,(Some _, None) -> bag,None
607 | bag,(Some _, Some (clause, (alist,atable), newa)) ->
608 keep_simplified_aux ~new_cl:(cl!=clause) clause (alist,atable)
612 | [] -> bag, Some (cl, (alist,atable))
614 match simplification_step ~new_cl cl
615 (alist,atable) bag maxvar hd with
616 | _,(None,None) -> assert false
617 | bag,(Some _,None) ->
618 keep_simplified_aux ~new_cl cl (alist,atable) bag tl
619 | bag,(None, Some _) -> bag,None
620 | bag,(Some cl1, Some (clause, (alist,atable), newa)) ->
622 (clause::alist, IDX.index_unit_clause atable clause)
624 keep_simplified_aux ~new_cl:(cl!=cl1) cl1 (alist,atable)
627 keep_simplified_aux ~new_cl:true cl (alist,atable) bag []
629 let prof_keep_simplified = HExtlib.profile ~enable "keep_simplified";;
630 let keep_simplified cl t bag x =
631 prof_keep_simplified.HExtlib.profile (keep_simplified cl t bag) x
634 (* this is like simplify but raises Success *)
635 let simplify_goal ~no_demod maxvar table bag g_actives clause =
637 if no_demod then bag, clause else demodulate bag clause table
639 let _ = debug (lazy ("demodulated goal : "
640 ^ Pp.pp_unit_clause clause))
642 if List.exists (are_alpha_eq clause) g_actives then None
643 else match (is_identity_goal clause) with
644 | Some subst -> raise (Success (bag,maxvar,clause,subst))
646 let (id,lit,vl,_) = clause in
647 (* this optimization makes sense only if we demodulated, since in
648 that case the clause should have been turned into an identity *)
649 if (vl = [] && not(no_demod))
650 then Some (bag,clause)
654 | Terms.Equation(l,r,ty,_) -> l,r,ty
657 match deep_eq ~unify:true l r ty [] (fun x -> x) (fun x -> x)
658 table (Some(bag,maxvar,clause,Subst.id_subst)) with
659 | None -> Some (bag,clause)
660 | Some (bag,maxvar,cl,subst) ->
661 debug (lazy "Goal subsumed");
662 raise (Success (bag,maxvar,cl,subst))
664 match is_subsumed ~unify:true bag maxvar clause table with
665 | None -> Some (bag, clause)
666 | Some ((bag,maxvar),c) ->
667 prerr_endline "Goal subsumed";
668 raise (Success (bag,maxvar,c))
672 let prof_simplify_goal = HExtlib.profile ~enable "simplify_goal";;
673 let simplify_goal ~no_demod maxvar table bag g_actives x =
674 prof_simplify_goal.HExtlib.profile ( simplify_goal ~no_demod maxvar table bag g_actives) x
677 (* =================== inference ===================== *)
679 (* this is OK for both the sup_left and sup_right inference steps *)
680 let superposition table varlist subterm pos context =
681 let cands = IDX.DT.retrieve_unifiables table subterm in
683 (fun (dir, (id,lit,vl,_ (*as uc*))) ->
685 | Terms.Predicate _ -> assert false
686 | Terms.Equation (l,r,_,o) ->
687 let side, newside = if dir=Terms.Left2Right then l,r else r,l in
690 Unif.unification (* (varlist@vl)*) [] subterm side
692 if o = Terms.Incomparable || o = Terms.Invertible then
693 let side = Subst.apply_subst subst side in
694 let newside = Subst.apply_subst subst newside in
695 let o = Order.compare_terms side newside in
696 (* XXX: check Riazanov p. 33 (iii) *)
697 if o <> Terms.Lt && o <> Terms.Eq then
698 Some (context newside, subst, id, pos, dir)
700 ((*prerr_endline ("Filtering: " ^
701 Pp.pp_foterm side ^ " =(< || =)" ^
702 Pp.pp_foterm newside);*)None)
704 Some (context newside, subst, id, pos, dir)
705 with FoUnif.UnificationFailure _ -> None)
706 (IDX.ClauseSet.elements cands)
709 (* Superposes selected equation with equalities in table *)
710 let superposition_with_table bag maxvar (id,selected,vl,_) table =
712 | Terms.Predicate _ -> assert false
713 | Terms.Equation (l,r,ty,Terms.Lt) ->
714 fold_build_new_clause bag maxvar id Terms.Superposition
717 (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ])
718 r (superposition table vl))
719 | Terms.Equation (l,r,ty,Terms.Invertible)
720 | Terms.Equation (l,r,ty,Terms.Gt) ->
721 fold_build_new_clause bag maxvar id Terms.Superposition
724 (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ])
725 l (superposition table vl))
726 | Terms.Equation (l,r,ty,Terms.Incomparable) ->
727 let filtering avoid subst = (* Riazanov: p.33 condition (iv) *)
728 let l = Subst.apply_subst subst l in
729 let r = Subst.apply_subst subst r in
730 let o = Order.compare_terms l r in
731 o <> avoid && o <> Terms.Eq
733 let bag, maxvar,r_terms =
734 fold_build_new_clause bag maxvar id Terms.Superposition
737 (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ])
738 r (superposition table vl))
740 let bag, maxvar, l_terms =
741 fold_build_new_clause bag maxvar id Terms.Superposition
744 (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ])
745 l (superposition table vl))
747 bag, maxvar, r_terms @ l_terms
751 (* the current equation is normal w.r.t. demodulation with atable
752 * (and is not the identity) *)
753 let infer_right bag maxvar current (alist,atable) =
754 (* We demodulate actives clause with current until all *
755 * active clauses are reduced w.r.t each other *)
756 (* let bag, (alist,atable) = keep_simplified (alist,atable) bag [current] in *)
757 let ctable = IDX.index_unit_clause IDX.DT.empty current in
758 (* let bag, (alist, atable) =
760 HExtlib.filter_map_acc (simplify ctable) bag alist
762 bag, (alist, List.fold_left IDX.index_unit_clause IDX.DT.empty alist)
764 debug (lazy "Simplified active clauses with fact");
765 (* We superpose active clauses with current *)
766 let bag, maxvar, new_clauses =
768 (fun (bag, maxvar, acc) active ->
769 let bag, maxvar, newc =
770 superposition_with_table bag maxvar active ctable
772 bag, maxvar, newc @ acc)
773 (bag, maxvar, []) alist
777 ("New clauses :" ^ (String.concat ";\n"
778 (List.map Pp.pp_unit_clause new_clauses))));
779 debug (lazy "First superpositions");
780 (* We add current to active clauses so that it can be *
781 * superposed with itself *)
783 current :: alist, IDX.index_unit_clause atable current
785 debug (lazy "Indexed");
786 let fresh_current, maxvar = Utils.fresh_unit_clause maxvar current in
787 (* We need to put fresh_current into the bag so that all *
788 * variables clauses refer to are known. *)
789 let bag, fresh_current = Terms.add_to_bag fresh_current bag in
790 (* We superpose current with active clauses *)
791 let bag, maxvar, additional_new_clauses =
792 superposition_with_table bag maxvar fresh_current atable
794 debug (lazy "Another superposition");
795 let new_clauses = new_clauses @ additional_new_clauses in
796 (* debug (lazy (Printf.sprintf "Demodulating %d clauses"
797 (List.length new_clauses))); *)
798 let bag, new_clauses =
799 HExtlib.filter_map_monad (simplify atable maxvar) bag new_clauses
801 debug (lazy "Demodulated new clauses");
802 bag, maxvar, (alist, atable), new_clauses
805 let prof_ir = HExtlib.profile ~enable "infer_right";;
806 let infer_right bag maxvar current t =
807 prof_ir.HExtlib.profile (infer_right bag maxvar current) t
810 let infer_left bag maxvar goal (_alist, atable) =
811 (* We superpose the goal with active clauses *)
812 if (match goal with (_,_,[],_) -> true | _ -> false) then bag, maxvar, []
814 let bag, maxvar, new_goals =
815 superposition_with_table bag maxvar goal atable
817 debug(lazy "Superposed goal with active clauses");
818 (* We simplify the new goals with active clauses *)
822 match simplify_goal ~no_demod:false maxvar atable bag [] g with
823 | None -> assert false
824 | Some (bag,g) -> bag,g::acc)
827 debug (lazy "Simplified new goals with active clauses");
828 bag, maxvar, List.rev new_goals
831 let prof_il = HExtlib.profile ~enable "infer_left";;
832 let infer_left bag maxvar goal t =
833 prof_il.HExtlib.profile (infer_left bag maxvar goal) t