1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 set "baseuri" "cic:/matita/CoRN-Decl/ftc/RefLemma".
21 (* $Id: RefLemma.v,v 1.7 2004/04/23 10:01:00 lcf Exp $ *)
23 include "ftc/RefSeparating.ma".
25 include "ftc/RefSeparated.ma".
27 include "ftc/RefSepRef.ma".
30 Section Refinement_Lemma
33 (*#* *The Refinement Lemmas
35 Here we resume the results proved in four different files. The aim is to prove the following result (last part of Theorem 2.9 of Bishop 1967):
37 %\noindent\textbf{%#<b>#Theorem#</b>#%}% Let [f] be a continuous function on a
38 compact interval [[a,b]] with modulus of continuity%\footnote{%# (#From our
39 point of view, the modulus of continuity is simply the proof that [f] is
40 continuous.#)#%}% [omega].
41 Let [P] be a partition of [[a,b]] and [eps [>] Zero] be such that
42 [mesh(P) [<] omega(eps)].
44 %\[\left|S(f,P)-\int_a^bf(x)dx\right|\leq\varepsilon(b-a),\]%#|S(f,P)-∫f(x)dx|≤ε(b-a)#
45 where [S(f,P)] denotes any sum of the function [f] respecting the partition
46 [P] (as previously defined).
48 The proof of this theorem relies on the fact that for any two partitions [P]
49 and [R] of [[a,b]] it is possible to define a partition [Q] which is
50 ``almost'' a common refinement of [P] and [R]---that is, given [eps [>] Zero]
51 it is possible to define [Q] such that for every point [x] of either [P] or
52 [R] there is a point [y] of [Q] such that [|x[-]y| [<] eps].
53 This requires three separate constructions (done in three separate files)
54 which are then properly combined to give the final result. We recommend the
55 reader to ignore this technical constructions.
57 First we prove that if [P] and [R] are both
58 separated (though not necessarily separated from each other) then we can
59 define a partition [P'] arbitrarily close to [P] (that is, such that given
60 [alpha [>] Zero] and [xi [>] Zero] [P'] satisfies both
61 [mesh(P') [<] mesh(P) [+] xi] and for every choice of points [x_i] respecting
62 [P] there is a choice of points [x'_i] respecting [P'] such that
63 [|S(f,P)-S(f,P')| [<] alpha]) that is separated from [R].
65 Then we prove that given any partition [P]
66 and assuming [a [#] b] we can define a partition [P'] arbitrarily close to
67 [P] (in the same sense as above) which is separated.
69 Finally we prove that every two separated
70 partitions [P] and [R] have a common refinement---as every two points in [P]
71 and [R] are apart, we can decide which one is smaller. We use here the
72 technical results about ordering that we proved in the file [IntegralLemmas.v].
74 Using the results from these files, we prove our main lemma in several steps
77 %\begin{convention}% Throughout this section:
78 - [a,b:IR] and [I] denotes [[a,b]];
79 - [F] is a partial function continuous in [I].
84 alias id "a" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/a.var".
86 alias id "b" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/b.var".
88 alias id "Hab" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Hab.var".
92 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/I.con" "Refinement_Lemma__".
96 alias id "F" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/F.var".
98 alias id "contF" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/contF.var".
100 alias id "incF" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/incF.var".
104 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/contF'.con" "Refinement_Lemma__".
109 Section First_Refinement_Lemma
113 This is the first part of the proof of Theorem 2.9.
116 - [P, Q] are partitions of [I] with, respectively, [n] and [m] points;
117 - [Q] is a refinement of [P];
118 - [e] is a positive real number;
119 - [d] is the modulus of continuity of [F] for [e];
120 - the mesh of [P] is less or equal to [d];
121 - [fP] and [fQ] are choices of points respecting the partitions [P] and [Q],
127 alias id "e" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/e.var".
129 alias id "He" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/He.var".
133 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/d.con" "Refinement_Lemma__First_Refinement_Lemma__".
137 alias id "m" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/m.var".
139 alias id "n" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/n.var".
141 alias id "P" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/P.var".
143 alias id "HMesh" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/HMesh.var".
145 alias id "Q" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/Q.var".
147 alias id "Href" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/Href.var".
149 alias id "fP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/fP.var".
151 alias id "HfP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/HfP.var".
153 alias id "HfP'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/HfP'.var".
155 alias id "fQ" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/fQ.var".
157 alias id "HfQ" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/HfQ.var".
159 alias id "HfQ'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/HfQ'.var".
163 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/sub.con" "Refinement_Lemma__First_Refinement_Lemma__".
165 inline "cic:/CoRN/ftc/RefLemma/RL_sub_0.con".
167 inline "cic:/CoRN/ftc/RefLemma/RL_sub_n.con".
169 inline "cic:/CoRN/ftc/RefLemma/RL_sub_mon.con".
171 inline "cic:/CoRN/ftc/RefLemma/RL_sub_mon'.con".
173 inline "cic:/CoRN/ftc/RefLemma/RL_sub_hyp.con".
175 inline "cic:/CoRN/ftc/RefLemma/RL_sub_S.con".
177 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/H.con" "Refinement_Lemma__First_Refinement_Lemma__".
179 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/H'.con" "Refinement_Lemma__First_Refinement_Lemma__".
181 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/First_Refinement_Lemma/H0.con" "Refinement_Lemma__First_Refinement_Lemma__".
183 inline "cic:/CoRN/ftc/RefLemma/RL_sub_SS.con".
185 inline "cic:/CoRN/ftc/RefLemma/RL_h.con".
187 inline "cic:/CoRN/ftc/RefLemma/RL_g.con".
197 inline "cic:/CoRN/ftc/RefLemma/ref_calc1.con".
200 Notation just1 := (incF _ (Pts_part_lemma _ _ _ _ _ _ HfP _ _)).
204 Notation just2 := (incF _ (Pts_part_lemma _ _ _ _ _ _ HfQ _ _)).
207 inline "cic:/CoRN/ftc/RefLemma/ref_calc2.con".
209 inline "cic:/CoRN/ftc/RefLemma/ref_calc3.con".
211 inline "cic:/CoRN/ftc/RefLemma/ref_calc4.con".
213 inline "cic:/CoRN/ftc/RefLemma/ref_calc5.con".
215 inline "cic:/CoRN/ftc/RefLemma/ref_calc6.con".
217 inline "cic:/CoRN/ftc/RefLemma/ref_calc7.con".
219 inline "cic:/CoRN/ftc/RefLemma/ref_calc8.con".
223 inline "cic:/CoRN/ftc/RefLemma/first_refinement_lemma.con".
226 End First_Refinement_Lemma
230 Section Second_Refinement_Lemma
234 This is inequality (2.6.7).
237 - [P, Q, R] are partitions of [I] with, respectively, [j, n] and [k] points;
238 - [Q] is a common refinement of [P] and [R];
239 - [e, e'] are positive real numbers;
240 - [d, d'] are the moduli of continuity of [F] for [e, e'];
241 - the Mesh of [P] is less or equal to [d];
242 - the Mesh of [R] is less or equal to [d'];
243 - [fP, fQ] and [fR] are choices of points respecting the partitions [P, Q]
244 and [R], respectively.
249 alias id "n" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/n.var".
251 alias id "j" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/j.var".
253 alias id "k" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/k.var".
255 alias id "P" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/P.var".
257 alias id "Q" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/Q.var".
259 alias id "R" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/R.var".
261 alias id "HrefP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/HrefP.var".
263 alias id "HrefR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/HrefR.var".
265 alias id "e" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/e.var".
267 alias id "e'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/e'.var".
269 alias id "He" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/He.var".
271 alias id "He'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/He'.var".
275 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/d.con" "Refinement_Lemma__Second_Refinement_Lemma__".
277 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/d'.con" "Refinement_Lemma__Second_Refinement_Lemma__".
281 alias id "HMeshP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/HMeshP.var".
283 alias id "HMeshR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/HMeshR.var".
285 alias id "fP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/fP.var".
287 alias id "HfP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/HfP.var".
289 alias id "HfP'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/HfP'.var".
291 alias id "fR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/fR.var".
293 alias id "HfR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/HfR.var".
295 alias id "HfR'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Second_Refinement_Lemma/HfR'.var".
297 inline "cic:/CoRN/ftc/RefLemma/second_refinement_lemma.con".
300 End Second_Refinement_Lemma
304 Section Third_Refinement_Lemma
308 This is an approximation of inequality (2.6.7), but without assuming the existence of a common refinement of [P] and [R].
311 - [P, R] are partitions of [I] with, respectively, [n] and [m] points;
312 - [e, e'] are positive real numbers;
313 - [d, d'] are the moduli of continuity of [F] for [e, e'];
314 - the Mesh of [P] is less than [d];
315 - the Mesh of [R] is less than [d'];
316 - [fP] and [fR] are choices of points respecting the partitions [P] and [R],
318 - [beta] is a positive real number.
323 alias id "n" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/n.var".
325 alias id "m" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/m.var".
327 alias id "P" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/P.var".
329 alias id "R" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/R.var".
331 alias id "e" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/e.var".
333 alias id "e'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/e'.var".
335 alias id "He" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/He.var".
337 alias id "He'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/He'.var".
341 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/d.con" "Refinement_Lemma__Third_Refinement_Lemma__".
343 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/d'.con" "Refinement_Lemma__Third_Refinement_Lemma__".
347 alias id "HMeshP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/HMeshP.var".
349 alias id "HMeshR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/HMeshR.var".
351 alias id "fP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/fP.var".
353 alias id "HfP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/HfP.var".
355 alias id "HfP'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/HfP'.var".
357 alias id "fR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/fR.var".
359 alias id "HfR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/HfR.var".
361 alias id "HfR'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/HfR'.var".
363 alias id "Hab'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/Hab'.var".
365 alias id "beta" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/beta.var".
367 alias id "Hbeta" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/Hbeta.var".
371 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/alpha.con" "Refinement_Lemma__Third_Refinement_Lemma__".
373 inline "cic:/CoRN/ftc/RefLemma/RL_alpha.con".
375 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/csi1.con" "Refinement_Lemma__Third_Refinement_Lemma__".
377 inline "cic:/CoRN/ftc/RefLemma/RL_csi1.con".
379 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/delta1.con" "Refinement_Lemma__Third_Refinement_Lemma__".
381 inline "cic:/CoRN/ftc/RefLemma/RL_delta1.con".
383 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/P'.con" "Refinement_Lemma__Third_Refinement_Lemma__".
385 inline "cic:/CoRN/ftc/RefLemma/RL_P'_sep.con".
387 inline "cic:/CoRN/ftc/RefLemma/RL_P'_Mesh.con".
389 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/fP'.con" "Refinement_Lemma__Third_Refinement_Lemma__".
391 inline "cic:/CoRN/ftc/RefLemma/RL_fP'_in_P'.con".
393 inline "cic:/CoRN/ftc/RefLemma/RL_P'_P_sum.con".
395 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/csi2.con" "Refinement_Lemma__Third_Refinement_Lemma__".
397 inline "cic:/CoRN/ftc/RefLemma/RL_csi2.con".
399 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/delta2.con" "Refinement_Lemma__Third_Refinement_Lemma__".
401 inline "cic:/CoRN/ftc/RefLemma/RL_delta2.con".
403 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/R'.con" "Refinement_Lemma__Third_Refinement_Lemma__".
405 inline "cic:/CoRN/ftc/RefLemma/RL_R'_sep.con".
407 inline "cic:/CoRN/ftc/RefLemma/RL_R'_Mesh.con".
409 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/fR'.con" "Refinement_Lemma__Third_Refinement_Lemma__".
411 inline "cic:/CoRN/ftc/RefLemma/RL_fR'_in_R'.con".
413 inline "cic:/CoRN/ftc/RefLemma/RL_R'_R_sum.con".
415 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/csi3.con" "Refinement_Lemma__Third_Refinement_Lemma__".
417 inline "cic:/CoRN/ftc/RefLemma/RL_csi3.con".
419 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/Q.con" "Refinement_Lemma__Third_Refinement_Lemma__".
421 inline "cic:/CoRN/ftc/RefLemma/RL_Q_Mesh.con".
423 inline "cic:/CoRN/ftc/RefLemma/RL_Q_sep.con".
425 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Third_Refinement_Lemma/fQ.con" "Refinement_Lemma__Third_Refinement_Lemma__".
427 inline "cic:/CoRN/ftc/RefLemma/RL_fQ_in_Q.con".
429 inline "cic:/CoRN/ftc/RefLemma/RL_Q_P'_sum.con".
433 inline "cic:/CoRN/ftc/RefLemma/third_refinement_lemma.con".
436 End Third_Refinement_Lemma
440 Section Fourth_Refinement_Lemma
445 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/Fa.con" "Refinement_Lemma__Fourth_Refinement_Lemma__".
448 Notation just := (fun z => incF _ (Pts_part_lemma _ _ _ _ _ _ z _ _)).
451 inline "cic:/CoRN/ftc/RefLemma/RL_sum_lemma_aux.con".
456 Finally, this is inequality (2.6.7) exactly as stated (same conventions as
460 alias id "n" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/n.var".
462 alias id "m" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/m.var".
464 alias id "P" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/P.var".
466 alias id "R" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/R.var".
468 alias id "e" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/e.var".
470 alias id "e'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/e'.var".
472 alias id "He" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/He.var".
474 alias id "He'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/He'.var".
478 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/d.con" "Refinement_Lemma__Fourth_Refinement_Lemma__".
480 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/d'.con" "Refinement_Lemma__Fourth_Refinement_Lemma__".
484 alias id "HMeshP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/HMeshP.var".
486 alias id "HMeshR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/HMeshR.var".
488 alias id "fP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/fP.var".
490 alias id "HfP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/HfP.var".
492 alias id "HfP'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/HfP'.var".
494 alias id "fR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/fR.var".
496 alias id "HfR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/HfR.var".
498 alias id "HfR'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/HfR'.var".
502 alias id "Hab'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Fourth_Refinement_Lemma/Hab'.var".
506 inline "cic:/CoRN/ftc/RefLemma/fourth_refinement_lemma.con".
509 End Fourth_Refinement_Lemma
513 Section Main_Refinement_Lemma
516 (*#* We finish by presenting Theorem 9. *)
518 alias id "n" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/n.var".
520 alias id "m" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/m.var".
522 alias id "P" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/P.var".
524 alias id "R" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/R.var".
526 alias id "e" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/e.var".
528 alias id "e'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/e'.var".
530 alias id "He" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/He.var".
532 alias id "He'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/He'.var".
536 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/d.con" "Refinement_Lemma__Main_Refinement_Lemma__".
538 inline "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/d'.con" "Refinement_Lemma__Main_Refinement_Lemma__".
542 alias id "HMeshP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/HMeshP.var".
544 alias id "HMeshR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/HMeshR.var".
546 alias id "fP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/fP.var".
548 alias id "HfP" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/HfP.var".
550 alias id "HfP'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/HfP'.var".
552 alias id "fR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/fR.var".
554 alias id "HfR" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/HfR.var".
556 alias id "HfR'" = "cic:/CoRN/ftc/RefLemma/Refinement_Lemma/Main_Refinement_Lemma/HfR'.var".
558 inline "cic:/CoRN/ftc/RefLemma/refinement_lemma.con".
561 End Main_Refinement_Lemma