1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/LOGIC/Insert/inv".
20 include "Insert/defs.ma".
22 theorem insert_inv_zero: \forall S,P,Q. Insert S zero P Q \to Q = abst P S.
23 intros; inversion H; clear H; intros; subst; autobatch.
26 theorem insert_inv_succ: \forall S,Q1,Q2,i. Insert S (succ i) Q1 Q2 \to
27 \exists P1,P2,R. Insert S i P1 P2 \land
28 Q1 = abst P1 R \land Q2 = abst P2 R.
29 intros; inversion H; clear H; intros; subst; autobatch depth = 6 size = 8.
32 theorem insert_inv_leaf_1: \forall Q,S,i. Insert S i leaf Q \to
34 intros. inversion H; clear H; intros; subst. autobatch.
37 theorem insert_inv_abst_1: \forall P,Q,R,S,i. Insert S i (abst P R) Q \to
38 (i = zero \land Q = (abst (abst P R) S)) \lor
40 i = succ n \land Q = abst c1 R \land
42 intros. inversion H; clear H; intros; subst; autobatch depth = 6 size = 8.
45 theorem insert_inv_leaf_2: \forall P,S,i. Insert S i P leaf \to False.
46 intros. inversion H; clear H; intros; subst.
49 theorem insert_inv_abst_2: \forall P,i. \forall R,S:Sequent.
51 i = zero \land P = leaf \land R = S.
52 intros. inversion H; clear H; intros; subst;
54 | clear H1. lapply linear insert_inv_leaf_2 to H. decompose