1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* STATO: NON COMPILA: attendo che l'oggetto "pippo" venga accettato *)
17 set "baseuri" "cic:/matita/PREDICATIVE-TOPOLOGY/coa_defs".
20 include "domain_data.ma".
22 (* COMPLETE OVERLAP ALGEBRAS
25 record COA: Type \def {
26 coa:> Class; (* carrier *)
27 le: coa \to coa \to Prop; (* inclusion *)
28 ov: coa \to coa \to Prop; (* overlap *)
29 sup: \forall (D:Domain). (D \to coa) \to coa; (* supremum *)
30 inf: \forall (D:Domain). (D \to coa) \to coa; (* infimum *)
31 le_refl: \forall p. le p p;
32 le_trans: \forall p,r. le p r \to \forall q. le r q \to le p q;
33 le_antysym: \forall q,p. le q p \to le p q \to ceq ? p q;
34 ov_sym: \forall q,p. ov q p \to ov p q;
35 sup_le: \forall D,ps,q. le (sup D ps) q \liff \iforall d. le (ps d) q;
36 inf_le: \forall D,p,qs. le p (inf D qs) \liff \iforall d. le p (qs d);
37 sup_ov: \forall D,ps,q. ov (sup D ps) q \liff \iexists d. ov (ps d) q;
38 density: \forall p,q. (\forall r. ov p r \to ov q r) \to le p q
41 definition zero: \forall (P:COA). P \def
42 \lambda (P:COA). inf P ? (dvoid_ixfam P).
44 definition one: \forall (P:COA). P \def
45 \lambda (P:COA). sup P ? (dvoid_ixfam P).
47 definition binf: \forall (P:COA). P \to P \to P \def
48 \lambda (P:COA). \lambda p0,p1.
49 inf P ? (dbool_ixfam P p0 p1).
51 definition bsup: \forall (P:COA). P \to P \to P \def
52 \lambda (P:COA). \lambda p0,p1.
53 sup P ? (dbool_ixfam P p0 p1).
56 inf_ov: forall p q, ov p q -> ov p (inf QDBool (bool_family _ p q))
57 properness: ov zero zero -> False;
58 distributivity: forall I p q, id _ (inf QDBool (bool_family _ (sup I p) q)) (sup I (fun i => (inf QDBool (bool_family _ (p i) q))));
61 inductive pippo : Prop \def
62 | Pippo: let x \def zero in zero = x \to pippo.