2 let ok_time = ref 0.0;;
3 let ko_time = ref 0.0;;
6 let before = Unix.gettimeofday () in
8 let after = Unix.gettimeofday () in
9 let delta = after -. before in
11 ok_time := !ok_time +. delta
13 ko_time := !ko_time +. delta;
22 ("\nTIME SPENT IN CHECKING GOOD CONJECTURES: " ^ string_of_float !ok_time);
24 ("TIME SPENT IN CHECKING BAD CONJECTURES: " ^ string_of_float !ko_time);)
27 (**** END PROFILING ****)
29 type rel = Equal | SubsetEqual | SupersetEqual
35 | SupersetEqual -> "⊇"
40 let string_of_op = function I -> "i" | C -> "c" | M -> "-"
41 let matita_of_op = function I -> "i" | C -> "c" | M -> "m"
43 (* compound operator *)
44 type compound_operator = op list
46 let string_of_cop op =
47 if op = [] then "id" else String.concat "" (List.map string_of_op op)
49 let dot_of_cop op = "\"" ^ string_of_cop op ^ "\""
55 | [op] -> matita_of_op op ^ " " ^ v
56 | op::tl -> matita_of_op op ^ " (" ^ aux tl ^ ")"
60 let name_of_theorem cop rel cop' =
63 Equal -> cop,"eq",cop'
64 | SubsetEqual -> cop,"leq",cop'
65 | SupersetEqual -> cop',"leq",cop
68 String.concat "" (List.map matita_of_op cop) ^ "_" ^
69 String.concat "" (List.map matita_of_op cop')
72 (* representative, other elements in the equivalence class,
73 leq classes, geq classes *)
74 type equivalence_class =
75 compound_operator * compound_operator list *
76 equivalence_class list ref * equivalence_class list ref
78 let (===) (repr,_,_,_) (repr',_,_,_) = repr = repr';;
79 let (<=>) (repr,_,_,_) (repr',_,_,_) = repr <> repr';;
81 let string_of_equivalence_class (repr,others,leq,_) =
82 String.concat " = " (List.map string_of_cop (repr::others)) ^
87 (function (repr',_,_,_) ->
88 string_of_cop repr ^ " ⊆ " ^ string_of_cop repr') !leq)
92 let dot_of_equivalence_class (repr,others,leq,_) =
94 let eq = String.concat " = " (List.map string_of_cop (repr::others)) in
95 dot_of_cop repr ^ "[label=\"" ^ eq ^ "\"];" ^
96 if !leq = [] then "" else "\n"
97 else if !leq = [] then
103 (function (repr',_,_,_) ->
104 dot_of_cop repr' ^ " -> " ^ dot_of_cop repr ^ ";") !leq)
106 (* set of equivalence classes, infima, suprema *)
108 equivalence_class list * equivalence_class list * equivalence_class list
110 let string_of_set (s,_,_) =
111 String.concat "\n" (List.map string_of_equivalence_class s)
113 let ps_of_set (to_be_considered,under_consideration,news) ?processing (s,inf,sup) =
114 let ch = open_out "xxx.dot" in
115 output_string ch "digraph G {\n";
116 (match under_consideration with
119 output_string ch (dot_of_cop repr ^ " [color=yellow];"));
121 (function (repr,_,_,_) ->
122 if List.exists (function (repr',_,_,_) -> repr=repr') sup then
123 output_string ch (dot_of_cop repr ^ " [shape=Mdiamond];")
125 output_string ch (dot_of_cop repr ^ " [shape=diamond];")
128 (function (repr,_,_,_) ->
129 if not (List.exists (function (repr',_,_,_) -> repr=repr') inf) then
130 output_string ch (dot_of_cop repr ^ " [shape=polygon];")
133 (function repr -> output_string ch (dot_of_cop repr ^ " [color=green];")
136 (function repr -> output_string ch (dot_of_cop repr ^ " [color=navy];")
138 output_string ch (String.concat "\n" (List.map dot_of_equivalence_class s));
139 output_string ch "\n";
140 (match processing with
142 | Some (repr,rel,repr') ->
143 output_string ch (dot_of_cop repr ^ " [color=red];");
146 SupersetEqual -> repr',repr
148 | SubsetEqual -> repr,repr'
151 (dot_of_cop repr' ^ " -> " ^ dot_of_cop repr ^
153 (match rel with Equal -> "arrowhead=none " | _ -> "") ^
154 "style=dashed];\n"));
155 output_string ch "}\n";
157 (*ignore (Unix.system "tred xxx.dot > yyy.dot && dot -Tps yyy.dot > xxx.ps")*)
158 ignore (Unix.system "cp xxx.ps xxx_old.ps && dot -Tps xxx.dot > xxx.ps");
159 (*ignore (read_line ())*)
162 (******** communication with matitawiki ************)
163 let min_ch,mout_ch = Unix.open_process "../../../matitawiki.opt 2> /dev/null";;
165 let exec_cmd ?(undo=false) s =
166 let un = if undo then "un" else "" in
167 (*prerr_endline ("<pgip><" ^ un ^ "doitem>" ^ s ^ "</" ^ un ^ "doitem></pgip>\n");*)
168 output_string mout_ch ("<pgip><" ^ un ^ "doitem>" ^ s ^ "</" ^ un ^ "doitem></pgip>\n");
171 let l = input_line min_ch in
172 let last = String.length l - 1 in
174 if l.[last] = Char.chr 249 then
175 int_of_string (String.sub l 0 last)
183 let rec aux undopos =
187 let pos = exec_cmd he in
193 assert (exec_cmd ~undo:true (string_of_int (undopos - 1)) <> -1);
198 None -> aux (Some pos) tl
199 | _ -> aux undopos tl
204 assert (exec_cmd "set \"baseuri\" \"cic:/matita/theory_former\"." <> -1);
205 assert (exec_cmd "include \"formal_topology.ma\"." <> -1);
208 (********* testing a conjecture *******************)
210 let test to_be_considered_and_now ((s,_,_) as set) rel candidate repr =
211 ps_of_set to_be_considered_and_now ~processing:(candidate,rel,repr) set;
213 (string_of_cop candidate ^ " " ^ string_of_rel rel ^ " " ^ string_of_cop repr ^ "? ");
216 assert (Unix.system "cat log.ma | sed s/^theorem/axiom/g | sed 's/\\. intros.*qed\\././g' > xxx.ma" = Unix.WEXITED 0);
217 let ch = open_out_gen [Open_append] 0 "xxx.ma" in
222 (function (repr,others,leq,_) ->
227 ("axiom ax" ^ string_of_int !i ^
229 matita_of_cop "A" repr ^ " = " ^ matita_of_cop "A" repr' ^ ".\n");
232 (function (repr',_,_,_) ->
235 ("axiom ax" ^ string_of_int !i ^
237 matita_of_cop "A" repr ^ " ⊆ " ^ matita_of_cop "A" repr' ^ ".\n");
241 let candidate',rel',repr' =
243 SupersetEqual -> repr,SubsetEqual,candidate
245 | SubsetEqual -> candidate,rel,repr in
247 let name = name_of_theorem candidate' rel' repr' in
248 ("theorem " ^ name ^ ": \\forall A." ^ matita_of_cop "A" candidate' ^
249 " " ^ string_of_rel rel' ^ " " ^
250 matita_of_cop "A" repr' ^ ".") in
251 let query2 = "intros;" in
252 let query3 = "autobatch size=8 depth=3 width=2." in
253 let query4 = "qed." in
254 let query = query1 ^ query2 ^ query3 ^ query4 in
256 output_string ch (query ^ "\n");
259 let res = profile exec_cmds [query1; query2; query3; query4] in
262 (*Unix.system "../../../matitac.opt xxx.ma >> log 2>&1" = Unix.WEXITED 0*)
263 profile Unix.system "../../../matitac.opt xxx.ma > /dev/null 2>&1" = Unix.WEXITED 0
266 ignore (Unix.system "echo '(*' >> log.ma && cat xxx.dot >> log.ma && echo '*)' >> log.ma");
267 let ch = open_out_gen [Open_append] 0o0600 "log.ma" in
269 output_string ch (query ^ "\n")
271 output_string ch ("(* " ^ query ^ "*)\n");
273 print_endline (if res then "y" else "n");
276 let remove node = List.filter (fun node' -> node <=> node');;
278 let add_leq_arc ((_,_,leq,_) as node) ((_,_,_,geq') as node') =
279 leq := node' :: !leq;
280 geq' := node :: !geq'
283 let add_geq_arc ((_,_,_,geq) as node) ((_,_,leq',_) as node') =
284 geq := node' :: !geq;
285 leq' := node :: !leq'
288 let remove_leq_arc ((_,_,leq,_) as node) ((_,_,_,geq') as node') =
289 leq := remove node' !leq;
290 geq' := remove node !geq'
293 let remove_geq_arc ((_,_,_,geq) as node) ((_,_,leq',_) as node') =
294 geq := remove node' !geq;
295 leq' := remove node !leq'
298 let leq_transitive_closure node node' =
299 add_leq_arc node node';
300 let rec remove_transitive_arcs ((_,_,_,geq) as node) (_,_,leq',_) =
301 let rec remove_arcs_to_ascendents =
304 | (_,_,leq,_) as node'::tl ->
305 remove_leq_arc node node';
306 remove_arcs_to_ascendents (!leq@tl)
308 remove_arcs_to_ascendents !leq';
309 List.iter (function son -> remove_transitive_arcs son node) !geq
311 remove_transitive_arcs node node'
314 let geq_transitive_closure node node' =
315 add_geq_arc node node';
316 let rec remove_transitive_arcs ((_,_,leq,_) as node) (_,_,_,geq') =
317 let rec remove_arcs_to_descendents =
320 | (_,_,_,geq) as node'::tl ->
321 remove_geq_arc node node';
322 remove_arcs_to_descendents (!geq@tl)
324 remove_arcs_to_descendents !geq';
325 List.iter (function father -> remove_transitive_arcs father node) !leq
327 remove_transitive_arcs node node'
330 let (@@) l1 n = if List.exists (function n' -> n===n') l1 then l1 else l1@[n]
332 let rec leq_reachable node =
335 | node'::_ when node === node' -> true
336 | (_,_,leq,_)::tl -> leq_reachable node (!leq@tl)
339 let rec geq_reachable node =
342 | node'::_ when node === node' -> true
343 | (_,_,_,geq)::tl -> geq_reachable node (!geq@tl)
346 let locate_using_leq to_be_considered_and_now ((repr,_,leq,geq) as node)
349 let rec aux ((nodes,inf,sup) as set) already_visited =
352 | (repr',_,_,geq') as node' :: tl ->
353 if List.exists (function n -> n===node') already_visited then
354 aux set already_visited tl
355 else if repr=repr' then aux set (node'::already_visited) (!geq'@tl)
356 else if leq_reachable node' !leq then
357 aux set (node'::already_visited) (!geq'@tl)
358 else if test to_be_considered_and_now set SubsetEqual repr repr' then
360 let sup = remove node sup in
363 let inf = remove node' inf in
371 leq_transitive_closure node node';
372 aux (nodes,inf,sup) (node'::already_visited) (!geq'@tl)
375 aux set (node'::already_visited) tl
380 exception SameEquivalenceClass of set * equivalence_class * equivalence_class;;
382 let locate_using_geq to_be_considered_and_now ((repr,_,leq,geq) as node)
385 let rec aux ((nodes,inf,sup) as set) already_visited =
388 | (repr',_,leq',_) as node' :: tl ->
389 if List.exists (function n -> n===node') already_visited then
390 aux set already_visited tl
391 else if repr=repr' then aux set (node'::already_visited) (!leq'@tl)
392 else if geq_reachable node' !geq then
393 aux set (node'::already_visited) (!leq'@tl)
394 else if test to_be_considered_and_now set SupersetEqual repr repr' then
396 if List.exists (function n -> n===node') !leq then
397 (* We have found two equal nodes! *)
398 raise (SameEquivalenceClass (set,node,node'))
401 let inf = remove node inf in
404 let sup = remove node' sup in
412 geq_transitive_closure node node';
413 aux (nodes,inf,sup) (node'::already_visited) (!leq'@tl)
417 aux set (node'::already_visited) tl
422 let analyze_one to_be_considered repr hecandidate (news,((nodes,inf,sup) as set)) =
423 if not (List.for_all (fun ((_,_,_,geq) as node) -> !geq = [] && let rec check_sups = function [] -> true | (_,_,leq,_) as node::tl -> if !leq = [] then List.exists (fun n -> n===node) sup && check_sups tl else check_sups (!leq@tl) in check_sups [node]) inf) then ((*ps_of_set ([],None,[]) set;*) assert false);
424 if not (List.for_all (fun ((_,_,leq,_) as node) -> !leq = [] && let rec check_infs = function [] -> true | (_,_,_,geq) as node::tl -> if !geq = [] then List.exists (fun n -> n===node) inf && check_infs tl else check_infs (!geq@tl) in check_infs [node]) sup) then (ps_of_set ([],None,[]) set; assert false);
425 let candidate = hecandidate::repr in
426 if List.length (List.filter ((=) M) candidate) > 1 then
432 let node = candidate,[],leq,geq in
433 let nodes = nodes@[node] in
434 let set = nodes,inf@[node],sup@[node] in
435 let start_inf,start_sup =
437 match List.filter (fun (repr',_,_,_) -> repr=repr') nodes with
442 match hecandidate with
444 | C -> [repr_node],sup
449 locate_using_leq (to_be_considered,Some repr,news) node set start_sup in
451 let _,inf,sup = set in
452 if not (List.for_all (fun ((_,_,_,geq) as node) -> !geq = [] && let rec check_sups = function [] -> true | (_,_,leq,_) as node::tl -> if !leq = [] then List.exists (fun n -> n===node) sup && check_sups tl else check_sups (!leq@tl) in check_sups [node]) inf) then (ps_of_set ([],None,[]) set; assert false);
453 if not (List.for_all (fun ((_,_,leq,_) as node) -> !leq = [] && let rec check_infs = function [] -> true | (_,_,_,geq) as node::tl -> if !geq = [] then List.exists (fun n -> n===node) inf && check_infs tl else check_infs (!geq@tl) in check_infs [node]) sup) then (ps_of_set ([],None,[]) set; assert false);
456 locate_using_geq (to_be_considered,Some repr,news) node set start_inf
459 let _,inf,sup = set in
460 if not (List.for_all (fun ((_,_,_,geq) as node) -> !geq = [] && let rec check_sups = function [] -> true | (_,_,leq,_) as node::tl -> if !leq = [] then List.exists (fun n -> n===node) sup && check_sups tl else check_sups (!leq@tl) in check_sups [node]) inf) then (ps_of_set ([],None,[]) set; assert false);
461 if not (List.for_all (fun ((_,_,leq,_) as node) -> !leq = [] && let rec check_infs = function [] -> true | (_,_,_,geq) as node::tl -> if !geq = [] then List.exists (fun n -> n===node) inf && check_infs tl else check_infs (!geq@tl) in check_infs [node]) sup) then ((*ps_of_set ([],None,[]) set;*) assert false);
465 SameEquivalenceClass ((nodes,inf,sup) as set,((r,_,leq_d,geq_d) as node_to_be_deleted),node')->
467 let _,inf,sup = set in
468 if not (List.for_all (fun ((_,_,_,geq) as node) -> !geq = [] && let rec check_sups = function [] -> true | (_,_,leq,_) as node::tl -> if !leq = [] then List.exists (fun n -> n===node) sup && check_sups tl else check_sups (!leq@tl) in check_sups [node]) inf) then (ps_of_set ([],None,[]) set; assert false);
469 if not (List.for_all (fun ((_,_,leq,_) as node) -> !leq = [] && let rec check_infs = function [] -> true | (_,_,_,geq) as node::tl -> if !geq = [] then List.exists (fun n -> n===node) inf && check_infs tl else check_infs (!geq@tl) in check_infs [node]) sup) then ((*ps_of_set ([],None,[]) set;*) assert false);
471 let rec clean inf sup res =
474 | node::tl when node===node_to_be_deleted ->
476 | (repr',others,leq,geq) as node::tl ->
481 | (_,_,leq,_) as node::tl ->
482 if node_to_be_deleted <=> node then
485 (List.filter (fun n ->not (leq_reachable n (res@tl))) !leq)@tl
488 let sup = if !leq = [] then sup@@node else sup in
493 | (_,_,_,geq) as node::tl ->
494 if node_to_be_deleted <=> node then
497 (List.filter (fun n ->not (geq_reachable n (res@tl))) !geq)@tl
500 let inf = if !geq = [] then inf@@node else inf in
502 clean inf sup ((repr',others@[candidate],leq,geq)::res) tl
504 clean inf sup (node::res) tl
506 let inf,sup,nodes = clean inf sup [] nodes in
507 let inf = remove node_to_be_deleted inf in
508 let sup = remove node_to_be_deleted sup in
509 let set = nodes,inf,sup in
511 let _,inf,sup = set in
512 if not (List.for_all (fun ((_,_,_,geq) as node) -> !geq = [] && let rec check_sups = function [] -> true | (_,_,leq,_) as node::tl -> if !leq = [] then List.exists (fun n -> n===node) sup && check_sups tl else check_sups (!leq@tl) in check_sups [node]) inf) then (ps_of_set ([],None,[]) set; assert false);
513 if not (List.for_all (fun ((_,_,leq,_) as node) -> !leq = [] && let rec check_infs = function [] -> true | (_,_,_,geq) as node::tl -> if !geq = [] then List.exists (fun n -> n===node) inf && check_infs tl else check_infs (!geq@tl) in check_infs [node]) sup) then (ps_of_set ([],None,[]) set; assert false);
518 let rec explore i (set:set) news =
519 let rec aux news set =
524 List.fold_right (analyze_one tl repr) [I;C;M] (news,set)
528 let news,set = aux [] set news in
531 print_endline ("PUNTO FISSO RAGGIUNTO! i=" ^ string_of_int i);
532 print_endline (string_of_set set ^ "\n----------------");
533 ps_of_set ([],None,[]) set
537 print_endline ("NUOVA ITERAZIONE, i=" ^ string_of_int i);
538 print_endline (string_of_set set ^ "\n----------------");
539 explore (i+1) set news
543 let id_node = id,[],ref [], ref [] in
544 let set = [id_node],[id_node],[id_node] in
545 print_endline ("PRIMA ITERAZIONE, i=0, j=0");
546 print_endline (string_of_set set ^ "\n----------------");
547 (*ignore (Unix.system "rm -f log");*)
548 assert (Unix.system "cp formal_topology.ma log.ma" = Unix.WEXITED 0);
549 ps_of_set ([id],None,[]) set;