]> matita.cs.unibo.it Git - helm.git/blob - matita/dama/ordered_fields_ch0.ma
closed all axioms
[helm.git] / matita / dama / ordered_fields_ch0.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 set "baseuri" "cic:/matita/ordered_fields_ch0/".
16
17 include "fields.ma".
18 include "ordered_groups.ma".
19
20 (*CSC: non capisco questi alias! Una volta non servivano*)
21 alias id "plus" = "cic:/matita/groups/plus.con".
22 alias symbol "plus" = "Abelian group plus".
23
24 record pre_ordered_field_ch0: Type ≝
25  { of_field:> field;
26    of_ordered_abelian_group_: ordered_abelian_group;
27    of_cotransitively_ordered_set_: cotransitively_ordered_set;
28    of_with1_:
29     cos_ordered_set of_cotransitively_ordered_set_ =
30      og_ordered_set of_ordered_abelian_group_;
31    of_with2:
32     og_abelian_group of_ordered_abelian_group_ = r_abelian_group of_field
33  }.
34
35 lemma of_ordered_abelian_group: pre_ordered_field_ch0 → ordered_abelian_group.
36  intro F;
37  apply mk_ordered_abelian_group;
38   [ apply mk_pre_ordered_abelian_group;
39      [ apply (r_abelian_group F)
40      | apply (og_ordered_set (of_ordered_abelian_group_ F))
41      | apply (eq_f ? ? carrier);
42        apply (of_with2 F)
43      ]
44   |
45     apply
46      (eq_rect' ? ?
47       (λG:abelian_group.λH:og_abelian_group (of_ordered_abelian_group_ F)=G.
48         is_ordered_abelian_group
49          (mk_pre_ordered_abelian_group G (of_ordered_abelian_group_ F)
50           (eq_f abelian_group Type carrier (of_ordered_abelian_group_ F) G
51           H)))
52       ? ? (of_with2 F));
53     simplify;
54     apply (og_ordered_abelian_group_properties (of_ordered_abelian_group_ F))
55   ]
56 qed.
57
58 coercion cic:/matita/ordered_fields_ch0/of_ordered_abelian_group.con.
59
60 (*CSC: I am not able to prove this since unfold is undone by coercion composition*)
61 axiom of_with1:
62  ∀G:pre_ordered_field_ch0.
63   cos_ordered_set (of_cotransitively_ordered_set_ G) =
64    og_ordered_set (of_ordered_abelian_group G).
65
66 lemma of_cotransitively_ordered_set : pre_ordered_field_ch0 → cotransitively_ordered_set.
67  intro F;
68  apply mk_cotransitively_ordered_set;
69  [ apply (og_ordered_set F)
70  | apply
71     (eq_rect ? ? (λa:ordered_set.cotransitive (os_carrier a) (os_le a))
72       ? ? (of_with1 F));
73    apply cos_cotransitive
74  ]
75 qed.
76
77 coercion cic:/matita/ordered_fields_ch0/of_cotransitively_ordered_set.con.
78
79 record is_ordered_field_ch0 (F:pre_ordered_field_ch0) : Type \def
80  { of_mult_compat: ∀a,b:F. 0≤a → 0≤b → 0≤a*b;
81    of_weak_tricotomy : ∀a,b:F. a≠b → a≤b ∨ b≤a;
82    (* 0 characteristics *)
83    of_char0: ∀n. n > O → sum ? (plus F) 0 1 n ≠ 0
84  }.
85  
86 record ordered_field_ch0 : Type \def
87  { of_pre_ordered_field_ch0:> pre_ordered_field_ch0;
88    of_ordered_field_properties:> is_ordered_field_ch0 of_pre_ordered_field_ch0
89  }.
90
91 (*
92 lemma eq_opp_x_times_opp_one_x: ∀F:ordered_field_ch0.∀x:F.-x = -1*x.
93  intros;
94  
95 lemma not_eq_x_zero_to_lt_zero_mult_x_x:
96  ∀F:ordered_field_ch0.∀x:F. x ≠ 0 → 0 < x * x.
97  intros;
98  elim (of_weak_tricotomy ? ? ? ? ? ? ? ? F ? ? H);
99   [ generalize in match (le_x_zero_to_le_zero_opp_x F ? H1); intro;
100     generalize in match (of_mult_compat ? ? ? ? ? ? ? ?  F ? ? H2 H2); intro;
101 *)  
102
103 axiom lt_zero_to_lt_inv_zero:
104  ∀F:ordered_field_ch0.∀x:F.∀p:x≠0. lt F 0 x → lt F 0 (inv ? x p).
105
106 alias symbol "lt" = "natural 'less than'".
107
108 (* The ordering is not necessary. *)
109 axiom not_eq_sum_field_zero: ∀F:ordered_field_ch0.∀n. O<n → sum_field F n ≠ 0.
110 axiom le_zero_sum_field: ∀F:ordered_field_ch0.∀n. O<n → lt F 0 (sum_field F n).
111
112 axiom lt_zero_to_le_inv_zero:
113  ∀F:ordered_field_ch0.∀n:nat.∀p:sum_field F n ≠ 0. 0 ≤ inv ? (sum_field ? n) p.
114
115 definition tends_to : ∀F:ordered_field_ch0.∀f:nat→F.∀l:F.Prop.
116  apply
117   (λF:ordered_field_ch0.λf:nat → F.λl:F.
118     ∀n:nat.∃m:nat.∀j:nat.m ≤ j →
119      l - (inv F (sum_field ? (S n)) ?) ≤ f j ∧
120      f j ≤ l + (inv F (sum_field ? (S n)) ?));
121  apply not_eq_sum_field_zero;
122  unfold;
123  auto new.
124 qed.
125
126 (*
127 definition is_cauchy_seq ≝
128  λF:ordered_field_ch0.λf:nat→F.
129   ∀eps:F. 0 < eps →
130    ∃n:nat.∀M. n ≤ M →
131     -eps ≤ f M - f n ∧ f M - f n ≤ eps.
132 *)
133
134
135
136 definition is_cauchy_seq : ∀F:ordered_field_ch0.∀f:nat→F.Prop.
137  apply
138   (λF:ordered_field_ch0.λf:nat→F.
139     ∀m:nat.
140      ∃n:nat.∀N.n ≤ N →
141       -(inv ? (sum_field F (S m)) ?) ≤ f N - f n ∧
142       f N - f n ≤ inv ? (sum_field F (S m)) ?);
143  apply not_eq_sum_field_zero;
144  unfold;
145  auto.
146 qed.
147
148 definition is_complete ≝
149  λF:ordered_field_ch0.
150   ∀f:nat→F. is_cauchy_seq ? f →
151    ex F (λl:F. tends_to ? f l).