]> matita.cs.unibo.it Git - helm.git/blob - matita/dama/sigma_algebra.ma
More documentation committed.
[helm.git] / matita / dama / sigma_algebra.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 set "baseuri" "cic:/matita/sigma_algebra/".
16
17 include "topology.ma".
18
19 record is_sigma_algebra (X:Type) (A: set X) (M: set (set X)) : Prop ≝
20  { siga_subset: ∀B.B ∈ M → B ⊆ A;
21    siga_full: A ∈ M;
22    siga_compl: ∀B.B ∈ M → B \sup c ∈ M;
23    siga_enumerable_union:
24     ∀B:seq (set X).(∀i.(B \sub i) ∈ M) → (∪ \sub i B \sub i) ∈ M
25  }.
26
27 record sigma_algebra : Type ≝
28  { siga_carrier:> Type;
29    siga_domain:> set siga_carrier;
30    M: set (set siga_carrier);
31    siga_is_sigma_algebra:> is_sigma_algebra ? siga_domain M
32  }.
33
34 (*definition is_measurable_map ≝
35  λX:sigma_algebra.λY:topological_space.λf:X → Y.
36   ∀V. V ∈ O Y → f \sup -1 V ∈ M X.*)
37 definition is_measurable_map ≝
38  λX:sigma_algebra.λY:topological_space.λf:X → Y.
39   ∀V. V ∈ O Y → inverse_image ? ? f V ∈ M X.
40