1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/sigma_algebra/".
17 include "topology.ma".
19 record is_sigma_algebra (X:Type) (A: set X) (M: set (set X)) : Prop ≝
20 { siga_subset: ∀B.B ∈ M → B ⊆ A;
22 siga_compl: ∀B.B ∈ M → B \sup c ∈ M;
23 siga_enumerable_union:
24 ∀B:seq (set X).(∀i.(B \sub i) ∈ M) → (∪ \sub i B \sub i) ∈ M
27 record sigma_algebra : Type ≝
28 { siga_carrier:> Type;
29 siga_domain:> set siga_carrier;
30 M: set (set siga_carrier);
31 siga_is_sigma_algebra:> is_sigma_algebra ? siga_domain M
34 (*definition is_measurable_map ≝
35 λX:sigma_algebra.λY:topological_space.λf:X → Y.
36 ∀V. V ∈ O Y → f \sup -1 V ∈ M X.*)
37 definition is_measurable_map ≝
38 λX:sigma_algebra.λY:topological_space.λf:X → Y.
39 ∀V. V ∈ O Y → inverse_image ? ? f V ∈ M X.