2 <!-- =========== Terms, declarations and definitions ============ -->
4 <chapter id="sec_terms">
6 <para>To describe syntax in this manual we use the following conventions:</para>
8 <listitem><para>Non terminal symbols are emphasized and have a link to their
9 definition. E.g.: &term;</para></listitem>
10 <listitem><para>Terminal symbols are in bold. E.g.:
11 <emphasis role="bold">theorem</emphasis></para></listitem>
12 <listitem><para>Optional sequences of elements are put in square brackets.
13 E.g.: [<emphasis role="bold">in</emphasis> &term;]</para></listitem>
14 <listitem><para>Alternatives are put in square brakets and they are
15 separated by vertical bars. E.g.: [<emphasis role="bold"><</emphasis>|<emphasis role="bold">></emphasis>]</para></listitem>
16 <listitem><para>Repetitions of a sequence of elements are given by putting the
17 sequence in square brackets, that are followed by three dots. The empty
18 sequence is a valid repetition.
19 E.g.: [<emphasis role="bold">and</emphasis> &term;]…</para></listitem>
20 <listitem><para>Characters belonging to a set of characters are given
21 by listing the set elements in square brackets. Hyphens are used to
22 specify ranges of characters in the set.
23 E.g.: [<emphasis role="bold">a</emphasis>-<emphasis role="bold">zA</emphasis>-<emphasis role="bold">Z0</emphasis>-<emphasis role="bold">9_-</emphasis>]</para></listitem>
25 <sect1 id="terms_and_co">
26 <title>Terms & co.</title>
28 <title>Lexical conventions</title>
29 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
30 <title>qstring</title>
34 <entry id="grammar.qstring">&qstring;</entry>
36 <entry><emphasis role="bold">"</emphasis><emphasis>〈〈any sequence of characters excluded "〉〉</emphasis><emphasis role="bold">"</emphasis></entry>
41 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
46 <entry id="grammar.id">&id;</entry>
48 <entry><emphasis>〈〈any sequence of letters, underscores or valid <ulink type="http" url="http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Digit">XML digits</ulink> prefixed by a latin letter ([a-zA-Z]) and post-fixed by a possible empty sequence of decorators ([?'`])〉〉</emphasis></entry>
53 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
58 <entry id="grammar.nat">&nat;</entry>
60 <entry><emphasis>〈〈any sequence of valid <ulink type="http" url="http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Digit">XML digits</ulink>〉〉</emphasis></entry>
65 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
70 <entry id="grammar.char">&char;</entry>
72 <entry>[<emphasis role="bold">a</emphasis>-<emphasis role="bold">zA</emphasis>-<emphasis role="bold">Z0</emphasis>-<emphasis role="bold">9_-</emphasis>]</entry>
77 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
78 <title>uri-step</title>
82 <entry id="grammar.uri-step">&uri-step;</entry>
84 <entry>&char;[&char;]…</entry>
89 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
94 <entry id="grammar.uri">&uri;</entry>
96 <entry>[<emphasis role="bold">cic:/</emphasis>|<emphasis role="bold">theory:/</emphasis>]&uri-step;[<emphasis role="bold">/</emphasis>&uri-step;]…<emphasis role="bold">.</emphasis>&id;[<emphasis role="bold">.</emphasis>&id;]…[<emphasis role="bold">#xpointer(</emphasis>&nat;<emphasis role="bold">/</emphasis>&nat;[<emphasis role="bold">/</emphasis>&nat;]…<emphasis role="bold">)</emphasis>]</entry>
105 <!-- ZACK: Sample EBNF snippet, see:
106 http://www.docbook.org/tdg/en/html/productionset.html -->
110 <production id="grammar.term">
113 <lineannotation></lineannotation>
119 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
124 <entry id="grammar.term">&term;</entry>
126 <entry>&sterm;</entry>
127 <entry>simple or delimited term</entry>
132 <entry>&term; &term;</entry>
133 <entry>application</entry>
138 <entry><emphasis role="bold">λ</emphasis>&args;<emphasis role="bold">.</emphasis>&term;</entry>
139 <entry>λ-abstraction</entry>
144 <entry><emphasis role="bold">Π</emphasis>&args;<emphasis role="bold">.</emphasis>&term;</entry>
145 <entry>dependent product meant to define a datatype</entry>
150 <entry><emphasis role="bold">∀</emphasis>&args;<emphasis role="bold">.</emphasis>&term;</entry>
151 <entry>dependent product meant to define a proposition</entry>
156 <entry>&term; <emphasis role="bold">→</emphasis> &term;</entry>
157 <entry>non-dependent product (logical implication or function space)</entry>
162 <entry><emphasis role="bold">let</emphasis> [&id;|(&id;<emphasis role="bold">:</emphasis> &term;)] <emphasis role="bold">≝</emphasis> &term; <emphasis role="bold">in</emphasis> &term;</entry>
163 <entry>local definition</entry>
169 <emphasis role="bold">let</emphasis>
170 [<emphasis role="bold">co</emphasis>]<emphasis role="bold">rec</emphasis>
173 <entry>(co)recursive definitions</entry>
179 [<emphasis role="bold">and</emphasis> &rec_def;]…
187 <emphasis role="bold">in</emphasis> &term;
195 <entry>user provided notation</entry>
198 <entry id="grammar.rec_def">&rec_def;</entry>
201 &id; [&id;|<emphasis role="bold">(</emphasis>&id;[<emphasis role="bold">,</emphasis>&term;]… <emphasis role="bold">:</emphasis>&term;<emphasis role="bold">)</emphasis>]…
209 [<emphasis role="bold">on</emphasis> &id;]
210 [<emphasis role="bold">:</emphasis> &term;]
211 <emphasis role="bold">≝</emphasis> &term;]
219 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
220 <title>Simple terms</title>
224 <entry id="grammar.sterm">&sterm;</entry>
226 <entry><emphasis role="bold">(</emphasis>&term;<emphasis role="bold">)</emphasis></entry>
232 <entry>&id;[<emphasis role="bold">\subst[</emphasis>
233 &id;<emphasis role="bold">≔</emphasis>&term;
234 [<emphasis role="bold">;</emphasis>&id;<emphasis role="bold">≔</emphasis>&term;]…
235 <emphasis role="bold">]</emphasis>]
237 <entry>identifier with optional explicit named substitution</entry>
243 <entry>a qualified reference</entry>
248 <entry><emphasis role="bold">Prop</emphasis></entry>
249 <entry>the impredicative sort of propositions</entry>
254 <entry><emphasis role="bold">Set</emphasis></entry>
255 <entry>the impredicate sort of datatypes</entry>
260 <entry><emphasis role="bold">CProp</emphasis></entry>
261 <entry>one fixed predicative sort of constructive propositions</entry>
266 <entry><emphasis role="bold">Type</emphasis></entry>
267 <entry>one predicative sort of datatypes</entry>
272 <entry><emphasis role="bold">?</emphasis></entry>
273 <entry>implicit argument</entry>
278 <entry><emphasis role="bold">?n</emphasis>
279 [<emphasis role="bold">[</emphasis>
280 [<emphasis role="bold">_</emphasis>|&term;]…
281 <emphasis role="bold">]</emphasis>]</entry>
282 <entry>metavariable</entry>
287 <entry><emphasis role="bold">match</emphasis> &term;
288 [ <emphasis role="bold">in</emphasis> &term; ]
289 [ <emphasis role="bold">return</emphasis> &term; ]
290 <emphasis role="bold">with</emphasis>
292 <entry>case analysis</entry>
298 <emphasis role="bold">[</emphasis>
299 &match_branch;[<emphasis role="bold">|</emphasis>&match_branch;]…
300 <emphasis role="bold">]</emphasis>
307 <entry><emphasis role="bold">(</emphasis>&term;<emphasis role="bold">:</emphasis>&term;<emphasis role="bold">)</emphasis></entry>
314 <entry>user provided notation at precedence 90</entry>
320 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
321 <title>Arguments</title>
325 <entry id="grammar.args">&args;</entry>
328 <emphasis role="bold">_</emphasis>[<emphasis role="bold">:</emphasis> &term;]
330 <entry>ignored argument</entry>
336 <emphasis role="bold">(</emphasis><emphasis role="bold">_</emphasis>[<emphasis role="bold">:</emphasis> &term;]<emphasis role="bold">)</emphasis>
338 <entry>ignored argument</entry>
343 <entry>&id;[<emphasis role="bold">,</emphasis>&id;]…[<emphasis role="bold">:</emphasis> &term;]</entry>
349 <entry><emphasis role="bold">(</emphasis>&id;[<emphasis role="bold">,</emphasis>&id;]…[<emphasis role="bold">:</emphasis> &term;]<emphasis role="bold">)</emphasis></entry>
353 <entry id="grammar.args2">&args2;</entry>
361 <entry><emphasis role="bold">(</emphasis>&id;[<emphasis role="bold">,</emphasis>&id;]…<emphasis role="bold">:</emphasis> &term;<emphasis role="bold">)</emphasis></entry>
368 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
369 <title>Pattern matching</title>
373 <entry id="grammar.match_branch">&match_branch;</entry>
375 <entry>&match_pattern; <emphasis role="bold">⇒</emphasis> &term;</entry>
379 <entry id="grammar.match_pattern">&match_pattern;</entry>
382 <entry>0-ary constructor</entry>
387 <entry><emphasis role="bold">(</emphasis>&id; &id; [&id;]…<emphasis role="bold">)</emphasis></entry>
388 <entry>n-ary constructor (binds the n arguments)</entry>
398 <sect1 id="axiom_definition_declaration">
399 <title>Definitions and declarations</title>
401 <title><emphasis role="bold">axiom</emphasis> &id;<emphasis role="bold">:</emphasis> &term;</title>
402 <titleabbrev>axiom</titleabbrev>
403 <para><userinput>axiom H: P</userinput></para>
404 <para><command>H</command> is declared as an axiom that states <command>P</command></para>
406 <sect2 id="definition">
407 <title><emphasis role="bold">definition</emphasis> &id;[<emphasis role="bold">:</emphasis> &term;] [<emphasis role="bold">≝</emphasis> &term;]</title>
408 <titleabbrev>definition</titleabbrev>
409 <para><userinput>definition f: T ≝ t</userinput></para>
410 <para><command>f</command> is defined as <command>t</command>;
411 <command>T</command> is its type. An error is raised if the type of
412 <command>t</command> is not convertible to <command>T</command>.</para>
413 <para><command>T</command> is inferred from <command>t</command> if
415 <para><command>t</command> can be omitted only if <command>T</command> is
416 given. In this case Matita enters in interactive mode and
417 <command>f</command> must be defined by means of tactics.</para>
418 <para>Notice that the command is equivalent to <command>theorem f: T ≝ t</command>.</para>
420 <sect2 id="inductive">
421 <title>[<emphasis role="bold">inductive</emphasis>|<emphasis role="bold">coinductive</emphasis>] &id; [&args2;]… <emphasis role="bold">:</emphasis> &term; <emphasis role="bold">≝</emphasis> [<emphasis role="bold">|</emphasis>] [&id;<emphasis role="bold">:</emphasis>&term;] [<emphasis role="bold">|</emphasis> &id;<emphasis role="bold">:</emphasis>&term;]…
422 [<emphasis role="bold">with</emphasis> &id; <emphasis role="bold">:</emphasis> &term; <emphasis role="bold">≝</emphasis> [<emphasis role="bold">|</emphasis>] [&id;<emphasis role="bold">:</emphasis>&term;] [<emphasis role="bold">|</emphasis> &id;<emphasis role="bold">:</emphasis>&term;]…]…
424 <titleabbrev>(co)inductive types declaration</titleabbrev>
425 <para><userinput>inductive i x y z: S ≝ k1:T1 | … | kn:Tn with i' : S' ≝ k1':T1' | … | km':Tm'</userinput></para>
426 <para>Declares a family of two mutually inductive types
427 <command>i</command> and <command>i'</command> whose types are
428 <command>S</command> and <command>S'</command>, which must be convertible
430 <para>The constructors <command>ki</command> of type <command>Ti</command>
431 and <command>ki'</command> of type <command>Ti'</command> are also
432 simultaneously declared. The declared types <command>i</command> and
433 <command>i'</command> may occur in the types of the constructors, but
434 only in strongly positive positions according to the rules of the
436 <para>The whole family is parameterized over the arguments <command>x,y,z</command>.</para>
437 <para>If the keyword <command>coinductive</command> is used, the declared
438 types are considered mutually coinductive.</para>
439 <para>Elimination principles for the record are automatically generated
440 by Matita, if allowed by the typing rules of the calculus according to
441 the sort <command>S</command>. If generated,
442 they are named <command>i_ind</command>, <command>i_rec</command> and
443 <command>i_rect</command> according to the sort of their induction
447 <title><emphasis role="bold">record</emphasis> &id; [&args2;]… <emphasis role="bold">:</emphasis> &term; <emphasis role="bold">≝</emphasis><emphasis role="bold">{</emphasis>[&id; [<emphasis role="bold">:</emphasis>|<emphasis role="bold">:></emphasis>] &term;] [<emphasis role="bold">;</emphasis>&id; [<emphasis role="bold">:</emphasis>|<emphasis role="bold">:></emphasis>] &term;]…<emphasis role="bold">}</emphasis></title>
448 <titleabbrev>record</titleabbrev>
449 <para><userinput>record id x y z: S ≝ { f1: T1; …; fn:Tn }</userinput></para>
450 <para>Declares a new record family <command>id</command> parameterized over
451 <command>x,y,z</command>.</para>
452 <para><command>S</command> is the type of the record
453 and it must be convertible to a sort.</para>
454 <para>Each field <command>fi</command> is declared by giving its type
455 <command>Ti</command>. A record without any field is admitted.</para>
456 <para>Elimination principles for the record are automatically generated
457 by Matita, if allowed by the typing rules of the calculus according to
458 the sort <command>S</command>. If generated,
459 they are named <command>i_ind</command>, <command>i_rec</command> and
460 <command>i_rect</command> according to the sort of their induction
462 <para>For each field <command>fi</command> a record projection
463 <command>fi</command> is also automatically generated if projection
464 is allowed by the typing rules of the calculus according to the
465 sort <command>S</command>, the type <command>T1</command> and
466 the definability of depending record projections.</para>
467 <para>If the type of a field is declared with <command>:></command>,
468 the corresponding record projection becomes an implicit coercion.
469 This is just syntactic sugar and it has the same effect of declaring the
470 record projection as a coercion later on.</para>
475 <title>Proofs</title>
477 <title><emphasis role="bold">theorem</emphasis> &id;[<emphasis role="bold">:</emphasis> &term;] [<emphasis role="bold">≝</emphasis> &term;]</title>
478 <titleabbrev>theorem</titleabbrev>
479 <para><userinput>theorem f: P ≝ p</userinput></para>
480 <para>Proves a new theorem <command>f</command> whose thesis is
481 <command>P</command>.</para>
482 <para>If <command>p</command> is provided, it must be a proof term for
483 <command>P</command>. Otherwise an interactive proof is started.</para>
484 <para><command>P</command> can be omitted only if the proof is not
486 <para>Proving a theorem already proved in the library is an error.
487 To provide an alternative name and proof for the same theorem, use
488 <command>variant f: P ≝ p</command>.</para>
489 <para>A warning is raised if the name of the theorem cannot be obtained
490 by mangling the name of the constants in its thesis.</para>
491 <para>Notice that the command is equivalent to <command>definition f: T ≝ t</command>.</para>
494 <title><emphasis role="bold">variant</emphasis> &id;<emphasis role="bold">:</emphasis> &term; <emphasis role="bold">≝</emphasis> &term;</title>
495 <titleabbrev>variant</titleabbrev>
496 <para><userinput>variant f: T ≝ t</userinput></para>
497 <para>Same as <command>theorem f: T ≝ t</command>, but it does not
498 complain if the theorem has already been proved. To be used to give
499 an alternative name or proof to a theorem.</para>
502 <title><emphasis role="bold">lemma</emphasis> &id;[<emphasis role="bold">:</emphasis> &term;] [<emphasis role="bold">≝</emphasis> &term;]</title>
503 <titleabbrev>lemma</titleabbrev>
504 <para><userinput>lemma f: T ≝ t</userinput></para>
505 <para>Same as <command>theorem f: T ≝ t</command></para>
508 <title><emphasis role="bold">fact</emphasis> &id;[<emphasis role="bold">:</emphasis> &term;] [<emphasis role="bold">≝</emphasis> &term;]</title>
509 <titleabbrev>fact</titleabbrev>
510 <para><userinput>fact f: T ≝ t</userinput></para>
511 <para>Same as <command>theorem f: T ≝ t</command></para>
514 <title><emphasis role="bold">remark</emphasis> &id;[<emphasis role="bold">:</emphasis> &term;] [<emphasis role="bold">≝</emphasis> &term;]</title>
515 <titleabbrev>remark</titleabbrev>
516 <para><userinput>remark f: T ≝ t</userinput></para>
517 <para>Same as <command>theorem f: T ≝ t</command></para>
521 <sect1 id="tacticargs">
522 <title>Tactic arguments</title>
523 <para>This section documents the syntax of some recurring arguments for
526 <sect2 id="introsspec">
527 <title>intros-spec</title>
528 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
529 <title>intros-spec</title>
533 <entry id="grammar.intros-spec">&intros-spec;</entry>
535 <entry>[&nat;] [<emphasis role="bold">(</emphasis>[&id;]…<emphasis role="bold">)</emphasis>]</entry>
540 <para>The natural number is the number of new hypotheses to be introduced. The list of identifiers gives the name for the first hypotheses.</para>
544 <title>pattern</title>
545 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
546 <title>pattern</title>
550 <entry id="grammar.pattern">&pattern;</entry>
552 <entry><emphasis role="bold">in</emphasis>
553 [&id;[<emphasis role="bold">:</emphasis> &path;]]…
554 [<emphasis role="bold">⊢</emphasis> &path;]]</entry>
555 <entry>simple pattern</entry>
560 <entry><emphasis role="bold">in match</emphasis> &term;
561 [<emphasis role="bold">in</emphasis>
562 [&id;[<emphasis role="bold">:</emphasis> &path;]]…
563 [<emphasis role="bold">⊢</emphasis> &path;]]</entry>
564 <entry>full pattern</entry>
569 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
574 <entry id="grammar.path">&path;</entry>
576 <entry><emphasis>〈〈any &sterm; whithout occurrences of <emphasis role="bold">Set</emphasis>, <emphasis role="bold">Prop</emphasis>, <emphasis role="bold">CProp</emphasis>, <emphasis role="bold">Type</emphasis>, &id;, &uri; and user provided notation; however, <emphasis role="bold">%</emphasis> is now an additional production for &sterm;〉〉</emphasis></entry>
581 <para>A <emphasis>path</emphasis> locates zero or more subterms of a given term by mimicking the term structure up to:</para>
583 <listitem><para>Occurrences of the subterms to locate that are
584 represented by <emphasis role="bold">%</emphasis>.</para></listitem>
585 <listitem><para>Subterms without any occurrence of subterms to locate
586 that can be represented by <emphasis role="bold">?</emphasis>.
589 <para>For instance, the path
590 <userinput>∀_,_:?.(? ? % ?)→(? ? ? %)</userinput>
591 locates at once the subterms
592 <userinput>x+y</userinput> and <userinput>x*y</userinput> in the
593 term <userinput>∀x,y:nat.x+y=1→0=x*y</userinput>
594 (where the notation <userinput>A=B</userinput> hides the term
595 <userinput>(eq T A B)</userinput> for some type <userinput>T</userinput>).
597 <para>A <emphasis>simple pattern</emphasis> extends paths to locate
598 subterms in a whole sequent. In particular, the pattern
599 <userinput>in H: p K: q ⊢ r</userinput> locates at once all the subterms
600 located by the pattern <userinput>r</userinput> in the conclusion of the
601 sequent and by the patterns <userinput>p</userinput> and
602 <userinput>q</userinput> in the hypotheses <userinput>H</userinput>
603 and <userinput>K</userinput> of the sequent.
605 <para>If no list of hypotheses is provided in a simple pattern, no subterm
606 is selected in the hypothesis. If the <userinput>⊢ p</userinput>
607 part of the pattern is not provided, no subterm will be matched in the
608 conclusion if at least one hypothesis is provided; otherwise the whole
609 conclusion is selected.
611 <para>Finally, a <emphasis>full pattern</emphasis> is interpreted in three
612 steps. In the first step the <userinput>match T in</userinput>
613 part is ignored and a set <emphasis>S</emphasis> of subterms is
614 located as for the case of
615 simple patterns. In the second step the term <userinput>T</userinput>
616 is parsed and interpreted in the context of each subterm
617 <emphasis>s ∈ S</emphasis>. In the last term for each
618 <emphasis>s ∈ S</emphasis> the interpreted term <userinput>T</userinput>
619 computed in the previous step is looked for. The final set of subterms
620 located by the full pattern is the set of occurrences of
621 the interpreted <userinput>T</userinput> in the subterms <emphasis>s</emphasis>.
623 <para>A full pattern can always be replaced by a simple pattern,
624 often at the cost of increased verbosity or decreased readability.</para>
625 <para>Example: the pattern
626 <userinput>⊢ in match x+y in ∀_,_:?.(? ? % ?)</userinput>
627 locates only the first occurrence of <userinput>x+y</userinput>
628 in the sequent <userinput>x,y: nat ⊢ ∀z,w:nat. (x+y) * (z+w) =
629 z * (x+y) + w * (x+y)</userinput>. The corresponding simple pattern
630 is <userinput>⊢ ∀_,_:?.(? ? (? % ?) ?)</userinput>.
632 <para>Every tactic that acts on subterms of the selected sequents have
633 a pattern argument for uniformity. To automatically generate a simple
636 <listitem><para>Select in the current goal the subterms to pass to the
637 tactic by using the mouse. In order to perform a multiple selection of
638 subterms, hold the Ctrl key while selecting every subterm after the
639 first one.</para></listitem>
640 <listitem><para>From the contextual menu select "Copy".</para></listitem>
641 <listitem><para>From the "Edit" or the contextual menu select
642 "Paste as pattern"</para></listitem>
646 <sect2 id="reduction-kind">
647 <title>reduction-kind</title>
648 <para>Reduction kinds are normalization functions that transform a term
649 to a convertible but simpler one. Each reduction kind can be used both
650 as a tactic argument and as a stand-alone tactic.</para>
651 <table frame="topbot" rowsep="0" colsep="0" role="grammar">
652 <title>reduction-kind</title>
656 <entry id="grammar.reduction-kind">&reduction-kind;</entry>
658 <entry><emphasis role="bold">normalize</emphasis></entry>
659 <entry>Computes the βδιζ-normal form</entry>
664 <entry><emphasis role="bold">reduce</emphasis></entry>
665 <entry>Computes the βδιζ-normal form</entry>
670 <entry><emphasis role="bold">simplify</emphasis></entry>
671 <entry>Computes a form supposed to be simpler</entry>
676 <entry><emphasis role="bold">unfold</emphasis> [&sterm;]</entry>
677 <entry>δ-reduces the constant or variable if specified, or that
678 in head position</entry>
683 <entry><emphasis role="bold">whd</emphasis></entry>
684 <entry>Computes the βδιζ-weak-head normal form</entry>