1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/Z/times".
17 include "nat/lt_arith.ma".
20 definition Ztimes :Z \to Z \to Z \def
27 | (pos n) \Rightarrow (pos (pred ((S m) * (S n))))
28 | (neg n) \Rightarrow (neg (pred ((S m) * (S n))))]
32 | (pos n) \Rightarrow (neg (pred ((S m) * (S n))))
33 | (neg n) \Rightarrow (pos (pred ((S m) * (S n))))]].
35 (*CSC: the URI must disappear: there is a bug now *)
36 interpretation "integer times" 'times x y = (cic:/matita/Z/times/Ztimes.con x y).
38 theorem Ztimes_z_OZ: \forall z:Z. z*OZ = OZ.
45 theorem Ztimes_neg_Zopp: \forall n:nat.\forall x:Z.
46 neg n * x = - (pos n * x).
53 theorem symmetric_Ztimes : symmetric Z Ztimes.
54 change with (\forall x,y:Z. x*y = y*x).
55 intros.elim x.rewrite > Ztimes_z_OZ.reflexivity.
56 elim y.simplify.reflexivity.
57 change with (pos (pred ((S n) * (S n1))) = pos (pred ((S n1) * (S n)))).
58 rewrite < sym_times.reflexivity.
59 change with (neg (pred ((S n) * (S n1))) = neg (pred ((S n1) * (S n)))).
60 rewrite < sym_times.reflexivity.
61 elim y.simplify.reflexivity.
62 change with (neg (pred ((S n) * (S n1))) = neg (pred ((S n1) * (S n)))).
63 rewrite < sym_times.reflexivity.
64 change with (pos (pred ((S n) * (S n1))) = pos (pred ((S n1) * (S n)))).
65 rewrite < sym_times.reflexivity.
68 variant sym_Ztimes : \forall x,y:Z. x*y = y*x
69 \def symmetric_Ztimes.
71 theorem associative_Ztimes: associative Z Ztimes.
80 (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
81 pos (pred ((S n) * (S (pred ((S n1) * (S n2))))))).
82 rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times.reflexivity.
83 apply lt_O_times_S_S.apply lt_O_times_S_S.
85 (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
86 neg (pred ((S n) * (S (pred ((S n1) * (S n2))))))).
87 rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times.reflexivity.
88 apply lt_O_times_S_S.apply lt_O_times_S_S.
92 (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
93 neg (pred ((S n) * (S (pred ((S n1) * (S n2))))))).
94 rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times.reflexivity.
95 apply lt_O_times_S_S.apply lt_O_times_S_S.
97 (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
98 pos(pred ((S n) * (S (pred ((S n1) * (S n2))))))).
99 rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times.reflexivity.
100 apply lt_O_times_S_S.apply lt_O_times_S_S.
102 simplify.reflexivity.
104 simplify.reflexivity.
106 (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
107 neg (pred ((S n) * (S (pred ((S n1) * (S n2))))))).
108 rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times.reflexivity.
109 apply lt_O_times_S_S.apply lt_O_times_S_S.
111 (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
112 pos (pred ((S n) * (S (pred ((S n1) * (S n2))))))).
113 rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times.reflexivity.
114 apply lt_O_times_S_S.apply lt_O_times_S_S.
116 simplify.reflexivity.
118 (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
119 pos (pred ((S n) * (S (pred ((S n1) * (S n2))))))).
120 rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times.reflexivity.
121 apply lt_O_times_S_S.apply lt_O_times_S_S.
123 (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
124 neg(pred ((S n) * (S (pred ((S n1) * (S n2))))))).
125 rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times.reflexivity.
126 apply lt_O_times_S_S.apply lt_O_times_S_S.
129 variant assoc_Ztimes : \forall x,y,z:Z.
130 (x * y) * z = x * (y * z) \def
133 lemma times_minus1: \forall n,p,q:nat. lt q p \to
134 (S n) * (S (pred ((S p) - (S q)))) =
135 pred ((S n) * (S p)) - pred ((S n) * (S q)).
138 rewrite > minus_pred_pred.
139 rewrite < distr_times_minus.
141 (* we now close all positivity conditions *)
142 apply lt_O_times_S_S.
143 apply lt_O_times_S_S.
145 apply le_SO_minus. exact H.
148 lemma Ztimes_Zplus_pos_neg_pos: \forall n,p,q:nat.
149 (pos n)*((neg p)+(pos q)) = (pos n)*(neg p)+ (pos n)*(pos q).
152 change in match (p + n * (S p)) with (pred ((S n) * (S p))).
153 change in match (q + n * (S q)) with (pred ((S n) * (S q))).
154 rewrite < nat_compare_pred_pred.
155 rewrite < nat_compare_times_l.
156 rewrite < nat_compare_S_S.
157 apply (nat_compare_elim p q).
160 change with (pos (pred ((S n) * (S (pred ((S q) - (S p)))))) =
161 pos (pred ((pred ((S n) * (S q))) - (pred ((S n) * (S p)))))).
162 rewrite < (times_minus1 n q p H).reflexivity.
163 intro.rewrite < H.simplify.reflexivity.
165 change with (neg (pred ((S n) * (S (pred ((S p) - (S q)))))) =
166 neg (pred ((pred ((S n) * (S p))) - (pred ((S n) * (S q)))))).
167 rewrite < (times_minus1 n p q H).reflexivity.
168 (* two more positivity conditions from nat_compare_pred_pred *)
169 apply lt_O_times_S_S.
170 apply lt_O_times_S_S.
173 lemma Ztimes_Zplus_pos_pos_neg: \forall n,p,q:nat.
174 (pos n)*((pos p)+(neg q)) = (pos n)*(pos p)+ (pos n)*(neg q).
177 rewrite > Ztimes_Zplus_pos_neg_pos.
181 lemma distributive2_Ztimes_pos_Zplus:
182 distributive2 nat Z (\lambda n,z. (pos n) * z) Zplus.
183 change with (\forall n,y,z.
184 (pos n) * (y + z) = (pos n) * y + (pos n) * z).
190 (pos (pred ((S n) * ((S n1) + (S n2)))) =
191 pos (pred ((S n) * (S n1) + (S n) * (S n2)))).
192 rewrite < distr_times_plus.reflexivity.
193 apply Ztimes_Zplus_pos_pos_neg.
196 apply Ztimes_Zplus_pos_neg_pos.
198 (neg (pred ((S n) * ((S n1) + (S n2)))) =
199 neg (pred ((S n) * (S n1) + (S n) * (S n2)))).
200 rewrite < distr_times_plus.reflexivity.
203 variant distr_Ztimes_Zplus_pos: \forall n,y,z.
204 (pos n) * (y + z) = ((pos n) * y + (pos n) * z) \def
205 distributive2_Ztimes_pos_Zplus.
207 lemma distributive2_Ztimes_neg_Zplus :
208 distributive2 nat Z (\lambda n,z. (neg n) * z) Zplus.
209 change with (\forall n,y,z.
210 (neg n) * (y + z) = (neg n) * y + (neg n) * z).
212 rewrite > Ztimes_neg_Zopp.
213 rewrite > distr_Ztimes_Zplus_pos.
214 rewrite > Zopp_Zplus.
215 rewrite < Ztimes_neg_Zopp. rewrite < Ztimes_neg_Zopp.
219 variant distr_Ztimes_Zplus_neg: \forall n,y,z.
220 (neg n) * (y + z) = (neg n) * y + (neg n) * z \def
221 distributive2_Ztimes_neg_Zplus.
223 theorem distributive_Ztimes_Zplus: distributive Z Ztimes Zplus.
224 change with (\forall x,y,z:Z. x * (y + z) = x*y + x*z).
227 simplify.reflexivity.
229 apply distr_Ztimes_Zplus_pos.
231 apply distr_Ztimes_Zplus_neg.
234 variant distr_Ztimes_Zplus: \forall x,y,z.
235 x * (y + z) = x*y + x*z \def
236 distributive_Ztimes_Zplus.