1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/Z/z".
17 include "datatypes/bool.ma".
20 inductive Z : Set \def
25 definition Z_of_nat \def
26 \lambda n. match n with
28 | (S n)\Rightarrow pos n].
30 coercion cic:/matita/Z/z/Z_of_nat.con.
32 definition neg_Z_of_nat \def
33 \lambda n. match n with
35 | (S n)\Rightarrow neg n].
41 | (pos n) \Rightarrow (S n)
42 | (neg n) \Rightarrow (S n)].
44 definition OZ_test \def
48 | (pos n) \Rightarrow false
49 | (neg n) \Rightarrow false].
51 theorem OZ_test_to_Prop :\forall z:Z.
53 [true \Rightarrow z=OZ
54 |false \Rightarrow z \neq OZ].
57 simplify. unfold Not. intros (H).
59 simplify. unfold Not. intros (H).
64 theorem injective_pos: injective nat Z pos.
68 change with (abs (pos x) = abs (pos y)).
69 apply eq_f.assumption.
72 variant inj_pos : \forall n,m:nat. pos n = pos m \to n = m
75 theorem injective_neg: injective nat Z neg.
79 change with (abs (neg x) = abs (neg y)).
80 apply eq_f.assumption.
83 variant inj_neg : \forall n,m:nat. neg n = neg m \to n = m
86 theorem not_eq_OZ_pos: \forall n:nat. OZ \neq pos n.
87 unfold Not.intros (n H).
91 theorem not_eq_OZ_neg :\forall n:nat. OZ \neq neg n.
92 unfold Not.intros (n H).
96 theorem not_eq_pos_neg :\forall n,m:nat. pos n \neq neg m.
97 unfold Not.intros (n m H).
101 theorem decidable_eq_Z : \forall x,y:Z. decidable (x=y).
102 intros.unfold decidable.
106 (* goal: x=OZ y=OZ *)
109 right.apply not_eq_OZ_pos.
111 right.apply not_eq_OZ_neg.
114 (* goal: x=pos y=OZ *)
115 right.unfold Not.intro.
116 apply (not_eq_OZ_pos n). symmetry. assumption.
117 (* goal: x=pos y=pos *)
118 elim (decidable_eq_nat n n1:((n=n1) \lor ((n=n1) \to False))).
119 left.apply eq_f.assumption.
120 right.unfold Not.intros (H_inj).apply H. destruct H_inj. assumption.
121 (* goal: x=pos y=neg *)
122 right.unfold Not.intro.apply (not_eq_pos_neg n n1). assumption.
125 (* goal: x=neg y=OZ *)
126 right.unfold Not.intro.
127 apply (not_eq_OZ_neg n). symmetry. assumption.
128 (* goal: x=neg y=pos *)
129 right. unfold Not.intro. apply (not_eq_pos_neg n1 n). symmetry. assumption.
130 (* goal: x=neg y=neg *)
131 elim (decidable_eq_nat n n1:((n=n1) \lor ((n=n1) \to False))).
132 left.apply eq_f.assumption.
133 right.unfold Not.intro.apply H.apply injective_neg.assumption.
136 (* end discrimination *)
138 definition Zsucc \def
139 \lambda z. match z with
140 [ OZ \Rightarrow pos O
141 | (pos n) \Rightarrow pos (S n)
142 | (neg n) \Rightarrow
145 | (S p) \Rightarrow neg p]].
147 definition Zpred \def
148 \lambda z. match z with
149 [ OZ \Rightarrow neg O
150 | (pos n) \Rightarrow
153 | (S p) \Rightarrow pos p]
154 | (neg n) \Rightarrow neg (S n)].
156 theorem Zpred_Zsucc: \forall z:Z. Zpred (Zsucc z) = z.
166 theorem Zsucc_Zpred: \forall z:Z. Zsucc (Zpred z) = z.