1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/list/".
16 include "logic/equality.ma".
17 include "higher_order_defs/functions.ma".
19 inductive list (A:Set) : Set :=
21 | cons: A -> list A -> list A.
23 notation "hvbox(hd break :: tl)"
24 right associative with precedence 46
27 notation "[ list0 x sep ; ]"
28 non associative with precedence 90
29 for ${fold right @'nil rec acc @{'cons $x $acc}}.
31 notation "hvbox(l1 break @ l2)"
32 right associative with precedence 47
33 for @{'append $l1 $l2 }.
35 interpretation "nil" 'nil = (cic:/matita/list/list.ind#xpointer(1/1/1) _).
36 interpretation "cons" 'cons hd tl =
37 (cic:/matita/list/list.ind#xpointer(1/1/2) _ hd tl).
39 (* theorem test_notation: [O; S O; S (S O)] = O :: S O :: S (S O) :: []. *)
42 \forall A:Set.\forall l:list A.\forall a:A.
50 let rec id_list A (l: list A) on l :=
53 | (cons hd tl) => hd :: id_list A tl ].
55 let rec append A (l1: list A) l2 on l1 :=
58 | (cons hd tl) => hd :: append A tl l2 ].
60 definition tail := \lambda A:Set. \lambda l: list A.
63 | (cons hd tl) => tl].
65 interpretation "append" 'append l1 l2 = (cic:/matita/list/append.con _ l1 l2).
67 theorem append_nil: \forall A:Set.\forall l:list A.l @ [] = l.
77 theorem associative_append: \forall A:Set.associative (list A) (append A).
78 intros; unfold; intros;
88 theorem cons_append_commute:
89 \forall A:Set.\forall l1,l2:list A.\forall a:A.
90 a :: (l1 @ l2) = (a :: l1) @ l2.
95 inductive permutation (A:Set) : list A -> list A -> Prop \def
96 | refl : \forall l:list A. permutation ? l l
97 | swap : \forall l:list A. \forall x,y:A.
98 permutation ? (x :: y :: l) (y :: x :: l)
99 | trans : \forall l1,l2,l3:list A.
100 permutation ? l1 l2 -> permut1 ? l2 l3 -> permutation ? l1 l3
101 with permut1 : list A -> list A -> Prop \def
102 | step : \forall l1,l2:list A. \forall x,y:A.
103 permut1 ? (l1 @ (x :: y :: l2)) (l1 @ (y :: x :: l2)).
105 include "nat/nat.ma".
107 definition x1 \def S O.
108 definition x2 \def S x1.
109 definition x3 \def S x2.
111 theorem tmp : permutation nat (x1 :: x2 :: x3 :: []) (x1 :: x3 :: x2 :: []).
112 apply (trans ? (x1 :: x2 :: x3 :: []) (x1 :: x2 :: x3 :: []) ?).
114 apply (step ? (x1::[]) [] x2 x3).
119 theorem nil_append_nil_both:
120 \forall A:Set.\forall l1,l2:list A.
121 l1 @ l2 = [] \to l1 = [] \land l2 = [].
125 include "nat/nat.ma".
127 theorem test_notation: [O; S O; S (S O)] = O :: S O :: S (S O) :: [].
131 theorem test_append: [O;O;O;O;O;O] = [O;O;O] @ [O;O] @ [O].