]> matita.cs.unibo.it Git - helm.git/blob - matita/library/logic/connectives.ma
to tired to write a message.
[helm.git] / matita / library / logic / connectives.ma
1 (**************************************************************************)
2 (*       ___                                                                *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
8 (*      ||A||       E.Tassi, S.Zacchiroli                                 *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU Lesser General Public License Version 2.1         *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 set "baseuri" "cic:/matita/logic/connectives/".
16
17 inductive True: Prop \def
18 I : True.
19
20 default "true" cic:/matita/logic/connectives/True.ind.
21
22 inductive False: Prop \def .
23
24 default "false" cic:/matita/logic/connectives/False.ind.
25
26 definition Not: Prop \to Prop \def
27 \lambda A. (A \to False).
28
29 (*CSC: the URI must disappear: there is a bug now *)
30 interpretation "logical not" 'not x = (cic:/matita/logic/connectives/Not.con x).
31
32 theorem absurd : \forall A,C:Prop. A \to \lnot A \to C.
33 intros. elim (H1 H).
34 qed.
35
36 default "absurd" cic:/matita/logic/connectives/absurd.con.
37
38 inductive And (A,B:Prop) : Prop \def
39     conj : A \to B \to (And A B).
40
41 (*CSC: the URI must disappear: there is a bug now *)
42 interpretation "logical and" 'and x y = (cic:/matita/logic/connectives/And.ind#xpointer(1/1) x y).
43
44 theorem proj1: \forall A,B:Prop. A \land B \to A.
45 intros. elim H. assumption.
46 qed.
47
48 theorem proj2: \forall A,B:Prop. A \land B \to B.
49 intros. elim H. assumption.
50 qed.
51
52 inductive Or (A,B:Prop) : Prop \def
53      or_introl : A \to (Or A B)
54    | or_intror : B \to (Or A B).
55
56 (*CSC: the URI must disappear: there is a bug now *)
57 interpretation "logical or" 'or x y =
58   (cic:/matita/logic/connectives/Or.ind#xpointer(1/1) x y).
59
60 theorem Or_ind':
61  \forall A,B:Prop.
62   \forall P: A \lor B \to Prop.
63    (\forall p:A. P (or_introl ? ? p)) \to
64    (\forall q:B. P (or_intror ? ? q)) \to
65     \forall p:A \lor B. P p.
66  intros.
67  apply
68   (match p return \lambda p.P p with
69     [(or_introl p) \Rightarrow H p
70     |(or_intror q) \Rightarrow H1 q]).
71 qed.
72
73 definition decidable : Prop \to Prop \def \lambda A:Prop. A \lor \lnot A.
74
75 inductive ex (A:Type) (P:A \to Prop) : Prop \def
76     ex_intro: \forall x:A. P x \to ex A P.
77
78 (*CSC: the URI must disappear: there is a bug now *)
79 interpretation "exists" 'exists \eta.x =
80   (cic:/matita/logic/connectives/ex.ind#xpointer(1/1) _ x).
81
82 notation < "hvbox(\exists ident i opt (: ty) break . p)"
83   right associative with precedence 20
84 for @{ 'exists ${default
85   @{\lambda ${ident i} : $ty. $p)}
86   @{\lambda ${ident i} . $p}}}.
87
88 inductive ex2 (A:Type) (P,Q:A \to Prop) : Prop \def
89     ex_intro2: \forall x:A. P x \to Q x \to ex2 A P Q.
90