1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/nat/compare".
17 include "datatypes/bool.ma".
18 include "datatypes/compare.ma".
19 include "nat/orders.ma".
26 | (S q) \Rightarrow false]
30 | (S q) \Rightarrow eqb p q]].
32 theorem eqb_to_Prop: \forall n,m:nat.
34 [ true \Rightarrow n = m
35 | false \Rightarrow n \neq m].
38 (\lambda n,m:nat.match (eqb n m) with
39 [ true \Rightarrow n = m
40 | false \Rightarrow n \neq m])).
43 simplify.apply not_eq_O_S.
46 intro. apply (not_eq_O_S n1).apply sym_eq.assumption.
48 generalize in match H.
50 simplify.apply eq_f.apply H1.
51 simplify.unfold Not.intro.apply H1.apply inj_S.assumption.
54 theorem eqb_elim : \forall n,m:nat.\forall P:bool \to Prop.
55 (n=m \to (P true)) \to (n \neq m \to (P false)) \to (P (eqb n m)).
59 [ true \Rightarrow n = m
60 | false \Rightarrow n \neq m] \to (P (eqb n m))).
61 apply Hcut.apply eqb_to_Prop.
67 theorem eqb_n_n: \forall n. eqb n n = true.
68 intro.elim n.simplify.reflexivity.
72 theorem eqb_true_to_eq: \forall n,m:nat.
73 eqb n m = true \to n = m.
77 [ true \Rightarrow n = m
78 | false \Rightarrow n \neq m].
83 theorem eqb_false_to_not_eq: \forall n,m:nat.
84 eqb n m = false \to n \neq m.
88 [ true \Rightarrow n = m
89 | false \Rightarrow n \neq m].
94 theorem eq_to_eqb_true: \forall n,m:nat.
95 n = m \to eqb n m = true.
96 intros.apply (eqb_elim n m).
98 intros.apply False_ind.apply (H1 H).
101 theorem not_eq_to_eqb_false: \forall n,m:nat.
102 \lnot (n = m) \to eqb n m = false.
103 intros.apply (eqb_elim n m).
104 intros. apply False_ind.apply (H H1).
113 [ O \Rightarrow false
114 | (S q) \Rightarrow leb p q]].
116 theorem leb_to_Prop: \forall n,m:nat.
118 [ true \Rightarrow n \leq m
119 | false \Rightarrow n \nleq m].
122 (\lambda n,m:nat.match (leb n m) with
123 [ true \Rightarrow n \leq m
124 | false \Rightarrow n \nleq m])).
125 simplify.exact le_O_n.
126 simplify.exact not_le_Sn_O.
127 intros 2.simplify.elim ((leb n1 m1)).
128 simplify.apply le_S_S.apply H.
129 simplify.unfold Not.intros.apply H.apply le_S_S_to_le.assumption.
132 theorem leb_elim: \forall n,m:nat. \forall P:bool \to Prop.
133 (n \leq m \to (P true)) \to (n \nleq m \to (P false)) \to
137 (match (leb n m) with
138 [ true \Rightarrow n \leq m
139 | false \Rightarrow n \nleq m] \to (P (leb n m))).
140 apply Hcut.apply leb_to_Prop.
146 let rec nat_compare n m: compare \def
151 | (S q) \Rightarrow LT ]
155 | (S q) \Rightarrow nat_compare p q]].
157 theorem nat_compare_n_n: \forall n:nat. nat_compare n n = EQ.
159 simplify.reflexivity.
163 theorem nat_compare_S_S: \forall n,m:nat.
164 nat_compare n m = nat_compare (S n) (S m).
165 intros.simplify.reflexivity.
168 theorem S_pred: \forall n:nat.lt O n \to eq nat n (S (pred n)).
169 intro.elim n.apply False_ind.exact (not_le_Sn_O O H).
170 apply eq_f.apply pred_Sn.
173 theorem nat_compare_pred_pred:
174 \forall n,m:nat.lt O n \to lt O m \to
175 eq compare (nat_compare n m) (nat_compare (pred n) (pred m)).
177 apply (lt_O_n_elim n H).
178 apply (lt_O_n_elim m H1).
180 simplify.reflexivity.
183 theorem nat_compare_to_Prop: \forall n,m:nat.
184 match (nat_compare n m) with
185 [ LT \Rightarrow n < m
187 | GT \Rightarrow m < n ].
189 apply (nat_elim2 (\lambda n,m.match (nat_compare n m) with
190 [ LT \Rightarrow n < m
192 | GT \Rightarrow m < n ])).
193 intro.elim n1.simplify.reflexivity.
194 simplify.unfold lt.apply le_S_S.apply le_O_n.
195 intro.simplify.unfold lt.apply le_S_S. apply le_O_n.
196 intros 2.simplify.elim ((nat_compare n1 m1)).
197 simplify. unfold lt. apply le_S_S.apply H.
198 simplify. apply eq_f. apply H.
199 simplify. unfold lt.apply le_S_S.apply H.
202 theorem nat_compare_n_m_m_n: \forall n,m:nat.
203 nat_compare n m = compare_invert (nat_compare m n).
205 apply (nat_elim2 (\lambda n,m. nat_compare n m = compare_invert (nat_compare m n))).
206 intros.elim n1.simplify.reflexivity.
207 simplify.reflexivity.
208 intro.elim n1.simplify.reflexivity.
209 simplify.reflexivity.
210 intros.simplify.elim H.reflexivity.
213 theorem nat_compare_elim : \forall n,m:nat. \forall P:compare \to Prop.
214 (n < m \to P LT) \to (n=m \to P EQ) \to (m < n \to P GT) \to
215 (P (nat_compare n m)).
217 cut (match (nat_compare n m) with
218 [ LT \Rightarrow n < m
220 | GT \Rightarrow m < n] \to
221 (P (nat_compare n m))).
222 apply Hcut.apply nat_compare_to_Prop.
223 elim ((nat_compare n m)).