1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / Matita is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/nat/congruence".
17 include "nat/relevant_equations.ma".
18 include "nat/primes.ma".
20 definition S_mod: nat \to nat \to nat \def
21 \lambda n,m:nat. (S m) \mod n.
23 definition congruent: nat \to nat \to nat \to Prop \def
24 \lambda n,m,p:nat. mod n p = mod m p.
26 interpretation "congruent" 'congruent n m p =
27 (cic:/matita/nat/congruence/congruent.con n m p).
29 notation < "hvbox(n break \cong\sub p m)"
30 (*non associative*) with precedence 45
31 for @{ 'congruent $n $m $p }.
33 theorem congruent_n_n: \forall n,p:nat.congruent n n p.
34 intros.unfold congruent.reflexivity.
37 theorem transitive_congruent: \forall p:nat. transitive nat
38 (\lambda n,m. congruent n m p).
39 intros.unfold transitive.unfold congruent.intros.
40 whd.apply (trans_eq ? ? (y \mod p)).
44 theorem le_to_mod: \forall n,m:nat. n \lt m \to n = n \mod m.
46 apply (div_mod_spec_to_eq2 n m O n (n/m) (n \mod m)).
47 constructor 1.assumption.simplify.reflexivity.
48 apply div_mod_spec_div_mod.
49 apply (le_to_lt_to_lt O n m).apply le_O_n.assumption.
52 theorem mod_mod : \forall n,p:nat. O<p \to n \mod p = (n \mod p) \mod p.
54 rewrite > (div_mod (n \mod p) p) in \vdash (? ? % ?).
55 rewrite > (eq_div_O ? p).reflexivity.
56 (* uffa: hint non lo trova lt vs. le*)
62 theorem mod_times_mod : \forall n,m,p:nat. O<p \to O<m \to n \mod p = (n \mod (m*p)) \mod p.
64 apply (div_mod_spec_to_eq2 n p (n/p) (n \mod p)
65 (n/(m*p)*m + (n \mod (m*p)/p))).
66 apply div_mod_spec_div_mod.assumption.
68 apply lt_mod_m_m.assumption.
69 rewrite > times_plus_l.
72 rewrite > assoc_times.
75 rewrite > (times_n_O O).
77 assumption.assumption.assumption.
80 theorem congruent_n_mod_n :
81 \forall n,p:nat. O < p \to congruent n (n \mod p) p.
82 intros.unfold congruent.
83 apply mod_mod.assumption.
86 theorem congruent_n_mod_times :
87 \forall n,m,p:nat. O < p \to O < m \to congruent n (n \mod (m*p)) p.
88 intros.unfold congruent.
89 apply mod_times_mod.assumption.assumption.
92 theorem eq_times_plus_to_congruent: \forall n,m,p,r:nat. O< p \to
93 n = r*p+m \to congruent n m p.
94 intros.unfold congruent.
95 apply (div_mod_spec_to_eq2 n p (div n p) (mod n p) (r +(div m p)) (mod m p)).
96 apply div_mod_spec_div_mod.assumption.
98 apply lt_mod_m_m.assumption.
99 (*cut (n = r * p + (m / p * p + m \mod p)).*)
100 (*lapply (div_mod m p H).
102 rewrite > distr_times_plus.
103 (*rewrite > (sym_times p (m/p)).*)
104 (*rewrite > sym_times.*)
105 rewrite > assoc_plus.
112 rewrite > distr_times_plus.
114 rewrite > (sym_times p).
115 rewrite > assoc_plus.
117 assumption.assumption.
120 theorem divides_to_congruent: \forall n,m,p:nat. O < p \to m \le n \to
121 divides p (n - m) \to congruent n m p.
123 apply (eq_times_plus_to_congruent n m p n2).
126 apply minus_to_plus.assumption.
127 rewrite > sym_times. assumption.
130 theorem congruent_to_divides: \forall n,m,p:nat.
131 O < p \to congruent n m p \to divides p (n - m).
132 intros.unfold congruent in H1.
133 apply (witness ? ? ((n / p)-(m / p))).
135 rewrite > (div_mod n p) in \vdash (? ? % ?).
136 rewrite > (div_mod m p) in \vdash (? ? % ?).
137 rewrite < (sym_plus (m \mod p)).
139 rewrite < (eq_minus_minus_minus_plus ? (n \mod p)).
140 rewrite < minus_plus_m_m.
143 assumption.assumption.
146 theorem mod_times: \forall n,m,p:nat.
147 O < p \to mod (n*m) p = mod ((mod n p)*(mod m p)) p.
149 change with (congruent (n*m) ((mod n p)*(mod m p)) p).
150 apply (eq_times_plus_to_congruent ? ? p
151 ((n / p)*p*(m / p) + (n / p)*(m \mod p) + (n \mod p)*(m / p))).
153 apply (trans_eq ? ? (((n/p)*p+(n \mod p))*((m/p)*p+(m \mod p)))).
155 apply div_mod.assumption.
156 apply div_mod.assumption.
157 apply (trans_eq ? ? (((n/p)*p)*((m/p)*p) + (n/p)*p*(m \mod p) +
158 (n \mod p)*((m / p)*p) + (n \mod p)*(m \mod p))).
159 apply times_plus_plus.
161 rewrite < assoc_times.
162 rewrite > (assoc_times (n/p) p (m \mod p)).
163 rewrite > (sym_times p (m \mod p)).
164 rewrite < (assoc_times (n/p) (m \mod p) p).
165 rewrite < times_plus_l.
166 rewrite < (assoc_times (n \mod p)).
167 rewrite < times_plus_l.
169 apply eq_f2.reflexivity.
170 reflexivity.reflexivity.
174 theorem congruent_times: \forall n,m,n1,m1,p. O < p \to congruent n n1 p \to
175 congruent m m1 p \to congruent (n*m) (n1*m1) p.
178 rewrite > (mod_times n m p H).
182 apply mod_times.assumption.
185 theorem congruent_pi: \forall f:nat \to nat. \forall n,m,p:nat.O < p \to
186 congruent (pi n f m) (pi n (\lambda m. mod (f m) p) m) p.
189 apply congruent_n_mod_n.assumption.
191 apply congruent_times.
193 apply congruent_n_mod_n.assumption.