1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/nat/permutation".
17 include "nat/compare.ma".
18 include "nat/sigma_and_pi.ma".
20 definition injn: (nat \to nat) \to nat \to Prop \def
21 \lambda f:nat \to nat.\lambda n:nat.\forall i,j:nat.
22 i \le n \to j \le n \to f i = f j \to i = j.
24 theorem injn_Sn_n: \forall f:nat \to nat. \forall n:nat.
25 injn f (S n) \to injn f n.unfold injn.
27 apply le_S.assumption.
28 apply le_S.assumption.
32 theorem injective_to_injn: \forall f:nat \to nat. \forall n:nat.
33 injective nat nat f \to injn f n.
34 unfold injective.unfold injn.intros.apply H.assumption.
37 definition permut : (nat \to nat) \to nat \to Prop
38 \def \lambda f:nat \to nat. \lambda m:nat.
39 (\forall i:nat. i \le m \to f i \le m )\land injn f m.
41 theorem permut_O_to_eq_O: \forall h:nat \to nat.
42 permut h O \to (h O) = O.
43 intros.unfold permut in H.
44 elim H.apply sym_eq.apply le_n_O_to_eq.
48 theorem permut_S_to_permut: \forall f:nat \to nat. \forall m:nat.
49 permut f (S m) \to f (S m) = (S m) \to permut f m.
53 cut (f i < S m \lor f i = S m).
55 apply le_S_S_to_le.assumption.
57 apply (not_le_Sn_n m).
59 rewrite > Hcut1.assumption.
60 apply H3.apply le_n.apply le_S.assumption.
61 rewrite > H5.assumption.
62 apply le_to_or_lt_eq.apply H2.apply le_S.assumption.
63 apply (injn_Sn_n f m H3).
68 definition transpose : nat \to nat \to nat \to nat \def
75 | false \Rightarrow n]].
77 lemma transpose_i_j_i: \forall i,j:nat. transpose i j i = j.
78 intros.unfold transpose.
79 rewrite > (eqb_n_n i).simplify. reflexivity.
82 lemma transpose_i_j_j: \forall i,j:nat. transpose i j j = i.
83 intros.unfold transpose.
84 apply (eqb_elim j i).simplify.intro.assumption.
85 rewrite > (eqb_n_n j).simplify.
89 theorem transpose_i_i: \forall i,n:nat. (transpose i i n) = n.
90 intros.unfold transpose.
92 intro.simplify.apply sym_eq. assumption.
93 intro.simplify.reflexivity.
96 theorem transpose_i_j_j_i: \forall i,j,n:nat.
97 transpose i j n = transpose j i n.
98 intros.unfold transpose.
100 apply (eqb_elim n j).
101 intros. simplify.rewrite < H. rewrite < H1.
103 intros.simplify.reflexivity.
104 apply (eqb_elim n j).
105 intros.simplify.reflexivity.
106 intros.simplify.reflexivity.
109 theorem transpose_transpose: \forall i,j,n:nat.
110 (transpose i j (transpose i j n)) = n.
111 intros.unfold transpose. unfold transpose.
112 apply (eqb_elim n i).simplify.
114 apply (eqb_elim j i).
115 simplify.intros.rewrite > H. rewrite > H1.reflexivity.
116 rewrite > (eqb_n_n j).simplify.intros.
119 apply (eqb_elim n j).simplify.
120 rewrite > (eqb_n_n i).intros.simplify.
121 apply sym_eq. assumption.
123 rewrite > (not_eq_to_eqb_false n i H1).
124 rewrite > (not_eq_to_eqb_false n j H).
125 simplify.reflexivity.
128 theorem injective_transpose : \forall i,j:nat.
129 injective nat nat (transpose i j).
132 rewrite < (transpose_transpose i j x).
133 rewrite < (transpose_transpose i j y).
134 apply eq_f.assumption.
137 variant inj_transpose: \forall i,j,n,m:nat.
138 transpose i j n = transpose i j m \to n = m \def
141 theorem permut_transpose: \forall i,j,n:nat. i \le n \to j \le n \to
142 permut (transpose i j) n.
143 unfold permut.intros.
144 split.unfold transpose.
146 elim (eqb i1 i).simplify.assumption.
147 elim (eqb i1 j).simplify.assumption.
149 apply (injective_to_injn (transpose i j) n).
150 apply injective_transpose.
153 theorem permut_fg: \forall f,g:nat \to nat. \forall n:nat.
154 permut f n \to permut g n \to permut (\lambda m.(f(g m))) n.
155 unfold permut. intros.
157 split.intros.simplify.apply H2.
160 apply H5.assumption.assumption.
161 apply H3.apply H4.assumption.apply H4.assumption.
165 theorem permut_transpose_l:
166 \forall f:nat \to nat. \forall m,i,j:nat.
167 i \le m \to j \le m \to permut f m \to permut (\lambda n.transpose i j (f n)) m.
168 intros.apply (permut_fg (transpose i j) f m ? ?).
169 apply permut_transpose.assumption.assumption.
173 theorem permut_transpose_r:
174 \forall f:nat \to nat. \forall m,i,j:nat.
175 i \le m \to j \le m \to permut f m \to permut (\lambda n.f (transpose i j n)) m.
176 intros.apply (permut_fg f (transpose i j) m ? ?).
177 assumption.apply permut_transpose.assumption.assumption.
180 theorem eq_transpose : \forall i,j,k,n:nat. \lnot j=i \to
181 \lnot i=k \to \lnot j=k \to
182 transpose i j n = transpose i k (transpose k j (transpose i k n)).
183 (* uffa: triplo unfold? *)
184 intros.unfold transpose.unfold transpose.unfold transpose.
185 apply (eqb_elim n i).intro.
186 simplify.rewrite > (eqb_n_n k).
187 simplify.rewrite > (not_eq_to_eqb_false j i H).
188 rewrite > (not_eq_to_eqb_false j k H2).
190 intro.apply (eqb_elim n j).
194 rewrite > (not_eq_to_eqb_false n k Hcut).
196 rewrite > (not_eq_to_eqb_false n k Hcut).
197 rewrite > (eq_to_eqb_true n j H4).
199 rewrite > (not_eq_to_eqb_false k i).
200 rewrite > (eqb_n_n k).
201 simplify.reflexivity.
202 unfold Not.intro.apply H1.apply sym_eq.assumption.
204 unfold Not.intro.apply H2.apply (trans_eq ? ? n).
205 apply sym_eq.assumption.assumption.
206 intro.apply (eqb_elim n k).intro.
208 rewrite > (not_eq_to_eqb_false i k H1).
209 rewrite > (not_eq_to_eqb_false i j).
211 rewrite > (eqb_n_n i).
213 unfold Not.intro.apply H.apply sym_eq.assumption.
215 rewrite > (not_eq_to_eqb_false n k H5).
216 rewrite > (not_eq_to_eqb_false n j H4).
218 rewrite > (not_eq_to_eqb_false n i H3).
219 rewrite > (not_eq_to_eqb_false n k H5).
220 simplify.reflexivity.
223 theorem permut_S_to_permut_transpose: \forall f:nat \to nat.
224 \forall m:nat. permut f (S m) \to permut (\lambda n.transpose (f (S m)) (S m)
226 unfold permut.intros.
228 split.intros.simplify.unfold transpose.
229 apply (eqb_elim (f i) (f (S m))).
230 intro.apply False_ind.
232 apply (not_le_Sn_n m).
233 rewrite < Hcut.assumption.
234 apply H2.apply le_S.assumption.apply le_n.assumption.
236 apply (eqb_elim (f i) (S m)).
238 cut (f (S m) \lt (S m) \lor f (S m) = (S m)).
239 elim Hcut.apply le_S_S_to_le.assumption.
240 apply False_ind.apply H4.rewrite > H6.assumption.
241 apply le_to_or_lt_eq.apply H1.apply le_n.
243 cut (f i \lt (S m) \lor f i = (S m)).
244 elim Hcut.apply le_S_S_to_le.assumption.
245 apply False_ind.apply H5.assumption.
246 apply le_to_or_lt_eq.apply H1.apply le_S.assumption.
248 apply H2.apply le_S.assumption.apply le_S.assumption.
249 apply (inj_transpose (f (S m)) (S m)).
253 (* bounded bijectivity *)
255 definition bijn : (nat \to nat) \to nat \to Prop \def
256 \lambda f:nat \to nat. \lambda n. \forall m:nat. m \le n \to
257 ex nat (\lambda p. p \le n \land f p = m).
259 theorem eq_to_bijn: \forall f,g:nat\to nat. \forall n:nat.
260 (\forall i:nat. i \le n \to (f i) = (g i)) \to
261 bijn f n \to bijn g n.
262 intros 4.unfold bijn.
264 apply (ex_intro ? ? a).
265 rewrite < (H a).assumption.
266 elim H3.assumption.assumption.
269 theorem bijn_Sn_n: \forall f:nat \to nat. \forall n:nat.
270 bijn f (S n) \to f (S n) = (S n) \to bijn f n.
271 unfold bijn.intros.elim (H m).
273 apply (ex_intro ? ? a).split.
274 cut (a < S n \lor a = S n).
275 elim Hcut.apply le_S_S_to_le.assumption.
277 apply (not_le_Sn_n n).
278 rewrite < H1.rewrite < H6.rewrite > H5.assumption.
279 apply le_to_or_lt_eq.assumption.assumption.
280 apply le_S.assumption.
283 theorem bijn_n_Sn: \forall f:nat \to nat. \forall n:nat.
284 bijn f n \to f (S n) = (S n) \to bijn f (S n).
286 cut (m < S n \lor m = S n).
290 apply (ex_intro ? ? a).split.
291 apply le_S.assumption.assumption.
292 apply le_S_S_to_le.assumption.
293 apply (ex_intro ? ? (S n)).
295 rewrite > H3.assumption.
296 apply le_to_or_lt_eq.assumption.
299 theorem bijn_fg: \forall f,g:nat\to nat. \forall n:nat.
300 bijn f n \to bijn g n \to bijn (\lambda p.f(g p)) n.
305 apply (ex_intro ? ? a1).
307 rewrite > H8.assumption.
308 assumption.assumption.
311 theorem bijn_transpose : \forall n,i,j. i \le n \to j \le n \to
312 bijn (transpose i j) n.
313 intros.unfold bijn.unfold transpose.intros.
314 cut (m = i \lor \lnot m = i).
316 apply (ex_intro ? ? j).
318 apply (eqb_elim j i).
319 intro.simplify.rewrite > H3.rewrite > H4.reflexivity.
320 rewrite > (eqb_n_n j).simplify.
321 intros. apply sym_eq.assumption.
322 cut (m = j \lor \lnot m = j).
324 apply (ex_intro ? ? i).
326 rewrite > (eqb_n_n i).simplify.
327 apply sym_eq. assumption.
328 apply (ex_intro ? ? m).
330 rewrite > (not_eq_to_eqb_false m i).
331 rewrite > (not_eq_to_eqb_false m j).
332 simplify. reflexivity.
335 apply (decidable_eq_nat m j).
336 apply (decidable_eq_nat m i).
339 theorem bijn_transpose_r: \forall f:nat\to nat.\forall n,i,j. i \le n \to j \le n \to
340 bijn f n \to bijn (\lambda p.f (transpose i j p)) n.
342 apply (bijn_fg f ?).assumption.
343 apply (bijn_transpose n i j).assumption.assumption.
346 theorem bijn_transpose_l: \forall f:nat\to nat.\forall n,i,j. i \le n \to j \le n \to
347 bijn f n \to bijn (\lambda p.transpose i j (f p)) n.
350 apply (bijn_transpose n i j).assumption.assumption.
354 theorem permut_to_bijn: \forall n:nat.\forall f:nat\to nat.
355 permut f n \to bijn f n.
357 elim n.unfold bijn.intros.
358 apply (ex_intro ? ? m).
360 apply (le_n_O_elim m ? (\lambda p. f p = p)).
361 assumption.unfold permut in H.
362 elim H.apply sym_eq. apply le_n_O_to_eq.apply H2.apply le_n.
363 apply (eq_to_bijn (\lambda p.
364 (transpose (f (S n1)) (S n1)) (transpose (f (S n1)) (S n1) (f p))) f).
365 intros.apply transpose_transpose.
366 apply (bijn_fg (transpose (f (S n1)) (S n1))).
367 apply bijn_transpose.
369 elim H1.apply H2.apply le_n.apply le_n.
372 apply permut_S_to_permut_transpose.
373 assumption.unfold transpose.
374 rewrite > (eqb_n_n (f (S n1))).simplify.reflexivity.
377 let rec invert_permut n f m \def
378 match eqb m (f n) with
383 |(S p) \Rightarrow invert_permut p f m]].
385 theorem invert_permut_f: \forall f:nat \to nat. \forall n,m:nat.
386 m \le n \to injn f n\to invert_permut n f (f m) = m.
391 rewrite > (eqb_n_n (f O)).simplify.reflexivity.
393 rewrite > (eqb_n_n (f (S m1))).simplify.reflexivity.
395 rewrite > (not_eq_to_eqb_false (f m) (f (S n1))).
397 apply injn_Sn_n. assumption.
398 unfold Not.intro.absurd (m = S n1).
399 apply H3.apply le_S.assumption.apply le_n.assumption.
401 apply (not_le_Sn_n n1).rewrite < H5.assumption.
404 theorem injective_invert_permut: \forall f:nat \to nat. \forall n:nat.
405 permut f n \to injn (invert_permut n f) n.
410 generalize in match (Hcut i H1).intro.
411 generalize in match (Hcut j H2).intro.
417 rewrite < (invert_permut_f f n a).
418 rewrite < (invert_permut_f f n a1).
421 assumption.assumption.
422 unfold permut in H.elim H. assumption.
424 unfold permut in H.elim H. assumption.
425 apply permut_to_bijn.assumption.
428 theorem permut_invert_permut: \forall f:nat \to nat. \forall n:nat.
429 permut f n \to permut (invert_permut n f) n.
430 intros.unfold permut.split.
431 intros.simplify.elim n.
432 simplify.elim (eqb i (f O)).simplify.apply le_n.simplify.apply le_n.
433 simplify.elim (eqb i (f (S n1))).simplify.apply le_n.
434 simplify.apply le_S. assumption.
435 apply injective_invert_permut.assumption.
438 theorem f_invert_permut: \forall f:nat \to nat. \forall n,m:nat.
439 m \le n \to permut f n\to f (invert_permut n f m) = m.
441 apply (injective_invert_permut f n H1).
442 unfold permut in H1.elim H1.
444 cut (permut (invert_permut n f) n).unfold permut in Hcut.
445 elim Hcut.apply H4.assumption.
446 apply permut_invert_permut.assumption.assumption.
447 apply invert_permut_f.
448 cut (permut (invert_permut n f) n).unfold permut in Hcut.
449 elim Hcut.apply H2.assumption.
450 apply permut_invert_permut.assumption.
451 unfold permut in H1.elim H1.assumption.
454 theorem permut_n_to_eq_n: \forall h:nat \to nat.\forall n:nat.
455 permut h n \to (\forall m:nat. m < n \to h m = m) \to h n = n.
456 intros.unfold permut in H.elim H.
457 cut (invert_permut n h n < n \lor invert_permut n h n = n).
459 rewrite < (f_invert_permut h n n) in \vdash (? ? ? %).
461 rewrite < (f_invert_permut h n n) in \vdash (? ? % ?).
462 apply H1.assumption.apply le_n.assumption.apply le_n.assumption.
463 rewrite < H4 in \vdash (? ? % ?).
464 apply (f_invert_permut h).apply le_n.assumption.
465 apply le_to_or_lt_eq.
466 cut (permut (invert_permut n h) n).
467 unfold permut in Hcut.elim Hcut.
469 apply permut_invert_permut.assumption.
472 theorem permut_n_to_le: \forall h:nat \to nat.\forall k,n:nat.
473 k \le n \to permut h n \to (\forall m:nat. m < k \to h m = m) \to
474 \forall j. k \le j \to j \le n \to k \le h j.
475 intros.unfold permut in H1.elim H1.
476 cut (h j < k \lor \not(h j < k)).
477 elim Hcut.absurd (k \le j).assumption.
479 cut (h j = j).rewrite < Hcut1.assumption.
480 apply H6.apply H5.assumption.assumption.
482 apply not_lt_to_le.assumption.
483 apply (decidable_lt (h j) k).
488 let rec map_iter_i k (g:nat \to nat) f (i:nat) \def
491 | (S k) \Rightarrow f (g (S (k+i))) (map_iter_i k g f i)].
493 theorem eq_map_iter_i: \forall g1,g2:nat \to nat.
494 \forall f:nat \to nat \to nat. \forall n,i:nat.
495 (\forall m:nat. i\le m \to m \le n+i \to g1 m = g2 m) \to
496 map_iter_i n g1 f i = map_iter_i n g2 f i.
497 intros 5.elim n.simplify.apply H.apply le_n.
498 apply le_n.simplify.apply eq_f2.apply H1.simplify.
499 apply le_S.apply le_plus_n.simplify.apply le_n.
500 apply H.intros.apply H1.assumption.simplify.apply le_S.assumption.
503 (* map_iter examples *)
505 theorem eq_map_iter_i_sigma: \forall g:nat \to nat. \forall n,m:nat.
506 map_iter_i n g plus m = sigma n g m.
507 intros.elim n.simplify.reflexivity.
509 apply eq_f.assumption.
512 theorem eq_map_iter_i_pi: \forall g:nat \to nat. \forall n,m:nat.
513 map_iter_i n g times m = pi n g m.
514 intros.elim n.simplify.reflexivity.
516 apply eq_f.assumption.
519 theorem eq_map_iter_i_fact: \forall n:nat.
520 map_iter_i n (\lambda m.m) times (S O) = (S n)!.
522 simplify.reflexivity.
524 (((S n1)+(S O))*(map_iter_i n1 (\lambda m.m) times (S O)) = (S(S n1))*(S n1)!).
525 rewrite < plus_n_Sm.rewrite < plus_n_O.
526 apply eq_f.assumption.
529 theorem eq_map_iter_i_transpose_l : \forall f:nat\to nat \to nat.associative nat f \to
530 symmetric2 nat nat f \to \forall g:nat \to nat. \forall n,k:nat.
531 map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose (k+n) (S k+n) m)) f n.
532 intros.apply (nat_case1 k).
533 intros.simplify.fold simplify (transpose n (S n) (S n)).
534 rewrite > transpose_i_j_i.
535 rewrite > transpose_i_j_j.
539 (f (g (S (S (m+n)))) (f (g (S (m+n))) (map_iter_i m g f n)) =
540 f (g (transpose (S m + n) (S (S m) + n) (S (S m)+n)))
541 (f (g (transpose (S m + n) (S (S m) + n) (S m+n)))
542 (map_iter_i m (\lambda m1. g (transpose (S m+n) (S (S m)+n) m1)) f n))).
543 rewrite > transpose_i_j_i.
544 rewrite > transpose_i_j_j.
547 rewrite < (H1 (g (S m + n))).
550 intros.simplify.unfold transpose.
551 rewrite > (not_eq_to_eqb_false m1 (S m+n)).
552 rewrite > (not_eq_to_eqb_false m1 (S (S m)+n)).
555 apply (lt_to_not_eq m1 (S ((S m)+n))).
556 unfold lt.apply le_S_S.change with (m1 \leq S (m+n)).apply le_S.assumption.
557 apply (lt_to_not_eq m1 (S m+n)).
558 simplify.unfold lt.apply le_S_S.assumption.
561 theorem eq_map_iter_i_transpose_i_Si : \forall f:nat\to nat \to nat.associative nat f \to
562 symmetric2 nat nat f \to \forall g:nat \to nat. \forall n,k,i:nat. n \le i \to i \le k+n \to
563 map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose i (S i) m)) f n.
564 intros 6.elim k.cut (i=n).
566 apply (eq_map_iter_i_transpose_l f H H1 g n O).
567 apply antisymmetric_le.assumption.assumption.
568 cut (i < S n1 + n \lor i = S n1 + n).
571 (f (g (S (S n1)+n)) (map_iter_i (S n1) g f n) =
572 f (g (transpose i (S i) (S (S n1)+n))) (map_iter_i (S n1) (\lambda m. g (transpose i (S i) m)) f n)).
573 apply eq_f2.unfold transpose.
574 rewrite > (not_eq_to_eqb_false (S (S n1)+n) i).
575 rewrite > (not_eq_to_eqb_false (S (S n1)+n) (S i)).
576 simplify.reflexivity.
577 simplify.unfold Not.intro.
578 apply (lt_to_not_eq i (S n1+n)).assumption.
579 apply inj_S.apply sym_eq. assumption.
580 simplify.unfold Not.intro.
581 apply (lt_to_not_eq i (S (S n1+n))).simplify.unfold lt.
582 apply le_S_S.assumption.
583 apply sym_eq. assumption.
584 apply H2.assumption.apply le_S_S_to_le.
587 apply (eq_map_iter_i_transpose_l f H H1 g n (S n1)).
588 apply le_to_or_lt_eq.assumption.
591 theorem eq_map_iter_i_transpose:
592 \forall f:nat\to nat \to nat.
593 associative nat f \to symmetric2 nat nat f \to \forall n,k,o:nat.
594 \forall g:nat \to nat. \forall i:nat. n \le i \to S (o + i) \le S k+n \to
595 map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose i (S(o + i)) m)) f n.
599 apply (nat_case m ?).
601 apply (eq_map_iter_i_transpose_i_Si ? H H1).
602 exact H3.apply le_S_S_to_le.assumption.
604 apply (trans_eq ? ? (map_iter_i (S k) (\lambda m. g (transpose i (S(m1 + i)) m)) f n)).
606 unfold lt. apply le_n.assumption.
607 apply (trans_le ? (S(S (m1+i)))).
608 apply le_S.apply le_n.assumption.
609 apply (trans_eq ? ? (map_iter_i (S k) (\lambda m. g
610 (transpose i (S(m1 + i)) (transpose (S(m1 + i)) (S(S(m1 + i))) m))) f n)).
611 apply (H2 O ? ? (S(m1+i))).
612 unfold lt.apply le_S_S.apply le_O_n.
613 apply (trans_le ? i).assumption.
614 change with (i \le (S m1)+i).apply le_plus_n.
616 apply (trans_eq ? ? (map_iter_i (S k) (\lambda m. g
617 (transpose i (S(m1 + i))
618 (transpose (S(m1 + i)) (S(S(m1 + i)))
619 (transpose i (S(m1 + i)) m)))) f n)).
621 unfold lt. apply le_n.assumption.
622 apply (trans_le ? (S(S (m1+i)))).
623 apply le_S.apply le_n.assumption.
626 apply sym_eq. apply eq_transpose.
628 apply (not_le_Sn_n i).
629 rewrite < H7 in \vdash (? ? %).
630 apply le_S_S.apply le_S.
633 apply (not_le_Sn_n i).
634 rewrite > H7 in \vdash (? ? %).
638 apply (not_eq_n_Sn (S m1+i)).
639 apply sym_eq.assumption.
642 theorem eq_map_iter_i_transpose1: \forall f:nat\to nat \to nat.associative nat f \to
643 symmetric2 nat nat f \to \forall n,k,i,j:nat.
644 \forall g:nat \to nat. n \le i \to i < j \to j \le S k+n \to
645 map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose i j m)) f n.
648 cut ((S i) < j \lor (S i) = j).
650 cut (j = S ((j - (S i)) + i)).
652 apply (eq_map_iter_i_transpose f H H1 n k (j - (S i)) g i).
654 rewrite < Hcut1.assumption.
656 apply plus_minus_m_m.apply lt_to_le.assumption.
658 apply (eq_map_iter_i_transpose_i_Si f H H1 g).
660 assumption.apply le_S_S_to_le.
661 apply (trans_le ? j).assumption.assumption.
662 apply le_to_or_lt_eq.assumption.
665 theorem eq_map_iter_i_transpose2: \forall f:nat\to nat \to nat.associative nat f \to
666 symmetric2 nat nat f \to \forall n,k,i,j:nat.
667 \forall g:nat \to nat. n \le i \to i \le (S k+n) \to n \le j \to j \le (S k+n) \to
668 map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose i j m)) f n.
670 apply (nat_compare_elim i j).
671 intro.apply (eq_map_iter_i_transpose1 f H H1 n k i j g H2 H6 H5).
673 apply eq_map_iter_i.intros.
674 rewrite > (transpose_i_i j).reflexivity.
676 apply (trans_eq ? ? (map_iter_i (S k) (\lambda m:nat.g (transpose j i m)) f n)).
677 apply (eq_map_iter_i_transpose1 f H H1 n k j i g H4 H6 H3).
679 intros.apply eq_f.apply transpose_i_j_j_i.
682 theorem permut_to_eq_map_iter_i:\forall f:nat\to nat \to nat.associative nat f \to
683 symmetric2 nat nat f \to \forall k,n:nat.\forall g,h:nat \to nat.
684 permut h (k+n) \to (\forall m:nat. m \lt n \to h m = m) \to
685 map_iter_i k g f n = map_iter_i k (\lambda m.g(h m)) f n.
687 simplify.rewrite > (permut_n_to_eq_n h).reflexivity.assumption.assumption.
688 apply (trans_eq ? ? (map_iter_i (S n) (\lambda m.g ((transpose (h (S n+n1)) (S n+n1)) m)) f n1)).
691 apply (eq_map_iter_i_transpose2 f H H1 n1 n ? ? g).
692 apply (permut_n_to_le h n1 (S n+n1)).
693 apply le_plus_n.assumption.assumption.apply le_plus_n.apply le_n.
694 apply H5.apply le_n.apply le_plus_n.apply le_n.
695 apply (trans_eq ? ? (map_iter_i (S n) (\lambda m.
696 (g(transpose (h (S n+n1)) (S n+n1)
697 (transpose (h (S n+n1)) (S n+n1) (h m)))) )f n1)).
698 simplify.fold simplify (transpose (h (S n+n1)) (S n+n1) (S n+n1)).
699 apply eq_f2.apply eq_f.
700 rewrite > transpose_i_j_j.
701 rewrite > transpose_i_j_i.
702 rewrite > transpose_i_j_j.reflexivity.
703 apply (H2 n1 (\lambda m.(g(transpose (h (S n+n1)) (S n+n1) m)))).
704 apply permut_S_to_permut_transpose.
708 rewrite > (not_eq_to_eqb_false (h m) (h (S n+n1))).
709 rewrite > (not_eq_to_eqb_false (h m) (S n+n1)).
710 simplify.apply H4.assumption.
712 apply lt_to_not_eq.apply (trans_lt ? n1).assumption.
713 simplify.unfold lt.apply le_S_S.apply le_plus_n.assumption.
714 unfold permut in H3.elim H3.
715 simplify.unfold Not.intro.
716 apply (lt_to_not_eq m (S n+n1)).apply (trans_lt ? n1).assumption.
717 simplify.unfold lt.apply le_S_S.apply le_plus_n.
719 apply (H7 m (S n+n1)).apply (trans_le ? n1).
720 apply lt_to_le.assumption.apply le_plus_n.apply le_n.
722 apply eq_map_iter_i.intros.
723 rewrite > transpose_transpose.reflexivity.