1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti. C.Sacerdoti Coen. *)
8 (* ||A|| E.Tassi. S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 (* Code ported from the Coq theorem prover by Claudio Sacerdoti Coen *)
16 (* Original author: Claudio Sacerdoti Coen. for the Coq system *)
18 set "baseuri" "cic:/matita/technicalities/setoids".
20 include "datatypes/constructors.ma".
21 include "logic/connectives2.ma".
23 (* DEFINITIONS OF Relation_Class AND n-ARY Morphism_Theory *)
25 (* X will be used to distinguish covariant arguments whose type is an *)
26 (* Asymmetric* relation from contravariant arguments of the same type *)
27 inductive X_Relation_Class (X: Type) : Type ≝
29 ∀A,Aeq. symmetric A Aeq → reflexive ? Aeq → X_Relation_Class X
30 | AsymmetricReflexive : X → ∀A,Aeq. reflexive A Aeq → X_Relation_Class X
31 | SymmetricAreflexive : ∀A,Aeq. symmetric A Aeq → X_Relation_Class X
32 | AsymmetricAreflexive : X → ∀A.∀Aeq : relation A. X_Relation_Class X
33 | Leibniz : Type → X_Relation_Class X.
35 inductive variance : Set ≝
37 | Contravariant : variance.
39 definition Argument_Class ≝ X_Relation_Class variance.
40 definition Relation_Class ≝ X_Relation_Class unit.
42 inductive Reflexive_Relation_Class : Type :=
44 ∀A,Aeq. symmetric A Aeq → reflexive ? Aeq → Reflexive_Relation_Class
46 ∀A,Aeq. reflexive A Aeq → Reflexive_Relation_Class
47 | RLeibniz : Type → Reflexive_Relation_Class.
49 inductive Areflexive_Relation_Class : Type :=
50 | ASymmetric : ∀A,Aeq. symmetric A Aeq → Areflexive_Relation_Class
51 | AAsymmetric : ∀A.∀Aeq : relation A. Areflexive_Relation_Class.
53 definition relation_class_of_argument_class : Argument_Class → Relation_Class.
57 [ apply (SymmetricReflexive ? ? ? H H1)
58 | apply (AsymmetricReflexive ? something ? ? H)
59 | apply (SymmetricAreflexive ? ? ? H)
60 | apply (AsymmetricAreflexive ? something ? r)
61 | apply (Leibniz ? T1)
65 definition carrier_of_relation_class : ∀X. X_Relation_Class X → Type.
71 definition relation_of_relation_class :
72 ∀X,R. carrier_of_relation_class X R → carrier_of_relation_class X R → Prop.
76 [1,2: intros 4; apply r
77 |3,4: intros 3; apply r
82 lemma about_carrier_of_relation_class_and_relation_class_of_argument_class :
84 carrier_of_relation_class ? (relation_class_of_argument_class R) =
85 carrier_of_relation_class ? R.
91 inductive nelistT (A : Type) : Type :=
93 | cons : A → nelistT A → nelistT A.
95 definition Arguments := nelistT Argument_Class.
97 definition function_type_of_morphism_signature :
98 Arguments → Relation_Class → Type.
101 [ exact (carrier_of_relation_class ? t → carrier_of_relation_class ? Out)
102 | exact (carrier_of_relation_class ? t → T)
106 definition make_compatibility_goal_aux:
107 ∀In,Out.∀f,g:function_type_of_morphism_signature In Out.Prop.
109 elim In (a); simplify in f f1;
110 generalize in match f; clear f;
111 generalize in match f1; clear f1;
112 [ elim a; simplify in f f1;
113 [ exact (∀x1,x2. r x1 x2 → relation_of_relation_class ? Out (f x1) (f1 x2))
115 [ exact (∀x1,x2. r x1 x2 → relation_of_relation_class ? Out (f x1) (f1 x2))
116 | exact (∀x1,x2. r x2 x1 → relation_of_relation_class ? Out (f x1) (f1 x2))
118 | exact (∀x1,x2. r x1 x2 → relation_of_relation_class ? Out (f x1) (f1 x2))
120 [ exact (∀x1,x2. r x1 x2 → relation_of_relation_class ? Out (f x1) (f1 x2))
121 | exact (∀x1,x2. r x2 x1 → relation_of_relation_class ? Out (f x1) (f1 x2))
123 | exact (∀x. relation_of_relation_class ? Out (f x) (f1 x))
126 ((carrier_of_relation_class ? t → function_type_of_morphism_signature n Out) →
127 (carrier_of_relation_class ? t → function_type_of_morphism_signature n Out) →
129 elim t; simplify in f f1;
130 [ exact (∀x1,x2. r x1 x2 → R (f x1) (f1 x2))
132 [ exact (∀x1,x2. r x1 x2 → R (f x1) (f1 x2))
133 | exact (∀x1,x2. r x2 x1 → R (f x1) (f1 x2))
135 | exact (∀x1,x2. r x1 x2 → R (f x1) (f1 x2))
137 [ exact (∀x1,x2. r x1 x2 → R (f x1) (f1 x2))
138 | exact (∀x1,x2. r x2 x1 → R (f x1) (f1 x2))
140 | exact (∀x. R (f x) (f1 x))
145 definition make_compatibility_goal :=
146 λIn,Out,f. make_compatibility_goal_aux In Out f f.
148 record Morphism_Theory (In: Arguments) (Out: Relation_Class) : Type :=
149 { Function : function_type_of_morphism_signature In Out;
150 Compat : make_compatibility_goal In Out Function
153 definition list_of_Leibniz_of_list_of_types: nelistT Type → Arguments.
156 [ apply (singl ? (Leibniz ? t))
157 | apply (cons ? (Leibniz ? t) a)
161 (* every function is a morphism from Leibniz+ to Leibniz *)
162 definition morphism_theory_of_function :
163 ∀In: nelistT Type.∀Out: Type.
164 let In' := list_of_Leibniz_of_list_of_types In in
165 let Out' := Leibniz ? Out in
166 function_type_of_morphism_signature In' Out' →
167 Morphism_Theory In' Out'.
169 apply (mk_Morphism_Theory ? ? f);
170 unfold In' in f; clear In';
171 unfold Out' in f; clear Out';
172 generalize in match f; clear f;
174 [ unfold make_compatibility_goal;
187 (* THE iff RELATION CLASS *)
189 definition Iff_Relation_Class : Relation_Class.
190 apply (SymmetricReflexive unit ? iff);
191 [ exact symmetric_iff
192 | exact reflexive_iff
196 (* THE impl RELATION CLASS *)
198 definition impl \def \lambda A,B:Prop. A → B.
200 theorem impl_refl: reflexive ? impl.
208 definition Impl_Relation_Class : Relation_Class.
209 unfold Relation_Class;
210 apply (AsymmetricReflexive unit something ? impl);
214 (* UTILITY FUNCTIONS TO PROVE THAT EVERY TRANSITIVE RELATION IS A MORPHISM *)
216 definition equality_morphism_of_symmetric_areflexive_transitive_relation:
217 ∀A: Type.∀Aeq: relation A.∀sym: symmetric ? Aeq.∀trans: transitive ? Aeq.
218 let ASetoidClass := SymmetricAreflexive ? ? ? sym in
219 (Morphism_Theory (cons ? ASetoidClass (singl ? ASetoidClass))
222 apply mk_Morphism_Theory;
224 | unfold make_compatibility_goal;
228 unfold transitive in H;
229 unfold symmetric in sym;
235 definition equality_morphism_of_symmetric_reflexive_transitive_relation:
236 ∀A: Type.∀Aeq: relation A.∀refl: reflexive ? Aeq.∀sym: symmetric ? Aeq.
237 ∀trans: transitive ? Aeq.
238 let ASetoidClass := SymmetricReflexive ? ? ? sym refl in
239 (Morphism_Theory (cons ? ASetoidClass (singl ? ASetoidClass)) Iff_Relation_Class).
241 apply mk_Morphism_Theory;
247 unfold transitive in H;
252 definition equality_morphism_of_asymmetric_areflexive_transitive_relation:
253 ∀(A: Type)(Aeq: relation A)(trans: transitive ? Aeq).
254 let ASetoidClass1 := AsymmetricAreflexive Contravariant Aeq in
255 let ASetoidClass2 := AsymmetricAreflexive Covariant Aeq in
256 (Morphism_Theory (cons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
259 unfold make_compatibility_goal; simpl; unfold impl; eauto.
262 definition equality_morphism_of_asymmetric_reflexive_transitive_relation:
263 ∀(A: Type)(Aeq: relation A)(refl: reflexive ? Aeq)(trans: transitive ? Aeq).
264 let ASetoidClass1 := AsymmetricReflexive Contravariant refl in
265 let ASetoidClass2 := AsymmetricReflexive Covariant refl in
266 (Morphism_Theory (cons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
269 unfold make_compatibility_goal; simpl; unfold impl; eauto.
272 (* iff AS A RELATION *)
274 Add Relation Prop iff
275 reflexivity proved by iff_refl
276 symmetry proved by iff_sym
277 transitivity proved by iff_trans
280 (* every predicate is morphism from Leibniz+ to Iff_Relation_Class *)
281 definition morphism_theory_of_predicate :
283 let In' := list_of_Leibniz_of_list_of_types In in
284 function_type_of_morphism_signature In' Iff_Relation_Class →
285 Morphism_Theory In' Iff_Relation_Class.
288 induction In; unfold make_compatibility_goal; simpl.
289 intro; apply iff_refl.
290 intro; apply (IHIn (X x)).
293 (* impl AS A RELATION *)
295 Theorem impl_trans: transitive ? impl.
296 hnf; unfold impl; tauto.
299 Add Relation Prop impl
300 reflexivity proved by impl_refl
301 transitivity proved by impl_trans
304 (* THE CIC PART OF THE REFLEXIVE TACTIC (SETOID REWRITE) *)
306 inductive rewrite_direction : Type :=
310 Implicit Type dir: rewrite_direction.
312 definition variance_of_argument_class : Argument_Class → option variance.
321 definition opposite_direction :=
324 Left2Right => Right2Left
325 | Right2Left => Left2Right
328 Lemma opposite_direction_idempotent:
329 ∀dir. (opposite_direction (opposite_direction dir)) = dir.
330 destruct dir; reflexivity.
333 inductive check_if_variance_is_respected :
334 option variance → rewrite_direction → rewrite_direction → Prop
336 MSNone : ∀dir dir'. check_if_variance_is_respected None dir dir'
337 | MSCovariant : ∀dir. check_if_variance_is_respected (Some Covariant) dir dir
340 check_if_variance_is_respected (Some Contravariant) dir (opposite_direction dir).
342 definition relation_class_of_reflexive_relation_class:
343 Reflexive_Relation_Class → Relation_Class.
345 exact (SymmetricReflexive ? s r).
346 exact (AsymmetricReflexive tt r).
350 definition relation_class_of_areflexive_relation_class:
351 Areflexive_Relation_Class → Relation_Class.
353 exact (SymmetricAreflexive ? s).
354 exact (AsymmetricAreflexive tt Aeq).
357 definition carrier_of_reflexive_relation_class :=
358 fun R => carrier_of_relation_class (relation_class_of_reflexive_relation_class R).
360 definition carrier_of_areflexive_relation_class :=
361 fun R => carrier_of_relation_class (relation_class_of_areflexive_relation_class R).
363 definition relation_of_areflexive_relation_class :=
364 fun R => relation_of_relation_class (relation_class_of_areflexive_relation_class R).
366 inductive Morphism_Context Hole dir : Relation_Class → rewrite_direction → Type :=
369 Morphism_Theory In Out → Morphism_Context_List Hole dir dir' In →
370 Morphism_Context Hole dir Out dir'
371 | ToReplace : Morphism_Context Hole dir Hole dir
374 carrier_of_reflexive_relation_class S →
375 Morphism_Context Hole dir (relation_class_of_reflexive_relation_class S) dir'
376 | ProperElementToKeep :
377 ∀S dir' (x: carrier_of_areflexive_relation_class S).
378 relation_of_areflexive_relation_class S x x →
379 Morphism_Context Hole dir (relation_class_of_areflexive_relation_class S) dir'
380 with Morphism_Context_List Hole dir :
381 rewrite_direction → Arguments → Type
385 check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' →
386 Morphism_Context Hole dir (relation_class_of_argument_class S) dir' →
387 Morphism_Context_List Hole dir dir'' (singl S)
390 check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' →
391 Morphism_Context Hole dir (relation_class_of_argument_class S) dir' →
392 Morphism_Context_List Hole dir dir'' L →
393 Morphism_Context_List Hole dir dir'' (cons S L).
395 Scheme Morphism_Context_rect2 := Induction for Morphism_Context Sort Type
396 with Morphism_Context_List_rect2 := Induction for Morphism_Context_List Sort Type.
398 definition product_of_arguments : Arguments → Type.
400 exact (carrier_of_relation_class a).
401 exact (prod (carrier_of_relation_class a) IHX).
404 definition get_rewrite_direction: rewrite_direction → Argument_Class → rewrite_direction.
406 destruct (variance_of_argument_class R).
408 exact dir. (* covariant *)
409 exact (opposite_direction dir). (* contravariant *)
410 exact dir. (* symmetric relation *)
413 definition directed_relation_of_relation_class:
414 ∀dir (R: Relation_Class).
415 carrier_of_relation_class R → carrier_of_relation_class R → Prop.
417 exact (@relation_of_relation_class unit).
418 intros; exact (relation_of_relation_class ? X0 X).
421 definition directed_relation_of_argument_class:
422 ∀dir (R: Argument_Class).
423 carrier_of_relation_class R → carrier_of_relation_class R → Prop.
426 (about_carrier_of_relation_class_and_relation_class_of_argument_class R).
427 exact (directed_relation_of_relation_class dir (relation_class_of_argument_class R)).
431 definition relation_of_product_of_arguments:
433 product_of_arguments In → product_of_arguments In → Prop.
436 exact (directed_relation_of_argument_class (get_rewrite_direction dir a) a).
439 destruct X; destruct X0.
442 (directed_relation_of_argument_class (get_rewrite_direction dir a) a c c0).
446 definition apply_morphism:
447 ∀In Out (m: function_type_of_morphism_signature In Out)
448 (args: product_of_arguments In). carrier_of_relation_class Out.
454 exact (IHIn (m c) p).
457 Theorem apply_morphism_compatibility_Right2Left:
458 ∀In Out (m1 m2: function_type_of_morphism_signature In Out)
459 (args1 args2: product_of_arguments In).
460 make_compatibility_goal_aux ? ? m1 m2 →
461 relation_of_product_of_arguments Right2Left ? args1 args2 →
462 directed_relation_of_relation_class Right2Left ?
463 (apply_morphism ? ? m2 args1)
464 (apply_morphism ? ? m1 args2).
465 induction In; intros.
466 simpl in m1. m2. args1. args2. H0 |- *.
467 destruct a; simpl in H; hnf in H0.
469 destruct v; simpl in H0; apply H; exact H0.
471 destruct v; simpl in H0; apply H; exact H0.
472 rewrite H0; apply H; exact H0.
474 simpl in m1. m2. args1. args2. H0 |- *.
475 destruct args1; destruct args2; simpl.
478 destruct a; simpl in H.
499 rewrite H0; apply IHIn.
504 Theorem apply_morphism_compatibility_Left2Right:
505 ∀In Out (m1 m2: function_type_of_morphism_signature In Out)
506 (args1 args2: product_of_arguments In).
507 make_compatibility_goal_aux ? ? m1 m2 →
508 relation_of_product_of_arguments Left2Right ? args1 args2 →
509 directed_relation_of_relation_class Left2Right ?
510 (apply_morphism ? ? m1 args1)
511 (apply_morphism ? ? m2 args2).
512 induction In; intros.
513 simpl in m1. m2. args1. args2. H0 |- *.
514 destruct a; simpl in H; hnf in H0.
516 destruct v; simpl in H0; apply H; exact H0.
518 destruct v; simpl in H0; apply H; exact H0.
519 rewrite H0; apply H; exact H0.
521 simpl in m1. m2. args1. args2. H0 |- *.
522 destruct args1; destruct args2; simpl.
525 destruct a; simpl in H.
540 destruct v; simpl in H. H0; apply H; exact H0.
542 rewrite H0; apply IHIn.
548 ∀Hole dir Out dir'. carrier_of_relation_class Hole →
549 Morphism_Context Hole dir Out dir' → carrier_of_relation_class Out.
550 intros Hole dir Out dir' H t.
552 (@Morphism_Context_rect2 Hole dir (fun S ? ? => carrier_of_relation_class S)
553 (fun ? L fcl => product_of_arguments L));
555 exact (apply_morphism ? ? (Function m) X).
561 (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
565 (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
570 (*CSC: interp and interp_relation_class_list should be mutually defined. since
571 the proof term of each one contains the proof term of the other one. However
572 I cannot do that interactively (I should write the Fix by hand) *)
573 definition interp_relation_class_list :
574 ∀Hole dir dir' (L: Arguments). carrier_of_relation_class Hole →
575 Morphism_Context_List Hole dir dir' L → product_of_arguments L.
576 intros Hole dir dir' L H t.
578 (@Morphism_Context_List_rect2 Hole dir (fun S ? ? => carrier_of_relation_class S)
579 (fun ? L fcl => product_of_arguments L));
581 exact (apply_morphism ? ? (Function m) X).
587 (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
591 (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
596 Theorem setoid_rewrite:
597 ∀Hole dir Out dir' (E1 E2: carrier_of_relation_class Hole)
598 (E: Morphism_Context Hole dir Out dir').
599 (directed_relation_of_relation_class dir Hole E1 E2) →
600 (directed_relation_of_relation_class dir' Out (interp E1 E) (interp E2 E)).
603 (@Morphism_Context_rect2 Hole dir
604 (fun S dir'' E => directed_relation_of_relation_class dir'' S (interp E1 E) (interp E2 E))
606 relation_of_product_of_arguments dir'' ?
607 (interp_relation_class_list E1 fcl)
608 (interp_relation_class_list E2 fcl))); intros.
609 change (directed_relation_of_relation_class dir'0 Out0
610 (apply_morphism ? ? (Function m) (interp_relation_class_list E1 m0))
611 (apply_morphism ? ? (Function m) (interp_relation_class_list E2 m0))).
613 apply apply_morphism_compatibility_Left2Right.
616 apply apply_morphism_compatibility_Right2Left.
622 unfold interp. Morphism_Context_rect2.
623 (*CSC: reflexivity used here*)
624 destruct S; destruct dir'0; simpl; (apply r || reflexivity).
626 destruct dir'0; exact r.
628 destruct S; unfold directed_relation_of_argument_class; simpl in H0 |- *;
629 unfold get_rewrite_direction; simpl.
630 destruct dir'0; destruct dir'';
632 unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
633 (* the following mess with generalize/clear/intros is to help Coq resolving *)
634 (* second order unification problems. *)
635 generalize m c H0; clear H0 m c; inversion c;
636 generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
637 (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
638 destruct dir'0; destruct dir'';
640 unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
641 (* the following mess with generalize/clear/intros is to help Coq resolving *)
642 (* second order unification problems. *)
643 generalize m c H0; clear H0 m c; inversion c;
644 generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
645 (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
646 destruct dir'0; destruct dir''; (exact H0 || hnf; symmetry; exact H0).
649 (directed_relation_of_argument_class (get_rewrite_direction dir'' S) S
650 (eq_rect ? (fun T : Type => T) (interp E1 m) ?
651 (about_carrier_of_relation_class_and_relation_class_of_argument_class S))
652 (eq_rect ? (fun T : Type => T) (interp E2 m) ?
653 (about_carrier_of_relation_class_and_relation_class_of_argument_class S)) /\
654 relation_of_product_of_arguments dir'' ?
655 (interp_relation_class_list E1 m0) (interp_relation_class_list E2 m0)).
657 clear m0 H1; destruct S; simpl in H0 |- *; unfold get_rewrite_direction; simpl.
658 destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
660 rewrite <- H3; exact H0.
661 rewrite (opposite_direction_idempotent dir'0); exact H0.
662 destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
664 rewrite <- H3; exact H0.
665 rewrite (opposite_direction_idempotent dir'0); exact H0.
666 destruct dir''; destruct dir'0; (exact H0 || hnf; symmetry; exact H0).
670 (* BEGIN OF UTILITY/BACKWARD COMPATIBILITY PART *)
672 record Setoid_Theory (A: Type) (Aeq: relation A) : Prop :=
673 {Seq_refl : ∀x:A. Aeq x x;
674 Seq_sym : ∀x y:A. Aeq x y → Aeq y x;
675 Seq_trans : ∀x y z:A. Aeq x y → Aeq y z → Aeq x z}.
677 (* END OF UTILITY/BACKWARD COMPATIBILITY PART *)
679 (* A FEW EXAMPLES ON iff *)
681 (* impl IS A MORPHISM *)
683 Add Morphism impl with signature iff ==> iff ==> iff as Impl_Morphism.
687 (* and IS A MORPHISM *)
689 Add Morphism and with signature iff ==> iff ==> iff as And_Morphism.
693 (* or IS A MORPHISM *)
695 Add Morphism or with signature iff ==> iff ==> iff as Or_Morphism.
699 (* not IS A MORPHISM *)
701 Add Morphism not with signature iff ==> iff as Not_Morphism.
705 (* THE SAME EXAMPLES ON impl *)
707 Add Morphism and with signature impl ++> impl ++> impl as And_Morphism2.
711 Add Morphism or with signature impl ++> impl ++> impl as Or_Morphism2.
715 Add Morphism not with signature impl -→ impl as Not_Morphism2.
719 (* FOR BACKWARD COMPATIBILITY *)
720 Implicit Arguments Setoid_Theory [].
721 Implicit Arguments Seq_refl [].
722 Implicit Arguments Seq_sym [].
723 Implicit Arguments Seq_trans [].
726 (* Some tactics for manipulating Setoid Theory not officially
727 declared as Setoid. *)
729 Ltac trans_st x := match goal with
730 | H : Setoid_Theory ? ?eqA |- ?eqA ? ? =>
731 apply (Seq_trans ? ? H) with x; auto
734 Ltac sym_st := match goal with
735 | H : Setoid_Theory ? ?eqA |- ?eqA ? ? =>
736 apply (Seq_sym ? ? H); auto
739 Ltac refl_st := match goal with
740 | H : Setoid_Theory ? ?eqA |- ?eqA ? ? =>
741 apply (Seq_refl ? ? H); auto
744 definition gen_st : ∀A : Set. Setoid_Theory ? (@eq A).
745 Proof. constructor; congruence. Qed.