1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / Matita is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/library_auto/nat/sigma_and_pi".
17 include "auto/nat/factorial.ma".
18 include "auto/nat/exp.ma".
19 include "auto/nat/lt_arith.ma".
21 let rec sigma n f m \def
24 | (S p) \Rightarrow (f (S p+m))+(sigma p f m)].
29 | (S p) \Rightarrow (f (S p+m))*(pi p f m)].
31 theorem eq_sigma: \forall f,g:nat \to nat.
33 (\forall i:nat. m \le i \to i \le m+n \to f i = g i) \to
34 (sigma n f m) = (sigma n g m).
48 (*change with (m \le (S n1)+m).
51 (*rewrite > (sym_plus m).
59 (*rewrite < plus_n_Sm.
67 theorem eq_pi: \forall f,g:nat \to nat.
69 (\forall i:nat. m \le i \to i \le m+n \to f i = g i) \to
70 (pi n f m) = (pi n g m).
84 (*change with (m \le (S n1)+m).
87 (*rewrite > (sym_plus m).
95 (*rewrite < plus_n_Sm.
103 theorem eq_fact_pi: \forall n. (S n)! = pi n (\lambda m.m) (S O).
109 | change with ((S(S n1))*(S n1)! = ((S n1)+(S O))*(pi n1 (\lambda m.m) (S O))).
118 theorem exp_pi_l: \forall f:nat\to nat.\forall n,m,a:nat.
119 (exp a (S n))*pi n f m= pi n (\lambda p.a*(f p)) m.
124 rewrite < times_n_SO.
128 rewrite > assoc_times.
129 rewrite > assoc_times in\vdash (? ? ? %).
131 rewrite < assoc_times.
132 rewrite < assoc_times.