1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 set "baseuri" "cic:/matita/CoRN-Decl/ftc/FunctSums".
21 (* $Id: FunctSums.v,v 1.5 2004/04/23 10:00:59 lcf Exp $ *)
23 (*#* printing FSum0 %\ensuremath{\sum_0}% #∑<sub>0</sub># *)
25 (*#* printing FSum %\ensuremath{\sum}% #∑# *)
27 (*#* printing FSumx %\ensuremath{\sum'}% #∑'&*)
29 include "reals/CSumsReals.ma".
31 include "ftc/PartFunEquality.ma".
33 (*#* *Sums of Functions
35 In this file we define sums are defined of arbitrary families of
38 Given a countable family of functions, their sum is defined on the
39 intersection of all the domains. As is the case for groups, we will
40 define three different kinds of sums.
42 We will first consider the case of a family
43 $\{f_i\}_{i\in\NN}$#{f<sub>i</sub>}# of functions; we can both define
44 $\sum_{i=0}^{n-1}f_i$#the sum of the first n functions# ( [FSum0]) or
45 $\sum_{i=m}^nf_i$#the sum of f<sub>m</sub> through f<sub>n</sub>#
49 inline "cic:/CoRN/ftc/FunctSums/FSum0.con".
51 inline "cic:/CoRN/ftc/FunctSums/FSum.con".
54 Although [FSum] is here defined directly, it has the same relationship
55 to the [FSum0] operator as [Sum] has to [Sum0]. Also, all the results
56 for [Sum] and [Sum0] hold when these operators are replaced by their
57 functional equivalents. This is an immediate consequence of the fact
58 that the partial functions form a group; however, as we already
59 mentioned, their forming too big a type makes it impossible to use
63 inline "cic:/CoRN/ftc/FunctSums/FSum_FSum0.con".
65 inline "cic:/CoRN/ftc/FunctSums/FSum0_wd.con".
67 inline "cic:/CoRN/ftc/FunctSums/FSum_one.con".
69 inline "cic:/CoRN/ftc/FunctSums/FSum_FSum.con".
71 inline "cic:/CoRN/ftc/FunctSums/FSum_first.con".
73 inline "cic:/CoRN/ftc/FunctSums/FSum_last.con".
75 inline "cic:/CoRN/ftc/FunctSums/FSum_last'.con".
77 inline "cic:/CoRN/ftc/FunctSums/FSum_wd.con".
79 inline "cic:/CoRN/ftc/FunctSums/FSum_plus_FSum.con".
81 inline "cic:/CoRN/ftc/FunctSums/inv_FSum.con".
83 inline "cic:/CoRN/ftc/FunctSums/FSum_minus_FSum.con".
85 inline "cic:/CoRN/ftc/FunctSums/FSum_wd'.con".
87 inline "cic:/CoRN/ftc/FunctSums/FSum_resp_less.con".
89 inline "cic:/CoRN/ftc/FunctSums/FSum_resp_leEq.con".
91 inline "cic:/CoRN/ftc/FunctSums/FSum_comm_scal.con".
93 inline "cic:/CoRN/ftc/FunctSums/FSum_comm_scal'.con".
96 Also important is the case when we have a finite family
97 $\{f_i\}_{i=0}^{n-1}$ of #exactly n# functions; in this case we need
98 to use the [FSumx] operator.
101 inline "cic:/CoRN/ftc/FunctSums/FSumx.con".
104 This operator is well defined, as expected.
107 inline "cic:/CoRN/ftc/FunctSums/FSumx_wd.con".
109 inline "cic:/CoRN/ftc/FunctSums/FSumx_wd'.con".
112 As was already the case for [Sumx], in many cases we will need to
113 explicitly assume that $f_i$#f<sub>1</sub># is independent of the proof that
114 [i [<] n]. This holds both for the value and the domain of the partial
115 function $f_i$#f<sub>i</sub>#.
118 inline "cic:/CoRN/ftc/FunctSums/ext_fun_seq.con".
120 inline "cic:/CoRN/ftc/FunctSums/ext_fun_seq'.con".
123 Implicit Arguments ext_fun_seq [n].
127 Implicit Arguments ext_fun_seq' [n].
131 Under these assumptions, we can characterize the domain and the value of the sum function from the domains and values of the summands:
134 inline "cic:/CoRN/ftc/FunctSums/FSumx_pred.con".
136 inline "cic:/CoRN/ftc/FunctSums/FSumx_pred'.con".
138 inline "cic:/CoRN/ftc/FunctSums/FSumx_char.con".
141 As we did for arbitrary groups, it is often useful to rewrite this sums as ordinary sums.
144 inline "cic:/CoRN/ftc/FunctSums/FSumx_to_FSum.con".
146 inline "cic:/CoRN/ftc/FunctSums/FSumx_lt.con".
148 inline "cic:/CoRN/ftc/FunctSums/FSumx_le.con".
150 inline "cic:/CoRN/ftc/FunctSums/FSum_FSumx_to_FSum.con".
153 Some useful lemmas follow.
156 inline "cic:/CoRN/ftc/FunctSums/FSum0_0.con".
158 inline "cic:/CoRN/ftc/FunctSums/FSum0_S.con".
160 inline "cic:/CoRN/ftc/FunctSums/FSum_0.con".
162 inline "cic:/CoRN/ftc/FunctSums/FSum_S.con".
164 inline "cic:/CoRN/ftc/FunctSums/FSum_FSum0'.con".