1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 set "baseuri" "cic:/matita/CoRN-Decl/ftc/TaylorLemma".
21 (* $Id: TaylorLemma.v,v 1.8 2004/04/23 10:01:01 lcf Exp $ *)
23 include "ftc/Rolle.ma".
33 (*#* *Taylor's Theorem
35 We now prove Taylor's theorem for the remainder of the Taylor
36 series. This proof is done in two steps: first, we prove the lemma
37 for a proper compact interval; next we generalize the result to two
38 arbitrary (eventually equal) points in a proper interval.
42 We assume two different points [a] and [b] in the domain of [F] and
43 define the nth order derivative of [F] in the interval
44 [[Min(a,b),Max(a,b)]].
47 alias id "a" = "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/a.var".
49 alias id "b" = "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/b.var".
51 alias id "Hap" = "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hap.var".
55 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hab'.con" "Taylor_Defs__".
57 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hab.con" "Taylor_Defs__".
59 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/I.con" "Taylor_Defs__".
63 alias id "F" = "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/F.var".
65 alias id "Ha" = "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Ha.var".
67 alias id "Hb" = "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hb.var".
71 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/fi.con" "Taylor_Defs__".
76 This last local definition is simply:
77 $f_i=f^{(i)}$#f<sub>i</sub>=f<sup>(i)</sup>#.
82 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma1.con".
87 Now we can define the Taylor sequence around [a]. The auxiliary
88 definition gives, for any [i], the function expressed by the rule
90 (a)}{i!}*(x-a)^i.\]%#g(x)=f<sup>(i)</sup>(a)/i!*(x-a)<sup>i</sup>.#
91 We denote by [A] and [B] the elements of [[Min(a,b),Max(a,b)]]
92 corresponding to [a] and [b].
97 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/TL_compact_a.con" "Taylor_Defs__".
99 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/TL_compact_b.con" "Taylor_Defs__".
102 Notation A := (Build_subcsetoid_crr IR _ _ TL_compact_a).
106 Notation B := (Build_subcsetoid_crr IR _ _ TL_compact_b).
113 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_i.con" "Taylor_Defs__".
119 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_i'.con" "Taylor_Defs__".
121 inline "cic:/CoRN/ftc/TaylorLemma/TL_a_i.con".
123 inline "cic:/CoRN/ftc/TaylorLemma/TL_b_i.con".
125 inline "cic:/CoRN/ftc/TaylorLemma/TL_x_i.con".
127 inline "cic:/CoRN/ftc/TaylorLemma/TL_a_i'.con".
129 inline "cic:/CoRN/ftc/TaylorLemma/TL_b_i'.con".
131 inline "cic:/CoRN/ftc/TaylorLemma/TL_x_i'.con".
133 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma2.con".
135 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma2'.con".
137 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma3.con".
139 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma3'.con".
144 Adding the previous expressions up to a given bound [n] gives us the
145 Taylor sum of order [n].
148 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_seq'.con".
152 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Taylor_seq'_aux.con" "Taylor_Defs__".
154 inline "cic:/CoRN/ftc/TaylorLemma/TL_lemma_a.con".
159 It is easy to show that [b] is in the domain of this series, which allows us to write down the Taylor remainder around [b].
162 inline "cic:/CoRN/ftc/TaylorLemma/TL_lemma_b.con".
166 inline "cic:/CoRN/ftc/TaylorLemma/TL_lemma_a'.con".
168 inline "cic:/CoRN/ftc/TaylorLemma/TL_lemma_b'.con".
172 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_rem.con".
176 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/g.con" "Taylor_Defs__".
179 Opaque Taylor_seq'_aux Taylor_rem.
183 Transparent Taylor_rem.
191 Transparent Taylor_seq' Taylor_seq'_aux.
202 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma4.con".
205 Transparent funct_i funct_i'.
209 Opaque Taylor_seq'_aux.
213 Transparent Taylor_seq'_aux.
224 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma5.con".
227 Transparent funct_i' FSumx.
230 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_aux.con" "Taylor_Defs__".
232 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma6.con".
235 Ltac Lazy_Included :=
238 | apply included_FPlus
239 | apply included_FInv
240 | apply included_FMinus
241 | apply included_FMult
242 | apply included_FNth
243 | apply included_refl ].
249 [ apply bin_op_wd_unfolded
250 | apply un_op_wd_unfolded
253 | apply csf_wd_unfolded ]; Algebra.
256 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma7.con".
258 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma8.con".
265 Transparent funct_aux.
268 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma9.con".
270 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/g'.con" "Taylor_Defs__".
273 Opaque Taylor_rem funct_aux.
276 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma10.con".
279 Transparent Taylor_rem funct_aux.
285 Now Taylor's theorem.
287 %\begin{convention}% Let [e] be a positive real number.
291 alias id "e" = "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/e.var".
293 alias id "He" = "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/He.var".
297 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma11.con".
303 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/deriv_Sn'.con" "Taylor_Defs__".
309 inline "cic:/CoRN/ftc/TaylorLemma/TLH.con".
322 Transparent Taylor_rem funct_aux.
325 inline "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma.con".