1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 set "baseuri" "cic:/matita/CoRN-Decl/reals/RealFuncts".
21 (* $Id: RealFuncts.v,v 1.4 2004/04/07 15:08:10 lcf Exp $ *)
23 include "reals/CReals1.ma".
25 (*#* * Continuity of Functions on Reals
31 Set Implicit Arguments.
35 Unset Strict Implicit.
44 alias id "f" = "cic:/CoRN/reals/RealFuncts/Continuity/f.var".
46 alias id "f2" = "cic:/CoRN/reals/RealFuncts/Continuity/f2.var".
49 Let [f] be a unary setoid operation on [IR] and
50 let [f2] be a binary setoid operation on [IR].
52 We use the following notations for intervals. [Intclr a b] for the
53 closed interval [[a,b]], [Intolr a b] for the
54 open interval [(a,b)], [Intcl a] for the
55 left-closed interval $[a,\infty)$#[a,∞)#, [Intol a] for the
56 left-open interval $(a,\infty)$#(a,∞)#, [Intcr b] for the
57 right-closed interval $(-\infty,b]$#(-∞,b]#.
59 Intervals like $[a,b]$#[a,b]# are defined for arbitrary reals [a,b] (being
60 $\emptyset$#∅# for [a [>] b]).
63 inline "cic:/CoRN/reals/RealFuncts/Intclr.con".
65 inline "cic:/CoRN/reals/RealFuncts/Intolr.con".
67 inline "cic:/CoRN/reals/RealFuncts/Intol.con".
69 inline "cic:/CoRN/reals/RealFuncts/Intcl.con".
71 inline "cic:/CoRN/reals/RealFuncts/Intcr.con".
73 (*#* The limit of [f(x)] as [x] goes to [p = l], for both unary and binary
76 The limit of [f] in [p] is [l] if
78 forall e [>] Zero, exists d [>] Zero, forall (x : IR)
79 ( [--]d [<] p[-]x [<] d) -> ( [--]e [<] [--]f(x) [<] e)
83 inline "cic:/CoRN/reals/RealFuncts/funLim.con".
85 (*#* The definition of limit of [f] in [p] using Cauchy sequences. *)
87 inline "cic:/CoRN/reals/RealFuncts/funLim_Cauchy.con".
89 (*#* The first definition implies the second one. *)
92 Ax_iom funLim_prop1 :(p,l:IR)(funLim p l)->(funLim_Cauchy p l).
93 Intros. Unfold funLim_Cauchy. Unfold funLim in H. Intros.
94 Elim (H e H1). Intros.
95 Elim s. Intros s_seq s_proof.
97 Cut (Zero [<] x[/]TwoNZ).
99 Elim (s_proof (x[/]TwoNZ) Hx2).
103 Apply AbsSmall_minus.
105 Generalize (HN m H3).
109 (*#* The limit of [f] in [(p,p')] is [l] if
111 forall e [>] Zero, exists d [>] Zero, forall (x : IR)
112 ( [--]d [<] p[-]x [<] d) -> ( [--]d' [<] p'[-]y [<] d') -> ( [--]e [<] l[-]f(x,y) [<] e
116 inline "cic:/CoRN/reals/RealFuncts/funLim2.con".
118 (*#* The function [f] is continuous at [p] if the limit of [f(x)] as
119 [x] goes to [p] is [f(p)]. This is the [eps [/] delta] definition.
120 We also give the definition with limits of Cauchy sequences.
123 inline "cic:/CoRN/reals/RealFuncts/continAt.con".
125 inline "cic:/CoRN/reals/RealFuncts/continAtCauchy.con".
127 inline "cic:/CoRN/reals/RealFuncts/continAt2.con".
130 Ax_iom continAt_prop1 :(p:IR)(continAt p)->(continAtCauchy p).
133 inline "cic:/CoRN/reals/RealFuncts/contin.con".
135 inline "cic:/CoRN/reals/RealFuncts/continCauchy.con".
137 inline "cic:/CoRN/reals/RealFuncts/contin2.con".
140 Continuous on a closed, resp.%\% open, resp.%\% left open, resp.%\% left closed
143 inline "cic:/CoRN/reals/RealFuncts/continOnc.con".
145 inline "cic:/CoRN/reals/RealFuncts/continOno.con".
147 inline "cic:/CoRN/reals/RealFuncts/continOnol.con".
149 inline "cic:/CoRN/reals/RealFuncts/continOncl.con".
152 Section Sequence_and_function_limits.
155 If $\lim_{x->p} (f x) = l$, then for every sequence $p_n$ whose
156 limit is $p$, $\lim_{n->\infty} f (p_n) =l$.
159 Lemma funLim_SeqLimit:
160 (p,l:IR)(fl:(funLim p l))
161 (pn:nat->IR)(sl:(SeqLimit pn p)) (SeqLimit ( [n:nat] (f (pn n))) l).
163 Intros; Unfold seqLimit.
165 Elim (fl ? epos); Intros del dh; Elim dh; Intros H0 H1.
166 Elim (sl ? H0); Intros N Nh.
167 Exists N. Intros m leNm.
168 Apply AbsSmall_minus.
170 Apply AbsSmall_minus.
174 _**** Is the converse constructively provable? **
175 Lemma SeqLimit_funLim:
176 (p,l:IR)((pn:nat->IR)(sl:(SeqLimit pn p)) (SeqLimit ( [n:nat] (f (pn n))) l))->
181 Now the same Lemma in terms of Cauchy sequences: if $\lim_{x->p} (f x) = l$,
182 then for every Cauchy sequence $s_n$ whose
183 limit is $p$, $\lim_{n->\infty} f (s_n) =l$.
186 Ax_iom funLim_isCauchy:
187 (p,l:IR)(funLim p l)->(s:CauchySeqR)((Lim s) [=] p)->
188 (e:IR)(Zero [<] e)->(Ex [N:nat] (m:nat)(le N m)
189 ->(AbsSmall e ((s m) [-] (s N)))).
191 End Sequence_and_function_limits.
193 Section Monotonic_functions.
195 Definition str_monot := (x,y:IR)(x [<] y)->((f x) [<] (f y)).
197 Definition str_monotOnc := [a,b:IR]
198 (x,y:IR)(Intclr a b x)->(Intclr a b y)
199 ->(x [<] y)->((f x) [<] (f y)).
201 Definition str_monotOncl := [a:IR]
202 (x,y:IR)(Intcl a x)->(Intcl a y)
203 ->(x [<] y)->((f x) [<] (f y)).
205 Definition str_monotOnol := [a:IR]
206 (x,y:IR)(Intol a x)->(Intol a y)
207 ->(x [<] y)->((f x) [<] (f y)).
209 _** Following probably not needed for the FTA proof;
210 it stated that strong monotonicity on a closed interval implies that the
211 intermediate value theorem holds on this interval. For FTA we need IVT on
215 Ax_iom strmonc_imp_ivt :(a,b:IR)(str_monotOnc a b)
216 ->(x,y:IR)(x [<] y)->(Intclr a b x)->(Intclr a b y)
217 ->((f x) [<] Zero)->(Zero [<] (f y))
218 ->(EX z:IR | (Intclr x y z)/\((f z) [=] Zero)).
220 $\forall c\in\RR (f\mbox{ strongly monotonic on }[c,\infty>)
221 \rightarrow \forall a,b\in\RR(c <a)\rightarrow( c< b)\rightarrow\ (f (a)<0)
222 \rightarrow\ (0:<f(b))
223 \rightarrow \forall x,y\in\RR (a\leq x\leq b)\rightarrow
224 (a\leq y\leq b)\rightarrow (x<y)
225 \rightarrow \exists z\in\RR(x\leq z\leq y)\wedge(f(z)\noto 0))$
228 Ax_iom strmon_ivt_prem : (c:IR)(str_monotOncl c)->
229 (a,b:IR)(Intcl c a)->(Intcl c b)->((f a) [<] Zero)->(Zero [<] (f b))
230 ->(x,y:IR)(Intclr a b x)->(Intclr a b y)->(x [<] y)
231 ->(EX z:IR | (Intclr x y z)/\((f z) [#] Zero)).
233 _** The following is lemma 5.8 from the skeleton
235 $\forall c\in\RR (f\mbox{ strongly monotonic on }[c,\infty>)
236 \rightarrow \forall a,b\in\RR(a<b) \rightarrow(c <a)\rightarrow( c< b)
237 \rightarrow(f (a)<0)\rightarrow (0:<f(b))
238 \rightarrow \exists z\in\RR(a\leq z\leq b)\wedge(f(z)= 0))$
241 Ax_iom strmoncl_imp_ivt : (c:IR)(str_monotOncl c)
242 ->(a,b:IR)(a [<] b)->(Intcl c a)->(Intcl c b)
243 ->((f a) [<] Zero)->(Zero [<] (f b))
244 ->(EX z:IR | (Intclr a b z)/\ ((f z) [=] Zero)).
245 End Monotonic_functions.
260 Unset Implicit Arguments.