]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/CoRN-Decl/transc/RealPowers.ma
update in delayed_updating
[helm.git] / matita / matita / contribs / CoRN-Decl / transc / RealPowers.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 set "baseuri" "cic:/matita/CoRN-Decl/transc/RealPowers".
18
19 include "CoRN.ma".
20
21 (* $Id: RealPowers.v,v 1.5 2004/04/23 10:01:08 lcf Exp $ *)
22
23 (*#* printing [!] %\ensuremath{\hat{\ }}% #^# *)
24
25 (*#* printing {!} %\ensuremath{\hat{\ }}% #^# *)
26
27 include "transc/Exponential.ma".
28
29 (* UNEXPORTED
30 Opaque Expon.
31 *)
32
33 (*#* *Arbitrary Real Powers
34
35 **Powers of Real Numbers
36
37 We now define
38 $x^y=e^{y\times\log(x)}$#x<sup>y</sup>=e<sup>y*log(x)</sup>#, whenever
39 [x [>] 0], inspired by the rules for manipulating these expressions.
40 *)
41
42 inline "cic:/CoRN/transc/RealPowers/power.con".
43
44 (* NOTATION
45 Notation "x [!] y [//] Hy" := (power x y Hy) (at level 20).
46 *)
47
48 (*#*
49 This definition yields a well defined, strongly extensional function
50 which extends the algebraic exponentiation to an integer power and
51 still has all the good properties of that operation; when [x [=] e] it
52 coincides with the exponential function.
53 *)
54
55 inline "cic:/CoRN/transc/RealPowers/power_wd.con".
56
57 inline "cic:/CoRN/transc/RealPowers/power_strext.con".
58
59 inline "cic:/CoRN/transc/RealPowers/power_plus.con".
60
61 inline "cic:/CoRN/transc/RealPowers/power_inv.con".
62
63 (* UNEXPORTED
64 Hint Resolve power_wd power_plus power_inv: algebra.
65 *)
66
67 inline "cic:/CoRN/transc/RealPowers/power_minus.con".
68
69 inline "cic:/CoRN/transc/RealPowers/power_nat.con".
70
71 (* UNEXPORTED
72 Hint Resolve power_minus power_nat: algebra.
73 *)
74
75 inline "cic:/CoRN/transc/RealPowers/power_zero.con".
76
77 inline "cic:/CoRN/transc/RealPowers/power_one.con".
78
79 (* UNEXPORTED
80 Hint Resolve power_zero power_one: algebra.
81 *)
82
83 (* UNEXPORTED
84 Opaque nexp_op.
85 *)
86
87 inline "cic:/CoRN/transc/RealPowers/power_int.con".
88
89 (* UNEXPORTED
90 Hint Resolve power_int: algebra.
91 *)
92
93 inline "cic:/CoRN/transc/RealPowers/Exp_power.con".
94
95 inline "cic:/CoRN/transc/RealPowers/mult_power.con".
96
97 inline "cic:/CoRN/transc/RealPowers/recip_power.con".
98
99 (* UNEXPORTED
100 Hint Resolve Exp_power mult_power recip_power: algebra.
101 *)
102
103 inline "cic:/CoRN/transc/RealPowers/div_power.con".
104
105 (* UNEXPORTED
106 Hint Resolve div_power: algebra.
107 *)
108
109 inline "cic:/CoRN/transc/RealPowers/power_ap_zero.con".
110
111 inline "cic:/CoRN/transc/RealPowers/power_mult.con".
112
113 inline "cic:/CoRN/transc/RealPowers/power_pos.con".
114
115 (* UNEXPORTED
116 Hint Resolve power_mult: algebra.
117 *)
118
119 inline "cic:/CoRN/transc/RealPowers/power_recip.con".
120
121 (* UNEXPORTED
122 Hint Resolve power_recip: algebra.
123 *)
124
125 inline "cic:/CoRN/transc/RealPowers/power_div.con".
126
127 (* UNEXPORTED
128 Hint Resolve power_div: algebra.
129 *)
130
131 (* UNEXPORTED
132 Section Power_Function
133 *)
134
135 (*#* **Power Function
136
137 This operation on real numbers gives birth to an analogous operation
138 on partial functions which preserves continuity.
139
140 %\begin{convention}% Let [F, G : PartIR].
141 %\end{convention}%
142 *)
143
144 alias id "J" = "cic:/CoRN/transc/RealPowers/Power_Function/J.var".
145
146 alias id "F" = "cic:/CoRN/transc/RealPowers/Power_Function/F.var".
147
148 alias id "G" = "cic:/CoRN/transc/RealPowers/Power_Function/G.var".
149
150 inline "cic:/CoRN/transc/RealPowers/FPower.con".
151
152 inline "cic:/CoRN/transc/RealPowers/FPower_domain.con".
153
154 inline "cic:/CoRN/transc/RealPowers/Continuous_power.con".
155
156 (* UNEXPORTED
157 End Power_Function
158 *)
159
160 (* NOTATION
161 Notation "F {!} G" := (FPower F G) (at level 20).
162 *)
163
164 (* UNEXPORTED
165 Section More_on_Power_Function
166 *)
167
168 (* UNEXPORTED
169 Opaque Expon Logarithm.
170 *)
171
172 (*#* From global continuity we can obviously get local continuity: *)
173
174 inline "cic:/CoRN/transc/RealPowers/continuous_I_power.con".
175
176 (*#* The rule for differentiation is a must. *)
177
178 (* UNEXPORTED
179 Transparent Logarithm.
180 *)
181
182 (* UNEXPORTED
183 Opaque Logarithm.
184 *)
185
186 inline "cic:/CoRN/transc/RealPowers/Derivative_power.con".
187
188 inline "cic:/CoRN/transc/RealPowers/Diffble_power.con".
189
190 (* UNEXPORTED
191 End More_on_Power_Function
192 *)
193
194 (* UNEXPORTED
195 Hint Resolve Derivative_power: derivate.
196 *)
197