1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 set "baseuri" "cic:/matita/CoRN-Decl/transc/Trigonometric".
21 (* $Id: Trigonometric.v,v 1.5 2004/04/23 10:01:08 lcf Exp $ *)
23 include "transc/TaylorSeries.ma".
25 (*#* *The Trigonometric Functions
27 In this section, we explore the properties of the trigonometric functions which we previously defined.
34 (*#* First, we need a lemma on mappings. *)
36 inline "cic:/CoRN/transc/Trigonometric/maps_translation.con".
43 Section Sine_and_Cosine
46 (*#* Sine, cosine and tangent at [Zero]. *)
48 inline "cic:/CoRN/transc/Trigonometric/Sin_zero.con".
50 inline "cic:/CoRN/transc/Trigonometric/Cos_zero.con".
53 Hint Resolve Sin_zero Cos_zero: algebra.
60 inline "cic:/CoRN/transc/Trigonometric/Tan_zero.con".
63 Transparent Sine Cosine.
67 Continuity of sine and cosine are trivial.
70 inline "cic:/CoRN/transc/Trigonometric/Continuous_Sin.con".
72 inline "cic:/CoRN/transc/Trigonometric/Continuous_Cos.con".
75 The rules for the derivative of the sine and cosine function; we begin by proving that their defining sequences can be expressed in terms of one another.
78 inline "cic:/CoRN/transc/Trigonometric/cos_sin_seq.con".
80 inline "cic:/CoRN/transc/Trigonometric/sin_cos_seq.con".
82 inline "cic:/CoRN/transc/Trigonometric/Derivative_Sin.con".
84 inline "cic:/CoRN/transc/Trigonometric/Derivative_Cos.con".
87 Hint Resolve Derivative_Sin Derivative_Cos: derivate.
91 Hint Resolve Continuous_Sin Continuous_Cos: continuous.
99 We now prove the rule for the sine and cosine of the sum. These rules
100 have to be proved first as functional equalities, which is why we also
101 state the results in a function form (which we won't do in other
104 %\begin{convention}% Let:
105 - [F := fun y => Sine[o] (FId{+} [-C-]y)];
106 - [G := fun y => (Sine{*} [-C-] (Cos y)) {+} (Cosine{*} [-C-] (Sin y))].
113 inline "cic:/CoRN/transc/Trigonometric/Sine_and_Cosine/Sine_of_Sum/F.con" "Sine_and_Cosine__Sine_of_Sum__".
115 inline "cic:/CoRN/transc/Trigonometric/Sine_and_Cosine/Sine_of_Sum/G.con" "Sine_and_Cosine__Sine_of_Sum__".
117 inline "cic:/CoRN/transc/Trigonometric/Sine_and_Cosine/Sine_of_Sum/F'.con" "Sine_and_Cosine__Sine_of_Sum__".
119 inline "cic:/CoRN/transc/Trigonometric/Sine_and_Cosine/Sine_of_Sum/G'.con" "Sine_and_Cosine__Sine_of_Sum__".
159 inline "cic:/CoRN/transc/Trigonometric/Sin_plus_Taylor_bnd_lft.con".
193 inline "cic:/CoRN/transc/Trigonometric/Sin_plus_Taylor_bnd_rht.con".
195 inline "cic:/CoRN/transc/Trigonometric/Sin_plus_eq.con".
197 inline "cic:/CoRN/transc/Trigonometric/Sin_plus_der_lft.con".
199 inline "cic:/CoRN/transc/Trigonometric/Sin_plus_der_rht.con".
201 inline "cic:/CoRN/transc/Trigonometric/Sin_plus_fun.con".
211 inline "cic:/CoRN/transc/Trigonometric/Cos_plus_fun.con".