1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
17 include "NPlus/defs.ma".
19 (* Inversion lemmas *********************************************************)
21 theorem nplus_inv_zero_1: ∀q,r. zero ⊕ q ≍ r → q = r.
22 intros. elim H; clear H q r; autobatch.
25 theorem nplus_inv_succ_1: ∀p,q,r. succ p ⊕ q ≍ r →
26 ∃s. r = succ s ∧ p ⊕ q ≍ s.
27 intros. elim H; clear H q r; intros;
29 | clear H1; decompose; destruct; autobatch depth = 4
33 theorem nplus_inv_zero_2: ∀p,r. p ⊕ zero ≍ r → p = r.
34 intros; inversion H; clear H; intros; destruct; autobatch.
37 theorem nplus_inv_succ_2: ∀p,q,r. p ⊕ succ q ≍ r →
38 ∃s. r = succ s ∧ p ⊕ q ≍ s.
39 intros; inversion H; clear H; intros; destruct.
43 theorem nplus_inv_zero_3: ∀p,q. p ⊕ q ≍ zero →
45 intros; inversion H; clear H; intros; destruct; autobatch.
48 theorem nplus_inv_succ_3: ∀p,q,r. p ⊕ q ≍ succ r →
49 ∃s. p = succ s ∧ s ⊕ q ≍ r ∨
50 q = succ s ∧ p ⊕ s ≍ r.
51 intros; inversion H; clear H; intros; destruct;
55 (* Corollaries to inversion lemmas ******************************************)
57 theorem nplus_inv_succ_2_3: ∀p,q,r.
58 p ⊕ succ q ≍ succ r → p ⊕ q ≍ r.
60 lapply linear nplus_inv_succ_2 to H; decompose; destruct; autobatch.
63 theorem nplus_inv_succ_1_3: ∀p,q,r.
64 succ p ⊕ q ≍ succ r → p ⊕ q ≍ r.
66 lapply linear nplus_inv_succ_1 to H; decompose; destruct; autobatch.
69 theorem nplus_inv_eq_2_3: ∀p,q. p ⊕ q ≍ q → p = zero.
70 intros 2; elim q; clear q;
71 [ lapply linear nplus_inv_zero_2 to H
72 | lapply linear nplus_inv_succ_2_3 to H1
76 theorem nplus_inv_eq_1_3: ∀p,q. p ⊕ q ≍ p → q = zero.
77 intros 1; elim p; clear p;
78 [ lapply linear nplus_inv_zero_1 to H
79 | lapply linear nplus_inv_succ_1_3 to H1