1 set "baseuri" "cic:/matita/TPTP/ANA004-1".
2 include "logic/equality.ma".
4 (* Inclusion of: ANA004-1.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : ANA004-1 : TPTP v3.2.0. Released v1.0.0. *)
10 (* Domain : Analysis *)
12 (* Problem : Lemma 2 for the sum of two continuous functions is continuous *)
14 (* Version : [MOW76] axioms : Incomplete > Augmented > Complete. *)
16 (* English : A lemma formed by adding in some resolvants and taking out *)
18 (* the corresponding clauses. *)
20 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
26 (* Status : Unsatisfiable *)
28 (* Rating : 0.71 v3.2.0, 0.86 v3.1.0, 0.78 v2.7.0, 0.67 v2.6.0, 0.71 v2.5.0, 0.60 v2.4.0, 1.00 v2.0.0 *)
30 (* Syntax : Number of clauses : 21 ( 0 non-Horn; 7 unit; 16 RR) *)
32 (* Number of atoms : 42 ( 5 equality) *)
34 (* Maximal clause size : 3 ( 2 average) *)
36 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
38 (* Number of functors : 15 ( 5 constant; 0-2 arity) *)
40 (* Number of variables : 35 ( 0 singleton) *)
42 (* Maximal term depth : 6 ( 2 average) *)
44 (* Comments : No natural language descriptions are available. *)
46 (* : Contributed to the ANL library by Woody Bledsoe. *)
48 (* -------------------------------------------------------------------------- *)
50 (* ----Include limits axioms *)
52 (* Inclusion of: Axioms/ANA001-0.ax *)
54 (* -------------------------------------------------------------------------- *)
56 (* File : ANA001-0 : TPTP v3.2.0. Released v1.0.0. *)
58 (* Domain : Analysis (Limits) *)
60 (* Axioms : Analysis (limits) axioms for continuous functions *)
62 (* Version : [MOW76] axioms. *)
66 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
74 (* Syntax : Number of clauses : 14 ( 0 non-Horn; 6 unit; 9 RR) *)
76 (* Number of literals : 27 ( 5 equality) *)
78 (* Maximal clause size : 3 ( 2 average) *)
80 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
82 (* Number of functors : 6 ( 1 constant; 0-2 arity) *)
84 (* Number of variables : 27 ( 0 singleton) *)
86 (* Maximal term depth : 3 ( 1 average) *)
88 (* Comments : No natural language descriptions are available. *)
90 (* : "Contributed by W.W. Bledsoe in a private correspondence", *)
94 (* -------------------------------------------------------------------------- *)
98 (* ----Less than transitivity *)
114 (* -------------------------------------------------------------------------- *)
116 (* -------------------------------------------------------------------------- *)
118 (* ----Clauses from the theorem *)
120 ∀Univ:Set.∀X:Univ.∀Xa:Univ.∀Y:Univ.∀Z:Univ.∀a:Univ.∀absolute:∀_:Univ.Univ.∀add:∀_:Univ.∀_:Univ.Univ.∀b:Univ.∀f:∀_:Univ.Univ.∀fp31:∀_:Univ.Univ.∀fp32:∀_:Univ.Univ.∀fp33:∀_:Univ.Univ.∀g:∀_:Univ.Univ.∀half:∀_:Univ.Univ.∀l1:Univ.∀l2:Univ.∀less_than:∀_:Univ.∀_:Univ.Prop.∀minimum:∀_:Univ.∀_:Univ.Univ.∀minus:∀_:Univ.Univ.∀n0:Univ.∀H0:∀X:Univ.∀_:less_than n0 X.less_than (absolute (add (fp33 X) (minus a))) X.∀H1:less_than n0 b.∀H2:∀X:Univ.∀Y:Univ.∀_:less_than (absolute (add Y (minus a))) (fp32 X).∀_:less_than n0 X.less_than (absolute (add (g Y) (minus l2))) X.∀H3:∀X:Univ.∀_:less_than n0 X.less_than n0 (fp32 X).∀H4:∀X:Univ.∀Y:Univ.∀_:less_than (absolute (add Y (minus a))) (fp31 X).∀_:less_than n0 X.less_than (absolute (add (f Y) (minus l1))) X.∀H5:∀X:Univ.∀_:less_than n0 X.less_than n0 (fp31 X).∀H6:∀X:Univ.∀Y:Univ.eq Univ (minus (add X Y)) (add (minus X) (minus Y)).∀H7:∀Xa:Univ.∀_:less_than n0 Xa.less_than n0 (half Xa).∀H8:∀Xa:Univ.∀_:less_than n0 Xa.less_than n0 (half Xa).∀H9:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).∀H11:∀X:Univ.∀Xa:Univ.∀Y:Univ.∀_:less_than (add (absolute X) (absolute Y)) Xa.less_than (absolute (add X Y)) Xa.∀H12:∀X:Univ.∀Xa:Univ.∀Y:Univ.∀_:less_than Y (half Xa).∀_:less_than X (half Xa).less_than (add X Y) Xa.∀H13:∀X:Univ.∀Y:Univ.∀_:less_than n0 Y.∀_:less_than n0 X.less_than (minimum X Y) Y.∀H14:∀X:Univ.∀Y:Univ.∀_:less_than n0 Y.∀_:less_than n0 X.less_than (minimum X Y) X.∀H15:∀X:Univ.∀Y:Univ.∀_:less_than n0 Y.∀_:less_than n0 X.less_than n0 (minimum X Y).∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.∀_:less_than Y Z.∀_:less_than X Y.less_than X Z.∀H17:∀X:Univ.less_than X X.∀H18:∀X:Univ.eq Univ (add n0 X) X.∀H19:∀X:Univ.eq Univ (add X n0) X.∃X:Univ.And (less_than (absolute (add (add (f (fp33 X)) (minus l1)) (add (g (fp33 X)) (minus l2)))) b) (less_than n0 X)
125 autobatch depth=5 width=5 size=20 timeout=10;
132 (* -------------------------------------------------------------------------- *)