1 set "baseuri" "cic:/matita/TPTP/ANA032-2".
2 include "logic/equality.ma".
4 (* Inclusion of: ANA032-2.p *)
6 (* ------------------------------------------------------------------------------ *)
8 (* File : ANA032-2 : TPTP v3.2.0. Released v3.2.0. *)
10 (* Domain : Analysis *)
12 (* Problem : Problem about Big-O notation *)
14 (* Version : [Pau06] axioms : Reduced > Especial. *)
18 (* Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe *)
20 (* Source : [Pau06] *)
24 (* Status : Unsatisfiable *)
26 (* Rating : 0.43 v3.2.0 *)
28 (* Syntax : Number of clauses : 11 ( 0 non-Horn; 3 unit; 8 RR) *)
30 (* Number of atoms : 21 ( 2 equality) *)
32 (* Maximal clause size : 4 ( 2 average) *)
34 (* Number of predicates : 7 ( 0 propositional; 1-3 arity) *)
36 (* Number of functors : 9 ( 4 constant; 0-3 arity) *)
38 (* Number of variables : 30 ( 20 singleton) *)
40 (* Maximal term depth : 5 ( 2 average) *)
42 (* Comments : The problems in the [Pau06] collection each have very many axioms, *)
44 (* of which only a small selection are required for the refutation. *)
46 (* The mission is to find those few axioms, after which a refutation *)
48 (* can be quite easily found. This version has only the necessary *)
52 (* ------------------------------------------------------------------------------ *)
53 theorem cls_conjecture_1:
54 ∀Univ:Set.∀T_a:Univ.∀V_a:Univ.∀V_b:Univ.∀V_c:Univ.∀c_0:Univ.∀c_HOL_Oabs:∀_:Univ.∀_:Univ.Univ.∀c_lessequals:∀_:Univ.∀_:Univ.∀_:Univ.Prop.∀c_times:∀_:Univ.∀_:Univ.∀_:Univ.Univ.∀class_OrderedGroup_Oab__semigroup__mult:∀_:Univ.Prop.∀class_OrderedGroup_Olordered__ab__group__abs:∀_:Univ.Prop.∀class_OrderedGroup_Osemigroup__mult:∀_:Univ.Prop.∀class_Ring__and__Field_Opordered__semiring:∀_:Univ.Prop.∀t_b:Univ.∀v_b:∀_:Univ.Univ.∀v_c:Univ.∀v_f:∀_:Univ.Univ.∀v_g:∀_:Univ.Univ.∀v_x:Univ.∀H0:c_lessequals (c_HOL_Oabs (v_b v_x) t_b) (c_times v_c (c_HOL_Oabs (v_g v_x) t_b) t_b) t_b.∀H1:∀T_a:Univ.∀V_a:Univ.∀V_b:Univ.∀V_c:Univ.∀_:c_lessequals c_0 V_c T_a.∀_:c_lessequals V_a V_b T_a.∀_:class_Ring__and__Field_Opordered__semiring T_a.c_lessequals (c_times V_c V_a T_a) (c_times V_c V_b T_a) T_a.∀H2:∀T_a:Univ.∀V_a:Univ.∀V_b:Univ.∀_:class_OrderedGroup_Oab__semigroup__mult T_a.eq Univ (c_times V_a V_b T_a) (c_times V_b V_a T_a).∀H3:∀T_a:Univ.∀V_a:Univ.∀V_b:Univ.∀V_c:Univ.∀_:class_OrderedGroup_Osemigroup__mult T_a.eq Univ (c_times (c_times V_a V_b T_a) V_c T_a) (c_times V_a (c_times V_b V_c T_a) T_a).∀H4:∀T_a:Univ.∀V_a:Univ.∀_:class_OrderedGroup_Olordered__ab__group__abs T_a.c_lessequals c_0 (c_HOL_Oabs V_a T_a) T_a.c_lessequals (c_times (c_HOL_Oabs (v_b v_x) t_b) (c_HOL_Oabs (v_f v_x) t_b) t_b) (c_times v_c (c_times (c_HOL_Oabs (v_f v_x) t_b) (c_HOL_Oabs (v_g v_x) t_b) t_b) t_b) t_b
57 autobatch depth=5 width=5 size=20 timeout=10;
62 (* ------------------------------------------------------------------------------ *)