1 set "baseuri" "cic:/matita/TPTP/COL042-5".
2 include "logic/equality.ma".
4 (* Inclusion of: COL042-5.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : COL042-5 : TPTP v3.2.0. Released v1.2.0. *)
10 (* Domain : Combinatory Logic *)
12 (* Problem : Strong fixed point for B and W1 *)
14 (* Version : [WM88] (equality) axioms : Augmented > Especial. *)
16 (* Theorem formulation : The fixed point is provided and checked. *)
18 (* English : The strong fixed point property holds for the set *)
20 (* P consisting of the combinators B and W1, where ((Bx)y)z *)
22 (* = x(yz), (W1x)y = (yx)x. *)
24 (* Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
26 (* : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St *)
32 (* Status : Unsatisfiable *)
34 (* Rating : 0.29 v3.1.0, 0.33 v2.7.0, 0.17 v2.6.0, 0.29 v2.5.0, 0.20 v2.4.0, 0.33 v2.3.0, 0.50 v2.2.1, 0.75 v2.2.0, 0.83 v2.1.0, 1.00 v2.0.0 *)
36 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 3 unit; 2 RR) *)
38 (* Number of atoms : 5 ( 3 equality) *)
40 (* Maximal clause size : 2 ( 1 average) *)
42 (* Number of predicates : 2 ( 0 propositional; 1-2 arity) *)
44 (* Number of functors : 4 ( 3 constant; 0-2 arity) *)
46 (* Number of variables : 6 ( 0 singleton) *)
48 (* Maximal term depth : 5 ( 3 average) *)
52 (* -------------------------------------------------------------------------- *)
53 theorem prove_strong_fixed_point:
54 ∀Univ:Set.∀Strong_fixed_point:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.∀apply:∀_:Univ.∀_:Univ.Univ.∀b:Univ.∀fixed_point:∀_:Univ.Prop.∀fixed_pt:Univ.∀w1:Univ.∀H0:∀Strong_fixed_point:Univ.∀_:eq Univ (apply Strong_fixed_point fixed_pt) (apply fixed_pt (apply Strong_fixed_point fixed_pt)).fixed_point Strong_fixed_point.∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w1 X) Y) (apply (apply Y X) X).∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).fixed_point (apply (apply b (apply w1 w1)) (apply (apply b (apply b w1)) (apply (apply b b) b)))
57 autobatch depth=5 width=5 size=20 timeout=10;
62 (* -------------------------------------------------------------------------- *)