1 set "baseuri" "cic:/matita/TPTP/LAT002-1".
2 include "logic/equality.ma".
4 (* Inclusion of: LAT002-1.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : LAT002-1 : TPTP v3.2.0. Released v1.0.0. *)
10 (* Domain : Lattice Theory *)
12 (* Problem : If X' = U v V and Y' = U ^ V, then U' exists *)
14 (* Version : [McC88] (equality) axioms. *)
16 (* English : The theorem states that there is a complement of "a" in a *)
18 (* modular lattice with 0 and 1. *)
20 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
22 (* : [GO+69] Guard et al. (1969), Semi-Automated Mathematics *)
24 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
26 (* Source : [McC88] *)
28 (* Names : L1b [McC88] *)
30 (* Status : Unsatisfiable *)
32 (* Rating : 0.43 v3.1.0, 0.78 v2.7.0, 0.83 v2.6.0, 0.71 v2.5.0, 1.00 v2.4.0, 0.83 v2.2.1, 0.89 v2.2.0, 0.86 v2.1.0, 1.00 v2.0.0 *)
34 (* Syntax : Number of clauses : 19 ( 0 non-Horn; 15 unit; 6 RR) *)
36 (* Number of atoms : 24 ( 18 equality) *)
38 (* Maximal clause size : 3 ( 1 average) *)
40 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
42 (* Number of functors : 8 ( 6 constant; 0-2 arity) *)
44 (* Number of variables : 30 ( 5 singleton) *)
46 (* Maximal term depth : 3 ( 2 average) *)
50 (* -------------------------------------------------------------------------- *)
52 (* ----Include lattice axioms *)
54 (* Inclusion of: Axioms/LAT001-0.ax *)
56 (* -------------------------------------------------------------------------- *)
58 (* File : LAT001-0 : TPTP v3.2.0. Released v1.0.0. *)
60 (* Domain : Lattice Theory *)
62 (* Axioms : Lattice theory (equality) axioms *)
64 (* Version : [McC88] (equality) axioms. *)
68 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
70 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
72 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
74 (* Source : [McC88] *)
80 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
82 (* Number of literals : 8 ( 8 equality) *)
84 (* Maximal clause size : 1 ( 1 average) *)
86 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
88 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
90 (* Number of variables : 16 ( 2 singleton) *)
92 (* Maximal term depth : 3 ( 2 average) *)
96 (* -------------------------------------------------------------------------- *)
98 (* ----The following 8 clauses characterise lattices *)
100 (* -------------------------------------------------------------------------- *)
102 (* ----Include modular lattice axioms *)
104 (* Inclusion of: Axioms/LAT001-1.ax *)
106 (* -------------------------------------------------------------------------- *)
108 (* File : LAT001-1 : TPTP v3.2.0. Released v1.0.0. *)
110 (* Domain : Lattice Theory *)
112 (* Axioms : Lattice theory modularity (equality) axioms *)
114 (* Version : [McC88] (equality) axioms. *)
118 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
120 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
122 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
124 (* Source : [McC88] *)
130 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 4 unit; 0 RR) *)
132 (* Number of literals : 6 ( 6 equality) *)
134 (* Maximal clause size : 2 ( 1 average) *)
136 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
138 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
140 (* Number of variables : 7 ( 2 singleton) *)
142 (* Maximal term depth : 3 ( 2 average) *)
144 (* Comments : Requires LAT001-0.ax *)
146 (* : These axioms, with 4 extra redundant axioms about 0 & 1, are *)
148 (* used in [Wos88] p.217. *)
150 (* -------------------------------------------------------------------------- *)
152 (* ----Include 1 and 0 in the lattice *)
154 (* ----Require the lattice to be modular *)
156 (* -------------------------------------------------------------------------- *)
158 (* ----Include definition of complement *)
160 (* Inclusion of: Axioms/LAT001-2.ax *)
162 (* -------------------------------------------------------------------------- *)
164 (* File : LAT001-2 : TPTP v3.2.0. Released v1.0.0. *)
166 (* Domain : Lattice Theory *)
168 (* Axioms : Lattice theory complement (equality) axioms *)
170 (* Version : [McC88] (equality) axioms. *)
174 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
176 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
178 (* Source : [McC88] *)
184 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 0 unit; 3 RR) *)
186 (* Number of literals : 7 ( 4 equality) *)
188 (* Maximal clause size : 3 ( 2 average) *)
190 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
192 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
194 (* Number of variables : 6 ( 0 singleton) *)
196 (* Maximal term depth : 2 ( 1 average) *)
198 (* Comments : Requires LAT001-0.ax *)
200 (* -------------------------------------------------------------------------- *)
202 (* ----Definition of complement *)
204 (* -------------------------------------------------------------------------- *)
206 (* -------------------------------------------------------------------------- *)
207 theorem prove_complememt_exists:
208 ∀Univ:Set.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.∀a:Univ.∀b:Univ.∀complement:∀_:Univ.∀_:Univ.Prop.∀join:∀_:Univ.∀_:Univ.Univ.∀meet:∀_:Univ.∀_:Univ.Univ.∀n0:Univ.∀n1:Univ.∀r1:Univ.∀r2:Univ.∀H0:complement r2 (meet a b).∀H1:complement r1 (join a b).∀H2:∀X:Univ.∀Y:Univ.∀_:eq Univ (join X Y) n1.∀_:eq Univ (meet X Y) n0.complement X Y.∀H3:∀X:Univ.∀Y:Univ.∀_:complement X Y.eq Univ (join X Y) n1.∀H4:∀X:Univ.∀Y:Univ.∀_:complement X Y.eq Univ (meet X Y) n0.∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.∀_:eq Univ (meet X Z) X.eq Univ (meet Z (join X Y)) (join X (meet Y Z)).∀H6:∀X:Univ.eq Univ (join X n1) n1.∀H7:∀X:Univ.eq Univ (meet X n1) X.∀H8:∀X:Univ.eq Univ (join X n0) X.∀H9:∀X:Univ.eq Univ (meet X n0) n0.∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).∀H12:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).∀H13:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).∀H14:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.∀H15:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.∀H16:∀X:Univ.eq Univ (join X X) X.∀H17:∀X:Univ.eq Univ (meet X X) X.∃W:Univ.complement a W
213 autobatch depth=5 width=5 size=20 timeout=10;
220 (* -------------------------------------------------------------------------- *)