1 set "baseuri" "cic:/matita/TPTP/LAT005-3".
2 include "logic/equality.ma".
4 (* Inclusion of: LAT005-3.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : LAT005-3 : TPTP v3.2.0. Released v1.0.0. *)
10 (* Domain : Lattice Theory *)
12 (* Problem : SAM's lemma *)
14 (* Version : [McC88] (equality) axioms. *)
16 (* English : Let L be a modular lattice with 0 and 1. Suppose that A and *)
18 (* B are elements of L such that (A v B) and (A ^ B) both have *)
20 (* not necessarily unique complements. Then, (A v B)' = *)
22 (* ((A v B)' v ((A ^ B)' ^ B)) ^ ((A v B)' v ((A ^ B)' ^ A)). *)
24 (* Refs : [GO+69] Guard et al. (1969), Semi-Automated Mathematics *)
26 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
28 (* Source : [McC88] *)
30 (* Names : SAM's lemma [McC88] *)
32 (* Status : Unsatisfiable *)
34 (* Rating : 0.43 v3.2.0, 0.14 v3.1.0, 0.44 v2.7.0, 0.50 v2.6.0, 0.43 v2.5.0, 0.80 v2.4.0, 1.00 v2.3.0, 0.83 v2.2.1, 0.89 v2.2.0, 0.86 v2.1.0, 1.00 v2.0.0 *)
36 (* Syntax : Number of clauses : 19 ( 0 non-Horn; 15 unit; 6 RR) *)
38 (* Number of atoms : 24 ( 19 equality) *)
40 (* Maximal clause size : 3 ( 1 average) *)
42 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
44 (* Number of functors : 8 ( 6 constant; 0-2 arity) *)
46 (* Number of variables : 29 ( 4 singleton) *)
48 (* Maximal term depth : 4 ( 2 average) *)
50 (* Comments : [McC88] specifies that the axioms for complement should not be *)
52 (* included ("clauses 1-13 from axioms"). However, if this makes *)
54 (* clauses 87 and 88 pure. I have assumed a typo in the paper and *)
56 (* included axioms 14-16. *)
58 (* -------------------------------------------------------------------------- *)
60 (* ----Include lattice axioms *)
62 (* Inclusion of: Axioms/LAT001-0.ax *)
64 (* -------------------------------------------------------------------------- *)
66 (* File : LAT001-0 : TPTP v3.2.0. Released v1.0.0. *)
68 (* Domain : Lattice Theory *)
70 (* Axioms : Lattice theory (equality) axioms *)
72 (* Version : [McC88] (equality) axioms. *)
76 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
78 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
80 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
82 (* Source : [McC88] *)
88 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
90 (* Number of literals : 8 ( 8 equality) *)
92 (* Maximal clause size : 1 ( 1 average) *)
94 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
96 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
98 (* Number of variables : 16 ( 2 singleton) *)
100 (* Maximal term depth : 3 ( 2 average) *)
104 (* -------------------------------------------------------------------------- *)
106 (* ----The following 8 clauses characterise lattices *)
108 (* -------------------------------------------------------------------------- *)
110 (* ----Include modular lattice axioms *)
112 (* Inclusion of: Axioms/LAT001-1.ax *)
114 (* -------------------------------------------------------------------------- *)
116 (* File : LAT001-1 : TPTP v3.2.0. Released v1.0.0. *)
118 (* Domain : Lattice Theory *)
120 (* Axioms : Lattice theory modularity (equality) axioms *)
122 (* Version : [McC88] (equality) axioms. *)
126 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
128 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
130 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
132 (* Source : [McC88] *)
138 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 4 unit; 0 RR) *)
140 (* Number of literals : 6 ( 6 equality) *)
142 (* Maximal clause size : 2 ( 1 average) *)
144 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
146 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
148 (* Number of variables : 7 ( 2 singleton) *)
150 (* Maximal term depth : 3 ( 2 average) *)
152 (* Comments : Requires LAT001-0.ax *)
154 (* : These axioms, with 4 extra redundant axioms about 0 & 1, are *)
156 (* used in [Wos88] p.217. *)
158 (* -------------------------------------------------------------------------- *)
160 (* ----Include 1 and 0 in the lattice *)
162 (* ----Require the lattice to be modular *)
164 (* -------------------------------------------------------------------------- *)
166 (* ----Include definition of complement *)
168 (* Inclusion of: Axioms/LAT001-2.ax *)
170 (* -------------------------------------------------------------------------- *)
172 (* File : LAT001-2 : TPTP v3.2.0. Released v1.0.0. *)
174 (* Domain : Lattice Theory *)
176 (* Axioms : Lattice theory complement (equality) axioms *)
178 (* Version : [McC88] (equality) axioms. *)
182 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
184 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
186 (* Source : [McC88] *)
192 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 0 unit; 3 RR) *)
194 (* Number of literals : 7 ( 4 equality) *)
196 (* Maximal clause size : 3 ( 2 average) *)
198 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
200 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
202 (* Number of variables : 6 ( 0 singleton) *)
204 (* Maximal term depth : 2 ( 1 average) *)
206 (* Comments : Requires LAT001-0.ax *)
208 (* -------------------------------------------------------------------------- *)
210 (* ----Definition of complement *)
212 (* -------------------------------------------------------------------------- *)
214 (* -------------------------------------------------------------------------- *)
216 ∀Univ:Set.∀X:Univ.∀Y:Univ.∀Z:Univ.∀a:Univ.∀b:Univ.∀complement:∀_:Univ.∀_:Univ.Prop.∀join:∀_:Univ.∀_:Univ.Univ.∀meet:∀_:Univ.∀_:Univ.Univ.∀n0:Univ.∀n1:Univ.∀r1:Univ.∀r2:Univ.∀H0:complement r2 (meet a b).∀H1:complement r1 (join a b).∀H2:∀X:Univ.∀Y:Univ.∀_:eq Univ (join X Y) n1.∀_:eq Univ (meet X Y) n0.complement X Y.∀H3:∀X:Univ.∀Y:Univ.∀_:complement X Y.eq Univ (join X Y) n1.∀H4:∀X:Univ.∀Y:Univ.∀_:complement X Y.eq Univ (meet X Y) n0.∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.∀_:eq Univ (meet X Z) X.eq Univ (meet Z (join X Y)) (join X (meet Y Z)).∀H6:∀X:Univ.eq Univ (join X n1) n1.∀H7:∀X:Univ.eq Univ (meet X n1) X.∀H8:∀X:Univ.eq Univ (join X n0) X.∀H9:∀X:Univ.eq Univ (meet X n0) n0.∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).∀H12:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).∀H13:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).∀H14:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.∀H15:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.∀H16:∀X:Univ.eq Univ (join X X) X.∀H17:∀X:Univ.eq Univ (meet X X) X.eq Univ r1 (meet (join r1 (meet r2 b)) (join r1 (meet r2 a)))
219 autobatch depth=5 width=5 size=20 timeout=10;
224 (* -------------------------------------------------------------------------- *)