1 set "baseuri" "cic:/matita/TPTP/LAT041-1".
2 include "logic/equality.ma".
4 (* Inclusion of: LAT041-1.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : LAT041-1 : TPTP v3.2.0. Released v2.4.0. *)
10 (* Domain : Lattice Theory *)
12 (* Problem : A hyperbase for type <2,2> lattice hyperidentities *)
14 (* Version : [PP00] axioms. *)
18 (* Refs : [PP00] Padmanabhan & Penner (2000), A Hyperbase for Binary La *)
24 (* Status : Unsatisfiable *)
26 (* Rating : 0.71 v3.2.0, 0.57 v3.1.0, 0.78 v2.7.0, 1.00 v2.4.0 *)
28 (* Syntax : Number of clauses : 17 ( 0 non-Horn; 14 unit; 7 RR) *)
30 (* Number of atoms : 21 ( 11 equality) *)
32 (* Maximal clause size : 3 ( 1 average) *)
34 (* Number of predicates : 2 ( 0 propositional; 1-2 arity) *)
36 (* Number of functors : 15 ( 11 constant; 0-3 arity) *)
38 (* Number of variables : 29 ( 2 singleton) *)
40 (* Maximal term depth : 6 ( 2 average) *)
44 (* -------------------------------------------------------------------------- *)
46 ∀Univ:Set.∀V:Univ.∀W:Univ.∀W1:Univ.∀W2:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.∀a:Univ.∀b:Univ.∀big_p:∀_:Univ.∀_:Univ.∀_:Univ.Univ.∀big_t:∀_:Univ.∀_:Univ.∀_:Univ.Univ.∀c:Univ.∀d:Univ.∀e:Univ.∀plus:∀_:Univ.∀_:Univ.Univ.∀term:∀_:Univ.Prop.∀term1:Univ.∀term2:Univ.∀term3:Univ.∀term4:Univ.∀term5:Univ.∀term6:Univ.∀times:∀_:Univ.∀_:Univ.Univ.∀H0:∀W1:Univ.∀W2:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.∀_:term W2.∀_:term W1.eq Univ (big_t W1 (big_p W2 (big_t W1 X Y) Z) (big_p W2 Y Z)) (big_p W2 (big_t W1 X Y) Z).∀H1:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.∀_:term W.eq Univ (big_p W (big_p W X Y) (big_p W Z V)) (big_p W (big_p W X Z) (big_p W Y V)).∀H2:∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.∀_:term W.eq Univ (big_p W (big_p W X Y) Z) (big_p W X (big_p W Y Z)).∀H3:term term6.∀H4:term term5.∀H5:term term4.∀H6:term term3.∀H7:term term2.∀H8:term term1.∀H9:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (big_t W X Y) (big_p W X Y).∀H10:∀X:Univ.∀Y:Univ.eq Univ (big_p term6 X Y) (plus Y X).∀H11:∀X:Univ.∀Y:Univ.eq Univ (big_p term5 X Y) (plus X Y).∀H12:∀X:Univ.∀Y:Univ.eq Univ (big_p term4 X Y) (times Y X).∀H13:∀X:Univ.∀Y:Univ.eq Univ (big_p term3 X Y) (times X Y).∀H14:∀X:Univ.∀Y:Univ.eq Univ (big_p term2 X Y) Y.∀H15:∀X:Univ.∀Y:Univ.eq Univ (big_p term1 X Y) X.eq Univ (times a (plus b (times d (times c e)))) (times a (plus b (times (plus b c) (times d (times c e)))))
49 autobatch depth=5 width=5 size=20 timeout=10;
54 (* -------------------------------------------------------------------------- *)