1 set "baseuri" "cic:/matita/TPTP/LCL148-1".
2 include "logic/equality.ma".
4 (* Inclusion of: LCL148-1.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : LCL148-1 : TPTP v3.2.0. Released v1.0.0. *)
10 (* Domain : Logic Calculi (Wajsberg Algebra) *)
12 (* Problem : A theorem in the lattice structure of Wajsberg algebras *)
14 (* Version : [Bon91] (equality) axioms. *)
18 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
20 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
22 (* Source : [Bon91] *)
24 (* Names : Lattice structure theorem 7 [Bon91] *)
26 (* Status : Unknown *)
28 (* Rating : 1.00 v2.0.0 *)
30 (* Syntax : Number of clauses : 9 ( 0 non-Horn; 7 unit; 3 RR) *)
32 (* Number of atoms : 11 ( 9 equality) *)
34 (* Maximal clause size : 2 ( 1 average) *)
36 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
38 (* Number of functors : 8 ( 4 constant; 0-2 arity) *)
40 (* Number of variables : 16 ( 0 singleton) *)
42 (* Maximal term depth : 4 ( 2 average) *)
46 (* -------------------------------------------------------------------------- *)
48 (* ----Include Wajsberg algebra axioms *)
50 (* Inclusion of: Axioms/LCL001-0.ax *)
52 (* -------------------------------------------------------------------------- *)
54 (* File : LCL001-0 : TPTP v3.2.0. Released v1.0.0. *)
56 (* Domain : Logic Calculi (Wajsberg Algebras) *)
58 (* Axioms : Wajsberg algebra axioms *)
60 (* Version : [Bon91] (equality) axioms. *)
64 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
66 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
68 (* : [MW92] McCune & Wos (1992), Experiments in Automated Deductio *)
72 (* Names : MV Sentential Calculus [MW92] *)
76 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 0 RR) *)
78 (* Number of literals : 4 ( 4 equality) *)
80 (* Maximal clause size : 1 ( 1 average) *)
82 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
84 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
86 (* Number of variables : 8 ( 0 singleton) *)
88 (* Maximal term depth : 4 ( 2 average) *)
92 (* -------------------------------------------------------------------------- *)
94 (* -------------------------------------------------------------------------- *)
96 (* ----Include Wajsberg algebra lattice structure axioms *)
98 (* Inclusion of: Axioms/LCL001-1.ax *)
100 (* -------------------------------------------------------------------------- *)
102 (* File : LCL001-1 : TPTP v3.2.0. Released v1.0.0. *)
104 (* Domain : Logic Calculi (Wajsberg Algebras) *)
106 (* Axioms : Wajsberg algebra lattice structure definitions *)
108 (* Version : [Bon91] (equality) axioms. *)
112 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
114 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
116 (* Source : [Bon91] *)
122 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 2 unit; 2 RR) *)
124 (* Number of literals : 6 ( 4 equality) *)
126 (* Maximal clause size : 2 ( 2 average) *)
128 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
130 (* Number of functors : 5 ( 1 constant; 0-2 arity) *)
132 (* Number of variables : 8 ( 0 singleton) *)
134 (* Maximal term depth : 4 ( 2 average) *)
136 (* Comments : Requires LCL001-0.ax *)
138 (* -------------------------------------------------------------------------- *)
140 (* ----Definitions of big_V and big_hat *)
142 (* ----Definition of partial order *)
144 (* -------------------------------------------------------------------------- *)
146 (* -------------------------------------------------------------------------- *)
147 theorem prove_wajsberg_theorem:
148 ∀Univ:Set.∀X:Univ.∀Y:Univ.∀Z:Univ.∀big_V:∀_:Univ.∀_:Univ.Univ.∀big_hat:∀_:Univ.∀_:Univ.Univ.∀implies:∀_:Univ.∀_:Univ.Univ.∀not:∀_:Univ.Univ.∀ordered:∀_:Univ.∀_:Univ.Prop.∀truth:Univ.∀x:Univ.∀y:Univ.∀z:Univ.∀H0:∀X:Univ.∀Y:Univ.∀_:eq Univ (implies X Y) truth.ordered X Y.∀H1:∀X:Univ.∀Y:Univ.∀_:ordered X Y.eq Univ (implies X Y) truth.∀H2:∀X:Univ.∀Y:Univ.eq Univ (big_hat X Y) (not (big_V (not X) (not Y))).∀H3:∀X:Univ.∀Y:Univ.eq Univ (big_V X Y) (implies (implies X Y) Y).∀H4:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.∀H5:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.∀H7:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (big_hat y z)) (big_hat (implies x y) (implies x z))
151 autobatch depth=5 width=5 size=20 timeout=10;
156 (* -------------------------------------------------------------------------- *)