1 set "baseuri" "cic:/matita/TPTP/LCL195-3".
2 include "logic/equality.ma".
4 (* Inclusion of: LCL195-3.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : LCL195-3 : TPTP v3.2.0. Released v2.3.0. *)
10 (* Domain : Logic Calculi (Propositional) *)
12 (* Problem : Principia Mathematica 2.38 *)
14 (* Version : [WR27] axioms. *)
18 (* Refs : [WR27] Whitehead & Russell (1927), Principia Mathematica *)
22 (* Names : Problem 2.38 [WR27] *)
24 (* Status : Unsatisfiable *)
26 (* Rating : 0.71 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.57 v2.5.0, 0.40 v2.4.0, 0.67 v2.3.0 *)
28 (* Syntax : Number of clauses : 9 ( 0 non-Horn; 7 unit; 3 RR) *)
30 (* Number of atoms : 12 ( 1 equality) *)
32 (* Maximal clause size : 3 ( 1 average) *)
34 (* Number of predicates : 3 ( 0 propositional; 1-2 arity) *)
36 (* Number of functors : 6 ( 3 constant; 0-2 arity) *)
38 (* Number of variables : 16 ( 1 singleton) *)
40 (* Maximal term depth : 4 ( 2 average) *)
44 (* -------------------------------------------------------------------------- *)
46 (* ----Include axioms of propositional logic *)
48 (* Inclusion of: Axioms/LCL004-0.ax *)
50 (* ------------------------------------------------------------------------------ *)
52 (* File : LCL004-0 : TPTP v3.2.0. Released v2.3.0. *)
54 (* Domain : Logic Calculi (Propositional) *)
56 (* Axioms : Propositional logic deduction axioms *)
58 (* Version : [WR27] axioms. *)
62 (* Refs : [WR27] Whitehead & Russell (1927), Principia Mathematica *)
70 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 6 unit; 2 RR) *)
72 (* Number of literals : 11 ( 1 equality) *)
74 (* Maximal clause size : 3 ( 1 average) *)
76 (* Number of predicates : 3 ( 0 propositional; 1-2 arity) *)
78 (* Number of functors : 3 ( 0 constant; 1-2 arity) *)
80 (* Number of variables : 16 ( 1 singleton) *)
82 (* Maximal term depth : 4 ( 2 average) *)
84 (* Comments : This axiomatization follows [WR27], allowing full detachment *)
86 (* but no chaining (which is a dependant theorem). Compare with *)
90 (* ------------------------------------------------------------------------------ *)
92 (* input_clause(rule_3,axiom, *)
94 (* [++theorem(implies(X,Z)), *)
96 (* --theorem(implies(X,Y)), *)
98 (* --theorem(implies(Y,Z))]). *)
100 (* ------------------------------------------------------------------------------ *)
102 (* -------------------------------------------------------------------------- *)
104 ∀Univ:Set.∀A:Univ.∀B:Univ.∀C:Univ.∀X:Univ.∀Y:Univ.∀axiomP:∀_:Univ.Prop.∀implies:∀_:Univ.∀_:Univ.Univ.∀not:∀_:Univ.Univ.∀or:∀_:Univ.∀_:Univ.Univ.∀p:Univ.∀q:Univ.∀r:Univ.∀theoremP:∀_:Univ.Prop.∀H0:∀X:Univ.∀Y:Univ.∀_:theoremP Y.∀_:theoremP (implies Y X).theoremP X.∀H1:∀X:Univ.∀_:axiomP X.theoremP X.∀H2:∀X:Univ.∀Y:Univ.eq Univ (implies X Y) (or (not X) Y).∀H3:∀A:Univ.∀B:Univ.∀C:Univ.axiomP (implies (implies A B) (implies (or C A) (or C B))).∀H4:∀A:Univ.∀B:Univ.∀C:Univ.axiomP (implies (or A (or B C)) (or B (or A C))).∀H5:∀A:Univ.∀B:Univ.axiomP (implies (or A B) (or B A)).∀H6:∀A:Univ.∀B:Univ.axiomP (implies A (or B A)).∀H7:∀A:Univ.axiomP (implies (or A A) A).theoremP (implies (implies q r) (implies (or q p) (or r p)))
107 autobatch depth=5 width=5 size=20 timeout=10;
112 (* -------------------------------------------------------------------------- *)