1 set "baseuri" "cic:/matita/TPTP/LDA004-1".
2 include "logic/equality.ma".
4 (* Inclusion of: LDA004-1.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : LDA004-1 : TPTP v3.2.0. Released v1.0.0. *)
10 (* Domain : LD-Algebras (Left segments) *)
12 (* Problem : Show that 3*2(U2) is a left segment of U1(U3) *)
14 (* Version : [Jec93] axioms. *)
18 (* Refs : [Jec93] Jech (1993), LD-Algebras *)
20 (* Source : [Jec93] *)
22 (* Names : Problem 4 [Jec93] *)
24 (* Status : Unsatisfiable *)
26 (* Rating : 0.57 v3.2.0, 0.43 v3.1.0, 0.56 v2.7.0, 0.50 v2.6.0, 0.43 v2.5.0, 0.40 v2.4.0, 0.67 v2.3.0, 0.83 v2.2.1, 1.00 v2.0.0 *)
28 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 11 unit; 10 RR) *)
30 (* Number of atoms : 14 ( 9 equality) *)
32 (* Maximal clause size : 3 ( 1 average) *)
34 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
36 (* Number of functors : 10 ( 9 constant; 0-2 arity) *)
38 (* Number of variables : 8 ( 1 singleton) *)
40 (* Maximal term depth : 3 ( 2 average) *)
44 (* -------------------------------------------------------------------------- *)
46 (* ----A1: x(yz)=xy(xz) *)
48 (* ----x is a left segment of xy *)
52 (* ----3*2*U2 is a left segment of U1*U3 *)
53 theorem prove_equation:
54 ∀Univ:Set.∀X:Univ.∀Y:Univ.∀Z:Univ.∀a:Univ.∀b:Univ.∀f:∀_:Univ.∀_:Univ.Univ.∀left:∀_:Univ.∀_:Univ.Prop.∀n1:Univ.∀n2:Univ.∀n3:Univ.∀u:Univ.∀u1:Univ.∀u2:Univ.∀u3:Univ.∀H0:eq Univ b (f u1 u3).∀H1:eq Univ a (f (f n3 n2) u2).∀H2:eq Univ u3 (f u n3).∀H3:eq Univ u2 (f u n2).∀H4:eq Univ u1 (f u n1).∀H5:eq Univ u (f n2 n2).∀H6:eq Univ n3 (f n2 n1).∀H7:eq Univ n2 (f n1 n1).∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.∀_:left Y Z.∀_:left X Y.left X Z.∀H9:∀X:Univ.∀Y:Univ.left X (f X Y).∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) (f X Z)).left a b
57 autobatch depth=5 width=5 size=20 timeout=10;
62 (* -------------------------------------------------------------------------- *)