1 set "baseuri" "cic:/matita/TPTP/NUM017-2".
2 include "logic/equality.ma".
4 (* Inclusion of: NUM017-2.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : NUM017-2 : TPTP v3.2.0. Bugfixed v1.2.1. *)
10 (* Domain : Number Theory *)
12 (* Problem : Square root of this prime is irrational *)
14 (* Version : [Rob63] axioms : Incomplete > Augmented > Complete. *)
16 (* English : If a is prime, and a is not b^2/c^2, then the square root *)
18 (* of a is irrational. *)
20 (* Refs : [Rob63] Robinson (1963), Theorem Proving on the Computer *)
26 (* Status : Unsatisfiable *)
28 (* Rating : 0.00 v3.1.0, 0.22 v2.7.0, 0.00 v2.6.0, 0.29 v2.5.0, 0.00 v2.2.1, 0.38 v2.2.0, 0.50 v2.1.0, 0.33 v2.0.0 *)
30 (* Syntax : Number of clauses : 15 ( 0 non-Horn; 5 unit; 14 RR) *)
32 (* Number of atoms : 34 ( 2 equality) *)
34 (* Maximal clause size : 4 ( 2 average) *)
36 (* Number of predicates : 4 ( 0 propositional; 1-3 arity) *)
38 (* Number of functors : 7 ( 5 constant; 0-2 arity) *)
40 (* Number of variables : 37 ( 1 singleton) *)
42 (* Maximal term depth : 2 ( 1 average) *)
46 (* Bugfixes : v1.2.1 - Clause primes_lemma1 fixed. *)
48 (* -------------------------------------------------------------------------- *)
49 theorem prove_there_is_no_common_divisor:
50 ∀Univ:Set.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀a:Univ.∀b:Univ.∀c:Univ.∀d:Univ.∀divides:∀_:Univ.∀_:Univ.Prop.∀e:Univ.∀multiply:∀_:Univ.∀_:Univ.Univ.∀prime:∀_:Univ.Prop.∀product:∀_:Univ.∀_:Univ.∀_:Univ.Prop.∀second_divided_by_1st:∀_:Univ.∀_:Univ.Univ.∀H0:product a e d.∀H1:product c c e.∀H2:product b b d.∀H3:prime a.∀H4:∀A:Univ.∀B:Univ.∀C:Univ.∀_:prime A.∀_:product C C B.∀_:divides A B.divides A C.∀H5:∀A:Univ.∀B:Univ.∀C:Univ.∀_:product A B C.divides A C.∀H6:∀A:Univ.∀B:Univ.∀_:divides A B.product A (second_divided_by_1st A B) B.∀H7:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀_:product A B D.∀_:product A B C.eq Univ D C.∀H8:∀A:Univ.∀B:Univ.∀C:Univ.∀_:divides C A.∀_:divides A B.divides C B.∀H9:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀_:product A D C.∀_:product A B C.eq Univ B D.∀H10:∀A:Univ.∀B:Univ.∀C:Univ.∀_:product A B C.product B A C.∀H11:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀_:product F D A.∀_:product D B E.∀_:product A B C.product F E C.∀H12:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀_:product A D F.∀_:product D E B.∀_:product A B C.product F E C.∀H13:∀A:Univ.∀B:Univ.product A B (multiply A B).∃A:Univ.And (divides A b) (divides A c)
55 autobatch depth=5 width=5 size=20 timeout=10;
62 (* -------------------------------------------------------------------------- *)