1 set "baseuri" "cic:/matita/TPTP/ROB006-3".
2 include "logic/equality.ma".
4 (* Inclusion of: ROB006-3.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : ROB006-3 : TPTP v3.2.0. Released v1.0.0. *)
10 (* Domain : Robbins Algebra *)
12 (* Problem : c + d=d => Boolean *)
14 (* Version : [Win90] (equality) axioms : Augmented. *)
16 (* Theorem formulation : Denies Huntington's axiom. *)
18 (* English : If there are elements c and d such that c+d=d, then the *)
20 (* algebra is Boolean. *)
22 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
24 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
26 (* : [Wos92] Wos (1992), An Opportunity to Test Your Skills, and th *)
28 (* Source : [Wos92] *)
30 (* Names : Theorem 1.1 [Win90] *)
32 (* Status : Unsatisfiable *)
34 (* Rating : 0.86 v3.1.0, 1.00 v2.0.0 *)
36 (* Syntax : Number of clauses : 13 ( 0 non-Horn; 8 unit; 8 RR) *)
38 (* Number of atoms : 19 ( 14 equality) *)
40 (* Maximal clause size : 3 ( 1 average) *)
42 (* Number of predicates : 2 ( 0 propositional; 1-2 arity) *)
44 (* Number of functors : 9 ( 5 constant; 0-2 arity) *)
46 (* Number of variables : 19 ( 0 singleton) *)
48 (* Maximal term depth : 8 ( 3 average) *)
50 (* Comments : Commutativity, associativity, and Huntington's axiom *)
52 (* axiomatize Boolean algebra. *)
54 (* : The extra lemmas are suggested by Winker (1990). *)
56 (* -------------------------------------------------------------------------- *)
58 (* ----Include axioms for Robbins algebra *)
60 (* Inclusion of: Axioms/ROB001-0.ax *)
62 (* -------------------------------------------------------------------------- *)
64 (* File : ROB001-0 : TPTP v3.2.0. Released v1.0.0. *)
66 (* Domain : Robbins algebra *)
68 (* Axioms : Robbins algebra axioms *)
70 (* Version : [Win90] (equality) axioms. *)
74 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
76 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
78 (* Source : [OTTER] *)
80 (* Names : Lemma 2.2 [Win90] *)
84 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
86 (* Number of literals : 3 ( 3 equality) *)
88 (* Maximal clause size : 1 ( 1 average) *)
90 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
92 (* Number of functors : 2 ( 0 constant; 1-2 arity) *)
94 (* Number of variables : 7 ( 0 singleton) *)
96 (* Maximal term depth : 6 ( 3 average) *)
100 (* -------------------------------------------------------------------------- *)
102 (* -------------------------------------------------------------------------- *)
104 (* ----Include axioms for Robbins algebra numbers *)
106 (* Inclusion of: Axioms/ROB001-1.ax *)
108 (* -------------------------------------------------------------------------- *)
110 (* File : ROB001-1 : TPTP v3.2.0. Released v1.0.0. *)
112 (* Domain : Robbins Algebra *)
114 (* Axioms : Robbins algebra numbers axioms *)
116 (* Version : [Win90] (equality) axioms. *)
120 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
122 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
124 (* Source : [Win90] *)
130 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 2 unit; 2 RR) *)
132 (* Number of literals : 6 ( 2 equality) *)
134 (* Maximal clause size : 2 ( 2 average) *)
136 (* Number of predicates : 2 ( 0 propositional; 1-2 arity) *)
138 (* Number of functors : 4 ( 1 constant; 0-2 arity) *)
140 (* Number of variables : 4 ( 0 singleton) *)
142 (* Maximal term depth : 3 ( 2 average) *)
144 (* Comments : Requires ROB001-0.ax *)
146 (* -------------------------------------------------------------------------- *)
148 (* -------------------------------------------------------------------------- *)
150 (* -------------------------------------------------------------------------- *)
152 (* ----The following are extra lemmas *)
154 (* ----Hypothesis of the theorem *)
155 theorem prove_huntingtons_axiom:
156 ∀Univ:Set.∀V:Univ.∀V2:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.∀a:Univ.∀add:∀_:Univ.∀_:Univ.Univ.∀b:Univ.∀c:Univ.∀d:Univ.∀multiply:∀_:Univ.∀_:Univ.Univ.∀negate:∀_:Univ.Univ.∀one:Univ.∀positive_integer:∀_:Univ.Prop.∀successor:∀_:Univ.Univ.∀H0:eq Univ (add c d) d.∀H1:∀X:Univ.∀Y:Univ.∀_:eq Univ (negate (add (negate Y) (negate (add X (negate Y))))) X.eq Univ (add Y (multiply (successor (successor one)) (add X (negate (add X (negate Y)))))) (add Y (multiply (successor one) (add X (negate (add X (negate Y)))))).∀H2:∀X:Univ.∀Y:Univ.∀_:eq Univ (negate (add X (negate Y))) (negate Y).eq Univ (add Y (multiply (successor (successor one)) (add X (negate (add X (negate Y)))))) (add Y (multiply (successor one) (add X (negate (add X (negate Y)))))).∀H3:∀V2:Univ.∀X:Univ.∀Y:Univ.∀_:positive_integer V2.∀_:eq Univ (negate (add X Y)) (negate Y).eq Univ (negate (add Y (multiply V2 (add X (negate (add X (negate Y))))))) (negate Y).∀H4:∀X:Univ.eq Univ (add X X) X.∀H5:∀X:Univ.∀_:positive_integer X.positive_integer (successor X).∀H6:positive_integer one.∀H7:∀V:Univ.∀X:Univ.∀_:positive_integer X.eq Univ (multiply (successor V) X) (add X (multiply V X)).∀H8:∀X:Univ.eq Univ (multiply one X) X.∀H9:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).∀H11:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
159 autobatch depth=5 width=5 size=20 timeout=10;
164 (* -------------------------------------------------------------------------- *)