1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* ********************************************************************** *)
16 (* Progetto FreeScale *)
19 (* Cosimo Oliboni, oliboni@cs.unibo.it *)
21 (* Questo materiale fa parte della tesi: *)
22 (* "Formalizzazione Interattiva dei Microcontroller a 8bit FreeScale" *)
24 (* data ultima modifica 15/11/2007 *)
25 (* ********************************************************************** *)
27 include "nat/div_and_mod.ma".
28 include "nat/primes.ma".
29 include "list/list.ma".
30 include "datatypes/constructors.ma".
31 include "logic/connectives.ma".
35 (* ridefinizione degli operatori booleani, per evitare l'overloading di quelli normali *)
37 λb:bool.match b with [ true ⇒ false | false ⇒ true ].
40 λb1,b2:bool.match b1 with
41 [ true ⇒ b2 | false ⇒ false ].
44 λb1,b2:bool.match b1 with
45 [ true ⇒ true | false ⇒ b2 ].
48 λb1,b2:bool.match b1 with
53 λb1,b2:bool.match b1 with
55 | false ⇒ not_bool b2 ].
57 lemma eqbool_switch : ∀b1,b2.eq_bool b1 b2 = eq_bool b2 b1.
63 lemma andbool_switch : ∀b1,b2.and_bool b1 b2 = and_bool b2 b1.
69 lemma orbool_switch : ∀b1,b2.or_bool b1 b2 = or_bool b2 b1.
75 lemma xorbool_switch : ∀b1,b2.xor_bool b1 b2 = xor_bool b2 b1.
82 lemma orb_false_false :
83 ∀b1,b2:bool.((or_bool b1 b2) = false) → b1 = false.
92 lemma orb_false_false_r :
93 ∀b1,b2:bool.((or_bool b1 b2) = false) → b2 = false.
102 lemma eqbool_to_eq : ∀b1,b2:bool.(eq_bool b1 b2 = true) → (b1 = b2).
112 lemma eq_to_eqbool : ∀b1,b2.b1 = b2 → eq_bool b1 b2 = true.
123 notation "hvbox(⊖ a)" non associative with precedence 36
124 for @{ 'not_bool $a }.
125 interpretation "not_bool" 'not_bool x = (not_bool x).
128 notation "hvbox(a break ⊗ b)" left associative with precedence 35
129 for @{ 'and_bool $a $b }.
130 interpretation "and_bool" 'and_bool x y = (and_bool x y).
133 notation "hvbox(a break ⊕ b)" left associative with precedence 34
134 for @{ 'or_bool $a $b }.
135 interpretation "or_bool" 'or_bool x y = (or_bool x y).
138 notation "hvbox(a break ⊙ b)" left associative with precedence 33
139 for @{ 'xor_bool $a $b }.
140 interpretation "xor_bool" 'xor_bool x y = (xor_bool x y).
142 (* ProdT e' gia' definito, aggiungo Prod3T e Prod4T e Prod5T *)
144 inductive Prod3T (T1:Type) (T2:Type) (T3:Type) : Type ≝
145 tripleT : T1 → T2 → T3 → Prod3T T1 T2 T3.
148 λT1.λT2.λT3.λp:Prod3T T1 T2 T3.match p with [ tripleT x _ _ ⇒ x ].
151 λT1.λT2.λT3.λp:Prod3T T1 T2 T3.match p with [ tripleT _ x _ ⇒ x ].
154 λT1.λT2.λT3.λp:Prod3T T1 T2 T3.match p with [ tripleT _ _ x ⇒ x ].
156 inductive Prod4T (T1:Type) (T2:Type) (T3:Type) (T4:Type) : Type ≝
157 quadrupleT : T1 → T2 → T3 → T4 → Prod4T T1 T2 T3 T4.
160 λT1.λT2.λT3.λT4.λp:Prod4T T1 T2 T3 T4.match p with [ quadrupleT x _ _ _ ⇒ x ].
163 λT1.λT2.λT3.λT4.λp:Prod4T T1 T2 T3 T4.match p with [ quadrupleT _ x _ _ ⇒ x ].
166 λT1.λT2.λT3.λT4.λp:Prod4T T1 T2 T3 T4.match p with [ quadrupleT _ _ x _ ⇒ x ].
169 λT1.λT2.λT3.λT4.λp:Prod4T T1 T2 T3 T4.match p with [ quadrupleT _ _ _ x ⇒ x ].
171 inductive Prod5T (T1:Type) (T2:Type) (T3:Type) (T4:Type) (T5:Type) : Type ≝
172 quintupleT : T1 → T2 → T3 → T4 → T5 → Prod5T T1 T2 T3 T4 T5.
175 λT1.λT2.λT3.λT4.λT5.λp:Prod5T T1 T2 T3 T4 T5.match p with [ quintupleT x _ _ _ _ ⇒ x ].
178 λT1.λT2.λT3.λT4.λT5.λp:Prod5T T1 T2 T3 T4 T5.match p with [ quintupleT _ x _ _ _ ⇒ x ].
181 λT1.λT2.λT3.λT4.λT5.λp:Prod5T T1 T2 T3 T4 T5.match p with [ quintupleT _ _ x _ _ ⇒ x ].
184 λT1.λT2.λT3.λT4.λT5.λp:Prod5T T1 T2 T3 T4 T5.match p with [ quintupleT _ _ _ x _ ⇒ x ].
187 λT1.λT2.λT3.λT4.λT5.λp:Prod5T T1 T2 T3 T4 T5.match p with [ quintupleT _ _ _ _ x ⇒ x ].
191 (* option map = match ... with [ None ⇒ None ? | Some .. ⇒ .. ] *)
193 λT1,T2:Type.λt:option T1.λf:T1 → option T2.
194 match t with [ None ⇒ None ? | Some x ⇒ (f x) ].
196 (* ********************** *)
197 (* TEOREMI/LEMMMI/ASSIOMI *)
198 (* ********************** *)
200 axiom mod_plus: ∀a,b,m. (a + b) \mod m = (a \mod m + b \mod m) \mod m.
201 axiom mod_mod: ∀a,n,m. n∣m → a \mod n = a \mod n \mod m.
202 axiom eq_mod_times_n_m_m_O: ∀n,m. O < m → n * m \mod m = O.
203 axiom eq_mod_to_eq_plus_mod: ∀a,b,c,m. a \mod m = b \mod m → (a+c) \mod m = (b+c) \mod m.
204 axiom eq_mod_times_times_mod: ∀a,b,n,m. m = a*n → (a*b) \mod m = a * (b \mod n).
205 axiom divides_to_eq_mod_mod_mod: ∀a,n,m. n∣m → a \mod m \mod n = a \mod n.
206 axiom le_to_le_plus_to_le : ∀a,b,c,d.b\leq d\rarr a+b\leq c+d\rarr a\leq c.
207 axiom or_lt_le : ∀n,m. n < m ∨ m ≤ n.
209 lemma le_to_lt: ∀n,m. n ≤ m → n < S m.
214 alias num (instance 0) = "natural number".
215 definition nat_of_bool ≝
216 λb:bool.match b return λ_.nat with [ true ⇒ 1 | false ⇒ 0 ].
218 theorem lt_trans: ∀x,y,z. x < y → y < z → x < z.
224 lemma leq_m_n_to_eq_div_n_m_S: ∀n,m:nat. 0 < m → m ≤ n → ∃z. n/m = S z.
227 apply (ex_intro ? ? (div_aux (pred n) (n-m) (pred m)));
232 clear Hcut; clear H2; clear H;
234 unfold in ⊢ (? ? % ?);
236 [ elim Hcut; clear Hcut;
238 rewrite > H; clear m;
239 change in ⊢ (? ? % ?) with
240 (match leb (S a1) a with
242 | false ⇒ S (div_aux a1 ((S a1) - S a) a)]);
244 [ apply (leb_elim (S a1) a);
256 | exists;[apply (pred m);]autobatch