1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* ********************************************************************** *)
16 (* Progetto FreeScale *)
19 (* Cosimo Oliboni, oliboni@cs.unibo.it *)
21 (* Questo materiale fa parte della tesi: *)
22 (* "Formalizzazione Interattiva dei Microcontroller a 8bit FreeScale" *)
24 (* data ultima modifica 15/11/2007 *)
25 (* ********************************************************************** *)
27 include "freescale/byte8.ma".
29 (* ********************** *)
30 (* DEFINIZIONE DELLE WORD *)
31 (* ********************** *)
33 record word16 : Type ≝
40 notation "〈x:y〉" non associative with precedence 80
41 for @{ 'mk_word16 $x $y }.
42 interpretation "mk_word16" 'mk_word16 x y = (mk_word16 x y).
45 definition eq_w16 ≝ λw1,w2.(eq_b8 (w16h w1) (w16h w2)) ⊗ (eq_b8 (w16l w1) (w16l w2)).
49 λw1,w2:word16.match lt_b8 (w16h w1) (w16h w2) with
51 | false ⇒ match gt_b8 (w16h w1) (w16h w2) with
53 | false ⇒ lt_b8 (w16l w1) (w16l w2) ]].
56 definition le_w16 ≝ λw1,w2:word16.(eq_w16 w1 w2) ⊕ (lt_w16 w1 w2).
59 definition gt_w16 ≝ λw1,w2:word16.⊖ (le_w16 w1 w2).
62 definition ge_w16 ≝ λw1,w2:word16.⊖ (lt_w16 w1 w2).
66 λw1,w2:word16.mk_word16 (and_b8 (w16h w1) (w16h w2)) (and_b8 (w16l w1) (w16l w2)).
70 λw1,w2:word16.mk_word16 (or_b8 (w16h w1) (w16h w2)) (or_b8 (w16l w1) (w16l w2)).
74 λw1,w2:word16.mk_word16 (xor_b8 (w16h w1) (w16h w2)) (xor_b8 (w16l w1) (w16l w2)).
76 (* operatore rotazione destra con carry *)
78 λw:word16.λc:bool.match rcr_b8 (w16h w) c with
79 [ pair wh' c' ⇒ match rcr_b8 (w16l w) c' with
80 [ pair wl' c'' ⇒ pair ?? (mk_word16 wh' wl') c'' ]].
82 (* operatore shift destro *)
84 λw:word16.match rcr_b8 (w16h w) false with
85 [ pair wh' c' ⇒ match rcr_b8 (w16l w) c' with
86 [ pair wl' c'' ⇒ pair ?? (mk_word16 wh' wl') c'' ]].
88 (* operatore rotazione destra *)
90 λw:word16.match rcr_b8 (w16h w) false with
91 [ pair wh' c' ⇒ match rcr_b8 (w16l w) c' with
92 [ pair wl' c'' ⇒ match c'' with
93 [ true ⇒ mk_word16 (or_b8 (mk_byte8 x8 x0) wh') wl'
94 | false ⇒ mk_word16 wh' wl' ]]].
96 (* operatore rotazione destra n-volte *)
97 let rec ror_w16_n (w:word16) (n:nat) on n ≝
100 | S n' ⇒ ror_w16_n (ror_w16 w) n' ].
102 (* operatore rotazione sinistra con carry *)
104 λw:word16.λc:bool.match rcl_b8 (w16l w) c with
105 [ pair wl' c' ⇒ match rcl_b8 (w16h w) c' with
106 [ pair wh' c'' ⇒ pair ?? (mk_word16 wh' wl') c'' ]].
108 (* operatore shift sinistro *)
110 λw:word16.match rcl_b8 (w16l w) false with
111 [ pair wl' c' ⇒ match rcl_b8 (w16h w) c' with
112 [ pair wh' c'' ⇒ pair ?? (mk_word16 wh' wl') c'' ]].
114 (* operatore rotazione sinistra *)
116 λw:word16.match rcl_b8 (w16l w) false with
117 [ pair wl' c' ⇒ match rcl_b8 (w16h w) c' with
118 [ pair wh' c'' ⇒ match c'' with
119 [ true ⇒ mk_word16 wh' (or_b8 (mk_byte8 x0 x1) wl')
120 | false ⇒ mk_word16 wh' wl' ]]].
122 (* operatore rotazione sinistra n-volte *)
123 let rec rol_w16_n (w:word16) (n:nat) on n ≝
126 | S n' ⇒ rol_w16_n (rol_w16 w) n' ].
128 (* operatore not/complemento a 1 *)
130 λw:word16.mk_word16 (not_b8 (w16h w)) (not_b8 (w16l w)).
132 (* operatore somma con carry *)
133 definition plus_w16 ≝
134 λw1,w2:word16.λc:bool.
135 match plus_b8 (w16l w1) (w16l w2) c with
136 [ pair l c' ⇒ match plus_b8 (w16h w1) (w16h w2) c' with
137 [ pair h c'' ⇒ pair ?? (mk_word16 h l) c'' ]].
139 (* operatore somma senza carry *)
140 definition plus_w16nc ≝
141 λw1,w2:word16.fst ?? (plus_w16 w1 w2 false).
143 (* operatore carry della somma *)
144 definition plus_w16c ≝
145 λw1,w2:word16.snd ?? (plus_w16 w1 w2 false).
147 (* operatore Most Significant Bit *)
148 definition MSB_w16 ≝ λw:word16.eq_ex x8 (and_ex x8 (b8h (w16h w))).
150 (* word → naturali *)
151 definition nat_of_word16 ≝ λw:word16. 256 * (w16h w) + (nat_of_byte8 (w16l w)).
153 coercion nat_of_word16.
155 (* naturali → word *)
156 definition word16_of_nat ≝
157 λn.mk_word16 (byte8_of_nat (n / 256)) (byte8_of_nat n).
159 (* operatore predecessore *)
160 definition pred_w16 ≝
161 λw:word16.match eq_b8 (w16l w) (mk_byte8 x0 x0) with
162 [ true ⇒ mk_word16 (pred_b8 (w16h w)) (pred_b8 (w16l w))
163 | false ⇒ mk_word16 (w16h w) (pred_b8 (w16l w)) ].
165 (* operatore successore *)
166 definition succ_w16 ≝
167 λw:word16.match eq_b8 (w16l w) (mk_byte8 xF xF) with
168 [ true ⇒ mk_word16 (succ_b8 (w16h w)) (succ_b8 (w16l w))
169 | false ⇒ mk_word16 (w16h w) (succ_b8 (w16l w)) ].
171 (* operatore neg/complemento a 2 *)
172 definition compl_w16 ≝
173 λw:word16.match MSB_w16 w with
174 [ true ⇒ succ_w16 (not_w16 w)
175 | false ⇒ not_w16 (pred_w16 w) ].
178 operatore moltiplicazione senza segno: b*b=[0x0000,0xFE01]
179 ... in pratica (〈a,b〉*〈c,d〉) = (a*c)<<8+(a*d)<<4+(b*c)<<4+(b*d)
182 λb1,b2:byte8.match b1 with
183 [ mk_byte8 b1h b1l ⇒ match b2 with
184 [ mk_byte8 b2h b2l ⇒ match mul_ex b1l b2l with
185 [ mk_byte8 t1_h t1_l ⇒ match mul_ex b1h b2l with
186 [ mk_byte8 t2_h t2_l ⇒ match mul_ex b2h b1l with
187 [ mk_byte8 t3_h t3_l ⇒ match mul_ex b1h b2h with
188 [ mk_byte8 t4_h t4_l ⇒
191 (plus_w16nc 〈〈t4_h,t4_l〉:〈x0,x0〉〉 〈〈x0,t3_h〉:〈t3_l,x0〉〉) 〈〈x0,t2_h〉:〈t2_l,x0〉〉)〈〈x0,x0〉:〈t1_h,t1_l〉〉
194 (* divisione senza segno (secondo la logica delle ALU): (quoziente resto) overflow *)
196 λw:word16.λb:byte8.match eq_b8 b 〈x0,x0〉 with
198 la combinazione n/0 e' illegale, segnala solo overflow senza dare risultato
200 [ true ⇒ tripleT ??? 〈xF,xF〉 (w16l w) true
201 | false ⇒ match eq_w16 w 〈〈x0,x0〉:〈x0,x0〉〉 with
202 (* 0 diviso qualsiasi cosa diverso da 0 da' q=0 r=0 o=false *)
203 [ true ⇒ tripleT ??? 〈x0,x0〉 〈x0,x0〉 false
204 (* 1) e' una divisione sensata che produrra' overflow/risultato *)
205 (* 2) parametri: dividendo, divisore, moltiplicatore, quoziente, contatore *)
206 (* 3) ad ogni ciclo il divisore e il moltiplicatore vengono scalati di 1 a dx *)
207 (* 4) il moltiplicatore e' la quantita' aggiunta al quoziente se il divisore *)
208 (* puo' essere sottratto al dividendo *)
209 | false ⇒ let rec aux (divd:word16) (divs:word16) (molt:byte8) (q:byte8) (c:nat) on c ≝
210 let w' ≝ plus_w16nc divd (compl_w16 divs) in
212 [ O ⇒ match le_w16 divs divd with
213 [ true ⇒ tripleT ??? (or_b8 molt q) (w16l w') (⊖ (eq_b8 (w16h w') 〈x0,x0〉))
214 | false ⇒ tripleT ??? q (w16l divd) (⊖ (eq_b8 (w16h divd) 〈x0,x0〉)) ]
215 | S c' ⇒ match le_w16 divs divd with
216 [ true ⇒ aux w' (ror_w16 divs) (ror_b8 molt) (or_b8 molt q) c'
217 | false ⇒ aux divd (ror_w16 divs) (ror_b8 molt) q c' ]]
218 in aux w (rol_w16_n 〈〈x0,x0〉:b〉 7) 〈x8,x0〉 〈x0,x0〉 7 ]].
220 (* operatore x in [inf,sup] *)
221 definition in_range ≝
222 λx,inf,sup:word16.(le_w16 inf sup) ⊗ (ge_w16 x inf) ⊗ (le_w16 x sup).
224 (* iteratore sulle word *)
225 definition forall_word16 ≝
229 P (mk_word16 bh bl ))).
231 (* ********************** *)
232 (* TEOREMI/LEMMMI/ASSIOMI *)
233 (* ********************** *)
235 (* TODO: dimostrare diversamente *)
236 axiom word16_of_nat_nat_of_word16: ∀b. word16_of_nat (nat_of_word16 b) = b.
238 (* TODO: dimostrare diversamente *)
239 axiom lt_nat_of_word16_65536: ∀b. nat_of_word16 b < (256 * 256).
241 (* TODO: dimostrare diversamente *)
242 axiom nat_of_word16_word16_of_nat: ∀n. nat_of_word16 (word16_of_nat n) = n \mod (256 * 256).
244 (* TODO: dimostrare diversamente *)
245 axiom eq_nat_of_word16_n_nat_of_word16_mod_n_65536:
246 ∀n. word16_of_nat n = word16_of_nat (n \mod (256 * 256)).
250 match plus_w16 b1 b2 c with
251 [ pair r c' ⇒ b1 + b2 + nat_of_bool c = nat_of_word16 r + nat_of_bool c' * (256 * 256)
256 (* TODO: dimostrare diversamente *)
258 ∀b. plus_w16 (mk_word16 (mk_byte8 x0 x0) (mk_byte8 x0 x0)) b false = pair ?? b false.
261 ∀x. plus_w16nc (mk_word16 (mk_byte8 x0 x0) (mk_byte8 x0 x0)) x = x.
264 rewrite > plusw16_O_x;
268 (* TODO: dimostrare diversamente *)
269 axiom eq_nat_of_word16_mod: ∀b. nat_of_word16 b = nat_of_word16 b \mod (256 * 256).
271 (* TODO: dimostrare diversamente *)
273 ∀b1,b2:word16. nat_of_word16 (plus_w16nc b1 b2) = (b1 + b2) \mod (256 * 256).
275 (* TODO: dimostrare diversamente *)
276 axiom eq_eqw16_x0_x0_x0_x0_word16_of_nat_S_false:
277 ∀b. b < (256 * 256 - 1) → eq_w16 (mk_word16 (mk_byte8 x0 x0) (mk_byte8 x0 x0)) (word16_of_nat (S b)) = false.
279 axiom eq_mod_O_to_exists: ∀n,m. n \mod m = 0 → ∃z. n = z*m.
281 (* TODO: dimostrare diversamente *)
282 axiom eq_w16pred_S_a_a:
283 ∀a. a < (256 * 256 - 1) → pred_w16 (word16_of_nat (S a)) = word16_of_nat a.
285 (* TODO: dimostrare diversamente *)
287 ∀x:word16.∀n.plus_w16nc (word16_of_nat (x*n)) x = word16_of_nat (x * S n).
289 (* TODO: dimostrare diversamente *)
290 axiom eq_plusw16c_x0_x0_x0_x0_x_false:
291 ∀x.plus_w16c (mk_word16 (mk_byte8 x0 x0) (mk_byte8 x0 x0)) x = false.
293 (* TODO: dimostrare diversamente *)
294 axiom eqw16_true_to_eq: ∀b,b'. eq_w16 b b' = true → b=b'.
296 (* TODO: dimostrare diversamente *)
297 axiom eqw16_false_to_not_eq: ∀b,b'. eq_w16 b b' = false → b ≠ b'.
299 (* TODO: dimostrare diversamente *)
300 axiom word16_of_nat_mod: ∀n.word16_of_nat n = word16_of_nat (n \mod (256 * 256)).
305 lemma ok_mul_b8: ∀b1,b2:byte8. nat_of_word16 (mul_b8 b1 b2) = b1 * b2.
309 change in ⊢ (? ? (? %) ?) with
310 (match mul_ex b1l b2l with
311 [ mk_byte8 t1_h t1_l ⇒ match mul_ex b1h b2l with
312 [ mk_byte8 t2_h t2_l ⇒ match mul_ex b2h b1l with
313 [ mk_byte8 t3_h t3_l ⇒ match mul_ex b1h b2h with
314 [ mk_byte8 t4_h t4_l ⇒
317 (plus_w16nc 〈〈t4_h,t4_l〉:〈x0,x0〉〉 〈〈x0,t3_h〉:〈t3_l,x0〉〉) 〈〈x0,t2_h〉:〈t2_l,x0〉〉)〈〈x0,x0〉:〈t1_h,t1_l〉〉
319 lapply (ok_mul_ex b1l b2l) as ll;
320 lapply (ok_mul_ex b1h b2l) as hl;
321 lapply (ok_mul_ex b2h b1l) as lh;
322 lapply (ok_mul_ex b1h b2h) as hh;
323 elim (mul_ex b1l b2l) (t1_h t1_l);
324 change in ⊢ (? ? (? %) ?) with
325 (match mul_ex b1h b2l with
326 [ mk_byte8 t2_h t2_l ⇒ match mul_ex b2h b1l with
327 [ mk_byte8 t3_h t3_l ⇒ match mul_ex b1h b2h with
328 [ mk_byte8 t4_h t4_l ⇒
331 (plus_w16nc 〈〈t4_h,t4_l〉:〈x0,x0〉〉 〈〈x0,t3_h〉:〈t3_l,x0〉〉) 〈〈x0,t2_h〉:〈t2_l,x0〉〉)〈〈x0,x0〉:〈t1_h,t1_l〉〉
333 elim (mul_ex b1h b2l) (t2_h t2_l);
334 change in ⊢ (? ? (? %) ?) with
335 (match mul_ex b2h b1l with
336 [ mk_byte8 t3_h t3_l ⇒ match mul_ex b1h b2h with
337 [ mk_byte8 t4_h t4_l ⇒
340 (plus_w16nc 〈〈t4_h,t4_l〉:〈x0,x0〉〉 〈〈x0,t3_h〉:〈t3_l,x0〉〉) 〈〈x0,t2_h〉:〈t2_l,x0〉〉)〈〈x0,x0〉:〈t1_h,t1_l〉〉
342 elim (mul_ex b2h b1l) (t3_h t3_l);
343 change in ⊢ (? ? (? %) ?) with
344 (match mul_ex b1h b2h with
345 [ mk_byte8 t4_h t4_l ⇒
348 (plus_w16nc 〈〈t4_h,t4_l〉:〈x0,x0〉〉 〈〈x0,t3_h〉:〈t3_l,x0〉〉) 〈〈x0,t2_h〉:〈t2_l,x0〉〉)〈〈x0,x0〉:〈t1_h,t1_l〉〉
350 elim (mul_ex b1h b2h) (t4_h t4_l);
351 change in ⊢ (? ? (? %) ?) with
354 (plus_w16nc 〈〈t4_h,t4_l〉:〈x0,x0〉〉 〈〈x0,t3_h〉:〈t3_l,x0〉〉) 〈〈x0,t2_h〉:〈t2_l,x0〉〉)〈〈x0,x0〉:〈t1_h,t1_l〉〉);
355 do 3 (rewrite > plusw16nc_ok);
356 unfold nat_of_word16;
358 simplify in ⊢ (? ? (? (? (? (? (? (? (? (? ? (? (? ? (? (? %))) ?)) ?) ?) ?) ?) ?) ?) ?) ?);
359 simplify in ⊢ (? ? (? (? (? (? (? (? (? ? (? (? ? (? (? %))) ?)) ?) ?) ?) ?) ?) ?) ?);
360 simplify in ⊢ (? ? (? (? (? (? (? (? (? ? (? ? (? (? %)))) ?) ?) ?) ?) ?) ?) ?);
361 whd in ⊢ (? ? (? (? (? (? (? (? (? ? (? ? %)) ?) ?) ?) ?) ?) ?) ?);
362 whd in ⊢ (? ? (? (? (? (? (? (? (? ? %) ?) ?) ?) ?) ?) ?) ?);
363 simplify in ⊢ (? ? (? (? ? (? (? ? (? (? ? (? %)) ?)) ?)) ?) ?);
364 simplify in ⊢ (? ? (? (? ? (? (? ? (? ? (? (? %)))) ?)) ?) ?);
365 simplify in ⊢ (? ? (? (? ? (? (? ? (? ? %)) ?)) ?) ?);
366 whd in ⊢ (? ? (? (? ? (? % ?)) ?) ?);
367 simplify in ⊢ (? ? (? (? ? (? ? (? (? ? (? (? %))) ?))) ?) ?);
368 simplify in ⊢ (? ? (? (? ? (? ? (? ? (? (? %))))) ?) ?);
369 simplify in ⊢ (? ? ? (? (? (? ? (? %)) ?) ?));
370 simplify in ⊢ (? ? ? (? (? ? (? %)) ?));
371 simplify in ⊢ (? ? ? (? ? (? (? ? (? %)) ?)));
372 simplify in ⊢ (? ? ? (? ? (? ? (? %))));
373 simplify in ⊢ (? ? (? (? ? (? ? (? (? ? (? %)) ?))) ?) ?);
374 simplify in ⊢ (? ? (? (? ? (? ? (? ? (? %)))) ?) ?);
375 simplify in ⊢ (? ? (? (? (? (? ? (? ? (? ? (? %)))) ?) ?) ?) ?);
376 simplify in ⊢ (? ? (? (? (? (? ? (? ? (? (? ? (? %)) ?))) ?) ?) ?) ?);
377 simplify in ⊢ (? ? (? (? (? (? ? (? (? ? (? ? (? %))) ?)) ?) ?) ?) ?);
378 simplify in ⊢ (? ? (? (? (? (? ? (? (? ? (? (? ? (? %)) ?)) ?)) ?) ?) ?) ?);
379 simplify in ⊢ (? ? (? (? (? (? (? (? ? (? ? (? ? (? %)))) ?) ?) ?) ?) ?) ?);
380 simplify in ⊢ (? ? (? (? (? (? (? (? ? (? (? ? (? ? (? %))) ?)) ?) ?) ?) ?) ?) ?);
381 simplify in ⊢ (? ? (? (? (? (? (? (? (? (? ? (? (? ? (? %)) ?)) ?) ?) ?) ?) ?) ?) ?) ?);
382 simplify in ⊢ (? ? (? (? (? (? (? (? (? (? ? (? ? (? %))) ?) ?) ?) ?) ?) ?) ?) ?);
383 simplify in ⊢ (? ? (? (? (? (? (? (? ? (? ? (? (? ? (? %)) ?))) ?) ?) ?) ?) ?) ?);
384 simplify in ⊢ (? ? (? (? (? (? (? (? ? (? (? ? (? (? ? (? %)) ?)) ?)) ?) ?) ?) ?) ?) ?);
386 change in ⊢ (? ? (? (? ? %) ?) ?) with (16*nat_of_exadecim t1_h+nat_of_exadecim t1_l);
387 unfold nat_of_byte8 in H H1 H2 H3;
388 simplify in ⊢ (? ? (? (? (? (? (? (? ? (? (? ? (? (? ? %) ?)) ?)) ?) ?) ?) ?) ?) ?);
389 simplify in ⊢ (? ? (? (? (? (? (? (? ? (? ? (? ? %))) ?) ?) ?) ?) ?) ?);
390 simplify in ⊢ (? ? (? (? (? (? ? (? (? ? (? (? ? %) ?)) ?)) ?) ?) ?) ?);
391 simplify in ⊢ (? ? (? (? (? (? ? (? ? (? ? %))) ?) ?) ?) ?);
394 simplify in ⊢ (? ? (? (? (? (? (? (? ? (? (? ? %) ?)) ?) ?) ?) ?) ?) ?);
395 simplify in ⊢ (? ? (? (? (? (? ? (? (? ? %) ?)) ?) ?) ?) ?);